## Vapor Intrusion Update







EDMUND G. BROWN JR.



MATTHEW RODRIQUEZ SECRETARY FOR ENVIRONMENTAL PROTECTION

#### **Outline**

- 1) Overview
- 2) Background
- 3) Scope of CalEPA VI Guidance
- 4) Technical Issues
- 5) Anticipated Rollout

#### **Overview**

#### Attenuation Factors

- Consistent Attenuation Factors
- Capture Data Going Forward into a Database
- Need to Update Existing Agency Guidance
  - DTSC Vapor Intrusion Guidance, Vapor Intrusion Mitigation Advisory
  - SF Bay Regional Board Environmental Screening Levels and Vapor Intrusion Framework

## **DTSC/Water Boards VI Workgroup**

(At the request of Gina Solomon)

## 9

#### **Department of Toxic Substances Control**

- Claudio Sorrentino (co-chair)
- Dan Gallagher
- Barbara Renzi



#### **State Water Resources Control Board**

- Steve McMasters
- Karen Kramer



#### San Francisco Regional Water Quality Control Board

- Cheryl Prowell (co-chair)
- Nicole Fry
- Ross Steenson

## **Background – TCE Short-Term Toxicity**

- December 2013 USEPA Region 9 letter to SF Bay Regional Board with short-term response levels for TCE in indoor air
- July 2014 USEPA Region 9 memo setting short-term response levels for TCE
- August 2014 DTSC Human Health Risk Assessment
   Note 5
- October 2014 Region 2 TCE VI Framework

## **Background – CalEPA Workgroup**

- Fall 2014 Workgroup formed in response to the TCE short-term toxicity concerns and debate over the key toxicity study. Two subgroups: 1) toxicity; 2) fate and transport.
- 2014 Toxicity subgroup agreed to remain consistent with USEPA regarding TCE toxicity
- 2015 Fate and transport subgroup continued meeting regarding attenuation factors (model vs. empirical)
- 2016 CalEPA request: DTSC and Water Boards develop a consensus approach to attenuation factors

## **Motivations for Change**

- Desire for consistency:
  - Attenuation factors between agencies
  - In decision-making, between agencies and case manager to case manager
- Increased awareness:
  - Temporal and spatial variability in VI data
  - Sewer airspace as route of vapor transport separate from traditional soil vapor intrusion migration
- J&E model removed from EPA website in late 2015.

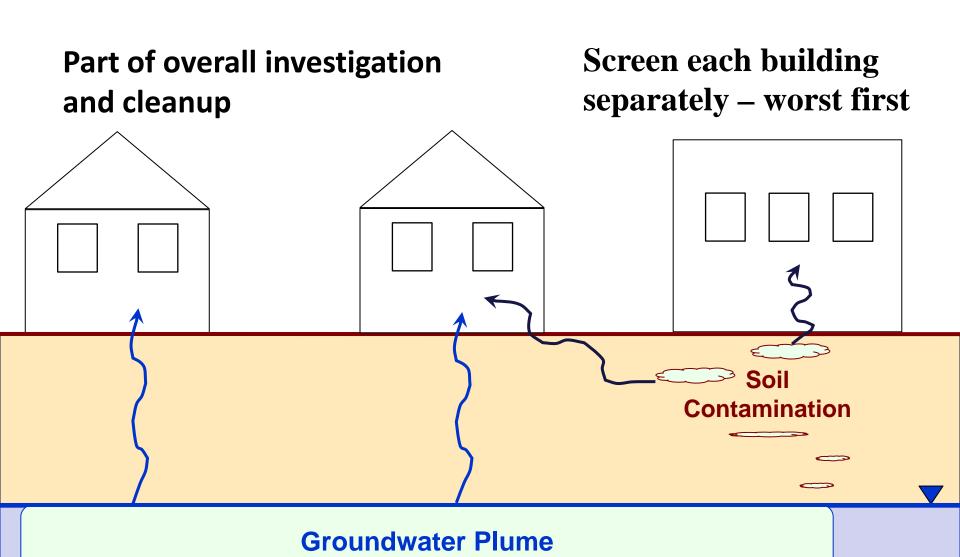
#### **Process**

- Multi-disciplinary Team
  - DTSC, Regional Board (R2, R4), and State Board
  - Toxicologists, Geologists, and Engineers
- Discussion
  - Mix of full day in person meetings and Global Meet
  - Meetings in 2017 have been bi-weekly now weekly

#### **Tradeoffs Considered**

- Protective
- Captures variability
- Is it scientifically defensible?




