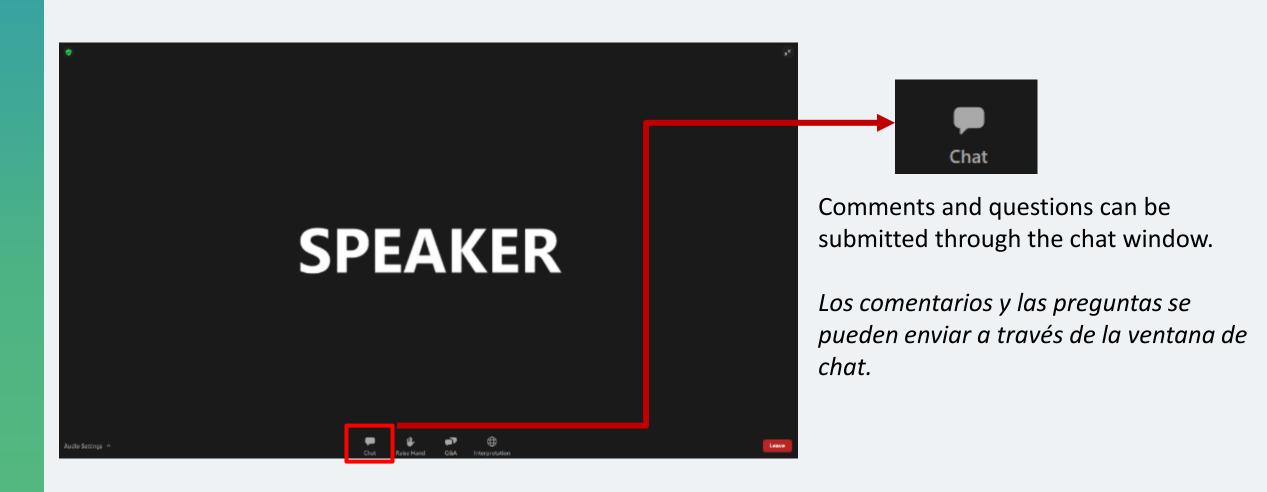

County of San Diego

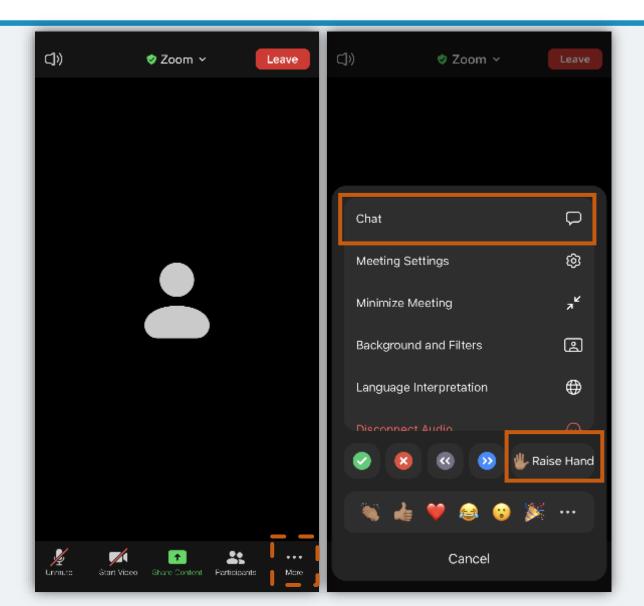
Land Use and Natural Climate Solutions Working Group

November 3, 2022


How to use Zoom // Cómo Usar Zoom

Please select your language of choice (you must select one option)

Debe seleccionar el idioma de su preferencia (Tiene que escoger un idioma)


