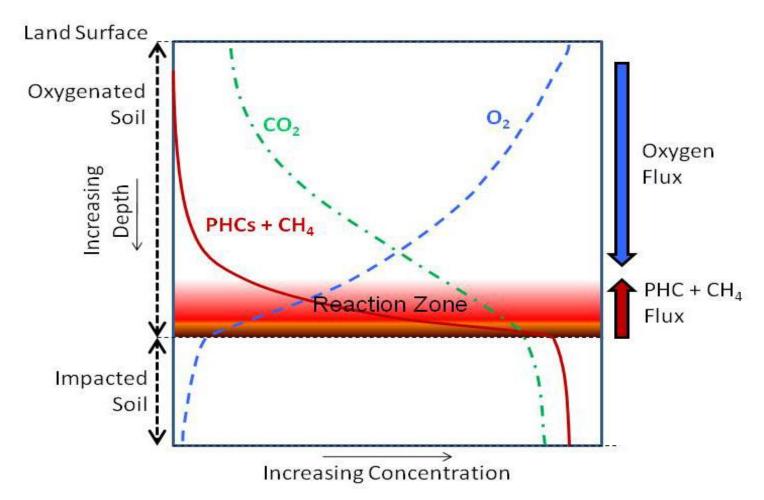
Small Purge Sampling of MW's for Evaluating PVI and NSZD

- SAM FALL FORUM-San Diego, CA
- October 11, 2017

G. Todd Ririe Unocal-Retired Chevron-Retired BP-Retired

Presently-Hiking-Biking-Fishing-Consulting....

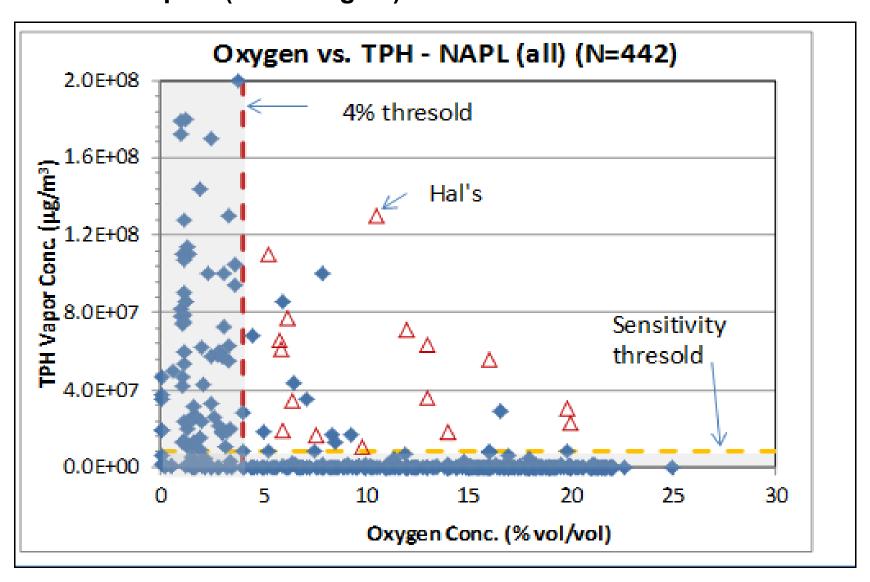
Bob Sweeney-Environmental & Petroleum Geochemistry

