SWMM Model Inputs

Appendix G: Guidance for Continuous Simulation and Hydromodification Management Sizing Factors

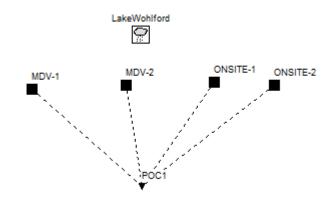
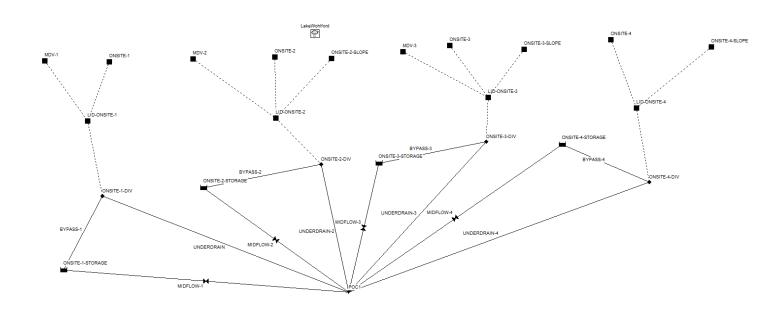

Figure G.1-2: California Irrigation Management Information System "Reference Evapotranspiration Zones"

Table G.1-1: Monthly Average Reference Evapotranspiration by ETo Zone (inches/month and inches/day) for use in SWMM Models for Hydromodification Management Studies in San Diego County CIMIS Zones 1, 4, 6, 9, and 16 (See CIMIS ETo Zone Map)


	January	February	March	April	May	June	July	August	Septembe r	October	Novembe r	December
Zone	in/month	in/month	in/month	in/month								
1	0.93	1.4	2.48	3.3	4.03	4.5	4.65	4.03	3.3	2.48	1.2	0.62
4	1.86	2.24	3.41	4.5	5.27	5.7	5.89	5.58	4.5	3.41	2.4	1.86
6	1.86	2.24	3.41	4.8	5.58	6.3	6.51	6.2	4.8	3.72	2.4	1.86
9	2.17	2.8	4.03	5.1	5.89	6.6	7.44	6.82	5.7	4.03	2.7	1.86
16	1.55	2.52	4.03	5.7	7.75	8.7	9.3	8.37	6.3	4.34	2.4	1.55
10	1.55	2.32	4.03	3.7	7.73	0.7	7.5	0.57		7.57		1.55
	January	February	March	April	May	June	July	August	Septembe r	October	Novembe r	December
Days	31	28	31	30	31	30	31	31	30	31	30	31
Zone	in/day	in/day	in/day	in/day								
1	0.030	0.050	0.080	0.110	0.120	0.450	0.450		0.440	0.080	0.040	0.020
			0.000	0.110	0.130	0.150	0.150	0.130	0.110	0.000	0.040	0.020
4	0.060											
4	0.060	0.080	0.110	0.150	0.170	0.190	0.190	0.180	0.150	0.110	0.080	0.060
6	0.060											

G-6 June 2015

Pre-Project

Post-Project


```
;;Project Title/Notes
 Shady Oak-Pre-Project Condition
 [OPTIONS]
;;Option value
FLOW_UNITS CFS
INFILTRATION GREEN_AMPT
FLOW_ROUTING KINWAVE
THE OFFSETS DEPTH
                                             DEPTH
0
 MIN SLOPE
 ALLOW PONDING NO
 SKIP_STEADY_STATE NO
 START DATE
 START_DATE 10/08/19/
START_TIME 04:00:00
                                              10/08/1949

        START_TIME
        04:00:00

        REPORT_START_DATE
        10/08/1949

        REPORT_START_TIME
        04:00:00

        END_DATE
        05/23/2008

        END_TIME
        21:00:00

        SWEEP_START
        01/01

        SWEEP_END
        12/31

        DRY_DAYS
        0

        REPORT_STEP
        01:00:00

        WET_STEP
        00:15:00

        DRY_STED
        04:00:00

WET_STEP
DRY STEP
                                             04:00:00
 ROUTING_STEP
                                                0:01:00
 INERTIAL DAMPING
                                               PARTIAL
 NORMAL FLOW LIMITED BOTH
 FORCE \overline{\text{MAIN}} \overline{\text{E}}\text{QUATION} H-W
FORCE_MAIN_EQUATION H-W
VARIABLE_STEP 0.75

LENGTHENING_STEP 0
MIN_SURFAREA 12.557
MAX_TRIALS 8
HEAD_TOLERANCE 0.005
SYS_FLOW_TOL 5
LAT_FLOW_TOL 5
MINIMUM_STEP 0.5
THREADS 1
 THREADS
 [EVAPORATION]
                                    Parameters
 ;;Data Source
                         .07
                                                  .1 .13 .17 .19 .22 .24 .22 .19 .13 .09
                                                                                                                                                                                                                         .06
 MONTHIY
 DRY ONLY
                                      NO
 [RAINGAGES]
;;Name Format Interval SCF
                                                                                                      Source
 ;;-----
 LakeWohlford
                                    INTENSITY 1:00 1.0 TIMESERIES TS-LAKEWOHLFORD
 [SUBCATCHMENTS]
                                      Rain Gage Outlet Area %Imperv Width %Slope CurbLen SnowPack
 ;Exist. Offsite Mirar De Valle Pavement and pervious area(Type C Soil)
 MDV-1 LakeWohlford poc1
                                                                                                                    1.58
                                                                                                                                        26
                                                                                                                                                              160
                                                                                                                                                                                    1.66
 ;ONSITE WITHIN TYPE C SOIL
 ONSITE-1 LakeWohlford
                                                                           POC1
                                                                                                                   1.16 0
                                                                                                                                                           135
                                                                                                                                                                                   2.7
 ; Existing Offsite Mirar De Valle Pavement (Type D Soil)
                                                                                                                                   0 31.5 1.9
 MDV-2 LakeWohlford poc1
                                                                                                 .44
 ;ONSITE WITHIN TYPE D SOIL
                                                                                                                     3.67 0
 ONSITE-2
                                      LakeWohlford POC1
                                                                                                                                                            410
                                                                                                                                                                                   2.6
 [SUBAREAS]
 ;;Subcatchment N-Imperv N-Perv S-Imperv S-Perv PctZero RouteTo PctRouted
| Notice | N
 [INFILTRATION]
 ;;Subcatchment Suction Ksat IMD
 ;;-----
MDV-1 6 .1 .32
ONSITE-1 6 .1 .32
MDV-2 9 .025 .33
ONSITE-2 9 .025 .33
```

[TITLE]

[OUTFALLS] ;;Name	Elevation	Type	Stage Data		
;; POC1	0			NO	
[TIMESERIES] ;;Name					
;; TS-LAKEWOHLFORD					
[REPORT] ;;Reporting Opti INPUT NO CONTROLS NO SUBCATCHMENTS AL NODES ALL LINKS ALL					
TAGS]					
[MAP] DIMENSIONS 0.000 Jnits None	0.000 1000	0.000 10000	0.000		
[COORDINATES] ;;Node					
oc1					
VERTICES] ;Link ;					
Polygons] ;Subcatchment :			-Coord		
MDV-1 DNSITE-1 MDV-2	1846.951 3941.312	63 63	306.099 386.651		
SYMBOLS] ;Gage	X-Coord	Y-	-Coord		
;; LakeWohlford					

```
Shady Oak-Post-Project Condition
[OPTIONS]
                  Value
;;Option
FLOW_UNITS
                    CFS
                   GREEN AMPT
INFILTRATION
                 KINWAVE
FLOW ROUTING
LINK OFFSETS
                   DEPTH
0
MIN SLOPE
ALLOW_PONDING
SKIP_STEADY STATE NO
START DATE
                    10/08/1949
START TIME
                   04:00:00
0
01:00:00
00:15:00
DRY DAYS
REPORT STEP
WET_STEP
DRY STEP
                   04:00:00
ROUTING_STEP
                    0:01:00
INERTIAL DAMPING
                    PARTIAL
NORMAL FLOW LIMITED BOTH
FORCE MAIN EQUATION H-W
VARIABLE_STEP 0.75
LENGTHENING_STEP 0
MIN_SURFAREA 12.557
MAX TRIALS 8
HEAD_TOLERANCE 0.0
SYS_FLOW_TOL 5
                   0.005
LAT_FLOW_TOL
MINIMUM_STEP
THREADS
[EVAPORATION]
               Parameters
;;Data Source
           .07 .1 .13 .17 .19 .22 .24 .22 .19 .13 .09
MONTHLY
                                                                                              .06
DRY ONLY
                NO
[RAINGAGES]
;;Name Format Interval SCF
                                            Source
;;-----
LakeWohlford INTENSITY 1:00 1.0 TIMESERIES TS-LAKEWOHLFORD
[SUBCATCHMENTS]
;;Name Rain Gage Outlet Area %Imperv Width %Slope CurbLen SnowPack
;Exist. Offsite Mirar De Valle Pavement (Type C Soil)
                                                            26
                                                                   160
MDV-1 LakeWohlford LID-ONSITE-1
                                                  1.58
                                                                              1.66
;ONSITE WITHIN TYPE C SOIL
                               LID-ONSITE-1 1.06 62 128
ONSITE-1 LakeWohlford
                                                                              1.6
                                                                                       Ω
; Existing Offsite Mirar De Valle Pavement (Type D Soil)
;Existing Offsite Mirar De Valle Pavement (Type D Soil)
MDV-2 LakeWohlford LID-ONSITE-2 .18 67
                                                                   31.5
                                                                             1.9
;ONSITE WITHIN TYPE D SOIL
               LakeWohlford
ONSITE-2
                                 LID-ONSITE-2
                                                  1.044 64
                                                                    128
                                                                              1.8
                                                                                       0
;Biofiltration Basin 1
                                                          0
LID-ONSITE-1 LakeWohlford ONSITE-1-DIV
                                                  .04
                                                                    17.3
;Biofiltration Basin 4
                               ONSITE-4-DIV .033 0
                                                                             0
LID-ONSITE-4
                LakeWohlford
                                                                   13.3
                                                                                       0
;Biofiltration Basin 3
LID-ONSITE-3 LakeWohlford ONSITE-3-DIV
                                                  .031 0
                                                                    13.3 0
;Biofiltration Basin 2
LID-ONSITE-2 LakeWohlford ONSITE-2-DIV .032 0 13.3 0

MDV-3 LakeWohlford LID-ONSITE-3 .28 71 31.5 1.67

ONSITE-3 LakeWohlford LID-ONSITE-3 1.04 62 128 2.1

ONSITE-4 LakeWohlford LID-ONSITE-4 1.467 59 128 2.75
;2:1 Slope from Residential Pads to Basin

        ONSITE-2-SLOPE
        LakeWohlford
        LID-ONSITE-2
        .021
        0
        6.8
        50
        0

        ONSITE-3-SLOPE
        LakeWohlford
        LID-ONSITE-3
        .023
        0
        6.8
        50
        0

        ONSITE-4-SLOPE
        LakeWohlford
        LID-ONSITE-4
        .018
        0
        6.8
        50
        0
```

[TITLE]

;;Project Title/Notes

[SUBAREAS] ;;Subcatchment ;;			S-Imperv		PctZero	RouteTo	PctRouted	
MD17_1	012	15	0.05		 25	OUTLET		
ONSITE-1	.012	.15 .15	0.05	.1	25 25			
ONDITE-I	012	. I J	0.05	.1	2.5	OUTLET		
MDV-2	.012 .012	.15	0.05 0.05	· 1	25	OUTLET		
ONSITE-2	.012	.15	0.05	.1	25	OUTLET		
LID-ONSITE-1	.012	.15	0.05 0.05	.1	25	OUTLET		
LID-ONSITE-4	.012	.15	0.05		25	OUTLET		
LID-ONSITE-3	.012	.15	0.05	.1	25	OUTLET		
LID-ONSITE-2	.012	.15	0.05 0.05	.1	25	OUTLET		
MDV-3	.012	.15	0.05 0.05	.1	25	OUTLET		
ONSITE-3	.012	.15	0.05	1	25	OUTLET		
ONSITE-4	.012	.15	0.05	.1	25	OUTLET		
ONSITE-2-SLOPE	.012	.15	0.05	.1	25	OUTLET		
ONSITE-3-SLOPE	.012	.15	0.05	.1	25	OUTLET		
ONSITE-4-SLOPE	.012	.15	0.05 0.05 0.05 0.05	.1		OUTLET		
[INFILTRATION] ;;Subcatchment ;;		Ksat	IMD					
• •			.32					
MDV-1	6	.075 .075	.32					
ONSITE-I	0	.075						
MDV=2	9	.01875	.33					
ONSITE-1 MDV-2 ONSITE-2 LID-ONSITE-1	9	.018/5	.33					
LID-ONSITE-1	6	.075	.32					
LID-ONSITE-4 LID-ONSITE-3	9	.01875	.33					
LID-ONSITE-3	9	.01875	.33					
LID-ONSITE-2 MDV-3	9	.075 .01875 .01875 .075 .01875 .01875 .01875 .01875 .01875	.33					
	9	.01875	.33					
ONSITE-3	9	.01875	.33					
ONSITE-4	9	.01875	.33					
ONSITE-2-SLOPE			.33					
ONSITE-3-SLOPE	9	.01875	.33					
ONSITE-4-SLOPE	9	.025	.33					
[LID_CONTROLS]								
;;Name		Parameters						
;;								
LID-ONSITE-1	BC	1.0	0 0	0	0	_		
LID-ONSITE-1 LID-ONSITE-1	SURFACE		0.0	0		5	_	1 5
	SOIL		. 4	0.2		5	5	1.5
LID-ONSITE-1	STORAGE	12 .4831	.67	0	0			
LID-ONSITE-1	DRAIN	.4831	0.5	0	6			
LID-ONSITE-2	BC		_	_	_	_		
LID-ONSITE-2			0	0	0	5		
LID-ONSITE-2		18	0.4	0.2	0.1	5	5	1.5
LID-ONSITE-2	STORAGE	12	.67	0	0			
LID-ONSITE-2	DRAIN	.0846	0.5	0	6			
LID-ONSITE-3	BC							
LID-ONSITE-3	SURFACE	12.18 18	0.0	0	0	5 5		
LID-ONSITE-3	SOIL	18	0.4	0.2	0.1	5	5	1.5
LID-ONSITE-3	STORAGE	12	.67	0	0			
LID-ONSITE-3	DRAIN	.3756	.67 0.5	0	6			
LID-ONSITE-4	BC							
LID-ONSITE-4		12.21	0.0	0	0	5		
LID-ONSITE-4	SOIL	18	. 4	0.2	0.1	5	5	1.5
LID-ONSITE-4	STORAGE	12	.67	0	0			
LID-ONSITE-4 LID-ONSITE-4	DRAIN	.0875	0.5		6			
[LID USAGE]								
;;Subcatchment	LID Proces	s Numb	er Area	Width	InitSat	FromImp	ToPerv	RptFile
DrainTo								-
;;								
LID-ONSITE-1 LID-ONSITE-4		-1 1	1742.40	0	0	0	0	
I.ID=ONSITE-4	LID-ONSITE	-4 1	1437 48	0	0	0	0	
LID-ONSITE-3	I'ID-UNGILE	-3 1	1350 36	n	0	0 0 0	0	
LID-ONSITE-4 LID-ONSITE-3 LID-ONSITE-2	TID-ONGITE	-2 1	1393 92	n	0	0	0	
TID OWNIII Z	TID ONOTIE		1000.02	U	J	J	J	
[OUTFALLS]								
;;Name	Elevation	Type	Stage Data	Gat	ed Route	То		
;;								
	0			NO				
-								

