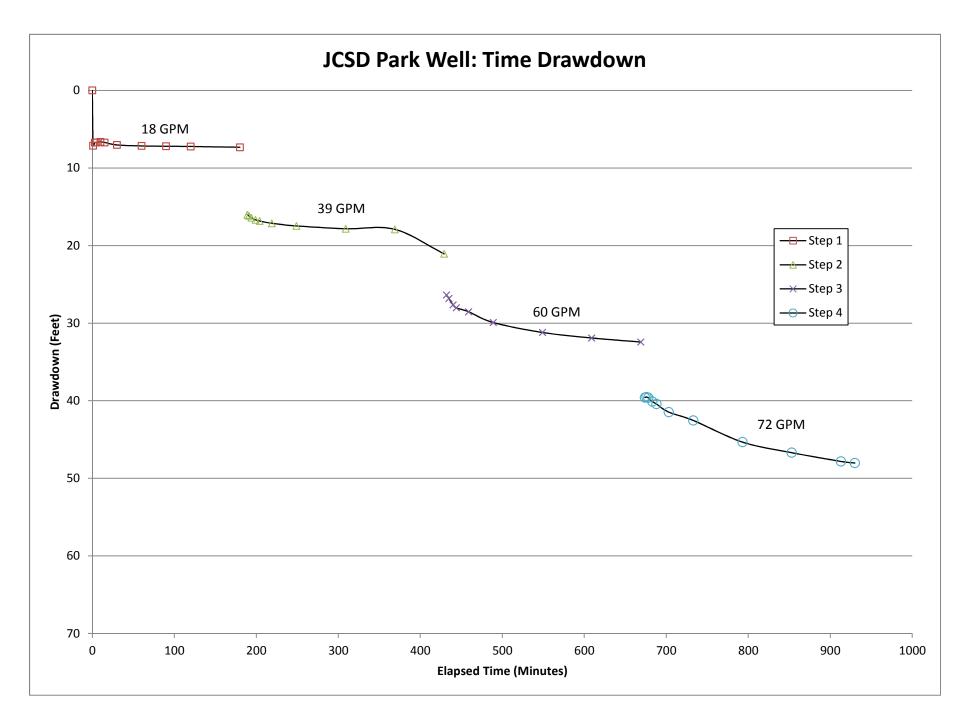
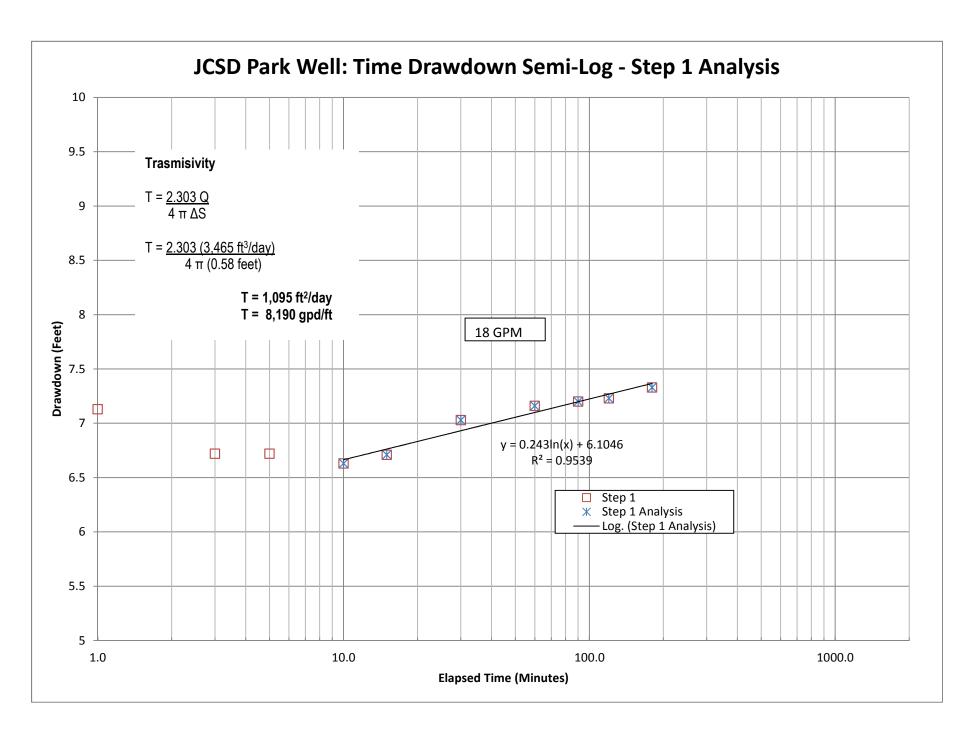