- Practical
- Allows fast decision making
- Is this too resource intensive?

Need a new database to balance the scales for better decisions

#### Scope

- Interim guidelines until existing agency guidance can be updated.
- Adopt consistent attenuation factors
- Expedite evaluation of current VI exposure at buildings while site characterization not yet complete
- Capture VI data and information going forward in a database

#### **Conceptual Model Scenarios**

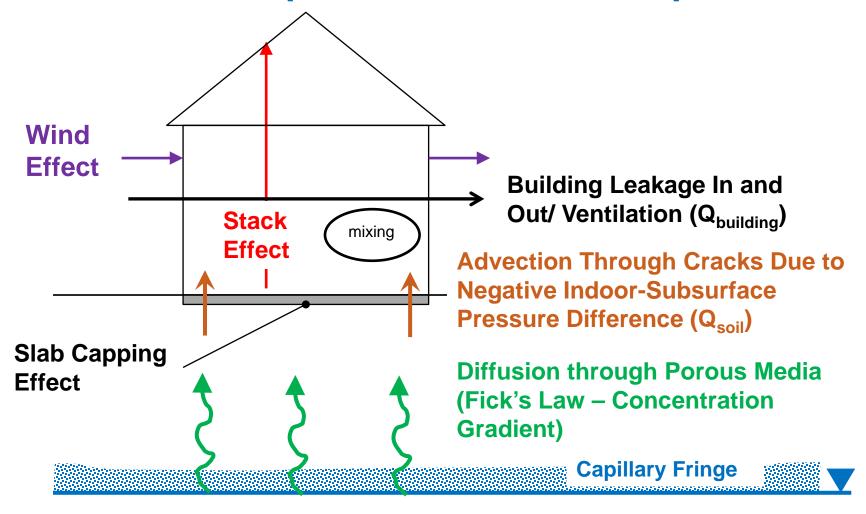


#### **Screening Process**

- Stepwise process to screen and evaluate a building during sitewide investigation
- Steps 2 and 3 have multiple sampling rounds
   If a round indicates a threat, skip to next step
- If exposure is identified risk and mitigation decisions should be made promptly

Step 1: Build CSM and prioritize buildings for VI evaluation **Step 2: Screening with** soil gas **Step 3: Sample indoor** Step 4: Risk **Management Decisions** 

## **Key Elements of New Approach**


- Locations and frequency for soil gas, subslab, indoor air, outdoor air, and sewer air sampling
- Empirical attenuation factors for screening of buildings (no more J&E)
- Sewers as a preferential pathway
- Risk management decision framework
- Prospective California VI database

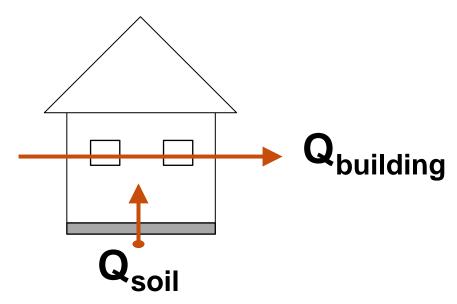
## **Risk Management Decisions**

| Current Risk: Estimate VI risk primarily using measured indoor air |                                                                         |  |
|--------------------------------------------------------------------|-------------------------------------------------------------------------|--|
| Current<br>Risk?                                                   | Indoor Air<br>Risk & Hazard                                             |  |
| No                                                                 | Risk < 1x10 <sup>-6</sup> <u>and</u> HI < 1                             |  |
| Site Specific                                                      | Risk from 1x10 <sup>-6</sup> to 1x10 <sup>-4</sup><br><u>and</u> HI ≤ 1 |  |
| Yes                                                                | Risk > 1x10 <sup>-4</sup><br><u>or</u> HI > 1                           |  |

| Future Risk: Estimate VI risk primarily using subslab / soil gas data |                                                                         |  |
|-----------------------------------------------------------------------|-------------------------------------------------------------------------|--|
| Future<br>Risk?                                                       | Subslab / Soil Gas<br>VI Risk & Hazard                                  |  |
| No                                                                    | Risk < 1x10 <sup>-6</sup> <u>and</u> HI < 1                             |  |
| Site Specific                                                         | Risk from 1x10 <sup>-6</sup> to 1x10 <sup>-4</sup><br><u>and</u> HI ≤ 1 |  |
| Yes                                                                   | Risk > 1x10 <sup>-4</sup><br><u>or</u> HI > 1                           |  |