;;Name	Elevation	Diver	ted L	ink	Type	1	Param	eters					
;; ONSITE-1-DIV	0	BYPAS	 s-1		CUTOF	 F	.1101	0		0	0	0	
ONSITE-2-DIV	0	BYPAS			CUTOF:		.0156			0	0	0	
ONSITE-3-DIV	0	BYPAS			CUTOF		.0621			0	0	0	
ONSITE-4-DIV	0	BYPAS			CUTOF:		.0156			0	0	0	
[STORAGE]													
;;Name	Elev.	MaxDept:	h I	nitDept:	h Sh	ape	Cu	rve Name/	'Params		N/A	Fevap	Psi
Ksat IMD													
;;													
		_	_								_	_	
ONSITE-1-STORAGE		1	0			BULAR		orageCurv			0	0	
ONSITE-2-STORAGE		1	0			BULAR		orageCurv			0	0	
ONSITE-3-STORAGE		1	0			BULAR		orageCurv			0	0	
ONSITE-4-STORAGE	U	1	U		TAI	BULAR	50	orageCurv	/e-4		U	0	
[CONDUITS]													
;;Name	From Node		To No	nde		Lengtl	า	Roughnes	ss In∩	ffset	OutOffset	InitFlow	
MaxFlow	110 1.000		10 11	540		2011901	-	110 49111100	, , , , , , , , , , , , , , , , , , , ,		040011000	111101101	
;;													
BYPASS-1	ONSITE-1-	DIV	ONSI	re-1-st	ORAGE	400		0.01	0		0	0	0
UNDERDRAIN	ONSITE-1-	DIV	POC1			400		0.013	0		0	0	0
BYPASS-2	ONSITE-2-	DIV	ONSI	TE-2-ST	ORAGE	400		0.01	0		0	0	0
UNDERDRAIN-2	ONSITE-2-		POC1			400		0.01	0		0	0	0
BYPASS-3	ONSITE-3-			re-3-st				0.01	0		0	0	0
BYPASS-4	ONSITE-4-			re-4-st	ORAGE			0.01	0		0	0	0
UNDERDRAIN-3	ONSITE-3-		POC1			400		0.01	0		0	0	0
UNDERDRAIN-4	ONSITE-4-	DIA	POC1			400		0.01	0		0	0	0
[OUTLETS]													
;;Name	From Node		To No	nde		Offset	+	Туре		OTab	le/Qcoeff	Qexpon	Gated
;;											 		
MIDFLOW-1	ONSITE-1-	STORAGE	POC1			0		TABULAR/	DEPTH	Rati	ngCurve-1		NO
MIDFLOW-2	ONSITE-2-					0		TABULAR/			ngCurve-2		NO
MIDFLOW-3	ONSITE-3-	STORAGE	POC1			0		TABULAR/	DEPTH	Rati	ngCurve-3		NO
MIDFLOW-4	ONSITE-4-	STORAGE	POC1			0		TABULAR/	DEPTH	Rati	ngCurve-4		NO
											J		
											J		
[XSECTIONS]											_	_	
;;Link	Shape	Geo			Geoi	m2	Geoi	m3 G	Geom4	Ba	_	lvert	
;;Link ;;						m2 					_	lvert	
;;Link ;; BYPASS-1	DUMMY	₀	m1 		0	m2 	0	C)	1	_	lvert 	
;;Link ;; BYPASS-1 UNDERDRAIN	DUMMY CIRCULAR	0 0.3	m1 		0 0	m2 	0 0	 C C))	1 1	_	lvert	
;;Link ;; BYPASS-1 UNDERDRAIN BYPASS-2	DUMMY CIRCULAR DUMMY	0 0.3 0	m1 		0 0 0	m2 	0 0 0 0	 C C)))	1 1 1 1	_	lvert	
;;Link ;; BYPASS-1 UNDERDRAIN BYPASS-2 UNDERDRAIN-2	DUMMY CIRCULAR DUMMY CIRCULAR	0 0.3	m1 		0 0	m2 	0 0	 C C))))	1 1	_	lvert	
;;Link ;; BYPASS-1 UNDERDRAIN BYPASS-2	DUMMY CIRCULAR DUMMY	0 0.3 0 0.3	m1 		0 0 0 0	m2 	0 0 0 0	 C C C))))	1 1 1 1	_	lvert	
;;Link ;; BYPASS-1 UNDERDRAIN BYPASS-2 UNDERDRAIN-2 BYPASS-3	DUMMY CIRCULAR DUMMY CIRCULAR DUMMY	0 0.3 0 0.3 0	m1 3 3		0 0 0 0 0	m2 	0 0 0 0 0	 C C C)))))	1 1 1 1 1	_	lvert	
;;Link ;; BYPASS-1 UNDERDRAIN BYPASS-2 UNDERDRAIN-2 BYPASS-3 BYPASS-4	DUMMY CIRCULAR DUMMY CIRCULAR DUMMY DUMMY	0 0.3 0 0.3 0	m1 3 3 3		0 0 0 0 0 0	m2 	0 0 0 0 0))))))	1 1 1 1 1 1	_	lvert	
;;Link ;; BYPASS-1 UNDERDRAIN BYPASS-2 UNDERDRAIN-2 BYPASS-3 BYPASS-4 UNDERDRAIN-3	DUMMY CIRCULAR DUMMY CIRCULAR DUMMY DUMMY DUMMY CIRCULAR	0 0.3 0 0.3 0 0.3	m1 3 3 3		0 0 0 0 0 0	m2 	0 0 0 0 0 0))))))	1 1 1 1 1 1 1	_	lvert	
;;Link ;;	DUMMY CIRCULAR DUMMY CIRCULAR DUMMY DUMMY CIRCULAR CIRCULAR	0 0.3 0 0.3 0 0 0.3	m1 3 3 3 3		0 0 0 0 0 0 0	n2	0 0 0 0 0 0))))))	1 1 1 1 1 1 1	_	lvert	
;;Link ;;	DUMMY CIRCULAR DUMMY CIRCULAR DUMMY DUMMY DUMMY CIRCULAR	0 0.3 0 0.3 0 0.3	m1 3 3 3 3	Y-Valu	0 0 0 0 0 0 0	n2	0 0 0 0 0 0))))))	1 1 1 1 1 1 1	_	lvert	
;;Link ;;	DUMMY CIRCULAR DUMMY CIRCULAR DUMMY DUMMY CIRCULAR CIRCULAR CIRCULAR	0 0.3 0 0.3 0 0 0.3 0.3 0.3 0.3 X-Val	m1 3 3 3 3		0 0 0 0 0 0 0	n2	0 0 0 0 0 0))))))	1 1 1 1 1 1 1	_	lvert	
;;Link ;;	DUMMY CIRCULAR DUMMY CIRCULAR DUMMY DUMMY CIRCULAR CIRCULAR	0 0.3 0 0.3 0 0 0.3 0.3 0.3 0 0.3 0.3 0.	m1 3 3 3 3 3	0.000	0 0 0 0 0 0 0	n2	0 0 0 0 0 0))))))	1 1 1 1 1 1 1	_	lvert	
;;Link ;; BYPASS-1 UNDERDRAIN BYPASS-2 UNDERDRAIN-2 BYPASS-3 BYPASS-4 UNDERDRAIN-3 UNDERDRAIN-4 [CURVES] ;;Name ;; RatingCurve-1 RatingCurve-1	DUMMY CIRCULAR DUMMY CIRCULAR DUMMY DUMMY CIRCULAR CIRCULAR CIRCULAR	0 0.3 0 0.3 0 0 0.3 0.3 0 0 0.3 0.3 0 0.3 0.3	m1 3 3 3 3 3	0.000	0 0 0 0 0 0 0	m2	0 0 0 0 0 0))))))	1 1 1 1 1 1 1	_	lvert	
;;Link ;; BYPASS-1 UNDERDRAIN BYPASS-2 UNDERDRAIN-2 BYPASS-3 BYPASS-4 UNDERDRAIN-3 UNDERDRAIN-4 [CURVES] ;;Name ;;	DUMMY CIRCULAR DUMMY CIRCULAR DUMMY DUMMY CIRCULAR CIRCULAR CIRCULAR	0 0.3 0 0.3 0 0 0.3 0.3 0.3 0 0 0.3 0.3	m1 3 3 3 3 4	0.000 0.030 0.043	0 0 0 0 0 0 0	m2	0 0 0 0 0 0))))))	1 1 1 1 1 1 1	_	lvert	
;;Link ;; BYPASS-1 UNDERDRAIN BYPASS-2 UNDERDRAIN-2 BYPASS-3 BYPASS-4 UNDERDRAIN-3 UNDERDRAIN-4 [CURVES] ;;Name ;;	DUMMY CIRCULAR DUMMY CIRCULAR DUMMY DUMMY CIRCULAR CIRCULAR CIRCULAR	0 0.3 0 0.3 0 0.3 0.3 0.3 0.3 0.3 0.3 0.	m1 3 3 3 3 3	0.000 0.030 0.043 0.052	0 0 0 0 0 0 0	m2	0 0 0 0 0 0))))))	1 1 1 1 1 1 1	_	lvert	
;;Link ;; BYPASS-1 UNDERDRAIN BYPASS-2 UNDERDRAIN-2 BYPASS-3 BYPASS-4 UNDERDRAIN-3 UNDERDRAIN-4 [CURVES] ;;Name ;;	DUMMY CIRCULAR DUMMY CIRCULAR DUMMY DUMMY CIRCULAR CIRCULAR CIRCULAR	0 0.3 0 0.3 0 0.3 0.3 0.3 0.3 0.3 0.3 0.	m1 3 3 3 3 ue	0.000 0.030 0.043 0.052 0.061	0 0 0 0 0 0 0	m2	0 0 0 0 0 0))))))	1 1 1 1 1 1 1	_	lvert	
;;Link ;;	DUMMY CIRCULAR DUMMY CIRCULAR DUMMY DUMMY CIRCULAR CIRCULAR CIRCULAR	0 0.3 0 0.3 0 0.3 0.3 0.3 0.3 0.3 0.3 0.	m1 3 3 3 3 4	0.000 0.030 0.043 0.052 0.061 0.068	0 0 0 0 0 0 0	m2	0 0 0 0 0 0))))))	1 1 1 1 1 1 1	_	lvert	
;;Link ;;	DUMMY CIRCULAR DUMMY CIRCULAR DUMMY DUMMY CIRCULAR CIRCULAR CIRCULAR	0 0.3 0 0.3 0 0.3 0.3 0.3 0.3 0.3 0.3 0.	m1 3 3 3 3 4	0.000 0.030 0.043 0.052 0.061 0.068 0.074	0 0 0 0 0 0 0	m2	0 0 0 0 0 0))))))	1 1 1 1 1 1 1	_	lvert	
;;Link ;; BYPASS-1 UNDERDRAIN BYPASS-2 UNDERDRAIN-2 BYPASS-3 BYPASS-4 UNDERDRAIN-3 UNDERDRAIN-4 [CURVES] ;;Name ;;	DUMMY CIRCULAR DUMMY CIRCULAR DUMMY DUMMY CIRCULAR CIRCULAR CIRCULAR	0 0.3 0 0.3 0 0.3 0 0.3 0 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	m1 3 3 3 3 4 	0.000 0.030 0.043 0.052 0.061 0.068 0.074 0.080	0 0 0 0 0 0 0	m2	0 0 0 0 0 0))))))	1 1 1 1 1 1 1	_	lvert	
;;Link ;;	DUMMY CIRCULAR DUMMY CIRCULAR DUMMY DUMMY CIRCULAR CIRCULAR CIRCULAR	0 0.3 0 0.3 0 0.3 0.3 0.3 0.3 0.3 0.3 0.	m1 3 3 3 3 4 ue	0.000 0.030 0.043 0.052 0.061 0.068 0.074	0 0 0 0 0 0 0	n2	0 0 0 0 0 0))))))	1 1 1 1 1 1 1	_	lvert	
;;Link ;; BYPASS-1 UNDERDRAIN BYPASS-2 UNDERDRAIN-2 BYPASS-3 BYPASS-4 UNDERDRAIN-3 UNDERDRAIN-4 [CURVES] ;;Name ;;	DUMMY CIRCULAR DUMMY CIRCULAR DUMMY DUMMY CIRCULAR CIRCULAR CIRCULAR	0 0.3 0 0.3 0 0.3 0 0.3 0 0.3 0.3 0.3 0.3 0.0 0.083 0.167 0.250 0.333 0.417 0.500 0.583 0.667	m1 3 3 3 3 ue	0.000 0.030 0.043 0.052 0.061 0.068 0.074 0.080 0.086	0 0 0 0 0 0 0	n2	0 0 0 0 0 0))))))	1 1 1 1 1 1 1	_	lvert	
;;Link ;; BYPASS-1 UNDERDRAIN BYPASS-2 UNDERDRAIN-2 BYPASS-3 BYPASS-4 UNDERDRAIN-3 UNDERDRAIN-4 [CURVES] ;;Name ;;	DUMMY CIRCULAR DUMMY CIRCULAR DUMMY DUMMY CIRCULAR CIRCULAR CIRCULAR	X-Val 0 0.3 0 0.3 0 0.3 0 0.3 0.3 X-Val 0 0.083 0.167 0.250 0.333 0.417 0.500 0.583 0.667 0.750 0.833 0.917	m1 3 3 3 3 ue 	0.000 0.030 0.043 0.052 0.061 0.068 0.074 0.080 0.086 0.091 0.762 1.985	0 0 0 0 0 0 0	n2	0 0 0 0 0 0))))))	1 1 1 1 1 1 1	_	lvert	
;;Link ;; BYPASS-1 UNDERDRAIN BYPASS-2 UNDERDRAIN-2 BYPASS-3 BYPASS-4 UNDERDRAIN-3 UNDERDRAIN-4 [CURVES] ;;Name ;;	DUMMY CIRCULAR DUMMY CIRCULAR DUMMY DUMMY CIRCULAR CIRCULAR CIRCULAR	0 0 0.3 0 0 0.3 0 0 0.3 0.3 0 0 0.3 0.3	m1 3 3 3 3 ue 	0.000 0.030 0.043 0.052 0.061 0.068 0.074 0.080 0.086 0.091 0.762	0 0 0 0 0 0 0	n2	0 0 0 0 0 0))))))	1 1 1 1 1 1 1	_	lvert	
;;Link ;; BYPASS-1 UNDERDRAIN BYPASS-2 UNDERDRAIN-2 BYPASS-3 BYPASS-4 UNDERDRAIN-3 UNDERDRAIN-4 [CURVES] ;;Name ;;	DUMMY CIRCULAR DUMMY CIRCULAR DUMMY DUMMY CIRCULAR CIRCULAR Type Rating	0 0.3 0 0.3 0 0.3 0.3 0.3 0.3 0.3 0.3 0.	m1 3 3 3 3 ue 	0.000 0.030 0.043 0.052 0.061 0.068 0.074 0.080 0.086 0.091 0.762 1.985 3.566	0 0 0 0 0 0 0	n2	0 0 0 0 0 0))))))	1 1 1 1 1 1 1	_	lvert	
;;Link ;;	DUMMY CIRCULAR DUMMY CIRCULAR DUMMY DUMMY CIRCULAR CIRCULAR CIRCULAR	0 0 3 0 3 0 0 3 0 0 3 0 0 3 0 0 3 0	m1 3 3 3 3 ue	0.000 0.030 0.043 0.052 0.061 0.068 0.074 0.080 0.086 0.091 0.762 1.985 3.566	0 0 0 0 0 0 0	n2	0 0 0 0 0 0))))))	1 1 1 1 1 1 1	_	lvert	
;;Link ;;	DUMMY CIRCULAR DUMMY CIRCULAR DUMMY DUMMY CIRCULAR CIRCULAR Type Rating	0 0.3 0 0.3 0 0.3 0 0.3 0.3 3 .3 X-Val 0 0.083 0.167 0.250 0.333 0.417 0.500 0.583 0.667 0.750 0.833 0.917 1.000 0.083	m1 3 3 3 3 ue	0.000 0.030 0.043 0.052 0.061 0.068 0.074 0.080 0.086 0.091 0.762 1.985 3.566	0 0 0 0 0 0 0	n2	0 0 0 0 0 0))))))	1 1 1 1 1 1 1	_	lvert	
;;Link ;; BYPASS-1 UNDERDRAIN BYPASS-2 UNDERDRAIN-2 BYPASS-3 BYPASS-4 UNDERDRAIN-3 UNDERDRAIN-4 [CURVES] ;;Name ;;	DUMMY CIRCULAR DUMMY CIRCULAR DUMMY DUMMY CIRCULAR CIRCULAR Type Rating	0 0.3 0 0.3 0 0.3 0 0.3 0 0.3 0.3 X-Val 0 0.083 0.167 0.250 0.333 0.417 0.500 0.583 0.667 0.750 0.833 0.917 1.000 0.083 0.167	m1 3 3 3 3 ue	0.000 0.030 0.043 0.052 0.061 0.068 0.074 0.080 0.086 0.091 0.762 1.985 3.566 0.000 0.030 0.043	0 0 0 0 0 0 0	n2	0 0 0 0 0 0))))))	1 1 1 1 1 1 1	_	lvert	
;;Link ;; BYPASS-1 UNDERDRAIN BYPASS-2 UNDERDRAIN-2 BYPASS-3 BYPASS-4 UNDERDRAIN-3 UNDERDRAIN-4 [CURVES] ;;Name ;;	DUMMY CIRCULAR DUMMY CIRCULAR DUMMY DUMMY CIRCULAR CIRCULAR Type Rating	0 0 0.3 0 0.3 0 0 0.3 0.3 0.3 0.3 0.3 0	m1 3 3 3 3 ue	0.000 0.030 0.043 0.052 0.061 0.068 0.074 0.080 0.086 0.091 0.762 1.985 3.566 0.000 0.030 0.043 0.052	0 0 0 0 0 0 0	m2	0 0 0 0 0 0))))))	1 1 1 1 1 1 1	_	lvert	
;;Link ;; BYPASS-1 UNDERDRAIN BYPASS-2 UNDERDRAIN-2 BYPASS-3 BYPASS-4 UNDERDRAIN-3 UNDERDRAIN-4 [CURVES] ;;Name ;;	DUMMY CIRCULAR DUMMY CIRCULAR DUMMY DUMMY CIRCULAR CIRCULAR Type Rating	0 0 0.3 0 0 0.3 0 0 0.3 0.3 0 0 0 0.3 0.3	m1 3 3 3 3 ue	0.000 0.030 0.043 0.052 0.061 0.068 0.074 0.080 0.086 0.091 0.762 1.985 3.566 0.000 0.030 0.043 0.052	0 0 0 0 0 0 0	m2	0 0 0 0 0 0))))))	1 1 1 1 1 1 1	_	lvert	
;;Link ;; BYPASS-1 UNDERDRAIN BYPASS-2 UNDERDRAIN-2 BYPASS-3 BYPASS-4 UNDERDRAIN-3 UNDERDRAIN-4 [CURVES] ;;Name ;;	DUMMY CIRCULAR DUMMY CIRCULAR DUMMY DUMMY CIRCULAR CIRCULAR Type Rating	0 0 0.3 0 0 0.3 0 0 0.3 0.3 0 0 0.3 0.3	m1 3 3 3 3	0.000 0.030 0.043 0.052 0.061 0.068 0.074 0.080 0.086 0.091 0.762 1.985 3.566 0.000 0.030 0.043 0.052 0.061	0 0 0 0 0 0 0	m2	0 0 0 0 0 0))))))	1 1 1 1 1 1 1	_	lvert	
;;Link ;; BYPASS-1 UNDERDRAIN BYPASS-2 UNDERDRAIN-2 BYPASS-3 BYPASS-4 UNDERDRAIN-3 UNDERDRAIN-4 [CURVES] ;;Name ;;	DUMMY CIRCULAR DUMMY CIRCULAR DUMMY DUMMY CIRCULAR CIRCULAR Type Rating	0 0 0.3 0 0 0.3 0 0 0.3 0 0 0.3 0.3 0 0 0 0	m1 3 3 3 3 ue	0.000 0.030 0.043 0.052 0.061 0.068 0.074 0.086 0.091 0.762 1.985 3.566 0.000 0.030 0.043 0.052 0.061 0.068	0 0 0 0 0 0 0	m2	0 0 0 0 0 0))))))	1 1 1 1 1 1 1	_	lvert	
;;Link ;; BYPASS-1 UNDERDRAIN BYPASS-2 UNDERDRAIN-2 BYPASS-3 BYPASS-4 UNDERDRAIN-3 UNDERDRAIN-4 [CURVES] ;;Name ;;	DUMMY CIRCULAR DUMMY CIRCULAR DUMMY DUMMY CIRCULAR CIRCULAR Type Rating	0 0 0.3 0 0.3 0 0.3 0 0.3 0 0.3 0.3 0 0.3 0.3 0.417 0.500 0.83 0.667 0.750 0.833 0.667 0.750 0.833 0.667 0.750 0.833 0.417 0.500 0.083 0.167	m1 3 3 3 3 ue 	0.000 0.030 0.043 0.052 0.061 0.068 0.074 0.080 0.086 0.091 0.762 1.985 3.566 0.000 0.030 0.043 0.052 0.061 0.068 0.074 0.068	0 0 0 0 0 0 0	m2	0 0 0 0 0 0))))))	1 1 1 1 1 1 1	_	lvert	
;;Link ;; BYPASS-1 UNDERDRAIN BYPASS-2 UNDERDRAIN-2 BYPASS-3 BYPASS-4 UNDERDRAIN-3 UNDERDRAIN-4 [CURVES] ;;Name ;;	DUMMY CIRCULAR DUMMY CIRCULAR DUMMY DUMMY CIRCULAR CIRCULAR Type Rating	0 0 0.3 0 0 0.3 0 0 0.3 0 0 0.3 0.3 0 0 0 0	m1 3 3 3	0.000 0.030 0.043 0.052 0.061 0.068 0.074 0.086 0.091 0.762 1.985 3.566 0.000 0.030 0.043 0.052 0.061 0.068	0 0 0 0 0 0 0	m2	0 0 0 0 0 0))))))	1 1 1 1 1 1 1	_	lvert	