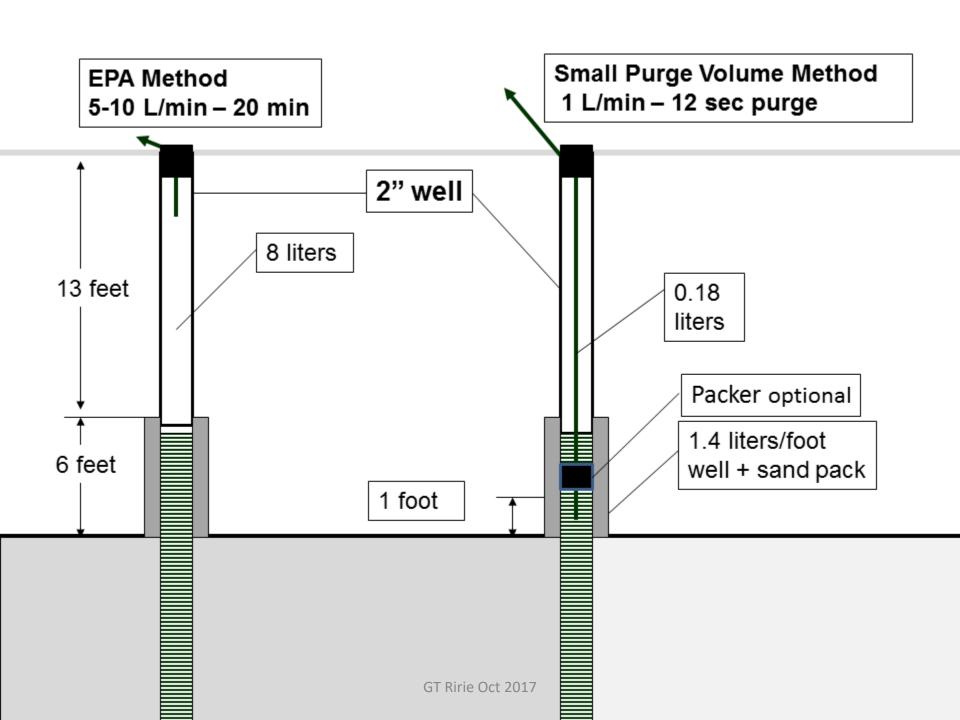

What we are trying to avoid

Objectives

- Present a new method for sampling vapor from existing monitoring wells.
- Determine reason soil vapor samples in EPA data base are not consistent with diffusion/biodegradation model used in PVI investigations.
- Compare methods for collecting vapor samples from groundwater monitoring wells
 - Large purge method (Jewell and Wilson, 2011)
 - Small purge method (Sweeney and Ririe, 2017)

How can high O₂ and high TPH samples co-exist?

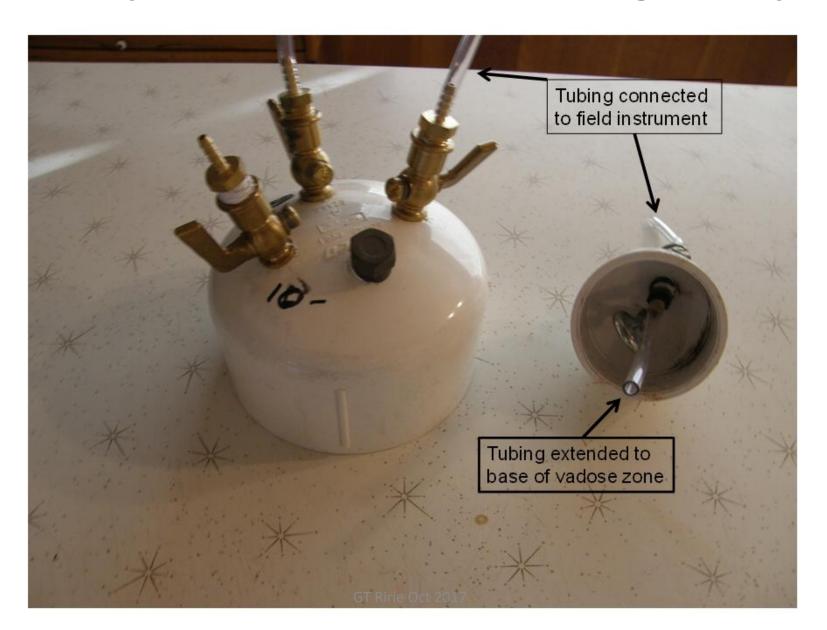



Diffusion/biodegradation model (EPA, 2012)

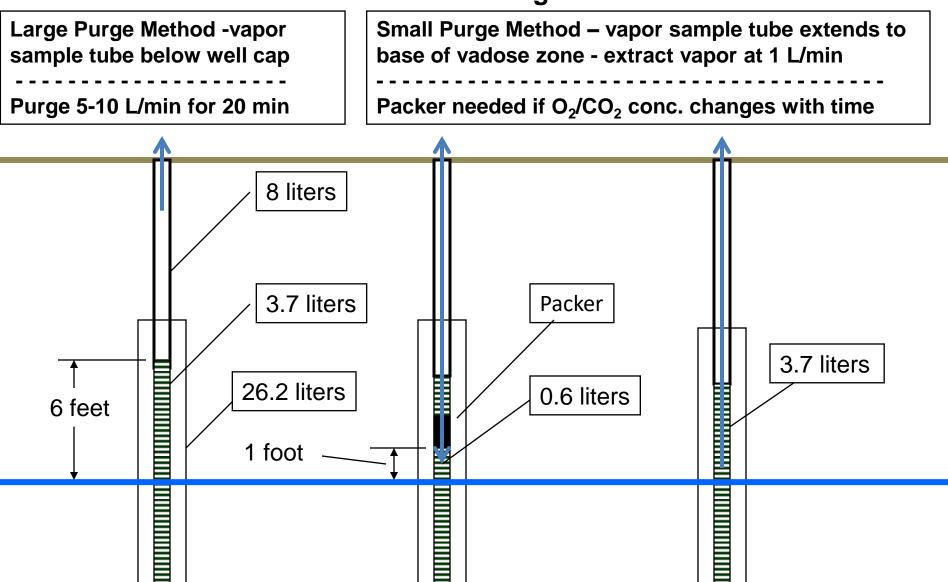
Above Reaction Zone: $O_2 > 5$ %-v; benzene < 1,000 ug/m³; TPHV < 10,000 ug/m³.