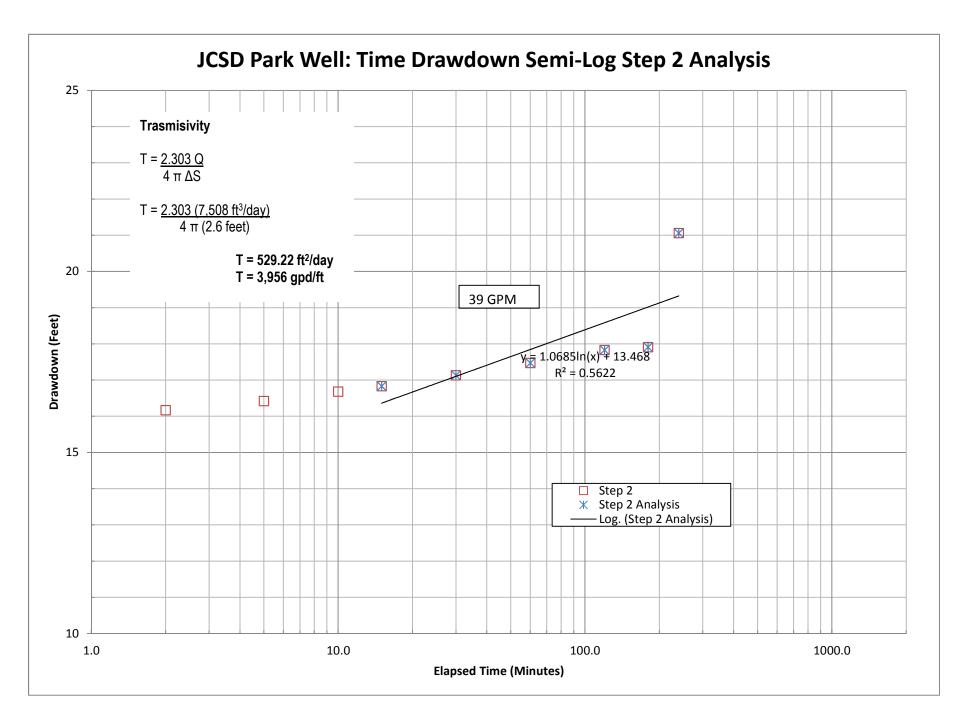