RatingCurve-2		0.833	0.762
RatingCurve-2		0.917	1.985
RatingCurve-2		1.000	3.566
; RatingCurve-3	Rating	0	0.000
RatingCurve-3 RatingCurve-3	_	0.083 0.167	0.030
RatingCurve-3 RatingCurve-3		0.250 0.333	0.052 0.061
RatingCurve-3 RatingCurve-3		0.417 0.500	0.068 0.074
RatingCurve-3 RatingCurve-3		0.583 0.667	0.080
RatingCurve-3 RatingCurve-3		0.750 0.833	0.091 0.762
RatingCurve-3		0.917	1.985
RatingCurve-3		1.000	3.566
; RatingCurve-4	Rating	0	0.000
RatingCurve-4 RatingCurve-4		0.083 0.167	0.030
RatingCurve-4		0.250	0.052
RatingCurve-4		0.333	0.061
RatingCurve-4		0.417	0.068
RatingCurve-4		0.500	0.074
RatingCurve-4		0.583	0.080
RatingCurve-4		0.667	0.086
RatingCurve-4		0.750	0.091
RatingCurve-4		0.833	0.762
RatingCurve-4 RatingCurve-4		0.917 1.000	1.985 3.566
; StorageCurve-1 StorageCurve-1	Storage	0 0.083	1750.00 1750.00
StorageCurve-1		0.167	1750.00
StorageCurve-1		0.250	1750.00
StorageCurve-1		0.333	1750.00
StorageCurve-1		0.417	1750.00
StorageCurve-1		0.500	1750.00
StorageCurve-1		0.583	1750.00
StorageCurve-1		0.667	1750.00
StorageCurve-1		0.750	1750.00
StorageCurve-1 StorageCurve-1		0.730 0.833 0.917	1750.00 1750.00
StorageCurve-1;		1.000	1750.00
StorageCurve-2	Storage	0	1203.13
StorageCurve-2		0.083	1224.87
StorageCurve-2		0.167	1246.71
StorageCurve-2		0.250	1268.64
StorageCurve-2		0.333	1290.66
StorageCurve-2		0.417	1312.77
StorageCurve-2		0.500	1334.98
StorageCurve-2		0.583	1357.29
StorageCurve-2		0.667	1379.69
StorageCurve-2		0.750	1402.19
StorageCurve-2		0.833	1424.78
StorageCurve-2		0.917	1447.56
StorageCurve-2;		1.000	1470.43
StorageCurve-3 StorageCurve-3	Storage	0	1244.61 1256.51
StorageCurve-3		0.167	1268.32
StorageCurve-3		0.250	1280.06
StorageCurve-3		0.333	1291.71
StorageCurve-3		0.417	1303.29
StorageCurve-3		0.500	1314.79
StorageCurve-3		0.583	1326.20
StorageCurve-3		0.667	1337.54
StorageCurve-3		0.750	1348.81
StorageCurve-3		0.833	1360.00
StorageCurve-3		0.917	1371.10
StorageCurve-3;		1.000	1382.13
StorageCurve-4 StorageCurve-4	Storage	0	1337.34 1348.95
StorageCurve-4		0.167	1360.48
StorageCurve-4		0.250	1374.36
StorageCurve-4		0.333	1385.72

StorageCurve-4 StorageCurve-4 StorageCurve-4 StorageCurve-4 StorageCurve-4 StorageCurve-4 StorageCurve-4 StorageCurve-4		0.417 0.500 0.583 0.667 0.750 0.833 0.917 1.000	1405.77 1416.89 1427.93 1438.89 1449.77 1460.57
[TIMESERIES] ;;Name ;;	Date	Time	Value
TS-LAKEWOHLFORD		wohlford.	.dat"
[REPORT] ;;Reporting Option INPUT NO CONTROLS NO SUBCATCHMENTS ALI NODES ALL LINKS ALL			
[TAGS]			
[MAP] DIMENSIONS 0.000 Units None	0.000 1000	0.000 100	000.000
[COORDINATES] ;;Node			Y-Coord
POC1 ONSITE-1-DIV	3880.179 -1869.965 3241.881 7094.361 10903.337 -2779.056 489.068 4585.731		750.280 3049.482 3807.391 4349.827 3383.199 1277.330 3245.109 3831.991 4280.783
[VERTICES] ;;Link ;;	X-Coord		Y-Coord
[Polygons] ;;Subcatchment ;;	X-Coord		Y-Coord
MDV-1 ONSITE-1 MDV-2 ONSITE-2 LID-ONSITE-1 LID-ONSITE-4 LID-ONSITE-3 LID-ONSITE-2 MDV-3 ONSITE-3 ONSITE-4 ONSITE-4 ONSITE-4-SLOPE ONSITE-4-SLOPE	-3216.341 -1708.861 247.411 2157.652 -2215.190 10604.143 7140.391 2180.667 5149.597 6243.001 10005.754 3481.013 7980.437 12353.280		6283.084 6260.069 6329.114 6375.144 4844.649 5155.351 5408.516 4913.694 6501.726 6651.736 6789.413 6340.621 6559.264 6616.801

[SYMBOLS]
;;Gage X-Coord Y-Coord

SWMM - LID Control Calculations

PARAMETER	ABBREV.	LID On: ("Bio-Rei Cell	tention	LID On ("Bio-Reter		LID On: ("Bio-Re [:] Cell	tention	LID On ("Bio-Re Cell	tention
Ponding Depth	PD	12	in	12	in	12	in	12	in
Bioretention Soil Layer	S	18	in	18	in	18	in	18	in
Gravel Layer	G	12	in	12	in	12	in	12	in
TOTAL		3.5	ft	3.5	ft	3.5	ft	3.5	ft
101712		42	in	42	in	42	in	42	in
Orifice Coefficient	C_g	0.6		0.6		0.6		0.6	
Low Flow Orifice Diameter	D	1.6	in	0.6	in	1.2	in	0.6	in
Drain exponent	n	0.5		0.5		0.5		0.5	
Flow Rate (volumetric)	Q	0.125	cfs	0.018	cfs	0.070	cfs	0.018	cfs
Ponding Depth Surface Area	A_{PD}	1750	ft ²	1405	ft ²	1266	ft ²	1359	ft ²
Bioretention Surface Area	$A_{S_{r}}A_{G}$	1750	ft ²	1138	ft ²	1230	ft ²	1312	ft ²
Porosity of Bioretention Soil	n	0.40	-	0.40	-	0.40	-	0.40	-
					_				
Effective Ponding Depth	PD_{eff}	12.00	in	13.41	in	12.18	in	12.21	in
Flow Coefficient	С	0.4831		0.0846		0.3756		0.0875	
									-
Cutoff Flow	Q_{cutoff}	0.1101	cfs	0.0156	cfs	0.0621	cfs	0.0156	cfs

LID Onsite-1		LID Onsite-2		LID Or	nsite-3	LID Onsite-4		
Ponding Depth, h (feet)	Area (ft ²)	Ponding Depth, h (feet)	Area (ft²)	Ponding Depth, h (feet)	Area (ft ²)	Ponding Depth, h (feet)	Area (ft²)	
0	1750.00	0	1203.13	0	1244.61	0	1337.34	
0.083	1750.00	0.083	1224.87	0.083	1256.51	0.083	1348.95	
0.167	1750.00	0.167	1246.71	0.167	1268.32	0.167	1360.48	
0.250	1750.00	0.250	1268.64	0.250	1280.06	0.250	1374.36	
0.333	1750.00	0.333	1290.66	0.333	1291.71	0.333	1385.72	
0.417	1750.00	0.417	1312.77	0.417	1303.29	0.417	1394.56	
0.500	1750.00	0.500	1334.98	0.500	1314.79	0.500	1405.77	
0.583	1750.00	0.583	1357.29	0.583	1326.20	0.583	1416.89	
0.667	1750.00	0.667	1379.69	0.667	1337.54	0.667	1427.93	
0.750	1750.00	0.750	1402.19	0.750	1348.81	0.750	1438.89	
0.833	1750.00	0.833	1424.78	0.833	1360.00	0.833	1449.77	
0.917	1750.00	0.917	1447.56	0.917	1371.10	0.917	1460.57	
1.000	1750.00	1.000	1470.43	1.000	1382.13	1.000	1471.30	
1.083	1750.00	1.083	1493.40	1.083	1393.09	1.083	1481.94	
1.167	1750.00	1.167	1516.47	1.167	1403.97	1.167	1492.51	
1.250	1750.00	1.250	1539.65	1.250	1414.78	1.250	1503.00	
1.333	1750.00	1.333	1562.93	1.333	1423.76	1.333	1513.42	
1.417	1750.00	1.417	1586.32	1.417	1436.15	1.417	1523.75	
1.500	1750.00	1.500	1609.81	1.500	1446.80	1.500	1534.02	
1.583	1750.00	1.583	1633.41	1.583	1448.81	1.583	1544.20	
1.667	1750.00	1.667	1657.13	1.667	1457.46	1.667	1554.32	
1.750	1750.00	1.750	1680.97	1.750	1468.24	1.750	1556.75	

Area at 3" above bottom of basin

Ponding Depth, h (feet)	Orifice Capacity(ft ³ /sec)	Weir Capacity (ft ³ /sec)	Total Outflow (ft ³ /sec)
0	0.000		0.000
0.083	0.030		0.030
0.167	0.043		0.043
0.250	0.052		0.052
0.333	0.061		0.061
0.417	0.068		0.068
0.500	0.074		0.074
0.583	0.080		0.080
0.667	0.086		0.086
0.750	0.091		0.091
0.833	0.096	0.666117873	0.762
0.917	0.101	1.88406586	1.985
1.000	0.105	3.46125	3.566

 $\label{eq:weights} Weir Coefficient, \ C_w$ $\label{eq:coefficient} Orifice \ Coefficient, \ C_o$ $\ Orifice \ Diameter \ (inches)$ $\ Orifice \ Area, A_e \ (ft^2)$ $\ Type \ I \ Catch \ Basin \ Effective \ Length, \ L_e \ (ft)$

3 0.6 2 0.022 9.23

Weir equation, $Q = C_w L_e(h)^{3/2}$

Orifice equation, $Q = C_oA_e(2gh)1/2$

SWMM Model Outputs

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.010)

Shady Oak-Pre-Project Condition

NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step.