#### Traditional Conceptual Model of Soil Vapor Intrusion




**Groundwater VOC Vapor Source** 

Diffusion in Water<< Diffusion in Air

# Vapor Intrusion ESLs Since 2000 Soil Gas ESLs Since 2003

Soil Gas Attenuation Factor (AF) =  $Q_{soil}/Q_{building}$ Convective transport from a source located immediately beneath the building (Johnson and Ettinger 1991).

- Default size building (10m x 10m x 2.44m)
- Vapor entry rate (Q<sub>soil</sub>)
- Bldg. ventilation rate
   (Q<sub>building</sub>)

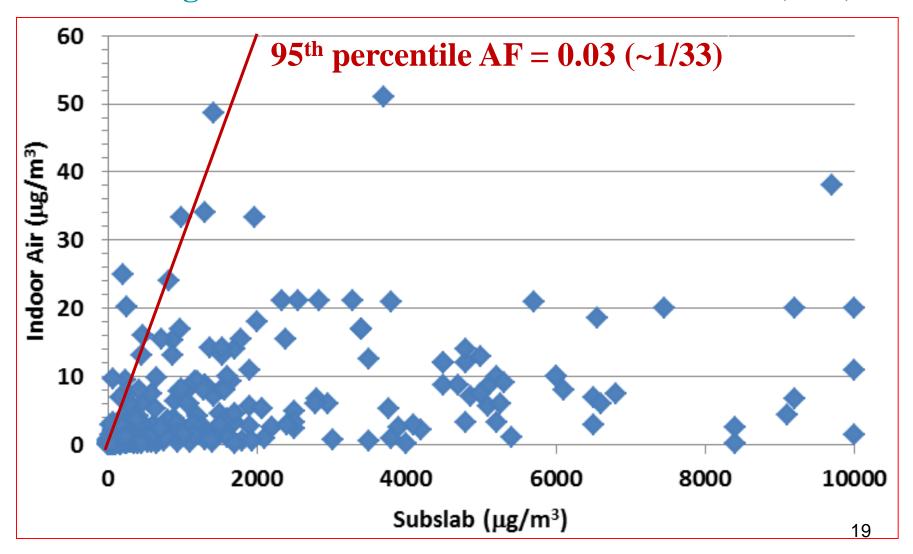


J&E model building entry and indoor mixing component

#### **Limitations of the J&E Model**

- There are a large number of inputs (building and subsurface).
- Many inputs are not measured in strain vestigations (e.g., Qsoil and Qbuilding, etc.).
- Assumes homogeneous conditions in each subsurface layer.
- Cannot account for preferential pathways.
- The model has never undergone formal validation (calibation using field data).

## The USEPA Empirical VI Database


• 2002 – The USEPA Draft VI Guidance employed generic AFs based on a statistical analysis of data from a limited number of sites.

.....USEPA continued to compile data to improve AFs......

- 2008 Preliminary VI Database report.
- 2012 Final VI Database report.
- 2015 Final OSWER "VI Tech Guide" includes generic AFs based on analysis the Final VI Database.