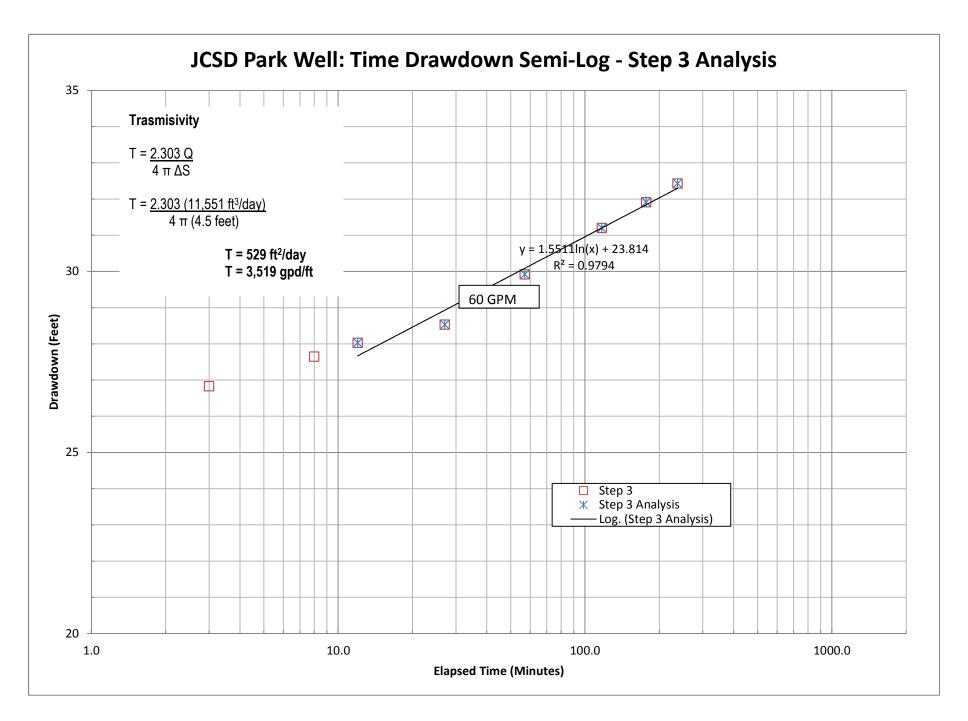
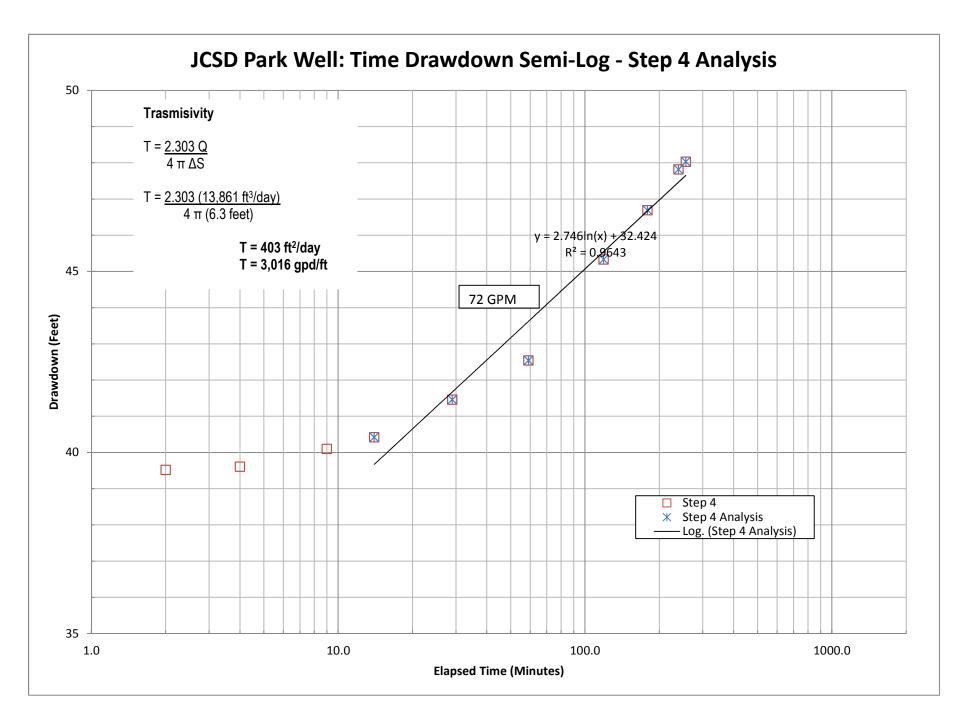