Analysis Options

Flow Units CFS
Process Models:
Rainfall/Runoff YES
RDII NO
Snowmelt NO
Groundwater NO
Flow Routing NO
Water Quality NO

Infiltration Method GREEN_AMPT

Starting Date OCT-08-1949 04:00:00 Ending Date MAY-23-2008 21:00:00

Antecedent Dry Days 0.0

Report Time Step 01:00:00

Wet Time Step 00:15:00

Dry Time Step 04:00:00

******* Volume Depth Depth inches Runoff Quantity Continuity acre-feet -----****** 571.884 Total Precipitation 1001.840 37.268 21.274 436.724 118.696 0.001 -0.841 765.063 207.935 118.696 Final Storage 0.002 Continuity Error (%) ******* Volume Volume 10^6 gal Flow Routing Continuity acre-feet -----0.000 38.679 0.000 0.000 0.000 Groundwater Inflow 0.000 0.000 RDII Inflow 0.000 0.000 38.679 0.000 External Inflow External Inflow
External Outflow 118.696 0.000 0.000 Flooding Loss Evaporation Loss 0.000 Exfiltration Loss 0.000 0.000 0.000 Initial Stored Volume Final Stored Volume

0.000

Continuity Error (%)

Total Total Total Total Total Total Total Total Total Runoff Runoff Coeff
Subcatchment in in in in in in 10^6 gal CFS

MDV-1 1001.84 0.00 44.74 681.11 280.97 12.05 1.59 0.280
ONSITE-1 1001.84 0.00 10.12 919.60 73.70 2.32 1.07 0.074
MDV-2 1001.84 0.00 42.70 763.91 206.66 2.47 0.39 0.206
ONSITE-2 1001.84 0.00 41.98 752.50 219.07 21.83 3.99 0.219

Analysis begun on: Tue Jun 13 13:21:26 2017 Analysis ended on: Tue Jun 13 13:21:46 2017

Total elapsed time: 00:00:20

Shady Oak-Post-Project Condition

NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step.

Analysis Options

Flow Units CFS Process Models: Rainfall/Runoff YES RDII NO Snowmelt NO Groundwater NO Flow Routing YES Ponding Allowed NO

Water Quality NO Infiltration Method GREEN AMPT Flow Routing Method KINWAVE

Starting Date OCT-08-1949 04:00:00 Ending Date MAY-23-2008 21:00:00

Antecedent Dry Days 0.0 Report Time Step 01:00:00 Wet Time Step 00:15:00 Dry Time Step 04:00:00 Routing Time Step 60.00 sec

******	Volume	Depth
Runoff Quantity Continuity	acre-feet	inches

Initial LID Storage	0.020	0.036
Total Precipitation	571.800	1001.840
Evaporation Loss	64.001	112.134
Infiltration Loss	206.918	362.537
Surface Runoff	77.310	135.453
LID Drainage	227.964	399.412
Final Storage	0.138	0.241
Continuity Error (%)	-0.789	

**************************************	Volume acre-feet	Volume 10^6 gal
Dry Weather Inflow	0.000 305.273 0.000 0.000 0.000 132.393 174.595 0.000 0.000 0.000	0.000 99.478 0.000 0.000 0.000 43.142 56.895 0.000 0.000 0.000
Continuity Error (%)	-0.563	

Highest Flow Instability Indexes

All links are stable.

******* Routing Time Step Summary ********

Minimum Time Step : 60.00 sec
Average Time Step : 60.00 sec
Maximum Time Step : 60.00 sec
Percent in Steady State : 0.00 Average Iterations per Step: 1.02

Percent Not Converging : 0.00

Subcatchment	Total Precip in	Total Runon in	Total Evap in	Total Infil in	Total Runoff in	Total Runoff 10^6 gal	Peak Runoff CFS	Runoff Coeff
MDV-1	1001.84	0.00	46.97	670.59	289.41	12.42	1.68	0.289
ONSITE-1	1001.84	0.00	96.02	341.76	572.24	16.47	1.32	0.571
MDV-2	1001.84	0.00	111.45	219.77	681.47	3.33	0.23	0.680
ONSITE-2	1001.84	0.00	109.88	242.33	658.92	18.68	1.36	0.658
LID-ONSITE-1	1001.84	26596.03	1133.69	0.00	26460.21	28.74	2.84	0.959
LID-ONSITE-4	1001.84	28085.28	1160.38	0.00	27911.48	25.01	1.75	0.960
LID-ONSITE-3	1001.84	28273.42	1137.55	0.00	28132.50	23.68	1.61	0.961
LID-ONSITE-2	1001.84	25532.23	1154.29	0.00	25365.41	22.04	1.46	0.956
MDV-3	1001.84	0.00	117.93	195.77	697.22	5.30	0.37	0.696
ONSITE-3	1001.84	0.00	107.35	255.69	648.29	18.31	1.35	0.647
ONSITE-4	1001.84	0.00	105.16	276.61	628.67	25.04	1.89	0.628
ONSITE-2-SLOPE	1001.84	0.00	42.14	661.17	307.25	0.18	0.03	0.307
ONSITE-3-SLOPE	1001.84	0.00	42.23	662.20	305.85	0.19	0.03	0.305
ONSITE-4-SLOPE	1001.84	0.00	33.56	723.40	253.19	0.12	0.02	0.253

		Total	Evap	Infil	Surface	Drain	Initial	Final	
Continuity									
		Inflow	Loss	Loss	Outflow	Outflow	Storage	Storage	
Error									
Subcatchment	LID Control	in	in	in	in	in	in	in	
8									
LID-ONSITE-1	LID-ONSITE-1	27597.87	1133.73	0.00	3910.50	22550.68	1.80	5.82	
-0.00	DID ONSITE I	21331.01	1133.73	0.00	3310.30	22330.00	1.00	3.02	
LID-ONSITE-4	LID-ONSITE-4	29087.12	1160.42	0.00	10724.64	17187.87	1.80	16.87	
-0.00	DID ONOTID I	23007.12	1100.12	0.00	10,21.01	17107.07	1.00	10.07	
LID-ONSITE-3	LID-ONSITE-3	29275.26	1137.59	0.00	4661.76	23471.77	1.80	7.07	
-0.00									
LID-ONSITE-2	LID-ONSITE-2	26534.07	1154.33	0.00	8528.17	16838.17	1.80	16.02	
-0 00									

Node	Type	Average Depth Feet	Maximum Depth Feet	Maximum HGL Feet	Occu:	of Max rrence hr:min	Reported Max Depth Feet
POC1	OUTFALL	0.04	0.33	0.33	9	15:54	0.33
ONSITE-1-DIV	DIVIDER	0.01	0.33	0.33	9	15:19	0.33
ONSITE-2-DIV	DIVIDER	0.03	0.33	0.33	9	16:31	0.33
ONSITE-3-DIV	DIVIDER	0.01	0.33	0.33	9	15:23	0.33
ONSITE-4-DIV	DIVIDER	0.03	0.33	0.33	9	15:59	0.33
ONSITE-1-STORAGE	STORAGE	0.00	0.96	0.96	15822	13:16	0.92
ONSITE-2-STORAGE	STORAGE	0.00	0.88	0.88	15822	13:09	0.87
ONSITE-3-STORAGE	STORAGE	0.00	0.89	0.89	15822	13:05	0.87
ONSITE-4-STORAGE	STORAGE	0.00	0.90	0.90	15822	13:16	0.88

Maximum	Maximum		Lateral	Total	Flow
Lateral	Total	Time of Max	Inflow	Inflow	Balance
Inflow	Inflow	Occurrence	Volume	Volume	Error

Node	Туре	CFS	CFS	days h	r:min	10^6 gal	10^6 gal	Percent
POC1	OUTFALL	0.00	7.45	15822	13:16		43.1	0.000
ONSITE-1-DIV	DIVIDER	2.84	2.84	15822	13:16	28.7	28.7	0.000
ONSITE-2-DIV	DIVIDER	1.46	1.46	15822	13:16	22	22	0.002
ONSITE-3-DIV	DIVIDER	1.61	1.61	15822	13:16	23.7	23.7	0.000
ONSITE-4-DIV	DIVIDER	1.75	1.75	15822	13:16	25	25	0.002
ONSITE-1-STORAGE	STORAGE	0.00	2.73	15822	13:16	0	4.75	0.145
ONSITE-2-STORAGE	STORAGE	0.00	1.45	15822	13:16	0	7.96	0.084
ONSITE-3-STORAGE	STORAGE	0.00	1.55	15822	13:16	0	4.98	0.108
ONSITE-4-STORAGE	STORAGE	0.00	1.73	15822	13:16	0	10.6	0.085

Surcharging occurs when water rises above the top of the highest conduit.

Flooding refers to all water that overflows a node, whether it ponds or not.

Node	Hours Flooded	Maximum Rate CFS	Time of Max Occurrence days hr:min	Total Flood Volume 10^6 gal	Maximum Ponded Volume 1000 ft3
ONSITE-1-DIV ONSITE-2-DIV ONSITE-3-DIV ONSITE-4-DIV	18462.18 44271.13 20998.77 44715.23	0.11 0.01 0.06 0.01	4873 02:52 4873 02:42 4873 02:54 4873 02:40	8.794 16.470	0.000 0.000 0.000 0.000

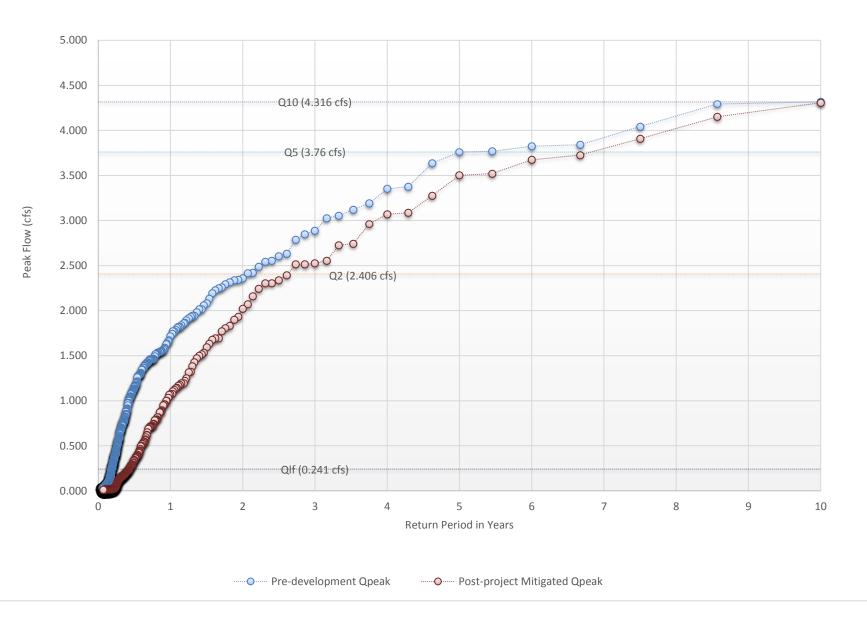
Storage Unit	Average Volume 1000 ft3	Avg Pcnt Full	Evap Pcnt Loss	Exfil Pcnt Loss	Maximum Volume 1000 ft3	Max Pcnt Full	Time of Max Occurrence days hr:min	Maximum Outflow CFS
ONSITE-1-STORAGE	0.002	0	0	0	1.673	96	15822 13:16	2.71
ONSITE-2-STORAGE	0.003	0	0	0	1.164	87	15822 13:08	1.46
ONSITE-3-STORAGE	0.002	0	0	0	1.163	88	15822 13:04	1.57
ONSITE-4-STORAGE	0.004	0	0	0	1.259	90	15822 13:16	1.73

	Flow Freq	Avg Flow	Max Flow	Total Volume
Outfall Node	Pcnt	CFS	CFS	10^6 gal
POC1	11.39	0.03	7.45	43.139
System	11.39	0.03	7.45	43.139

Link Flow Summary *********

Link	Type	Maximum Flow CFS	Time of Max Occurrence days hr:min	Maximum Veloc ft/sec	Max/ Full Flow	Max/ Full Depth
BYPASS-1 UNDERDRAIN BYPASS-2	DUMMY CONDUIT DUMMY	2.73 0.00 1.45	15822 13:16 20600 14:14 15822 13:16	0.09	1.08	1.00
UNDERDRAIN-2 BYPASS-3 BYPASS-4	CONDUIT DUMMY DUMMY	0.00 1.55 1.73	6728 21:19 15822 13:16 15822 13:16	0.10	1.08	1.00
UNDERDRAIN-3 UNDERDRAIN-4 MIDFLOW-1 MIDFLOW-2 MIDFLOW-3 MIDFLOW-4	CONDUIT CONDUIT DUMMY DUMMY DUMMY DUMMY	0.00 0.00 2.71 1.46 1.57	3762 02:47 15129 20:25 15822 13:16 15822 13:09 15822 13:05 15822 13:16	0.12	1.08	1.00

****** Conduit Surcharge Summary


Conduit		Hours Full Upstream		Hours Above Full Normal Flow	Hours Capacity Limited
UNDERDRAIN UNDERDRAIN-2 UNDERDRAIN-3 UNDERDRAIN-4	18466.90 44650.97 21032.67 45055.77	44650.97 21032.67	44650.97 21032.67	18117.90 45257.82 20810.83 45707.45	18466.90 44650.97 21032.67 45055.77

Analysis begun on: Wed Jun 14 15:57:44 2017 Analysis ended on: Wed Jun 14 16:00:17 2017 Total elapsed time: 00:02:33

Peak Flow Frequency Summary

Return Period (years)	Pre-development Qpeak (cfs)	Post-project - Mitigated Q (cfs)	Reduction Q (cfs)
LF = 0.1*Q2	0.241	0.198	0.043
2-year	2.406	1.979	0.427
3-year	2.885	2.524	0.361
4-year	3.351	3.069	0.282
5-year	3.760	3.502	0.258
6-year	3.824	3.673	0.151
7-year	3.921	3.799	0.122
8-year	4.160	4.021	0.139
9-year	4.301	4.198	0.102
10-year	4.316	4.308	0.008

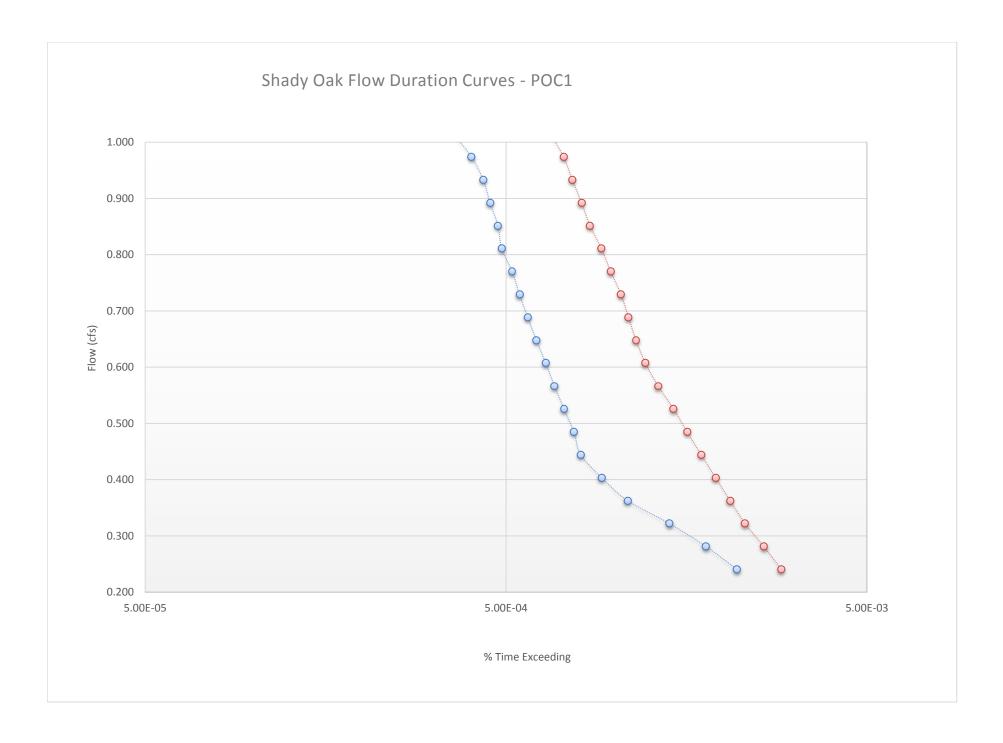
 Low-flow Threshold:
 10%

 0.1xQ2 (Pre):
 0.241
 cfs

 Q10 (Pre):
 4.316
 cfs

 Ordinate #:
 100

 Incremental Q (Pre):
 0.04075
 cfs


 Total Hourly Data:
 513905
 hours

The proposed BMP:

PASSED

Beginning of Interval	Pre-develop. Flow (cfs)	Pre-develop. Hours	Pre-develop. % Time Exceeding	Post-project Hours	Post-project % Time Exceeding	Percentage	Pass/Fail
1	0.241	1487	2.89E-03	1122	2.18E-03	75%	Pass
2	0.281	1331	2.59E-03	920	1.79E-03	69%	Pass
3	0.322	1180	2.30E-03	729	1.42E-03	62%	Pass
4	0.363	1073	2.09E-03	558	1.09E-03	52%	Pass
5	0.404	978	1.90E-03	473	9.20E-04	48%	Pass
6	0.444	893	1.74E-03	414	8.06E-04	46%	Pass
7	0.485	816	1.59E-03	396	7.71E-04	49%	Pass
8	0.526	748	1.46E-03	372	7.24E-04	50%	Pass
9	0.567	678	1.32E-03	350	6.81E-04	52%	Pass
10	0.607	625	1.22E-03	331	6.44E-04	53%	Pass
11	0.648	589	1.15E-03	312	6.07E-04	53%	Pass
12	0.689	561	1.09E-03	295	5.74E-04	53%	Pass
13	0.730	535	1.04E-03	280	5.45E-04	52%	Pass
14	0.770	501	9.75E-04	267	5.20E-04	53%	Pass
15	0.811	472	9.18E-04	250	4.86E-04	53%	Pass
16	0.852	439	8.54E-04	244	4.75E-04	56%	Pass
17	0.893	416	8.09E-04	232	4.51E-04	56%	Pass
18	0.933	392	7.63E-04	222	4.32E-04	57%	Pass
19	0.974	371	7.22E-04	206	4.01E-04	56%	Pass
20	1.015	341	6.64E-04	184	3.58E-04	54%	Pass
21	1.056	317	6.17E-04	169	3.29E-04	53%	Pass
22	1.096	296	5.76E-04	152	2.96E-04	51%	Pass
23	1.137	280	5.45E-04	141	2.74E-04	50%	Pass
24	1.178	256	4.98E-04	133	2.59E-04	52%	Pass
25	1.219	240	4.67E-04	126	2.45E-04	53%	Pass
26	1.259	231	4.49E-04	121	2.35E-04	52%	Pass
27	1.300	211	4.11E-04	120	2.34E-04	57%	Pass
28	1.341	198	3.85E-04	114	2.22E-04	58%	Pass
29	1.382	184	3.58E-04	112	2.18E-04	61%	Pass
30	1.422	175	3.41E-04	108	2.10E-04	62%	Pass
31	1.463	163	3.17E-04	105	2.04E-04	64%	Pass
32	1.504	156	3.04E-04	98	1.91E-04	63%	Pass
33	1.545	145	2.82E-04	92	1.79E-04	63%	Pass
34	1.585	136	2.65E-04	87	1.69E-04	64%	Pass
35	1.626	130	2.53E-04	81	1.58E-04	62%	Pass
36	1.667	120	2.34E-04	76	1.48E-04	63%	Pass
37	1.708	116	2.26E-04	70	1.36E-04	60%	Pass
38	1.748	110	2.14E-04	68	1.32E-04	62%	Pass
39	1.789	105	2.04E-04	66	1.28E-04	63%	Pass
40	1.830	99	1.93E-04	63	1.23E-04	64%	Pass
41	1.871	93	1.81E-04	62	1.21E-04	67%	Pass
42	1.912	87	1.69E-04	61	1.19E-04	70%	Pass
43	1.952	81	1.58E-04	60	1.17E-04	74%	Pass
44	1.993	76	1.48E-04	59	1.15E-04	78%	Pass
45	2.034	73	1.42E-04	54	1.05E-04	74%	Pass
46	2.075	70	1.36E-04	52	1.01E-04	74%	Pass
47	2.115	67	1.30E-04	51	9.92E-05	76%	Pass
48	2.156	65	1.26E-04	49	9.53E-05	75%	Pass
49	2.197	61	1.19E-04	47	9.15E-05	77%	Pass
50	2.238	59	1.15E-04	46	8.95E-05	78%	Pass
51	2.278	56	1.09E-04	43	8.37E-05	77%	Pass
52	2.319	51	9.92E-05	38	7.39E-05	75%	Pass
53	2.360	48	9.34E-05	37	7.20E-05	77%	Pass

Beginning of Interval	Pre-develop. Flow (cfs)	Pre-develop. Hours	Pre-develop. % Time Exceeding	Post-project Hours	Post-project % Time Exceeding	Percentage	Pass/Fail
54	2.401	47	9.15E-05	35	6.81E-05	74%	Pass
55	2.441	45	8.76E-05	34	6.62E-05	76%	Pass
56	2.482	42	8.17E-05	33	6.42E-05	79%	Pass
57	2.523	40	7.78E-05	31	6.03E-05	78%	Pass
58	2.564	38	7.39E-05	29	5.64E-05	76%	Pass
59	2.604	36	7.01E-05	28	5.45E-05	78%	Pass
60	2.645	35	6.81E-05	28	5.45E-05	80%	Pass
61	2.686	34	6.62E-05	28	5.45E-05	82%	Pass
62	2.727	33	6.42E-05	27	5.25E-05	82%	Pass
63	2.767	33	6.42E-05	26	5.06E-05	79%	Pass
64	2.808	31	6.03E-05	26	5.06E-05	84%	Pass
65	2.849	29	5.64E-05	25	4.86E-05	86%	Pass
66	2.890	28	5.45E-05	24	4.67E-05	86%	Pass
67	2.930	27	5.25E-05	24	4.67E-05	89%	Pass
68	2.971	27	5.25E-05	23	4.48E-05	85%	Pass
69	3.012	26	5.06E-05	21	4.09E-05	81%	Pass
70	3.053	24	4.67E-05	19	3.70E-05	79%	Pass
71	3.093	23	4.48E-05	17	3.31E-05	74%	Pass
72	3.134	21	4.09E-05	17	3.31E-05	81%	Pass
73	3.175	20	3.89E-05	17	3.31E-05	85%	Pass
74	3.216	19	3.70E-05	17	3.31E-05	89%	Pass
75	3.256	19	3.70E-05	17	3.31E-05	89%	Pass
76	3.297	19	3.70E-05	16	3.11E-05	84%	Pass
77	3.338	18	3.50E-05	16	3.11E-05	89%	Pass
78	3.379	16	3.11E-05	16	3.11E-05	100%	Pass^
79	3.419	16	3.11E-05	16	3.11E-05	100%	Pass^
80	3.460	15	2.92E-05	15	2.92E-05	100%	Pass^
81	3.501	14	2.72E-05	15	2.92E-05	107%	Pass^
82	3.542	14	2.72E-05	12	2.34E-05	86%	Pass
83	3.582	14	2.72E-05	11	2.14E-05	79%	Pass
84	3.623	13	2.53E-05	11	2.14E-05	85%	Pass
85	3.664	12	2.34E-05	11	2.14E-05	92%	Pass
86	3.705	12	2.34E-05	9	1.75E-05	75%	Pass
87	3.745	12	2.34E-05	8	1.56E-05	67%	Pass
88	3.786	10	1.95E-05	8	1.56E-05	80%	Pass
89	3.827	9	1.75E-05	8	1.56E-05	89%	Pass
90	3.868	8	1.56E-05	8	1.56E-05	100%	Pass^
91	3.908	8	1.56E-05	7	1.36E-05	88%	Pass
92	3.949	8	1.56E-05	7	1.36E-05	88%	Pass
93	3.990	8	1.56E-05	7	1.36E-05	88%	Pass
94	4.031	8	1.56E-05	7	1.36E-05	88%	Pass
95	4.071	7	1.36E-05	7	1.36E-05	100%	Pass^
96	4.112	7	1.36E-05	7	1.36E-05	100%	Pass^
97	4.112	7	1.36E-05	6	1.17E-05	86%	Pass
98	4.194	7	1.36E-05	6	1.17E-05	86%	Pass
99	4.194	7	1.36E-05	6	1.17E-05	86%	Pass
100	4.234	7	1.36E-05	6	1.17E-05 1.17E-05	86%	Pass

CD of SWMM Electronic Files

ATTACHMENT 3

Structural BMP Maintenance Information

This is the cover sheet for Attachment 3.

Indicate which Items are Included behind this cover sheet:

Attachment Sequence	Contents	Checklist
Attachment 3a	Structural BMP Maintenance Plan (Required)	□ Included
		See Structural BMP Maintenance Information Checklist on the back of this Attachment cover sheet.
Attachment 3b	Draft Stormwater Maintenance Notification / Agreement (when applicable)	☐ Included☒ Not Applicable

Template Date: March 16, 2016 Preparation Date: June 19, 2017 LUEG:SW PDP SWQMP - Attachments

Use this checklist to ensure the required information has been included in the Structural BMP Maintenance Information Attachment:

Attachment 3a must identify:

☐ Specific maintenance indicators and actions for proposed structural BMP(s). This mus	st
be based on Section 7.7 of the BMP Design Manual and enhanced to reflect actual	
proposed components of the structural BMP(s)	
☐ How to access the structural BMP(s) to inspect and perform maintenance	
☐ Features that are provided to facilitate inspection (e.g., observation ports, cleanouts, s	silt
posts, or other features that allow the inspector to view necessary components of the)
structural BMP and compare to maintenance thresholds)	
☐ Manufacturer and part number for proprietary parts of structural BMP(s) when applical	ble
☐ Maintenance thresholds specific to the structural BMP(s), with a location-specific fram	ıe
of reference (e.g., level of accumulated materials that triggers removal of the material	ls,
to be identified based on viewing marks on silt posts or measured with a survey rod v	vit
respect to a fixed benchmark within the BMP)	
☐ Recommended equipment to perform maintenance	
☐ When applicable, necessary special training or certification requirements for inspection	n
and maintenance personnel such as confined space entry or hazardous waste	
management	

Attachment 3b: For all Structural BMPs, Attachment 3b must include a draft maintenance agreement in the County's standard format depending on the Category (PDP applicant to contact County staff to obtain the current maintenance agreement forms). Refer to Section 7.3 in the BMP Design Manual for a description of the different categories.

Template Date: March 16, 2016 Preparation Date: June 19, 2017 LUEG:SW PDP SWQMP - Attachments

Attachment 3a

Maintenance Indicators and Actions

Maintenance shall be per "Summary of Standard Inspection and Maintenance for BF-1 Biofiltration" provided in the following sheet.

Accessibility to Structural BMPs

Maintenance crews to access the biolfiltration basins through Alleys A-D. Vehicles shall park at the end of the alleys and access the basins through a gate in the 6' CMU sound wall.

Inspection Facilitation Features

Cleanouts at the upstream end of the biofiltration basins and Grated Inlets at the downstream end are provided for each biofiltration basin.

Responsible Party for Maintenance and Funding Mechanism

Structural BMPs will be the responsibility of the developer up until a Homeowner Association is established. The Homeowner Association will charge homeowners a monthly fee for the upkeep of the project which includes maintenance of the Structural BMPs.

BF-1 Biofiltration

BMP MAINTENANCE FACT SHEET FOR STRUCTURAL BMP BF-1 BIOFILTRATION

Biofiltration facilities are vegetated surface water systems that filter water through vegetation, and soil or engineered media prior to discharge via underdrain or overflow to the downstream conveyance system. Biofiltration facilities have limited or no infiltration. They are typically designed to provide enough hydraulic head to move flows through the underdrain connection to the storm drain system. Typical biofiltration components include:

- Inflow distribution mechanisms (e.g., perimeter flow spreader or filter strips)
- Energy dissipation mechanism for concentrated inflows (e.g., splash blocks or riprap)
- Shallow surface ponding for captured flows
- Side slope and basin bottom vegetation selected based on climate and ponding depth
- Non-floating mulch layer
- Media layer (planting mix or engineered media) capable of supporting vegetation growth
- Filter course layer consisting of aggregate to prevent the migration of fines into uncompacted native soils or the aggregate storage layer
- Aggregate storage layer with underdrain(s)
- Impermeable liner or uncompacted native soils at the bottom of the facility
- Overflow structure

Normal Expected Maintenance

Biofiltration requires routine maintenance to: remove accumulated materials such as sediment, trash or debris; maintain vegetation health; maintain infiltration capacity of the media layer; replenish mulch; and maintain integrity of side slopes, inlets, energy dissipators, and outlets. A summary table of standard inspection and maintenance indicators is provided within this Fact Sheet.

Non-Standard Maintenance or BMP Failure

If any of the following scenarios are observed, the BMP is not performing as intended to protect downstream waterways from pollution and/or erosion. Corrective maintenance, increased inspection and maintenance, BMP replacement, or a different BMP type will be required.

- The BMP is not drained between storm events. Surface ponding longer than approximately 24 hours following a storm event may be detrimental to vegetation health, and surface ponding longer than approximately 96 hours following a storm event poses a risk of vector (mosquito) breeding. Poor drainage can result from clogging of the media layer, filter course, aggregate storage layer, underdrain, or outlet structure. The specific cause of the drainage issue must be determined and corrected.
- Sediment, trash, or debris accumulation greater than 25% of the surface ponding volume within one month. This means the load from the tributary drainage area is too high, reducing BMP function or clogging the BMP. This would require pretreatment measures within the tributary area draining to the BMP to intercept the materials. Pretreatment components, especially for sediment, will extend the life of components that are more expensive to replace such as media, filter course, and aggregate layers.
- Erosion due to concentrated storm water runoff flow that is not readily corrected by adding erosion control blankets, adding stone at flow entry points, or minor re-grading to restore proper drainage according to the original plan. If the issue is not corrected by restoring the BMP to the original plan and grade, the [City Engineer] shall be contacted prior to any additional repairs or reconstruction.

BF-1 Biofiltration

Other Special Considerations

Biofiltration is a vegetated structural BMP. Vegetated structural BMPs that are constructed in the vicinity of, or connected to, an existing jurisdictional water or wetland could inadvertently result in creation of expanded waters or wetlands. As such, vegetated structural BMPs have the potential to come under the jurisdiction of the United States Army Corps of Engineers, SDRWQCB, California Department of Fish and Wildlife, or the United States Fish and Wildlife Service. This could result in the need for specific resource agency permits and costly mitigation to perform maintenance of the structural BMP. Along with proper placement of a structural BMP, <u>routine</u> <u>maintenance</u> is key to preventing this scenario.

BF-1 Biofiltration

SUMMARY OF STANDARD INSPECTION AND MAINTENANCE FOR BF-1 BIOFILTRATION

The property owner is responsible to ensure inspection, operation and maintenance of permanent BMPs on their property unless responsibility has been formally transferred to an agency, community facilities district, homeowners association, property owners association, or other special district.

Maintenance frequencies listed in this table are average/typical frequencies. Actual maintenance needs are site-specific, and maintenance may be required more frequently. Maintenance must be performed whenever needed, based on maintenance indicators presented in this table. The BMP owner is responsible for conducting regular inspections to see when maintenance is needed based on the maintenance indicators. During the first year of operation of a structural BMP, inspection is recommended at least once prior to August 31 and then monthly from September through May. Inspection during a storm event is also recommended. After the initial period of frequent inspections, the minimum inspection and maintenance frequency can be determined based on the results of the first year inspections.

Threshold/Indicator	Maintenance Action	Typical Maintenance Frequency		
Accumulation of sediment, litter, or debris	Remove and properly dispose of accumulated materials, without damage to the vegetation or compaction of the media layer.	 Inspect monthly. If the BMP is 25% full* or more in one month, increase inspection frequency to monthly plus after every 0.1-inch or larger storm event. Remove any accumulated materials found at each inspection. 		
Obstructed inlet or outlet structure	Clear blockage.	 Inspect monthly and after every 0.5-inch or larger storm event. Remove any accumulated materials found at each inspection. 		
Damage to structural components such as weirs, inlet or outlet structures	Repair or replace as applicable	Inspect annually. Maintenance when needed.		
Poor vegetation establishment	Re-seed, re-plant, or re-establish vegetation per original plans.	Inspect monthly. Maintenance when needed.		
Dead or diseased vegetation	Remove dead or diseased vegetation, re-seed, re-plant, or re-establish vegetation per original plans.	Inspect monthly. Maintenance when needed.		
Overgrown vegetation	Mow or trim as appropriate.	Inspect monthly. Maintenance when needed.		
2/3 of mulch has decomposed, or mulch has been removed	Remove decomposed fraction and top off with fresh mulch to a total depth of 3 inches.	Inspect monthly. Replenish mulch annually, or more frequently when needed based on inspection.		