## **USEPA Empirical VI DB**

431 Buildings' Data used to Calculate Generic SS AF (0.03)



## 2010/11 Draft ESL Update

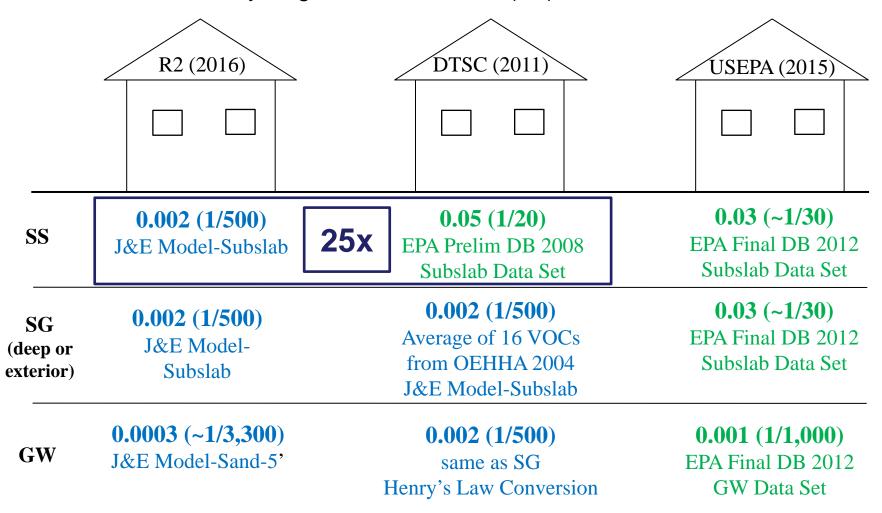
- Considered adoption of empirical AFs from the USEPA 2008 Preliminary VI Database
- Subslab/soil gas AF of 0.05 (1/20)
- Would have lowered the soil gas ESLs by 50x
- Sought feedback from an Outside Advisory

  Group

  ESL update was shelved

**Empirical AFs not adopted** 

## **Outside Advisory Group Feedback**


- National DB not appropriate given CA climate
- Bay Area AFs often less than 0.001
- Criticism of unresolved indoor sources and data filtering processes
- Empirical AFs generally favored over model AFs
- Limitations of subslab data
- Develop a CA database

#### **Current Status of J&E Model**

- Using conservative input values, the models produce AFs that are an order of magnitude less conservative than the USEPA empirical AFs.
- USEPA 2015 Final OSWER VI Tech Guide omits references to USEPA spreadsheet version of the J&E model.
- Late 2015 J&E model removed from USEPA website.
- Responses to inquiries USEPA no longer supports or endorses their spreadsheet J&E model.

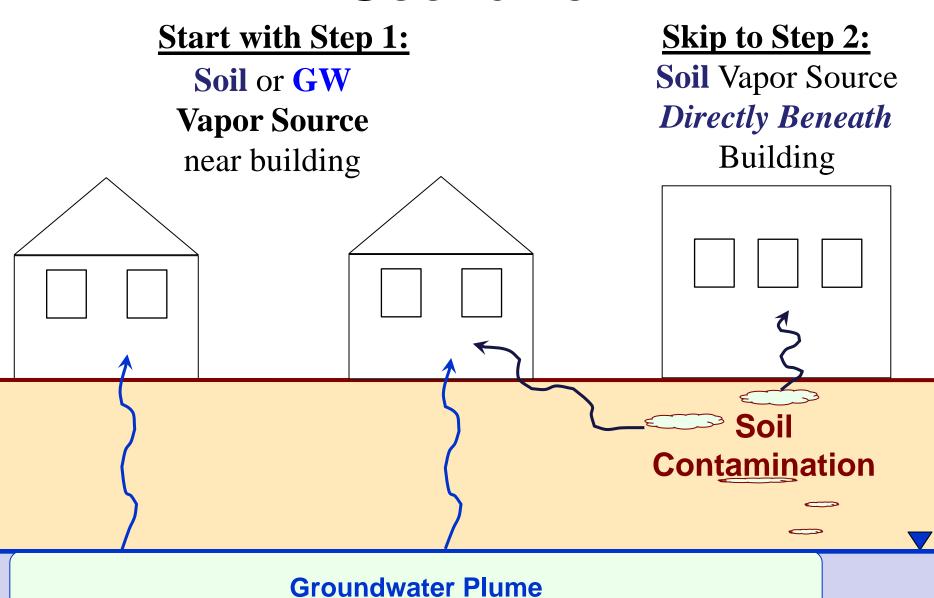
#### VI Attenuation Factors for **Existing Slab-on-Grade Residences**