8477 APRIL 2015 Flat Creek Watershed Land Use and Wells

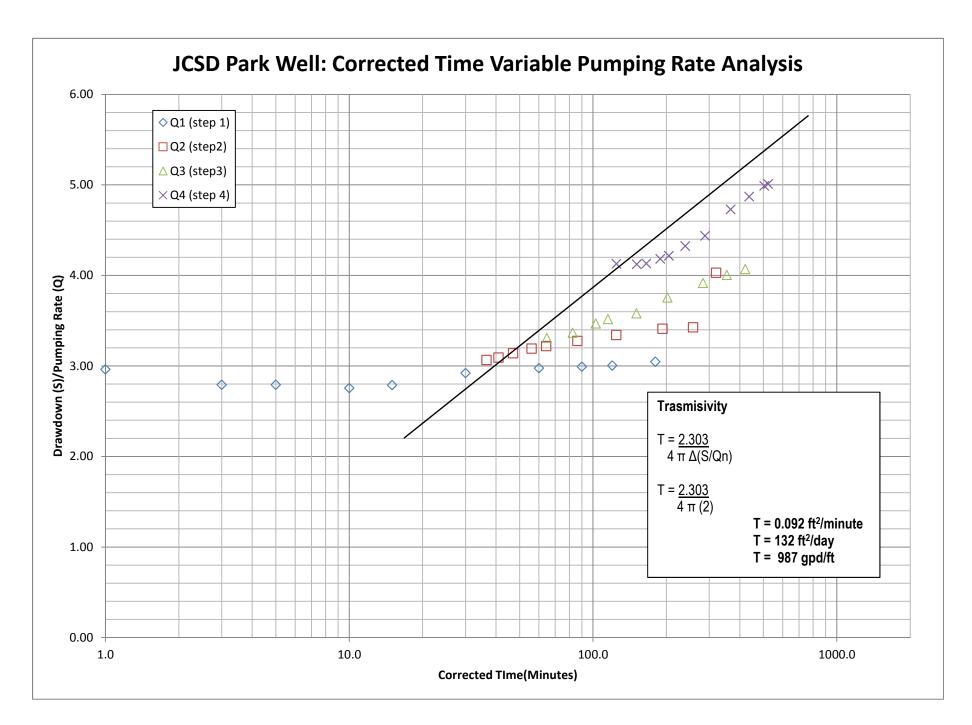

INTENTIONALLY LEFT BLANK

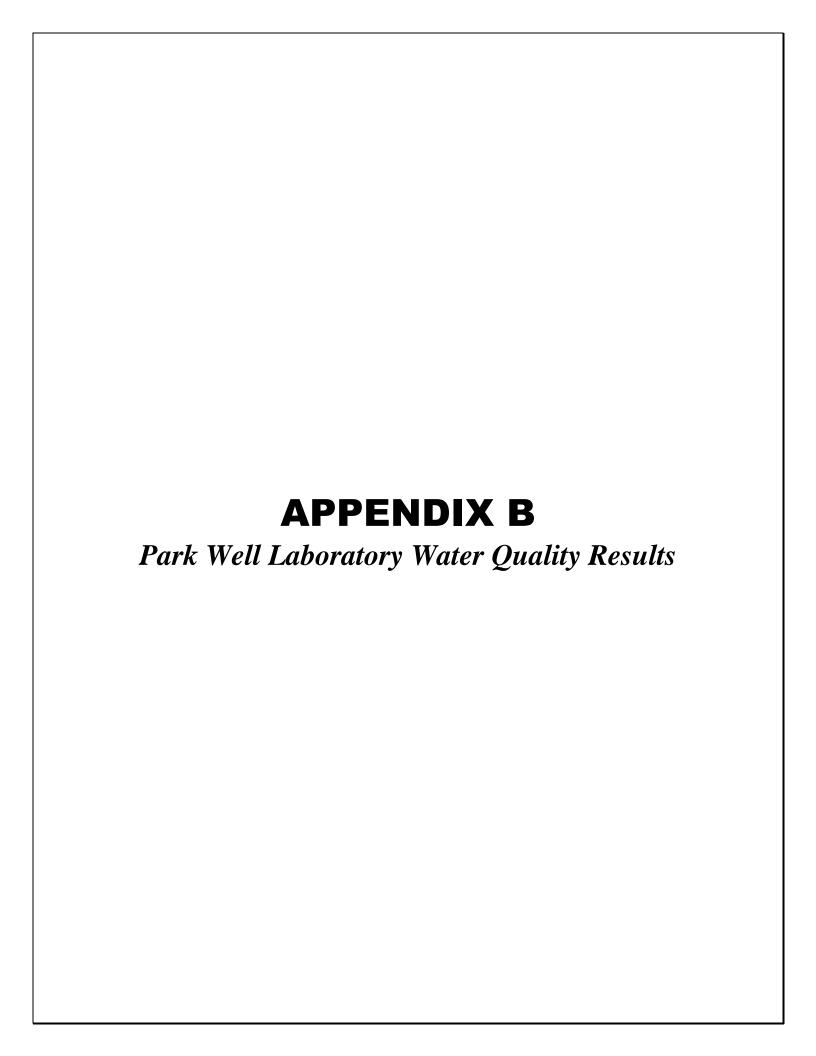



8477 APRIL 2015 **Potential Groundwater-Dependent Vegetation**


INTENTIONALLY LEFT BLANK







30 December 2005

PETRA Geotechnical, Inc.

EMA Log #: 0512315

Attn: Chuck Houser

12225 World Trade Drive, Suite P

San Diego, California 92128

Project Name:

Jacumba CSD

Enclosed are the results of analyses for samples received by the laboratory on 12/20/05 07:29. Samples were analyzed pursuant to client request utilizing EPA or other ELAP approved methodologies. I certify that this data is in compliance both technically and for completeness.