^{*&}quot;25% full" is defined as ¼ of the depth from the design bottom elevation to the crest of the outflow structure (e.g., if the height to the outflow opening is 12 inches from the bottom elevation, then the materials must be removed when there is 3 inches of accumulation – this should be marked on the outflow structure).

BF-1 Biofiltration

SUMMARY OF STANDARD IN	SPECTION AND MAINTENANCE FOR BF-1 BIOFILTRATION (C	ontinued from previous page)	
Threshold/Indicator	Maintenance Action	Typical Maintenance Frequency	
Erosion due to concentrated irrigation flow	Repair/re-seed/re-plant eroded areas and adjust the irrigation system.	Inspect monthly.Maintenance when needed.	
Erosion due to concentrated storm water runoff flow	Repair/re-seed/re-plant eroded areas, and make appropriate corrective measures such as adding erosion control blankets, adding stone at flow entry points, or minor re-grading to restore proper drainage according to the original plan. If the issue is not corrected by restoring the BMP to the original plan and grade, the [City Engineer] shall be contacted prior to any additional repairs or reconstruction.	 Inspect after every 0.5-inch or larger storm event. If erosion due to storm water flow has been observed, increase inspection frequency to after every 0.1-inch or larger storm event. Maintenance when needed. If the issue is not corrected by restoring the BMP to the original plan and grade, the [City Engineer] shall be contacted prior to any additional repairs or reconstruction. 	
Standing water in BMP for longer than 24 hours following a storm event Surface ponding longer than approximately 24 hours following a storm event may be detrimental to vegetation health	Make appropriate corrective measures such as adjusting irrigation system, removing obstructions of debris or invasive vegetation, clearing underdrains, or repairing/replacing clogged or compacted soils.	 Inspect monthly and after every 0.5-inch or larger storm event. If standing water is observed, increase inspection frequency to after every 0.1-inch or larger storm event. Maintenance when needed. 	
Presence of mosquitos/larvae For images of egg rafts, larva, pupa, and adult mosquitos, see http://www.mosquito.org/biology	If mosquitos/larvae are observed: first, immediately remove any standing water by dispersing to nearby landscaping; second, make corrective measures as applicable to restore BMP drainage to prevent standing water.	 Inspect monthly and after every 0.5-inch or larger storm event. If mosquitos are observed, increase inspection frequency to after every 0.1-inch or larger storm event. Maintenance when needed. 	
	If mosquitos persist following corrective measures to remove standing water, or if the BMP design does not meet the 96-hour drawdown criteria due to release rates controlled by an orifice installed on the underdrain, the [City Engineer] shall be contacted to determine a solution. A different BMP type, or a Vector Management Plan prepared with concurrence from the County of San Diego Department of Environmental Health, may be required.		
Underdrain clogged	Clear blockage.	 Inspect if standing water is observed for longer than 24-96 hours following a storm event. Maintenance when needed. 	

BF-1 Biofiltration

References

American Mosquito Control Association.

http://www.mosquito.org/

California Storm Water Quality Association (CASQA). 2003. Municipal BMP Handbook.

https://www.casqa.org/resources/bmp-handbooks/municipal-bmp-handbook

County of San Diego. 2014. Low Impact Development Handbook.

http://www.sandiegocounty.gov/content/sdc/dpw/watersheds/susmp/lid.html

San Diego County Copermittees. 2016. Model BMP Design Manual, Appendix E, Fact Sheet BF-1.

http://www.projectcleanwater.org/index.php?option=com_content&view=article&id=250&Itemid=220

BF-1 Biofiltration

Page Intentionally Blank for Double-Sided Printing

BF-1 Biofiltration

Date:	Inspector:	Inspector:		BMP ID No.:		
Permit No.:	APN(s):	APN(s):				
Property / Development Name:		Responsible Party Name and Phone Number:				
Property Address of BMP:		Responsible Party Address:				
INSP	ECTION AND MAINTENANCE CHECK	LIST FOR BF-	-1 BIOFILTRATION F	PAGE 1 of 5		
Threshold/Indicator	Maintenance Recommendat		Date	Description of Maintenance Conducted		
	☐ Remove and properly dispose of			,		
Maintenance Needed?	accumulated materials, without to the vegetation	t damage				
□ N/A	 ☐ If sediment, litter, or debris accumulation exceeds 25% of the surface ponding volume within one month (25% full*), add a forebay or other pre-treatment measures within the tributary area draining to the BMP to intercept the materials. ☐ Other / Comments: 					
Maintenance Needed?	□ Re-seed, re-plant, or re-establish vegetation per original plans□ Other / Comments:					

^{*&}quot;25% full" is defined as ¼ of the depth from the design bottom elevation to the crest of the outflow structure (e.g., if the height to the outflow opening is 12 inches from the bottom elevation, then the materials must be removed when there is 3 inches of accumulation – this should be marked on the outflow structure).

BF-1 Biofiltration

Date:	Inspector:	BMP ID No.:
Permit No.:	APN(s):	

INSPECTION AND MAINTENANCE CHECKLIST FOR BF-1 BIOFILTRATION PAGE 2 of 5			
Threshold/Indicator	Maintenance Recommendation	Date	Description of Maintenance Conducted
Dead or diseased vegetation	\square Remove dead or diseased vegetation, re-		
Maintenance Needed?	seed, re-plant, or re-establish vegetation per original plans		
☐ YES ☐ NO ☐ N/A	☐ Other / Comments:		
Overgrown vegetation	☐ Mow or trim as appropriate		
Maintenance Needed?	☐ Other / Comments:		
☐ YES ☐ NO ☐ N/A			
2/3 of mulch has decomposed, or mulch has been removed Maintenance Needed? ☐ YES ☐ NO ☐ N/A	 □ Remove decomposed fraction and top off with fresh mulch to a total depth of 3 inches □ Other / Comments: 		

Date:	Inspector:	BMP ID No.:
Permit No.:	APN(s):	

INSPECTION AND MAINTENANCE CHECKLIST FOR BF-1 BIOFILTRATION PAGE 3 of 5			
Threshold/Indicator	Maintenance Recommendation	Date	Description of Maintenance Conducted
Erosion due to concentrated irrigation flow Maintenance Needed? YES NO N/A	 □ Repair/re-seed/re-plant eroded areas and adjust the irrigation system □ Other / Comments: 		
Erosion due to concentrated storm water runoff flow Maintenance Needed? YES NO N/A	□ Repair/re-seed/re-plant eroded areas, and make appropriate corrective measures such as adding erosion control blankets, adding stone at flow entry points, or minor re-grading to restore proper drainage according to the original plan □ If the issue is not corrected by restoring the BMP to the original plan and grade, the [City Engineer] shall be contacted prior to any additional repairs or reconstruction □ Other / Comments:		

BF-1 Biofiltration

Date:	Inspector:	BMP ID No.:
Permit No.:	APN(s):	

INSPECTION AND MAINTENANCE CHECKLIST FOR BF-1 BIOFILTRATION PAGE 4 of 5			
Threshold/Indicator	Maintenance Recommendation	Date	Description of Maintenance Conducted
Obstructed inlet or outlet structure	☐ Clear blockage		
Maintenance Needed?	☐ Other / Comments:		
□ YES			
□NO			
□ N/A			
Underdrain clogged (inspect underdrain if	☐ Clear blockage		
standing water is observed for longer than 24-96 hours following a storm event)	☐ Other / Comments:		
Maintenance Needed?			
☐ YES			
\square NO			
□ N/A			
Damage to structural components such as weirs,	☐ Repair or replace as applicable		
inlet or outlet structures	☐ Other / Comments:		
Maintenance Needed?	and other y comments.		
☐ YES			
□ NO			
□ N/A			

Date:	Inspector:	BMP ID No.:
Permit No.:	APN(s):	

INSPECTION AND MAINTENANCE CHECKLIST FOR BF-1 BIOFILTRATION PAGE 5 of 5			
Threshold/Indicator	Maintenance Recommendation	Date	Description of Maintenance Conducted
Standing water in BMP for longer than 24-96 hours following a storm event* Surface ponding longer than approximately 24 hours following a storm event may be detrimental to vegetation health Maintenance Needed? YES NO N/A	 □ Make appropriate corrective measures such as adjusting irrigation system, removing obstructions of debris or invasive vegetation, clearing underdrains, or repairing/replacing clogged or compacted soils □ Other / Comments: 		
Presence of mosquitos/larvae For images of egg rafts, larva, pupa, and adult mosquitos, see http://www.mosquito.org/biology Maintenance Needed? YES NO N/A	□ Apply corrective measures to remove standing water in BMP when standing water occurs for longer than 24-96 hours following a storm event.** □ Other / Comments:		

^{*}Surface ponding longer than approximately 24 hours following a storm event may be detrimental to vegetation health, and surface ponding longer than approximately 96 hours following a storm event poses a risk of vector (mosquito) breeding. Poor drainage can result from clogging of the media layer, filter course, aggregate storage layer, underdrain, or outlet structure. The specific cause of the drainage issue must be determined and corrected.

^{**}If mosquitos persist following corrective measures to remove standing water, or if the BMP design does not meet the 96-hour drawdown criteria due to release rates controlled by an orifice installed on the underdrain, the [City Engineer] shall be contacted to determine a solution. A different BMP type, or a Vector Management Plan prepared with concurrence from the County of San Diego Department of Environmental Health, may be required.

ATTACHMENT 4

County of San Diego PDP Structural BMP Verification for Permitted Land Development Projects

This page was left intentionally blank.

Preparation Date: June 19, 2017

County of San Diego BMP Design Manual Verification Form			
Project Summary Information			
Project Name	Shady Oak		
Record ID (e.g., grading/improvement plan number)	PDS2016-MPA-001		
Project Address	27522 Valley Center Road] Valley Center,Ca 92082		
Assessor's Parcel Number(s) (APN(s))	186-270-01		
Project Watershed (Complete Hydrologic Unit, Area, and Subarea Name with Numeric Identifier)	San Luis Rey Hydrologic Unit, Lower San Luis Hydrologic Area, Valley Center Hydrologic Subarea 903.14		
	for Construction Phase		
Developer's Name	Touchstone Communities		
Address	9909 Mira Mesa Boulevard, Suite 150] San Diego, Ca 92127		
Email Address	kerry@touchstonecommunities.com		
Phone Number	(858) 586-0414		
Engineer of Work	Stephen J. McPartland		
Engineer's Phone Number	(858) 762-9611		
Responsible Party for Ongoing Maintenance			
Owner's Name(s)*	Touchstone Development, LLC		
Address	9909 Mira Mesa Boulevard, Suite 150] San Diego, Ca 92127		
Email Address	kerry@touchstonecommunities.com		
Phone Number	(858) 586-0414		

*Note: If a corporation or LLC, provide information for principal partner or Agent for Service of Process. If an HOA, provide information for the Board or property manager at time of project closeout.

Template Date: March 16, 2016

LUEG:SW PDP SWQMP - Attachments

County of San Diego BMP Design Manual Verification Form Page 2 of 4 Stormwater Structural Pollutant Control & Hydromodification Control BMPs* (List all from SWQMP) Maintenance STRUCT-Plan Maint-Agreement **URAL BMP** Description/Type of Sheet enance Recorded Doc **Structural BMP** # ID# Category Revisions Biofiltration basin, BF-1,BF-TM LID-Two ONSITE-1 shts. 2-3 Biofiltration Basin, BF-1,BF-TM LID-Two ONSITE-2 shts. 2-3 Biofiltration Basin, BF-1,BF-TM LID-Two shts. ONSITE-3 2-3 Biofiltration Basin, BF-1,BF-TM LID-Two shts. ONSITE-4 2-3 Tree Well, SD-1 TM LID-OLDsht. 4 MDV

*All Priority Development Projects (PDPs) require a Structural BMP

Note: If this is a partial verification of Structural BMPs, provide a list and map denoting Structural BMPs that have already been submitted, those for this submission, and those anticipated in future submissions.

Template Date: March 16, 2016
LUEG:SW PDP SWQMP - Attachments

Checklist for Applicant to submit to PDCI:

Preparation Date: June 19, 2017

County of San Diego BMP Design Manual Verification Form Page 3 of 4

☐ Copy of the final accepted SWQMP and any accepted addendum. ☐ Copy of the most current plan showing the Stormwater Structural BMP Table, plans/cross-section sheets of the Structural BMPs and the location of each verified as-

built Structural BMP.
Photograph of each Structural BMP.
Photograph(s) of each Structural BMP during the construction process to illustrate
proper construction.

☐ Copy of the approved Structural BMP maintenance agreement and associated security

By signing below, I certify that the Structural BMP(s) for this project have been constructed and all BMPs are in substantial conformance with the approved plans and applicable regulations. I understand the County reserves the right to inspect the above BMPs to verify compliance with the approved plans and Watershed Protection Ordinance (WPO). Should it be determined that the BMPs were not constructed to plan or code, corrective actions may be necessary before permits can be closed.

Please sign your name and seal.	
Professional Engineer's Printed Name:	[SEAL]
Professional Engineer's Signed Name:	
<u> </u>	
Date:	
Date:	

Template Date: March 16, 2016

LUEG:SW PDP SWQMP - Attachments

County of San Diego BMP Design Manual Verification Form Page 4 of 4

COUNTY - OFFICIAL USE ONLY:	
For PDCI:	Verification Package #:
PDCI Inspector:	
Date Project has/expects to close:	
Date verification received from EOW:	
By signing below, PDCI Inspector concurs the per plan.	at every noted Structural BMP has been installed
PDCI Inspector's Signature:	Date:
FOR WPP:	
Date Received from PDCI:	
WPP Submittal Reviewer:	
WPP Reviewer concurs that the information pacceptable to enter into the Structural BMP N	
List acceptable Structural BMPs:	
WDD Daviewer's Cignoture	Data

Template Date: March 16, 2016 Preparation Date: June 19, 2017

ATTACHMENT 5

Copy of Plan Sheets Showing Permanent Storm Water BMPs, Source Control, and Site Design

This is the cover sheet for Attachment 5.

Use this checklist to ensure the required information has been included on the plans:

The plans must identify:

\boxtimes	Structural BMP(s) with ID numbers matching Step 6 Summary of PDP Structural BMPs
\boxtimes	The grading and drainage design shown on the plans must be consistent with the delineation of DMAs shown on the DMA exhibit
\boxtimes	Details and specifications for construction of structural BMP(s)
	Signage indicating the location and boundary of structural BMP(s) as required by County staff
	How to access the structural BMP(s) to inspect and perform maintenance
	Features that are provided to facilitate inspection (e.g., observation ports, cleanouts, silt posts, or other features that allow the inspector to view necessary components of the structural BMP and compare to maintenance thresholds)
	Manufacturer and part number for proprietary parts of structural BMP(s) when applicable
	Maintenance thresholds specific to the structural BMP(s), with a location-specific frame of reference (e.g., level of accumulated materials that triggers removal of the materials, to be identified based on viewing marks on silt posts or measured with a survey rod with respect to a fixed benchmark within the BMP)
	Recommended equipment to perform maintenance
	When applicable, necessary special training or certification requirements for inspection and maintenance personnel such as confined space entry or hazardous waste management
	Include landscaping plan sheets showing vegetation requirements for vegetated structural BMP(s)
	All BMPs must be fully dimensioned on the plans
	When proprietary BMPs are used, site-specific cross section with outflow, inflow, and model number must be provided. Photocopies of general brochures are not acceptable.
	Include all source control and site design measures described in Steps 4 and 5 of the SWQMP. Can be included as a separate exhibit as necessary.