How to use Zoom // Cómo Usar Zoom

How to use Zoom // Cómo Usar Zoom

On your Phone // En su teléfono móvil

Role of Working Groups

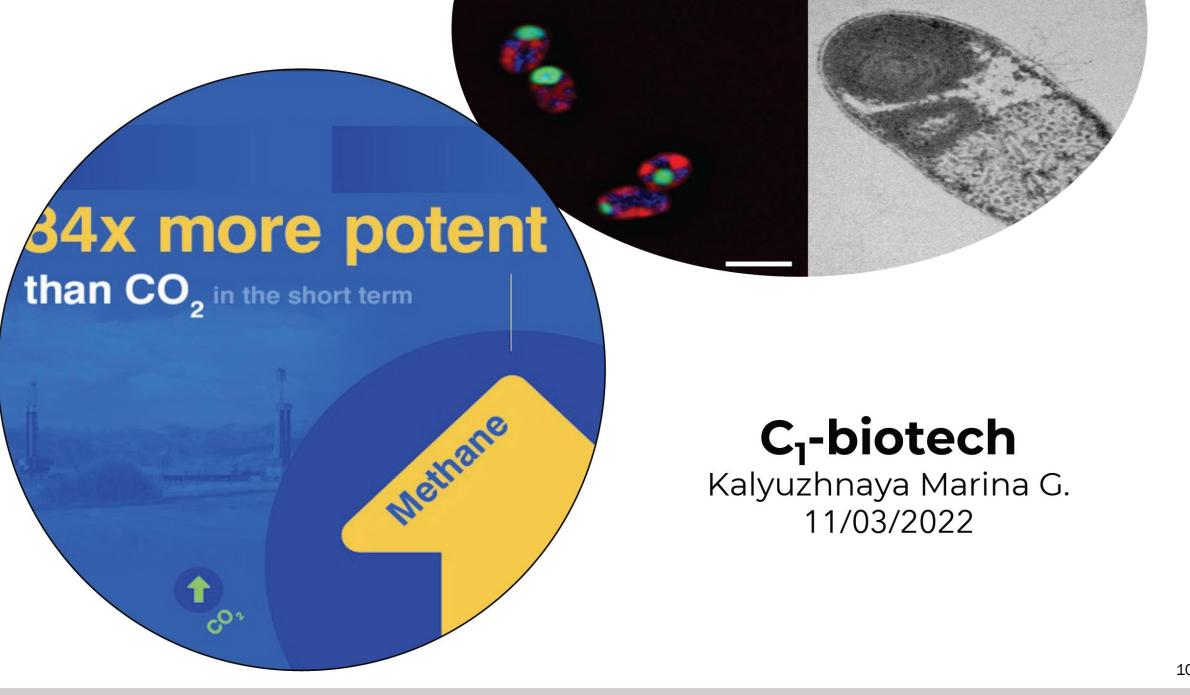
LAND USE & NATURAL

CLIMATE SOLUTIONS

TRANSPORTATION

Today's Agenda

- Welcome
- Stakeholder Presentations
 - Dr. Marina Kalyuzhnaya, San Diego State University and Facilitator Questions
 - Andrew Meyer, San Diego Audubon Society and Facilitator Questions
- Implementation Playbook & Actions Matrix
- Open Discussion
- Closing