Within/Below Reaction Zone: O_2 is < 5 %-v. GT Ririe Oct 2017

Plot of O₂ versus TPH for vapor samples: (EPA, 2013) most samples (red triangles) outside model limits are from Hal's

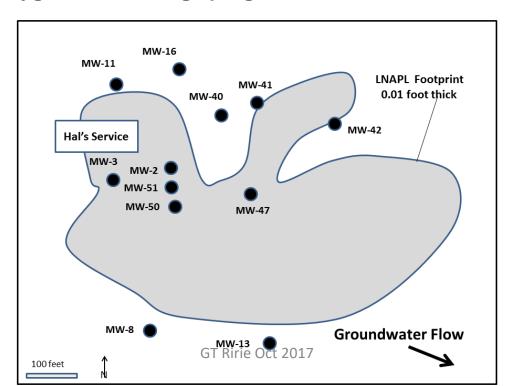


Set up for using Packer: Small Purge Sampling

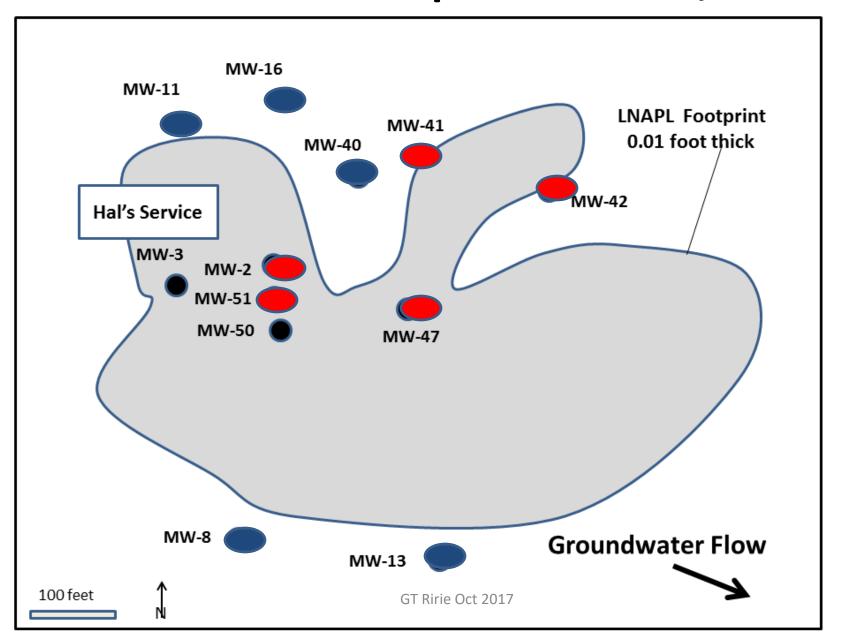

Well Caps Modified for Small Purge Sampling

Small Purge Sampling Monitoring Well at LNAPL Site

Comparison of Methods for Vapor Sampling from Groundwater Monitoring Wells



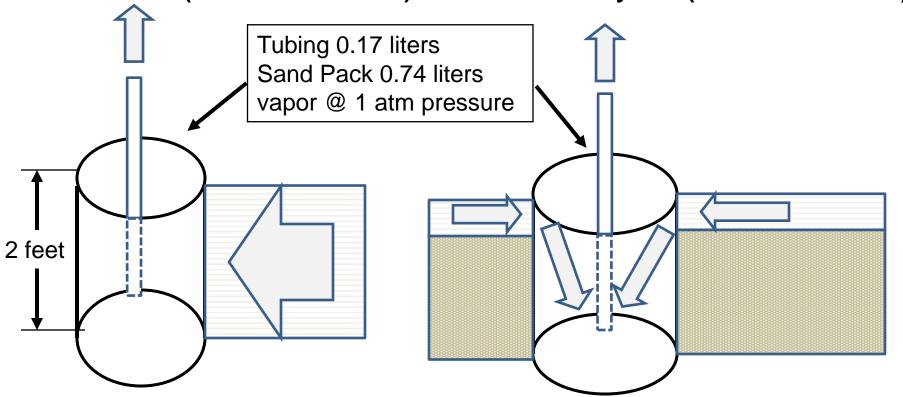
Large purge method – vapor sampled after purging well casing & sand pack Small purge method – vapor sampled after $O_2^{t,2}/CO_2$ concentrations become stable


Comparison of Large & Low Flow Sampling

	Oxyg	CO2 (%-v)		
	Large	Small	Small	
Well	Purge	Purge	Purge	