This page was left intentionally blank.

ATTACHMENT 6

Copy of Project's Drainage Report

This is the cover sheet for Attachment 6.

If hardcopy or CD is not attached, the following information should be provided:

Title:

Prepared By:

Date:

Preliminary Drainage Study

for

Shady Oak

Project No.:

PDS2016-TM-5614 PDS2016-REZ-16-005 PDS2016-STP-16-019

Prepared For:

Touchstone Communities
9909 Mira Mesa Blvd., Suite 150
San Diego, CA 92131
Mr. Kerry Garza

Prepared By:

Declaration of Responsible Charge

I hereby declare that I am the Civil Engineer of Work for this project. That I have exercised responsible charge over the design of the project as defined in Section 6703 of the business and professions code, and that the design is consistent with current standards.

I understand that the check of the Drainage Report by the County of San Diego is confined to a review only and does not relieve me, as Engineer of Work, of my responsibilities for project design.

design.

| Column | C

TABLE OF CONTENTS

1.0 Introduction	1-2
2.0 Hydrologic Methodology and Criteria	3-5
3.0 Hydrologic Results.	5-6
4.0 Conclusion	6

Tables:

Table 3.1: Summary of Pre-Post Project 100-Year Peak Discharge Rates for Shady Oak

Appendices:

Appendix A: Hydrologic Reference Materials

Appendix B: 100-Year Pre-Project Condition Hydrologic Output

Appendix C: 100-Year Post-Project Condition Output

Appendix D: HEC-1 Detention Calculations

Map Pockets:

Map Pocket 1: Pre-Project Hydrologic Unit Work Map for Shady Oak

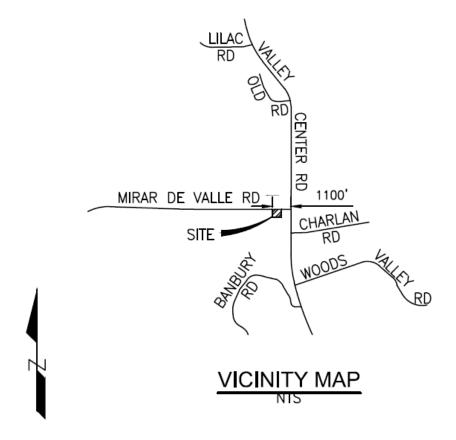
Map Pocket 2: Post-Project Hydrologic Unit Work Map for Shady Oak

INTRODUCTION 1.0

The project site fronts Mirar De Valle Road and is located approximately 600 feet west of Valley Center Road and is bounded by open space and low density residential from the south and west. Refer to the Vicinity Map shown at the end of this section. The site is characterized by gentle and uniform topography with elevations ranging from 1316 to 1297 feet above mean sea level.

The site is relatively flat with gentle to moderate sloping towards the northeast. The project proposes to develop a vacant lot into a residential subdivision consisting of 47 residential lots, private internal streets, alleys and associated offsite improvements. Offsite improvements include the removal of existing AC berm and portion of AC pavement fronting the property on Mirar De Valle. Curb and gutter is proposed in the frontage along with a 5' decomposed granite pathway. Old Mirar De Valle is designed as a secondary fire access plan and is only to be constructed if Street A of Park Circle TM 5603 is not constructed prior to Shady Oak project.

Shady Oak is located within Valley Center Hydrologic Sub-Area (HSA 903.14), which is part of the Lower San Luis Hydrologic Area (HA 903.10) and San Luis Rey Hydrologic Unit (HU 903.00).


In Pre-project condition, a portion of the hillside south of the project sheet flows onto the site and confluences with site flows in a northeasterly direction, eventually converging with surrounding flows associated with Mirar De Valle and low density residential areas to the south. Flows discharge to the north of Mirar De Valle via a 3-8' (W) x 2' (H) RCB constructed as part of Mirar de Valle Improvements (CG 4307). Runoff continues its course north eventually discharging into Moosa Canyon Creek. Flows continue west on Moosa Canyon Creek eventually joining with San Luis Rey River which ultimately outlets to the Pacific Ocean.

In the Post-project condition, drainage areas and patterns will not be altered or diverted. Offsite flows will be bypassed and not comingle with project runoff. Storm water runoff from the project will flow into Treatment Control BMPs along the sites frontage. The increase of impervious surfaces will generate additional runoff. However, through the use of Low Impact Development (LID) practices, Treatment Control BMPs and discharge limiting orifices, flows leaving the site will be detained to be equal or less than pre-project condition.

STORM WATER PLAN REQUIREMENTS 1.1

The site design BMPs, source control and treatment control BMPs utilized to address water quality and hydromodification requirements have been designed in accordance to the February 2016 County of San Diego BMP Design Manual. Refer to the Storm Water Quality Management Plan (SWQMP) titled, "Major Storm Water Quality Management Plan (Major SWQMP) for Shady Oak", prepared by TSAC Engineering.

VICINITY MAP 1.2

HYDROLOGIC METHODOLOGY AND CRITERIA 2.0

This study has been prepared consistent with current County of San Diego's ordinances and procedures. All components of the study are designed to convey storm water based on a 100-year flood event. The anticipated storm runoff has been calculated using the Rational Method based on the 2003 County of San Diego Hydrology Manual.

The Rational Method (RM) is a mathematical formula used to determine the maximum runoff rate from a given rainfall. It has particular application in urban storm drainage, where it is used to estimate peak runoff rates from small urban and rural watersheds for the design of storm drains and small drainage structures.

The RM formula estimates the peak rate of runoff at any location in a watershed as a function of the drainage area (A), runoff coefficient (C), and rainfall intensity (I) for a duration equal to the time of concentration (Tc), which is the time required for water to flow from the most remote point of the basin to the location being analyzed. The RM formula is expressed as follows:

Q = C I A

Q = peak discharge, cubic feet per second (cfs)

C = runoff coefficient, based on San Diego County Hydrology Manual (Refer to Appendix A)

I = Rainfall intensity (in/hr) (Refer to Appendix A)

A = Drainage Area, (Acres)

The RM formula is based on the assumption that for constant rainfall intensity, the peak discharge rate at a point will occur when the raindrop that falls at the most upstream point in the tributary drainage basin arrives at the point of interest.

Runoff coefficients (C) based on land use and soil types were obtained from the San Diego County Hydrology Manual, Table 3-1. Soil types were determined from the Hydrology Soils

Map provided in Appendix A as well as the US Department of Agriculture (USDA) Soil Survey program. This runoff coefficient was then multiplied by the percentage of total area (A) included in that class.

The rainfall intensity (I) can be determined from the County of San Diego Intensity-Duration Design Chart. The 6-hour storm rainfall amount (P6) and 24-hour storm rainfall amount (P24), were determined from the isopluvial maps provided in Appendix A. Intensity can also be calculated using the following equation:

 $I = 7.44 (P_6) (D_{-.645})$

I = Intensity (inches/hour)

 $P_6 = 6$ Hour Precipitation (inches)

D = Duration in minutes (use Tc)

The Time of Concentration (Tc) is the time required for runoff to flow from the most remote part of the drainage area to the point of interest. The Tc is composed of two components: initial time of concentration (Ti) and travel time (Tt). The Ti is the time required for runoff to travel across the surface of the most remote subarea in the study, or "initial subarea." The Tt is the time required for the runoff to flow in a watercourse or series of watercourses from the initial subarea to the point of interest. For the RM, the Tc at any point within the drainage area is given by:

Tc = Ti + Tt

The Civilcadd/Civil Design Engineering Software, based on the 2003 County of San Diego Hydrology Manual, was used to determine on-site 100-year, 6-hour peak flow rates.

The Civil Design Hydrology Program is a computer-aided design program in which the user develops a node-link model of the watershed. The hydrologic model is developed by creating independent node-link models of each interior drainage basin and linking these sub-models together at confluence points. The program has the capability to perform calculations for 11

hydrologic processes. These processes are assigned code numbers that appear in the results. The code numbers and their significance are as follows:

Subarea Hydrologic Processes (Codes)

Code 1: Initial subarea input, top of stream

Code 2: Street flow thru subarea, includes subarea runoff

Code 3: Addition of runoff from subarea to stream

Code 4: Street Inlet + parallel street & pipe flow + area

Code 5: Pipeflow travel time (program estimated pipesize)

Code 6: Pipeflow travel time (user specified pipesize)

Code 7: Improved channel travel time (open or box)

Code 8: Irregular channel travel time

Code 9: User specified entry of data at a point

Code 10: Confluence at downstream point in current stream

Code 11: Confluence at main stream

HYDROLOGIC RESULTS 3.0

The 100-year 6-hour peak flow rates for the pre- and post-project conditions can be found in Table 3.1. Drainage Basin boundaries, and drainage areas can be found on the workmaps titled, "Pre-Project Hydrologic Workmap for Shady Oak" and "Post-Project Hydrologic Workmap for Shady Oak", located in Map Pocket 1 and 2.

Pre-project and post-project hydrologic analyses have been performed for the 100-year storm event. For the purpose of this drainage report one major drainage basin has been identified,

herein referred to as Drainage Basin 100. The proposed project will mimic the existing drainage patterns, which flow in a northeasterly direction. Onsite runoff will sheet flow northerly into Biofiltration Basins proposed along the northerly portion of the site. Once treated, the flows will be piped into a proposed curb inlet on Mirar de Valle used to capture offsite flows. The mainline will continue its course east until discharging into a channel proposed with the Park Circle Project, County of San Diego Tract No. 5603.

Table 3.1 summarizes the results of the 100-year pre-project and post-project hydrologic analyses for Shady Oak.

Table 3.1: Summary of Pre- and Post-Project 100-Year Peak Discharge Rates

	Node Number	Area (acres)	Q ₁₀₀ (cfs)	Q100 with mitigation (cfs)	T _c (min)	I (in/hr)
Pre-Project/ Post-Project (undetained)	105/105	31.8/31.8	63.9 /66.1	63.9	14.5/14.5	5.0/5.0

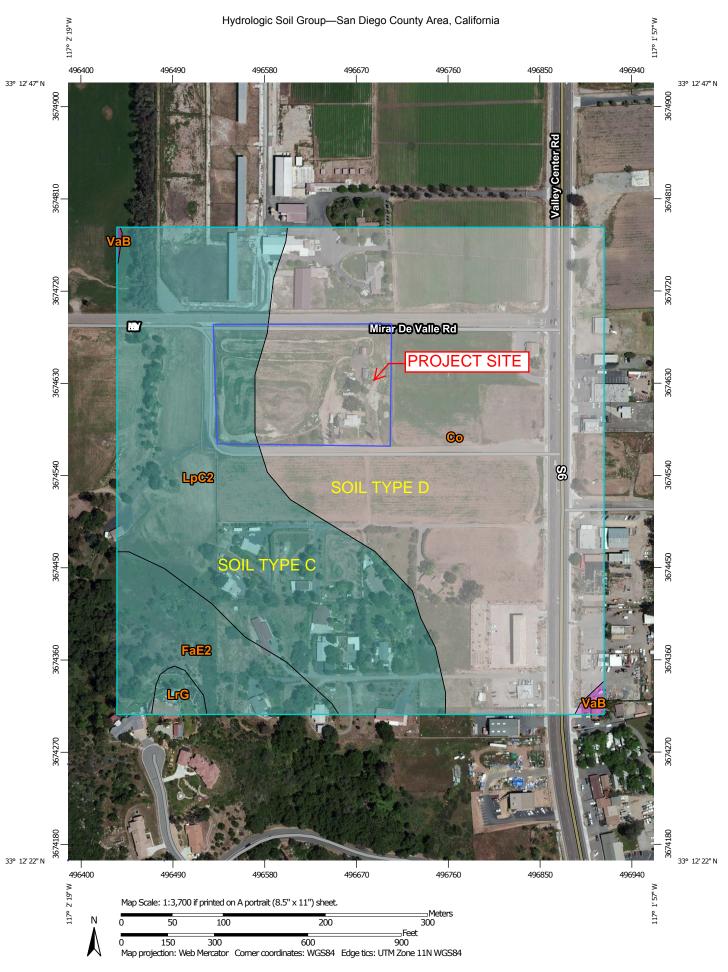
CONCLUSION 4.0

This preliminary drainage report presents the 100-year, 6-hour post-project hydrologic analyses for the Shady Oak Project. The post project condition peak discharge rates were determined using the Rational Method based on the hydrologic methodology and criteria described in the San Diego County Hydrology Manual, dated June 2003.

As designed, the development will not alter the natural drainage path or divert any water from the existing natural conditions or drainage boundaries. Runoff from the Shady Oak site will sheet flow into a biofiltration basins along the northerly portion of the site. Street A "Road 19" will be directed to the biofiltration basins via reverse curb outlet and ditch for treatment.

Old Mirar De Valle is designed as a secondary fire access plan and is only to be constructed if Street A of Park Circle TM 5603 is not constructed prior to Shady Oak project. A biofiltration basin has been designed for this alternative.

On and offsite runoff ultimately discharge to the Moosa Canyon Creek. Once treated, onsite flows will be piped into a proposed curb inlet on Mirar de Valle used to capture offsite flows.


The mainline will continue its course east until discharging into a channel associated with the Park Circle Project, County of San Diego Tract No. 5603.

The basins have been designed to meet the Water Quality and Hydromodification standards. By treating and detaining flows on-site, downstream impacts such as erosion and sedimentation will be nonexistent.

The pre and post project drainage area is 31.8 Acres. In the pre-project condition, 63.9 CFS discharge into the property north of Mirar de Valle via 3-2' (h) x 8' (w) box culverts. In the post project condition, 63.9 CFS (66.1 CFS undetained) will discharge into the box culverts, which have capacity for 128.5 CFS as shown on the As-Builts (CG 4307, TM 5039-2). The increase in runoff will be mitigated by detaining within the biofiltration basins. In order to detain 2.2 cfs, 0.06 acre-feet (2613 ft³) of volume is required. This will be accomplished by allowing 6" of ponding above the Hydromodification volume within the biofiltration basins. Detailed outlet works will be designed in the Final Engineering stage.

The project site is located south of Moosa Canyon Creek and out of the 100-year flood hazard area as shown on the FIRM provided in Appendix A.

Appendix A: Hydrologic Reference Material

MAP LEGEND MAP INFORMATION The soil surveys that comprise your AOI were mapped at 1:24,000. Area of Interest (AOI) С Area of Interest (AOI) C/D Warning: Soil Map may not be valid at this scale. Soils D Enlargement of maps beyond the scale of mapping can cause Soil Rating Polygons misunderstanding of the detail of mapping and accuracy of soil line Not rated or not available Α placement. The maps do not show the small areas of contrasting **Water Features** soils that could have been shown at a more detailed scale. A/D Streams and Canals В Please rely on the bar scale on each map sheet for map Transportation measurements. B/D +++ Rails Source of Map: Natural Resources Conservation Service Interstate Highways Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov C/D **US Routes** Coordinate System: Web Mercator (EPSG:3857) D Major Roads Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts Not rated or not available Local Roads distance and area. A projection that preserves area, such as the Soil Rating Lines Albers equal-area conic projection, should be used if more accurate **Background** calculations of distance or area are required. Aerial Photography A/D This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. Soil Survey Area: San Diego County Area, California Survey Area Data: Version 9, Sep 17, 2015 Soil map units are labeled (as space allows) for map scales 1:50,000 C/D or larger. Date(s) aerial images were photographed: Data not available. Not rated or not available The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background Soil Rating Points imagery displayed on these maps. As a result, some minor shifting Α of map unit boundaries may be evident. A/D В B/D

Hydrologic Soil Group

Hydrologic Soil Group— Summary by Map Unit — San Diego County Area, California (CA638)						
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI		
Со	Clayey alluvial land		32.0	56.7%		
FaE2	Fallbrook sandy loam, 15 to 30 percent slopes, eroded	С	4.5	7.9%		
LpC2	Las Posas fine sandy loam, 5 to 9 percent slopes, erode d	С	19.3	34.2%		
LrG	Las Posas stony fine sandy loam, 30 to 65 percent slope s	С	0.5	0.8%		
VaB	Visalia sandy loam, 2 to 5 percent slopes	А	0.2	0.3%		
Totals for Area of Inter	est	56.4	100.0%			

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

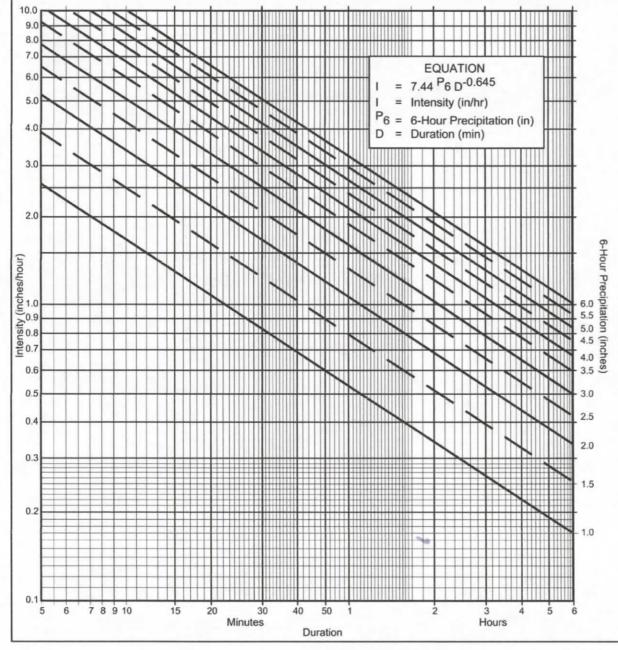
The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.