Decarbonizing Land Use and Promoting Natural Climate Solutions

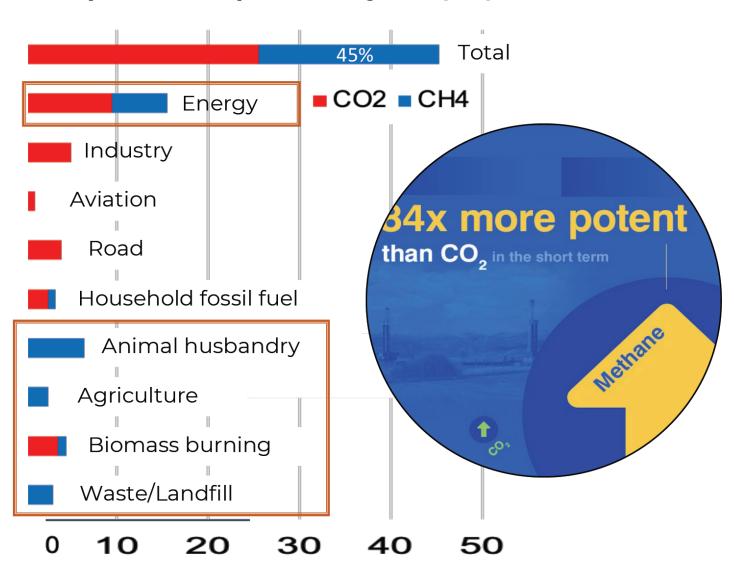
Dr. Marina Kalyuzhnaya

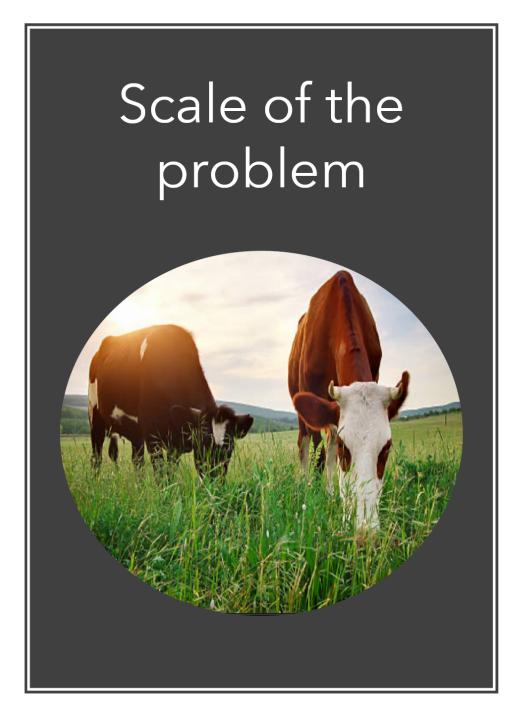
San Diego State University

Idea #1

Methane

Powerful greenhouse gas

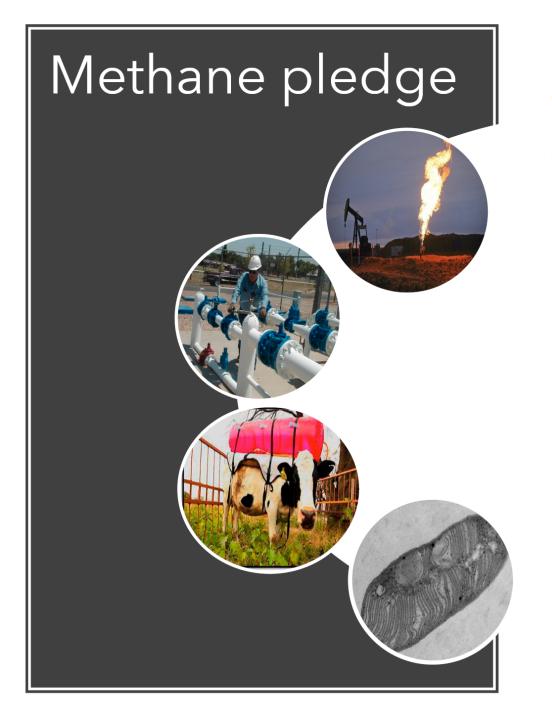

45% of global warming


Comes from fossil energy and food production

Target #1 for climate change mitigation

"the lowest hanging fruit"
"one of the most effective things we
can do to reduce near-term global
warming."

Temperature impact in 20 years (mK)

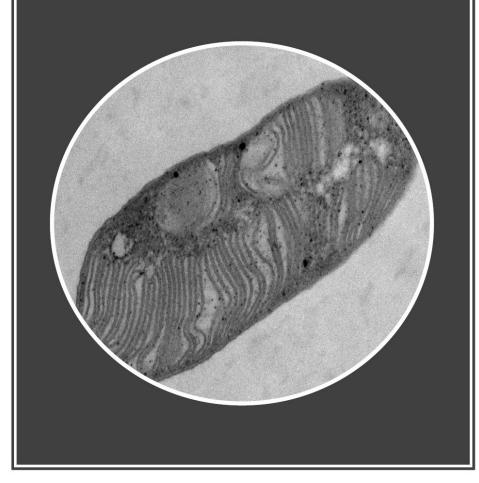


The US-livestock industry accounts 94.4 million cattle and calves (USDA 2021)