Dan Verdon

Laboratory Director

CA ELAP Certification #: 2564

Project Name: Jacumba CSD

EMA Log #: 0512315

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-1	0512315-01	Water	12/19/05 12:50	12/20/05 07:29

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project Name: Jacumba CSD

EMA Log #: 0512315

Conventional Chemistry Parameters by Standard/EPA Methods

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1 (0512315-01) Water	Sampled: 12/19/05 12:50	Received	: 12/20/05 07	:29					
Chloride	90.0	0.05	mg/l	1	5122220	12/22/05	12/27/05	SM4500 Cl C	
Fluoride	1.9	0.1		11	5122204	12/22/05	12/22/05	SM4500 F C	
Nitrate as N	0.05	0.05		"	5122032	12/20/05	12/20/05	SM4500 NO3 E	
\mathbf{H}	6.92	0.10	pH Units	н	5122101	12/20/05	12/20/05	EPA 150.1	
Total Dissolved Solids	452	20	mg/l	11	5122111	12/20/05	12/22/05	SM2540 C	
Sulfate as SO4	103	25.0	*	5	5122702	12/27/05	12/27/05	SM4500 SO4 E	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project Name: Jacumba CSD

EMA Log #: 0512315

Conventional Chemistry Parameters by Standard/EPA Methods - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5122032										
Blank (5122032-BLK1)				Prepared	& Analyze	ed: 12/20/0)5			
Nitrate as N	ND	0.05	mg/l							
LCS (5122032-BS1)				Prepared	& Analyze	ed: 12/20/0	05			
Nitrate as N	0.50	0.05	mg/l	0.500		100	80-120			
LCS Dup (5122032-BSD1)				Prepared	& Analyze	ed: 12/20/0)5			*
Nitrate as N	0.51	0.05	mg/l	0.500	CHEST CONTROL	102	80-120	2	20	
Duplicate (5122032-DUP1)		Source: 0512	315-01	Prepared	& Analyze	ed: 12/20/0)5			17.
Nitrate as N	0.06	0.05	mg/l		0.05			18	20	
Matrix Spike (5122032-MS1)		Source: 0512	315-01	Prepared	& Analyze	ed: 12/20/0)5			
Nitrate as N	0.53	0.05	mg/l	0.500	0.05	96	80-120			
Matrix Spike Dup (5122032-MSD1)		Source: 05123	315-01	Prepared	& Analyze	ed: 12/20/0)5			
Nitrate as N	0.56	0.05	mg/l	0.500	0.05	102	80-120	6	20	
Reference (5122032-SRM1)				Prepared	& Analyze	ed: 12/20/0)5			
Nitrate as N	4.32	0.50	mg/l	4.32		100	87-113			
Batch 5122101										
Duplicate (5122101-DUP1)		Source: 05123	315-01	Prepared	& Analyze	ed: 12/20/0)5			
рН	6.89	0.10	pH Units	-	6.92			0.4	20	
Reference (5122101-SRM1)				Prepared	& Analyze	ed: 12/20/0)5			
pH	8.83	0.10	pH Units	9.10		97	97-103			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project Name: Jacumba CSD

EMA Log #: 0512315

Conventional Chemistry Parameters by Standard/EPA Methods - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5122111										
Duplicate (5122111-DUP1)		Source: 05122	28-02	Prepared:	12/20/05	Analyzed	: 12/22/05			
Total Dissolved Solids	760 .	20	mg/l		785		-7	3	20	
Duplicate (5122111-DUP2)		Source: 05122	66-02	Prepared:	12/20/05	Analyzed	: 12/29/0 4	;		
Total Dissolved Solids	3750	20	mg/l		3760	1 mary pou	. 12/2//00	0.3	20	_
Reference (5122111-SRM1)				Prepared:	12/20/05	Analwzed	12/22/05	:		
Total Dissolved Solids	242	20	mg/l	216	12/20/03	112	86-114			
Batch 5122204										
Blank (5122204-BLK1)				Prepared &	& Analyze	ed: 12/22/0)5	-		
Fluoride	ND	0.1	mg/l		20 1 22017 20	. 12,22,0	,,,			
LCS (5122204-BS1)	\$ 10	G		Prepared &	& Analyza	ed• 12/22/0	15			
Fluoride	0.9	0.1	mg/l	1.00	x maryzi	90	80-120			
LCS Dup (5122204-BSD1)				Prepared &	& Analyze	ed: 12/22/0	15			
Fluoride	0.9	0.1	mg/l	1.00		90	80-120	0	20	
Duplicate (5122204-DUP1)		Source: 05123	15-01	Prepared &	€r ∆nolvæ	A- 12/22/0	15			
Fluoride	1.9	0.1	mg/1	1 Toparou (1.9	u. 12/22/0	13	0	20	
Matrix Spike (5122204-MS1)		Source: 05123	15-01	Prepared &	Pr∆na1vze	ad- 12/22/0	15			
Fluoride	2.8	0.1	mg/l	1.00	1.9	90	80-120			
Matrix Spike Dup (5122204-MSD1)		Source: 05123	15-01	Prepared &	& Analyza	ad: 12/22/0	15			
Fluoride	2.8	0.1	mg/l	1.00	1.9	90	80-120	0	20	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project Name: Jacumba CSD