SF Bay Regional Water Board (R2), DTSC, USEPA

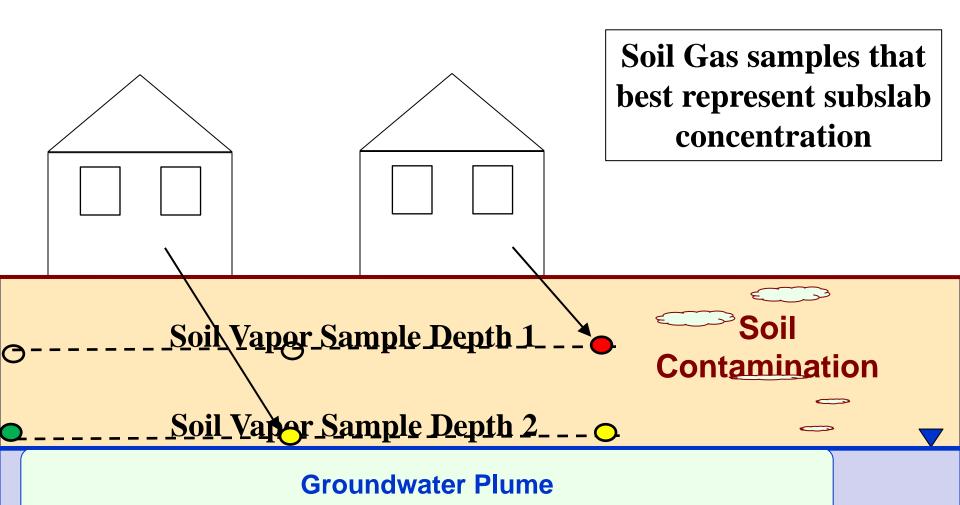


#### **Building a Consensus Approach**

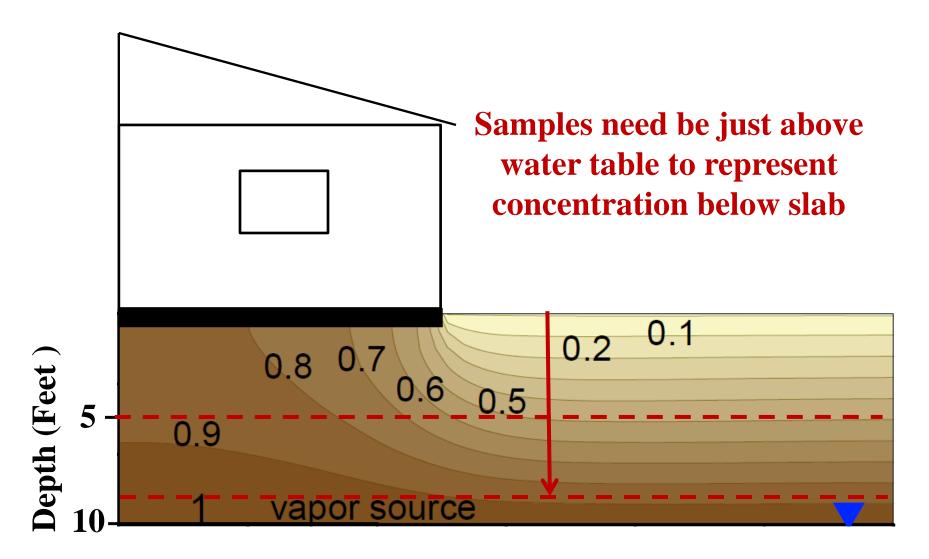



## Recalling our Advisory Group comments, we recommended building a <u>prospective</u> CA VI Database.

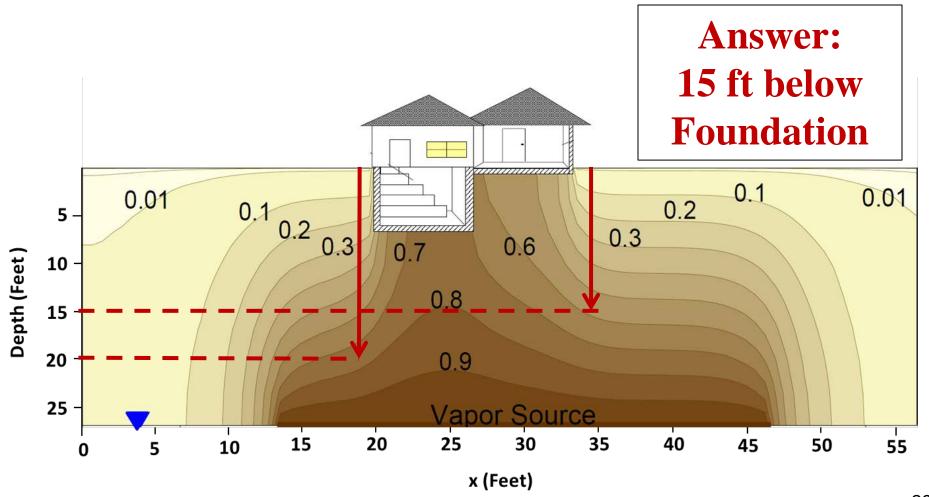
- 1. Minimum data requirements based on current science to improve on USEPA's retrospective database.
- 2. Database structure and system to capture and house the data (GeoTracker).
- 3. Periodic data review and analysis to improve VI evaluations and develop CA-specific AFs.