MW-2	1.36	0 - 1.7	13.5 - 15.5	
MW-50/51	18.2	<0.1	14.8 - 15.2	
MW-47	17.2	<0.1	12 - 12.1	
MW-41	15.4	<0.1	8.5 - 9.6	
MW-42	1.63	11.2	1 - 1.2	

List of O₂/CO₂ concentrations for vapor from monitoring wells. The oxygen data for large purge method from Wilson, et al. (2013).

LNAPL Plume Map at Hal's Site, UT

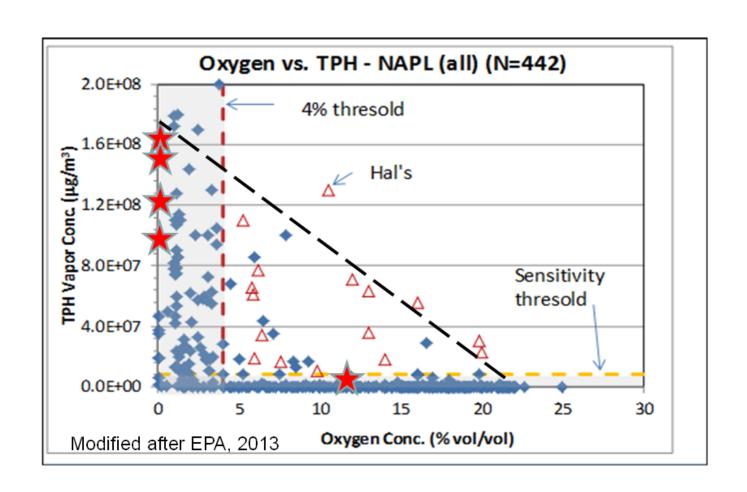


Well Log at Hal's, UT: Small Purge Sampling

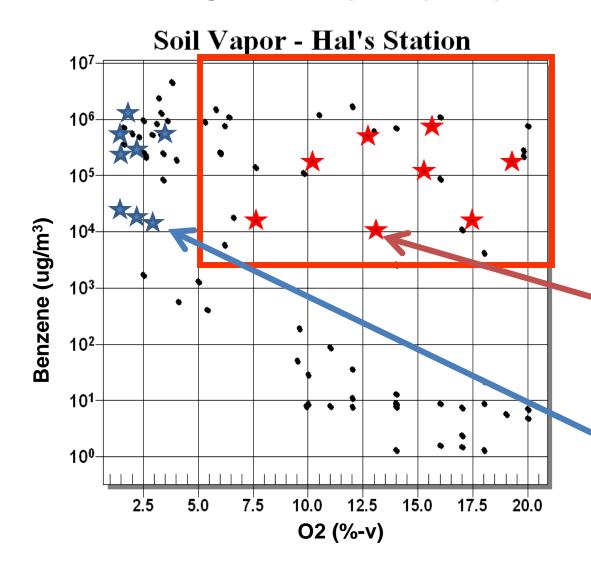
	2			
ı				
	4			
7 ppm	6			
ľ	8			
maa 00	10			
			ß	<u>ְ</u>
l				
000 ppm				
000 nnm				
oo ppiii		Ť		
	- 1			
	- 1			
(00 ppm	00 ppm 16 18 20	8 10 12 14 16 18 20 00 ppm 22 24 26 28 30	8 10 12 14 16 18 20 00 ppm 22 24 26 28 30

Conceptual Model – Sampling Vapor from Vapor Probes

Permeable Soil (Pressure > 0.8 atm) Low Permeability Soil (Pressure < 0.8 atm)