EMA Log #: 0512315

Conventional Chemistry Parameters by Standard/EPA Methods - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit		Notes
Batch 5122204											
Reference (5122204-SRM1)				Prepared	& Analyz	ed: 12/22/0	5				
Fluoride	4.5	0.1	mg/l	4.73	- I	95	86-114			- ,,	
Batch 5122220											200
Blank (5122220-BLK1)				Prepared:	12/22/05	Analyzed:	12/29/05				· ·
Chloride	ND	0.05	mg/l	-							
LCS (5122220-BS1)				Prepared:	12/22/05	Analyzed:	12/27/05				
Chloride	202	0.05	mg/l	200		101	80-120				
LCS Dup (5122220-BSD1)				Prepared:	12/22/05	Analyzed:	12/27/05			42.5	7.1
Chloride	204	0.05	mg/l	200		102	80-120	1	20		
Duplicate (5122220-DUP1)		Source: 05122	64-01	Prepared:	12/22/05	Analyzed:	12/27/05				
Chloride	266000	12,5	mg/l	-	264000	1 22/11/2	12/2//00	0.8	20		
Matrix Spike (5122220-MS1)		Source: 05122	64-01	Prepared:	12/22/05	Analyzed:	12/27/05				
Chloride	315000	12.5	mg/l	50000	264000	102	80-120				
Matrix Spike Dup (5122220-MSD1)		Source: 05122	64-01	Prepared:	12/22/05	Analyzed:	12/27/05				
Chloride	314000	12.5	mg/l	50000	264000	100	80-120	0.3	20		
Batch 5122702											
Blank (5122702-BLK1)				Prepared	& Analyz	ed: 12/27/0	5				
Sulfate as SO4	ND	5.0	mg/l								

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project Name: Jacumba CSD

EMA Log #: 0512315

Conventional Chemistry Parameters by Standard/EPA Methods - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5122702										
LCS (5122702-BS1)				Prepared	& Analyze	ed: 12/27/0)5			
Sulfate as SO4	8.8	5.0	mg/l	10.0		88	80-120			
LCS Dup (5122702-BSD1)				Prepared	& Analyze	ed: 12/27/0)5			
Sulfate as SO4	8.9	5.0	mg/l	10.0		89	80-120	1	20	
Duplicate (5122702-DUP1)		Source: 05123	15-01	Prepared a	& Analyze	ed: 12/27/0)5			
Sulfate as SO4	101	25.0	mg/l		103			2	20	
Matrix Spike (5122702-MS1)		Source: 05123	15-01	Prepared a	& Analyze	ed: 12/27/0)5			
Sulfate as SO4	149	25.0	mg/l	50.0	103	92	80-120			
Matrix Spike Dup (5122702-MSD1)		Source: 05123	15-01	Prepared a	& Analyze	ed: 12/27/0	15			
Sulfate as SO4	146	25.0	mg/l	50.0	103	86	80-120	2	20	

he results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project Name: Jacumba CSD