33 040 000 000 L CH₄ per day 1166 million cubic ft per day

California natural gas residential consumption **per day**

Delaware natural gas residential consumption **per month**

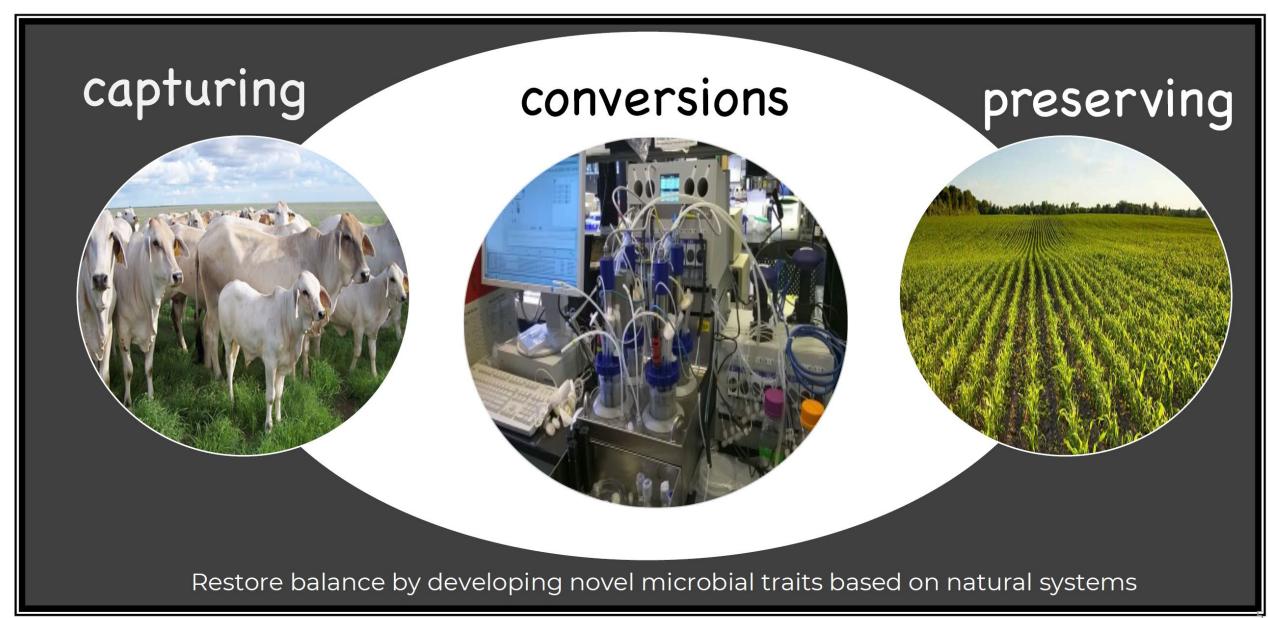


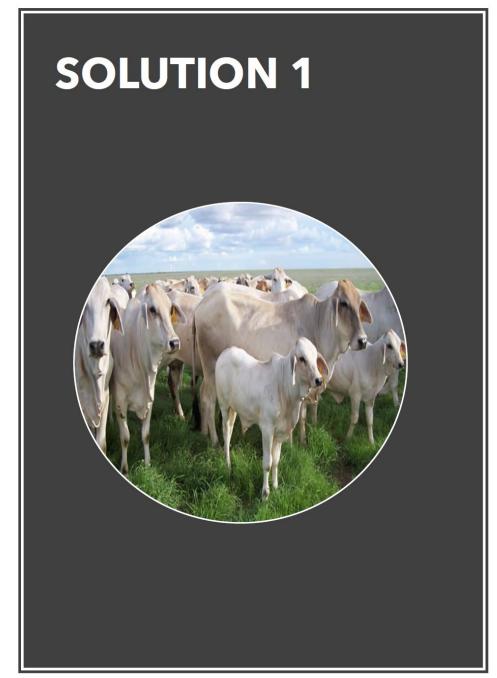
US pledged to reduce methane emissions 30% by 2030 Supported by EU

HOW?

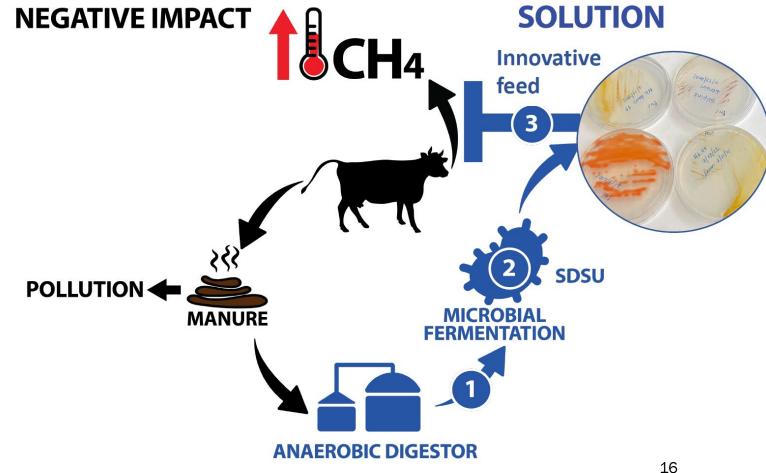
- Reduce venting and flaring
- Tighten nuts and bolts
- Apply biology to reduce emissions from fossil industries, livestock and agriculture

Methane-consuming microbes are everywhere in nature

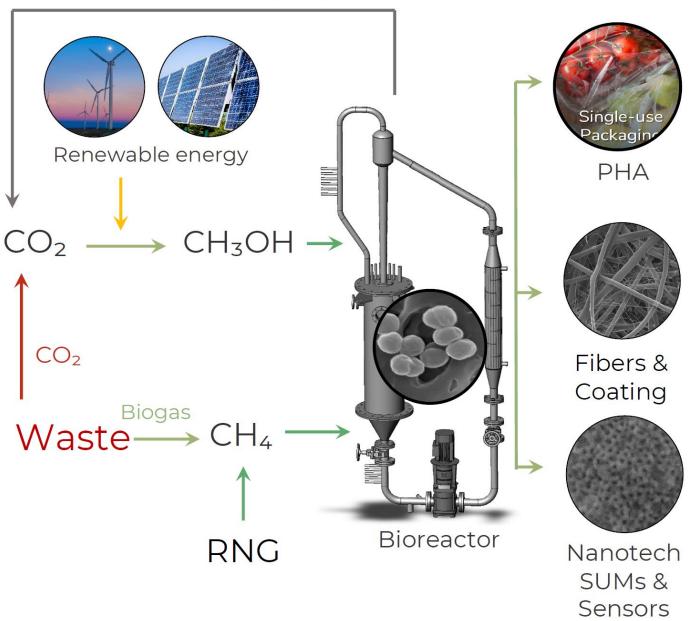

Methane-consuming microbes are beneficial for animals and plants


Established as animal feed (SCP)