Permeable soil

Pump remains on (Pressure > 0.8 atm) Uniform vapor flow from soil Vapor from sand pack -1st minute Vapor from soil -2nd minute


Overlying permeable soil layer

Pressure drops due to limited flow from soil Vapor from sand pack -15 - 30 seconds $- low O_2$ Vapor from permeable soil layer > 30 sec $- high O_2$

Red Stars-Low Purge Samples; dashed linetrend for mixing fresh gasoline vapor and air

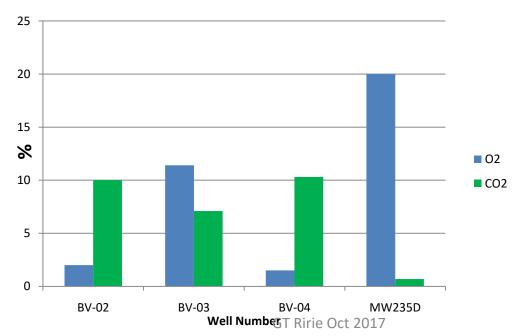
Samples from Hal's with high O₂ and high TPH are the result of high volume (1 liter) sample collection in tight soils

8 of the 13 vapor probes that historically yielded high O₂ and benzene concentrations were analyzed using low purge:

- O₂ in vapor extracted from permeable soil layer above LNAPL (> 0.2 liters) is > 10 %-v
- O₂ in vapor from sand pack (0.1-0.2 liters) is < 2 %-v and represents in situ gas near LNAPL

Small purge analyses documents **low O₂** in monitoring wells over LNAPL and **high O₂** in wells not over LNAPL.

		Oxygen (%-v)		Carb	Carbon Dioxide (%-v)]			
Well	Depth	Before	Lab	After	Before	Lab	After	Storage	N_2	CH₄
	(feet)	(%-v)	(%-v)	(%-v)	(%-v)	(%-v)	(%-v)		(%-v)	(ppm-v)
a) Over	a) Over LNAPL footprint									
MW-50*	17.5	<0.1	2.0	<0.1	14.8	14.0	15.2	Tedlar	78	2,200
MW-2	17	1.7	2.0	0.9	15.2	14.8	13.5	Tedlar	71.1	3,800
MW-2	17	<0.1	4.9	<0.1	15.5	12.0	14.8	Vial	78	4,090
MW-3	17.5	<0.1	3.5	<0.1	12.3	13.0	15	Tedlar	84	1,900
MW-41	17.5	<0.1	4.0	<0.1	8.5	8.7	9.2	Tedlar	93	ND
MW-41	17.5	<0.1	1.5	<0.1	9.2	10.0	9.6	Vial	83.4	6
MW-42	17.5	11.2	12.3	11.2	1.2	1.7	1	Vial	81.6	9
MW-47*	17.5	<0.1	NA	<0.1	12.1	NA	12	none	NA	NA
b) Not over LNAPL footprint										
MW-8	17.5	5.1	8.8	5.5	7.8	7.2	7.5	Vial	79.5	4
MW-11	17.5	NA	18.0	NA	NA	2.0	NA	Vial	74.8	2
MW-11	17.5	18.6	21.0	18.5	1.5	0.73	1.6	Tedlar	82	ND
MW-11	17.5	13.6	13.8	13.2	3.9	4.7	3.8	Vial	76.8	1
MW-13	17.5	5.6	6.9	5.3	5.3	5.9	5.4	Vial	81.8	131
MW-16	17.5	13.4	13.5	13.5	4.7	5.5	4.6	Vial	75.5	2
MW-40	17.5	15.2	19.0	15.2	3.4	1.7	3.4	Tedlar	82	ND
MW-40	17.5	15.2	15.3	15.4	3.3	4.0	3.1	Vial	76.0	1


Oxygen, carbon dioxide, nitrogen and methane results for monitoring wells sampled without the packer.

Tedlar bags were sent to HP Labs and Evaculated Vials were sent to VaporTech Field measurements of O₂ and CO₂ were made before and after sample collection for the laboratories

"Before' field measurements were made after 1 liter of vapor removed from well. Following collection of sample for lab analysis, the 'after' measurement was made.

Conclusions and Lessons Learned

- High O₂ and high TPH concentrations in soil vapor are not representative of in situ soil vapor composition above LNAPL.
- The low purge method for sampling vapor from monitoring wells yields results that are consistent with accepted models for hydrocarbon vapor transport.
- The low purge method for sampling vapor from monitoring wells can also be used in NSZD studies.