EMA Log #: 0512315

Notes and Definitions

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

CHAIN-OF-CUSTODY RECORD

-EnviroMatrix EMA Analytical, Inc.-

4340 Viewridge Ave., Ste. A • San Diego, CA 92123 • Phone (858) 560-7717 • Fax (858) 560-7763=

Counters 1 2 2 2 2 2 2 2 2 2	EMA LOG #: 05/23/5	-	I See	-	2 9		je z	è.)	EMA DATE/TIME STAMP	[A]	DATE/TIME	EZ	M	ES	STAMP	AP.						×		-
Signature Sign	Sotra	CES	(4)						1			B	O	ES	LEI	1	Y	XS	IS			*			
Signature Sign	1222	3	V 7			\vdash_{Γ}	†			M.,	-	: 			-	· · · · ·	#	-141000-				12	2		
Signature Print	Charle Clare CA	Phone C	41 1 10040	1 3/	02.5	_	991 —		N D28	(suo	(0):-			(soint	- 1	ganica	u		<i>i</i>	-					
Signature Ourpany: Ourpa	Charal	Fax: 6 /2) G.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1	7.51	lożei			0.180-						Z 81	ā				_			
Signature Sign	3185	2000	- 20				t	<u> </u>	-		-				-	10 Y	Α iγ	S	_		. 3		- 5,	•	
Signature	Cocta Mosa	CA		20			13.1	_s&D					-				į qa	ŒL	1 10	13 P. 18	ريد		d		7 11
Signature Sign	Jacumba CSD	PO #:				bH).		(B)	100			_		_		81. Sel 19	'nΟ	SST		1.1	20		12!	1	
150 NA Print Chuck Houser 7.29 Signature 12/20/5 Signature 12/20/10 Signature 12/20/20/20/20/20/20/20/20/20/20/20/20/20		Sample Date	Sample	Sample Matrix	Container # Type			108) HTT	7.				4.0		+ -		Cd Cr	11 115	STL	9119	7775	Ma	例分,	JA S	Marke 1
Signature	2	Lithis		While		ė.				25.	÷2	N L	-	14					X	×		×	X		
Signature Print Print Print Print Print			K										-	345			15	-2		-	() ()		1		the.
Itsty	3		80 8	g .	: :			: 1	- × j			100			5	100	4		35		_	(6)	e e		3.8
Signature Signature Company: Company: Signature Si	4								37		1		Ė.				-	5.	33.8	, vi	P.				
Signature Sign	.5.		. H									72.1					2) i	7.0		-	1.	ş +	lengto.	9.	
Signature	9	4 107							. 4	, i-		× 			10.04						**				11%
Signature	L					7	1	z z		7.5			4 a	E .					- 1	7.7				ď.	
Itst) RELINQUISHED BY DATE/TIME RECEIVED BY	œ		je.					o d					-47	1	3.22	V K					-			1.	i.
Ist) RELINQUISHED BY DATE/TIME RECEIVED BY	6		100		3	- 17			5					00	22				- 3	-					7 12
ist) RELINQUISHED BY DATE/TIME RECEIVED BY o N/A Print Interest of the company: Performance of the company: Performance of the company: Performance of the company: Performance of the company: Print 17.20 ft/s Print Print mal Print Print Print Print Print Print Print Print Company: Print Print Company: Print Print Company: Company: Print	01		A			_		7	5/13	3	1				-				1					il.	-7-
1		P=Plastic	. 0=0ther (ist)		RE	CING	Sm	HED	BY			D	AŢE	ME	E	e :		R	CE	VEI) BY		-1	
o N/A Print M 55 M 10	Yes No N/A	Correct Cor			Signature	h	1/1	188		-		2	12	-		h	Signa	ture		B	-6	1	(4) (4)		F a
Company: Petra 17,00 for Standard Print 17,00 for Standard: Signature Print Prin	Cold Ambient Warm	VOAs w/ZE	4S: Yes No	N/A	Print	111	Ü	, y	He	200	9	1	1	6	a.		Print		12	7.1 M	279	4.	183	'ca'	30
Signature Company: Signature Print Company:	Yes No	9			Company:	ď	7	14		-			ķe .		7	2°,	Com	any:		F. 4	41		*	-3	
Print Company: Signature Print Company:		Return	Hold		Signature						× - 1	- N.G	al Al	S. S. S.		LA.	Signa	ture					9	140	Y 84
Company: Signature Print Company:	24 hr 48 hr 3 day		~	ma1	Print					3		e.	277	Jus	Ğ	20	Print			11 =	24.5	D **			
Signature Print Company:	13 from				Company:						5		18	.i3	4		Com	any:		13					25
Print Company:				2 2	Signature								*		100		Signa	ture					18	\$50000	
Company:		0			Print							14					Print								
	-				Company:					er.						3	Com	any:			7.				

3538 Hancock St. San Diego, CA 92110 | P:(619)298-6131 | F:(619)298-6141 | ELAP Cert.#2616

Recipient:

Tom Lindenmeyer

JACUMBA COMM.SERVICE DIST.