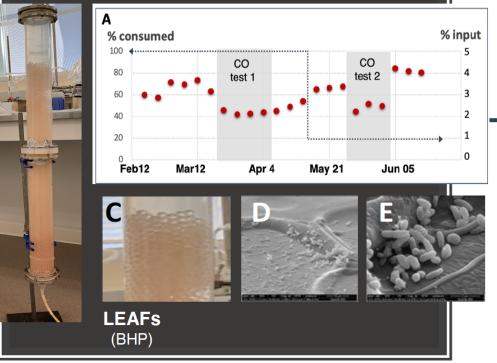
Excellent source of protein


Proven large-scale production

Rebuilding human made ecosystems

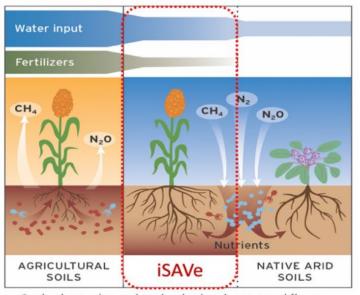


Native microbes as feed to reduce methane emission and stimulate animal growth

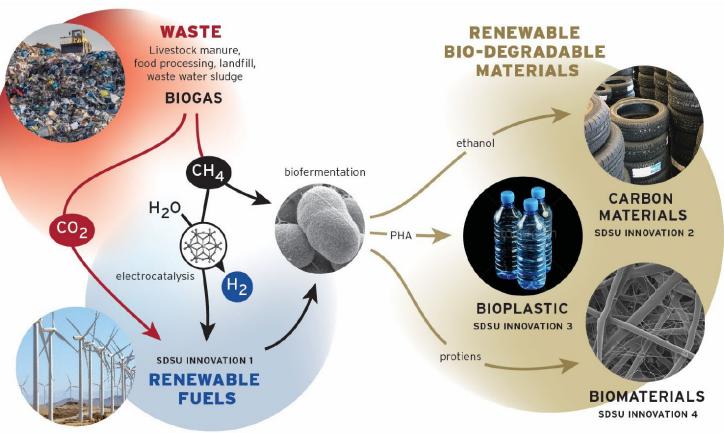

SOLUTION 2 GHG as feedstock

Eliminate anthropogenic emissions

SOLUTION 2


GHG as feedstock

iSAVe: Microbial supplements for Sustainable Arid Vegetation


* robust cropping, reduced water input, preserved fluxes, enhanced *in-situ* fertilization U.S. deserts consume 33 MMT CO₂ eq/yr

Dry land vegetation enhances consumption 10- fold due to unique microbiomes associated with rhizosphere.

Reinforcing the natural potential of southern arid land has the potential to cut 25% of annual US methane emissions.

iSAVe: microbial supplement from the desert plant rhizosphere: maximizes GHG capturing by vegetation, improves plant growth under water scarcity, can be combined with the production of energy/food relevant crops, such as sorghum.

VISION Marina AsfaW Beyene Kalyuzhnaya Microbial gener **AZTEC** INNOVATION **TEAM** Guna Organic, organo-metallic catalysis Analytical Chemi Douglas Grotjahn CHEMISTRY https://youtu.be/Cmwh79xdwks

Decarbonizing Land Use and Promoting Natural Climate Solutions

Andrew Meyer

San Diego Audubon Society

Idea #2

11/3/22 Land Use and Natural Climate Solutions Working Group Andrew Meyer San Diego Audubon Society

1857 Historical Survey Map of San Diego Bay and Mission (False) Bay (NOAA, 2016)

From Bahia Falsa to Mission Bay Park

1937 Late 1940s 2021

Photo: B. Struck

Photo: M. Stinnett

Photo: L. Hedlund

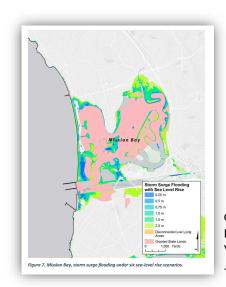
ALTERNATIVE 3: WILDEST

Highlights:

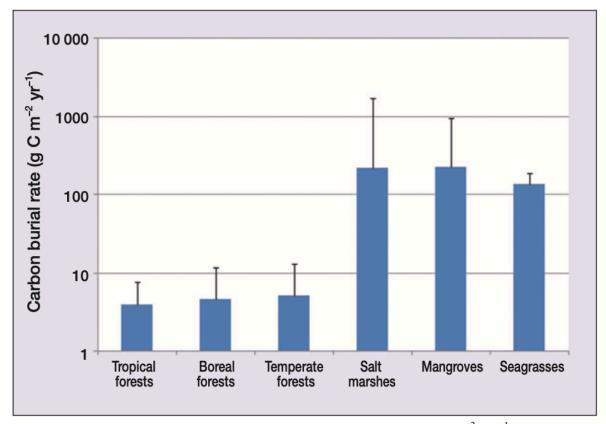
- 227 acres of wetlands* (75 acres by 2100 with 5.5 feet of sea level rise)
- 4,800 feet of trails

