Risk Assessment of Air Contaminants

HEATHER BOLSTAD, PH.D.

STAFF TOXICOLOGIST

OFFICE OF ENVIRONMENTAL HEALTH HAZARD ASSESSMENT
CALIFORNIA ENVIRONMENTAL PROTECTION AGENCY
OEHHA Assessments Support CalEPA
Environmental and Public Health Activities

CalEPA Mission:
To restore, protect and enhance the environment, to ensure public health, environmental quality and economic vitality.

OEHHA Mission:
To protect and enhance the health of Californians and our state’s environment through scientific evaluations that inform, support and guide regulatory and other actions.
Outline

- Background: risk, toxicity, and exposure
- How OEHHA determines toxicity
- Factors that influence toxicity
- How OEHHA determines Health Guidance Values for use in estimating risk
- Health concerns associated with some of the chemicals being measured
- How risk is determined from air monitoring data
- Suggestions for presenting air monitoring data
Risk = Toxicity \times Exposure

Toxicity:
- How dangerous is the chemical?
 - Health Guidance Values

Exposure:
- Does the chemical contact or enter our body?
 - Air monitoring data
How do we determine the toxicity of chemicals?

OEHHA develops benchmarks for toxicity called Health Guidance Values:

Noncancer: Reference Exposure Levels (RELs)
The amount of chemical in the air that is not likely to cause noncancer health effects (like asthma) even in sensitive populations like children and pregnant women

Cancer: Unit risks or cancer potency factors
Describe increase in cancer risk per unit of exposure

http://clipart-library.com/clipart/163895.htm
What influences toxicity?

- Amount
- Length of exposure (time)
- Sensitivity
Health effects can become more serious if the amount someone is exposed to increases.
Toxicity depends on the amount of time someone is exposed to a chemical.

OEHHA develops Reference Exposure Levels for specific amounts of time:

- **Brief exposure (acute):** occasional 1-hour exposures
- **Moderate exposure:** repeated 8-hour exposures over a significant fraction of a lifetime
- **Constant exposure (chronic):** continuous exposures from 1 year to a lifetime

https://accesspharmacy.mhmedical.com/content.aspx?bookid=2462§ionid=194918140
More people are affected as the amount of chemical they are exposed to increases.

People differ – some are more sensitive than others (like children and pregnant women), while others are less sensitive (resistant).
How are health guidance values developed?

1. Review health effects information
2. Identify most sensitive effects
3. Determine relationship between amount of chemical and effect
4. Determine amount that causes a specific effect
5. Adjust amount for route, species, length of exposure
6. Adjust amount for uncertainty (time differences, missing information, species)
7. Adjust amount for differences in sensitivity between people

Health Guidance Value

Hypothetical example

- 1000 parts per billion (ppb) (rat)
- 100 ppb (human)
- ÷10 (no developmental study)
- ÷10 (asthmatic children)
- 1 ppb
Health Concerns: Diesel Exhaust

Noncancer
- Respiratory irritation, cough, allergies, lung inflammation
- ↑ hospitalizations, ER visits, asthma attacks, premature deaths
- Sensitive populations
 - Those with respiratory and cardiovascular conditions
 - Children
 - Elderly

Cancer
- Increased cancer risk
- ~70% of average Californian’s cancer risk from air pollution (CARB)

https://commons.wikimedia.org/wiki/File:Diesel-smoke.jpg
Health Guidance Values for Diesel Exhaust

Non-cancer
Chronic REL: 5.0 μg/m³
Effect: Changes in rat lung

Cancer
Unit risk: 0.0003 per μg/m³
Inhalation Cancer Potency Factor: 1.1 (mg/kg-day)^{-1}
Effect: Lung tumors in workers

Health Concerns: Metals

Lung cancer (arsenic, beryllium, cadmium, cobalt, nickel)

Adrenal cancer (cobalt)

Kidney cancer (lead)

Nervous system (arsenic, lead, manganese, selenium)

Respiratory system (beryllium, cadmium, cobalt, nickel)

Liver (selenium)

Kidney (cadmium)

Immune system (beryllium, nickel)

Reproduction and development (arsenic)

Blood (selenium)

Hair, skin, nails (selenium)

https://www.istockphoto.com/in/photo/human-organs-gm497303869-41750622
Health Concerns: Volatile Organic Compounds (VOCs)

- Respiratory system (acrolein, naphthalene, styrene, toluene, xylenes)
- Nervous system (benzene, hexane, styrene, toluene, xylenes)
- Reproduction and development (benzene, ethylbenzene, toluene)
- Kidney (ethylbenzene)
- Kidney cancer (ethylbenzene)
- Leukemia (benzene)
- Nasal tumors (naphthalene)
- Blood (benzene)

https://www.istockphoto.com/in/photo/human-organs-gm497303869-41750622
How do we determine the risk from the amount of a chemical measured in air?

Noncancer
How does the amount in air compare to the Reference Exposure Level?

- Higher? May be some concern
- Lower? Little concern

Cancer
How much does the amount in air increase cancer risk by?

- Higher? Concern
- Lower? Less concern
Data Presentation

Engage stakeholders

Define terms and chemical formulas

Graphs: lines for health standard and limit of detection

Example formats
Questions?

Heather Bolstad, Ph.D.
heather.bolstad@oehha.ca.gov
(510) 622-3146