If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified

Tie-break Rule: Higher

Directions for Application:

- (1) From precipitation maps determine 6 hr and 24 hr amounts for the selected frequency. These maps are included in the County Hydrology Manual (10, 50, and 100 yr maps included in the Design and Procedure Manual).
- (2) Adjust 6 hr precipitation (if necessary) so that it is within the range of 45% to 65% of the 24 hr precipitation (not applicable to Desert).
- (3) Plot 6 hr precipitation on the right side of the chart.
- (4) Draw a line through the point parallel to the plotted lines.
- (5) This line is the intensity-duration curve for the location being analyzed.

Application Form:

(a) Selected frequency 100 year

(b)
$$P_6 = 3.75$$
 in., $P_{24} = 8.2$, $\frac{P_6}{P_{24}} = 45.7$ %⁽²⁾

(c) Adjusted $P_6^{(2)} = 3.75$ in.

(d) t_x = ____ min.

(e) I = _____ in./hr.

Note: This chart replaces the Intensity-Duration-Frequency curves used since 1965.

P6	1	1.5	2	2.5	3	3.5	4	4.5	5	5.5	6
Duration	1	1	1	1	-1	-1	1	- 1	- 1	- 1	- 1
5	2.63	3.95	5.27	6.59	7.90	9.22	10.54	11.86	13.17	14.49	15.81
7	2.12	3.18	4.24	5.30	6.36	7.42	8.48	9.54	10.60	11.66	12.72
10	1.68	2.53	3.37	4.21	5.05	5.90	6.74	7.58	8.42	9.27	10.11
15	1.30	1.95	2.59	3.24	3.89	4.54	5.19	5.84	6.49	7.13	7.78
20	1.08	1.62	2.15	2.69	3.23	3.77	4.31	4.85	5.39	5.93	6.46
25	0.93	1.40	1.87	2.33	2.80	3.27	3.73	4.20	4.67	5.13	5.60
30	0.83	1.24	1.66	2.07	2.49	2.90	3.32	3.73	4.15	4.56	4.98
40	0.69	1.03	1.38	1.72	2.07	2.41	2.76	3.10	3.45	3.79	4.13
50	0.60	0.90	1.19	1.49	1.79	2.09	2.39	2.69	2.98	3.28	3.58
60	0.53	0.80	1.06	1.33	1.59	1.86	2.12	2.39	2.65	2.92	3.18
90	0.41	0.61	0.82	1.02	1.23	1.43	1.63	1.84	2.04	2.25	2.45
120	0.34	0.51	0.68	0.85	1.02	1.19	1.36	1.53	1.70	1.87	2.04
150	0.29	0.44	0.59	0.73	0.88	1.03	1.18	1.32	1.47	1.62	1.76
180	0.26	0.39	0.52	0.65	0.78	0.91	1.04	1.18	1.31	1.44	1.57
240	0.22	0.33	0.43	0.54	0.65	0.76	0.87	0.98	1.08	1.19	1.30
300	0.19	0.28	0.38	0.47	0.56	0.66	0.75	0.85	0.94	1.03	1.13
360	0.17	0.25	0.33	0.42	0.50	0.58	0.67	0.75	0.84	0.92	1.00

San Diego County Hydrology Manual Date: June 2003

Section: Page:

6 of 26

Table 3-1 RUNOFF COEFFICIENTS FOR URBAN AREAS

Lar	Runoff Coefficient "C"						
		Soil Type					
NRCS Elements	County Elements	% IMPER.	A	В	С	D	
Undisturbed Natural Terrain (Natural)	Permanent Open Space	0*	0.20	0.25	0.30	0.35	
Low Density Residential (LDR)	Residential, 1.0 DU/A or less	10	0.27	0.32	0.36	0.41	
Low Density Residential (LDR)	Residential, 2.0 DU/A or less	20	0.34	0.38	0.42	0.46	
Low Density Residential (LDR)	Residential, 2.9 DU/A or less	25	0.38	0.41	0.45	0.49	
Medium Density Residential (MDR)	Residential, 4.3 DU/A or less	30	0.41	0.45	0.48	0.52	
Medium Density Residential (MDR)	Residential, 7.3 DU/A or less	40	0.48	0.51	0.54	0.57	
Medium Density Residential (MDR)	Residential, 10.9 DU/A or less	45	0.52	0.54	0.57	0.60	
Medium Density Residential (MDR)	Residential, 14.5 DU/A or less	50	0.55	0.58	0.60	0.63	
High Density Residential (HDR)	Residential, 24.0 DU/A or less	65	0.66	0.67	0.69	0.71	
High Density Residential (HDR)	Residential, 43.0 DU/A or less	80	0.76	0.77	0.78	0.79	
Commercial/Industrial (N. Com)	Neighborhood Commercial	80	0.76	0.77	0.78	0.79	
Commercial/Industrial (G. Com)	General Commercial	85	0.80	0.80	0.81	0.82	
Commercial/Industrial (O.P. Com)	Office Professional/Commercial	90	0.83	0.84	0.84	0.85	
Commercial/Industrial (Limited I.)	Limited Industrial	90	0.83	0.84	0.84	0.85	
Commercial/Industrial (General I.)	General Industrial	95	0.87	0.87	0.87	0.87	

^{*}The values associated with 0% impervious may be used for direct calculation of the runoff coefficient as described in Section 3.1.2 (representing the pervious runoff coefficient, Cp, for the soil type), or for areas that will remain undisturbed in perpetuity. Justification must be given that the area will remain natural forever (e.g., the area is located in Cleveland National Forest).

DU/A = dwelling units per acre

NRCS = National Resources Conservation Service

San Diego County Hydrology Manual
Date: June 2003

Section: 4
Page: 16 of 60

4.1.2.1 Hydrologic Soil Group

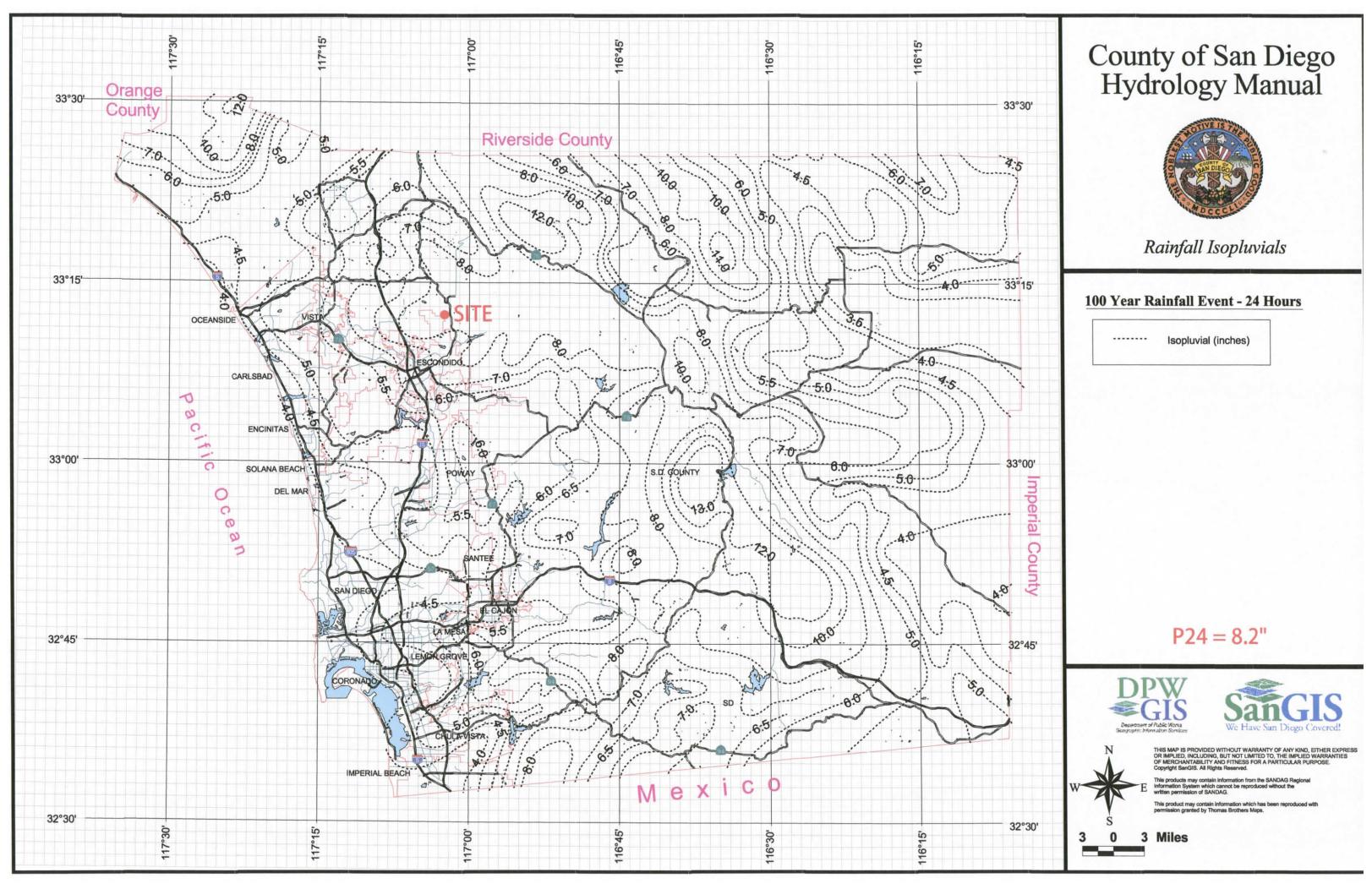
Soil properties influence the relationship between rainfall and runoff since soils have differing rates of infiltration. Based on infiltration rates, the NRCS has divided soils into four hydrologic soil groups.

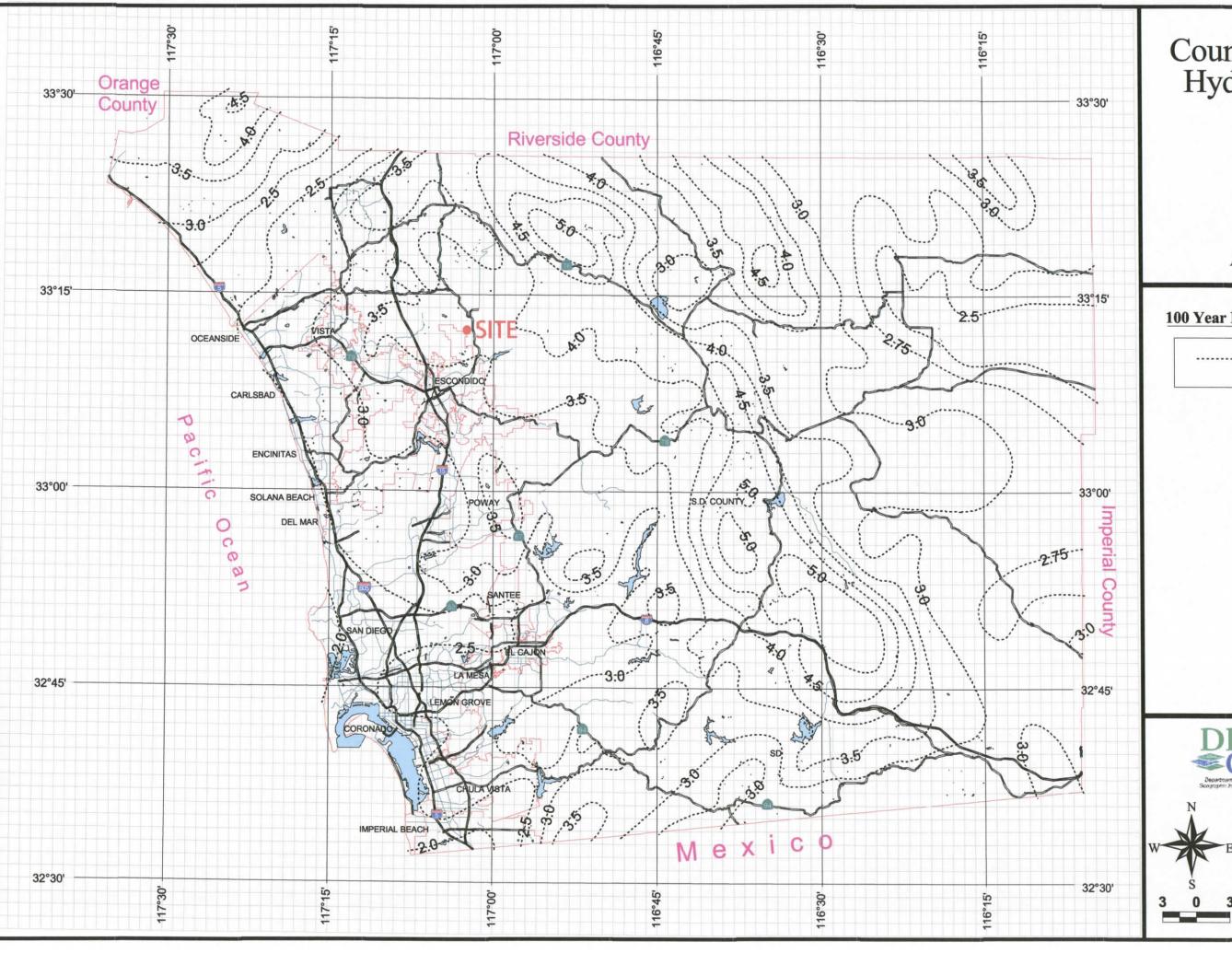
Group A

Soils have high infiltration rate when thoroughly wetted; chiefly deep, well-drained to excessively drained sand, gravel, or both. Rate of water transmission is high; thus runoff potential is low.

Group B

Soils have moderate infiltration rate when thoroughly wetted; chiefly soils that are moderately deep to deep, moderately well drained to well drained, and moderately coarse textured. Rate of water transmission is moderate.


Group C


Soils have slow infiltration rate when thoroughly wetted; chiefly soils that have a layer impeding downward movement of water, or moderately fine to fine textured soils that have a slow infiltration rate. Rate of water transmission is slow.

Group D

Soils have very slow infiltration rate when thoroughly wetted; chiefly clays that have a high shrink-swell potential, soils that have a high permanent water table, soils that have a claypan or clay layer at or near the surface, or soils that are shallow over nearly impervious material. Rate of water transmission is very slow.

A list of soils throughout San Diego County and their hydrologic classification is located on the map in Appendix A. Soil Survey maps can be obtained from local NRCS offices for use in estimating soil type. The NRCS maps are also available at the County of San Diego DPWFCS. Consideration should be given to the effects of urbanization on the

County of San Diego Hydrology Manual

Rainfall Isopluvials

100 Year Rainfall Event - 6 Hours

Isopluvial (inches)

P6 = 3.75"

THIS MAP IS PROVIDED WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INICULDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

3 Miles