Key features:

- Best alternatives for water quality improvements, sea level rise resiliency, habitat for wildlife, and access to nature
- Excavated fill added to open water to create mudflat, saltmarsh, transitional, and upland habitat
- No need for offsite disposal, with fewer impacts to traffic and air quality


Benefits of Restoration

Improve Water Quality


Improve Equitable Access

□ Sea Level Rise Resilience

City of San Diego State Lands Sea Level Rise Vulnerability Assessment, July 2019

Increase Our Resiliency

Figure 5. Mean long-term rates of C sequestration (g C m^{-2} yr⁻¹) in soils in terrestrial forests and sediments in vegetated coastal ecosystems. Error bars indicate maximum rates of accumulation. Note the logarithmic scale of the y axis. Data sources are included in Tables 1 and 2.

Increase Our Resiliency

The City of SAN DIEGO

City of San Diego CLIMATE ACTION PLAN
Our Climate, Our Future

Methods for Estimating Greenhouse Gas Emissions and Emissions Reductions in the San Diego Climate Action

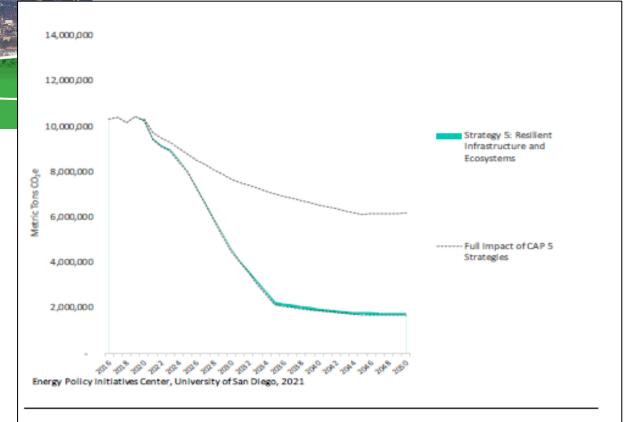
July 2022

Prepared for the City of San Diego

The City of SAN DIEGO

Prepared by the Energy Policy Initiatives Center

2030 Target


Restore 350 acres of salt marsh land and other associated tidal wetland and riparian habitats

2030 GHG Reduction (MT CO2e) 410

2035 Target
Restore 700 acres of salt marsh
land and other associated tidal
wetland and riparian habitats

2035 GHG Reduction

(MT CO2e) 821

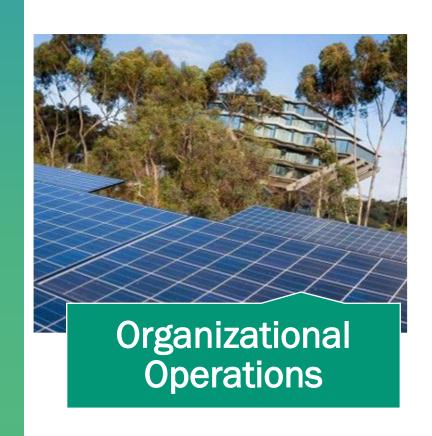
7.6.5.1 Measure 5.1 Carbon Sequestration through Restoration

The goal of Measure 5.1 is to restore salt marsh land in the City, 700 acres total by 2035. The carbon sequestration potential is based on the acreage of salt marsh and the carbon burial rate per acre. Table 59 summarizes the key assumptions and results.

Table 59 Key Assumptions and Results for Measure 5.1 Carbon Sequestration through Restoration

Year	Salt Marsh Land Restored* (Acres)	Carbon Burial Rate** (MT CO₂ per acre)	Carbon Sequestration (MT CO ₂)
2030	350	1.17	410
2035	700	1.17	821

^{*}Assume the restoration starts in 2025 **Converted from 79 gram C per m^2 to MT CO_2 per acre Callaway, et al. 2012, Energy Policy Initiatives Center, University of San Diego 2022