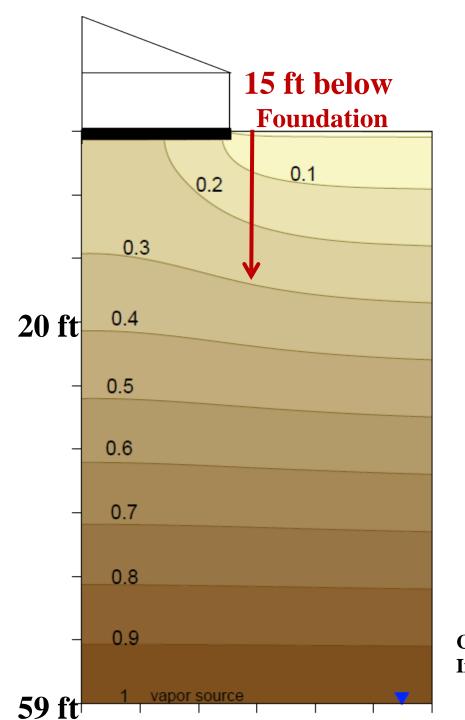

#### Proposed VI Attenuation Factors for Existing/Future Slab-on-Grade Buildings




#### **Scenario**




# Which SG Sample for Risk Calculation?




## **Building Capping Effects**

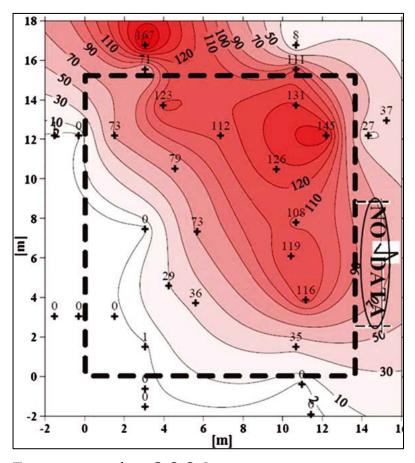


# What Depth Soil Gas for Deep Groundwater Plumes?





# Very deep groundwater plumes?


**Conceptual Model Scenarios for the Vapor Intrusion Pathway - USEPA 2012** 

## Spatial and Temporal Variability of Indoor Air and Subslab Soil Gas

#### **Observations from SDM**

| Media and<br>Depth          | Spatial<br>Variations | Temporal<br>Variations |
|-----------------------------|-----------------------|------------------------|
| Indoor Air<br>(lower level) | Unknown               | 1000X                  |
| Sub-slab Soil<br>Gas        | 10X – 100X            | 10X                    |

Johnson, 2014



Luo et al., 2009

#### **California VI Database**

- Goal: capture data collected under agency oversight to:
  - better understand factors influencing VI
  - potentially develop CA-specific attenuation factor(s)
- Modify GeoTracker to distinguish between types of vapor data
- Utilize existing functionality for uploading laboratory Electronic Data Format (EDF)
- Submitted data will be extractable and available for statistical analysis

#### **Rollout Process**

- Issue as Interim Final for 6-month public comment
- Public Workshops in northern and southern CA
- Issue as Final
- Update Existing Agency Guidance
  - DTSC Vapor Intrusion Guidance, Vapor Intrusion Mitigation Advisory
  - SF Regional Water Board Environmental Screening Levels and Vapor Intrusion Framework

## **Implementation**

- Training for Staff
- Training for regulated community
- Start using Interim Final during public comment period
- GeoTracker database development and use

## **Comments/Questions?**

#### **Contact Information:**

Ross Steenson

ross.steenson@waterboards.ca.gov 510-622-2445

**Disclaimer:** Content presented here reflects the conclusions of the author and should not be construed to represent guidance or official policy of the California Water Boards.