Estuary	Total Intertidal Habitat Area (ha)	Data Source	Habitat Type	Latitude	Longitude	Sample Data	C Stock (Mg/ha)	Seq Rate (Mg C/ha*yr)	Accretion Rate (mm/yr)	SLR Rate (mm/year)
Research in Preparation ¹										
		Costa (in prep.)	Salt marsh	32.83000	-117.23652	2020-21	229.108	8.102 (+/- 4.177)	4.468 (+/- 2.478)	
Mission Bay	16.19	Costa (in prep.)	Mudflat	32.79300	-117.22700	2020	151.527	0.349 (+/- 0.194)		
San Dieguito Lagoon	121.41	Costa (in prep.)	Salt marsh	32.97462	-117.25253	2020	60.029	1.800 (+/- 0.013)	14.057 (+/- 0.276)	
Famosa Slough	14.97	Costa (in prep.)	Salt marsh	32.75085	-117.22862	2021				2.2
Samples from I	Peer-Reviewe	ed Literature ⁱ								
Tijuana Estuary	1011.72	Weis et al. (2001)	Salt marsh	32.56948	-117.13034	1998	239.174 ⁱⁱ	5.123 (+/- 1.357)	9.517 (+/- 3.608)	
		Ward et al. (2021)	Seagrass bed	32.78952	-117.22600	2021 ⁱⁱⁱ	180.609 ^{iv}			
Mission Bay	16.19	Ward et al. (2021)	Mudflat	32.78918	-117.22600	2021 ⁱⁱⁱ	259.727 ^{iv}			2.2

References

- City of San Diego, 2022; Climate Action Plan Our Climate Our Future. 238 pp.
- Herrera, 2022; Catching Carbon: A Blue Carbon Assessment of San Diego Wetlands for Equitable Climate Action Planning,
 UCSD/Scripps Institution of Oceanography Masters Thesis
- McLeod et al. 2011, A blueprint for blue carbon: toward an improved understanding of the role of vegetation coastal habitats in sequestering CO₂, Frontiers in Ecology and the Environment
- Southern California Wetlands Recovery Plan, 2018; Wetlands on the Edge, The Future of Southern California's Wetlands

Implementation Playbook: Level of Approach

Playbook Implementation Mechanisms

- Analysis/Research
- Capital Project
- Education
- Incentive

- Partner/Collaborate
- Plan
- Program
- Requirement/Policy

Playbook Criteria

- GHG Reduction Potential
 - Relative GHG reduction compared to other actions
 - Some actions have no direct reduction (e.g., education)
 - Difficult to estimate GHG impact of an education webpage
 - Methods to estimate GHG impact of adding bike lanes

- Relative time it would take to complete an action
- Quicker to add a page to a website than to build bike lanes
- Cost to Implement
 - Relative cost to implement an action
 - Cheaper to add a page to a website than build bike lanes

Playbook Criteria

- Preliminary Estimates
 - "Average" of the category of actions
 - Not possible to comment on all potential actions
 - Education could be: page of a website or a TV commercials
 - Intended to provide initial screening for decision making
- Other Considerations
 - Co-benefits of actions (e.g., air pollution, environmental quality, and public health)
 - Primary concern of RDF is GHG emissions
 - Workforce and equity

Organization (more actions in the online document)

Land Use and Natural Climate Solutions Carbon Removal and Storage **Estimated Estimated Potential Estimated** Implementation Time to GHG Cost to Activity Mechanism Complete Implement Impacts Develop a street tree inventory that identifies all trees in public rights-of-way Analysis/Research 3-5 yrs N/A L-M (municipal operations) 3-5 yrs Increase tree planting at facilities Capital Project M-H 3-5 yrs Increase tree planting in public rights of way (municipal operations) Capital Project M-H Implement and support polices outlined in Tree Policy Manual, including landscaping requirements for new municipal facilities, parking lots, and public Capital Project M-H 3-5 yrs rights-of-way (municipal facilities) Manage parks, open space, and other natural areas to ensure long-term health and Capital Project 3-5 yrs M-H viability of trees and other vegetation Install new street trees in street capital improvement projects, where feasible, and Capital Project M-H 0-2 yrs where redesign or reconstruction of the street is proposed (municipal operations) Apply for recognition as "Tree City USA" and implement the program's requirements of forming a Tree Board consisting of staff members involved in Education 0-2 yrs N/A L-M managing the urban forest (municipal operations) Identify and secure grant or other funding to plant additional trees on municipal 0-2 yrs Education N/A L-M properties (municipal operations) Develop and implement a program to educate employees about the benefits of N/A L-M Education 0-2 yrs planting trees Develop and implement a program to provide financial incentives to employees to N/A M-H Incentive 0-2 yrs purchase and plant trees Develop an urban forest master plan (municipal operations) L N/A Plan 3-5 yrs Develop, adopt, and implement a tree protection and maintenance guidance plan Plan 3-5 yrs N/A L for street trees (municipal operations) Develop and implement an urban forestry policy to maintain the municipal tree Requirement/Policy 5 yrs + L inventory (municipal operations) Requirement/Policy Develop a tree policy and associated manual (municipal operations) 3-5 yrs L Develop turf management practices which specify the top-dressing of compost to 0-2 yrs Requirement/Policy L increase carbon sequestration at relevant sites

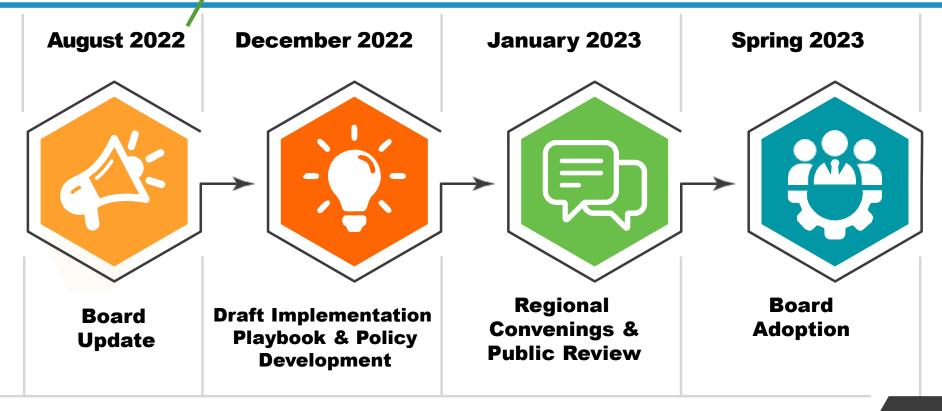
Community (more actions in the online document online document)

Land Use and Natural Climate Solutions						
Carbon Removal and Storage						
Activity	Implementation Mechanism	Estimated Time to Complete	Estimated Potential GHG Impacts	Estimated Cost to Implement		
Conduct an analysis of tree cover to determine areas that need additional trees, with an emphasis on communities of concern	Analysis/Research	0-2 yrs	N/A	L-M		
Conduct an inventory to assess tree cover (e.g.,. area covered, number of trees) in a local jurisdiction	Analysis/Research	0-2 yrs	N/A	L-M		
Develop a process to track trees planted and replaced annually	Analysis/Research	0-2 yrs	N/A	L-M		
Develop an urban forestry master plan or strategy	Plan	3-5 yrs	N/A	L		
Develop/expand urban forestry program	Program	3-5 yrs	N/A	L		
Hire an urban forest program manager (e.g., arborist)	Program	0-2 yrs	N/A	L		
Implement a tree management program to optimize tree life	Program		N/A	L		
Implement management practices to improve the health and function of natural and working lands	Requirement/Policy	3-5 yrs	L	L		
Adopt an ordinance to require to require shade trees in parking lots	Requirement/Policy	0-2 yrs	L	L		
Adopt an ordinance to require tree planting in new residential and non-residential development projects, including alterations and additions	Requirement/Policy	0-2 yrs	L	L		
Develop a tree preservation or replanting ordinance intended to preserve large canopy shade trees	Requirement/Policy	0-2 yrs	L	L		


Preserve Existing Carbon Stocks					
Activity	Implementation Mechanism	Estimated Time to Complete	Estimated Potential GHG Impacts	Estimated Cost to Implement	
Conduct a communitywide analysis of land that could be conserved to determine potential for carbon removal and storage	Analysis/Research	0-2 yrs	N/A	L-M	
Develop a program to acquire open space conservation land	Capital Project	3-5 yrs	L	M-H	

Region (more actions in the online document)

Land Use and Natural Climate Solutions				
Carbon Removal and Storage				
Activity	Implementation Mechanism	Estimated Time to Complete	Estimated Potential GHG Impacts	Estimated Cost to Implement
Complete a regional urban tree canopy assessment	Analysis/Research	3-5 yrs	N/A	L-M
Conduct an analysis of all natural and working lands (including coastal wetlands) in the region to determine the potential for carbon removal and storage	Analysis/Research	0-2 yrs	N/A	L-M
Conduct an analysis to determine the feasibility of implementing and potential GHG impacts of blue carbon strategies in the region	Analysis/Research	0-2 yrs	N/A	L-M
Preserve Existing Carbon Stocks				
Activity	Implementation	Estimated Time to	Estimated Potential GHG	Estimated Cost to
Activity	Mechanism	Complete	Impacts	Implement
Conduct a regional analysis of land that could be conserved to determine potential for carbon removal and storage	Mechanism Analysis/Research	0-2 yrs	Impacts N/A	
Conduct a regional analysis of land that could be conserved to determine potential		·	•	Implement


What we need from you...

- 1. In your experience what has worked or not worked in terms of existing policies?
- 2. What programs could benefit underserved communities or have adverse impacts?
- 3. What are solutions that are not in the database?

Timeline

Also: Land Use and Natural Climate Solutions matrix of actions is on the Engage site for your feedback!

PROGRAM DETAILS

Public Workshop

Completion of Technical Report & Workforce Development Reports

Special Topic Working Groups Implementation
Playbook 1st
Draft Released

Draft Sustainable Agriculture & Food Systems Policy Report Final Implementation Playbook Implementation
Playbook &
Framework
Adoption

County of San Diego

Land Use and Natural Climate Solutions Working Group

November 3, 2022