BOX 425

JACUMBA, CA 92034

Reference:

0631270

Lab ID: Sample #:

Project#:

Comment:

0631270-001

VOC analyzed past holding time

Matrix:

WATER

03/15/2006 6:05

Sampled: Received:

03/15/2006 11:45

Collection Address:

Sample Location:

Dilution Factor: 1

MW-1

Description:

Date Started:

Method:

03/15/2006

Date Completed:

04/11/2006

PS Code:

WAT

EPA 504.1

EDB And DBCP By EPA 504

Analyzed: 3/24/2006 @ 13:32

BSK

Analyst:

Parameter	Result %	MCL %	RL %
Bromoform	120		
Dibromochloropropane (DBCP)	ND	0.2	0.01
Ethylene Dibromide (EDB)	ND	0.05	0.02

Report Date: 04/11/2006

Approval:

Director

RECEIVED

MAY 2 4 2006

9 Hours

3538 Hancock St. San Dlego, CA 92110 | P:(619)298-6131 | F:(619)298-6141 | ELAP Cert.#2616

Recipient:

Tom Lindenmeyer

JACUMBA COMM.SERVICE DIST.

BOX 425

JACUMBA, CA 92034

Reference:

0631270

Lab ID:

0631270-001

Sample #:

Project#:

Comment:

VOC analyzed past holding time

Matrix:

Received:

WATER

Sampled:

03/15/2006

03/15/2006

11:45

6:05

Collection Address:

Sample Location:

MW-1

Description:

Method:

Date Started:

03/15/2006

Date Completed:

04/11/2006

PS Code:

WAT

EPA 524.2

Analyst: Dilution Factor: 1

Analyzed: 4/5/2006 @ 14:34

VOC By EPA 502.2/524.2

	Result	MCL	RL		Result	MCL	RL
Parameter	ug/L	ug/L	ug/L	Parameter	ug/L	ug/L	ug/L
,1,1,2-Tetrachloroethane	ND	80	0,5	Chloroethane	ND	80	0.5
,1,1-Trichloroethane	ND	200	0,5	Chloroform	ND	* 80	0.5
,1,2,2-Tetrachloroethane	ND	1	0,5	Chloromethane	ND	80	0.5
1,1,2-Trichloroethane	ND	5	0,5	Cis-1,2-Dichloroethylene	ND	6	0,5
,1-Dichloroethane	ND	5	0.5	Cis-1,3-Dichloropropene	ND	80	0.5
,1-Dichloroethylene	ND	6	0,5	Dibromochloromethane	ND	80	0,5
.,1-Dichloropropene	ND	80	0.5	Dibromomethane	ND	80	0,5
,2 Dichlorobenzene (o-DCB)	ND	600	.5	Dichlorodifluoromethane	ND	80	0.5
,2,3-Trichlorobenzene	ND	80	0.5	Dichloromethane(Methylenchlor)	ND	5	0.5
,2,3-Trichloropropane	ND		0.5	Ethylbenzene	0.50	300	0.5
1,2,4-Trichlorobenzene	ND	5	0.5	Hexachlorobutadiene	ND	80	0.5
,2,4-Trimethylbenzene	0.50	80	0,5	Isopropylbenzene (Cumene)	ND	80	0,5
,2-Dichloroethane	ND	0.5	0.5	Methyl Ethyl Ketone	ND		5
,2-Dichloropropane	ND	5	0.5	Methyl Tert-butyl Ether (MTBE)	ND	5	1.0
,3,5-Trimethylbenzene	ND	80	0,5	Monochlorobenzene	ND	70	0.5
1,3-Dichlorobenzene	ND	80	0.5	Napthalene	ND	80	0.5
1,3-Dichloropropane	ND	80	0.5	N-butylbenzene	ND	80	0,5
1,3-Dichloropropene	ND	0.5	0.5	Nitrobenzene	ND		0.5
1,4-Dichlorobenzene (p-DCB)	ND	5	0.5	N-propylbenzene	ND	80	0,5
2,2-Dichloropropane	ND	80	0.5	Pentachlorothane	ND	-	0,5
2-Chlorotoluene	ND	80	0.5	P-isopropyltoluene	ŅD	80	0.5
4-Chlorotoluene	ND	80	0,5	Sec-butylbenzene	ND	80	0.5
Benzene	0.70	1.0	0,5	Styrene	ND	100	0.5
Bromobenzene	ND	80	0.5	Tert-butylbenzene	ND	80	0.5
Bromochloromethane	ND	80	0,5	Tetrachloroethylene (PCE)	ND	5	0.5
Bromodichloromethane	ND	80	0.5	Toluene	291	150	0,5
Bromoform	ND	80	0.5	Total Trihalomethanes	ND	80	0,5
Bromomethane	ND	80	0.5	Trans-1,2-dichloroethylene	ND	10	0.5
Carbon Tetrachloride	ND	0.5	0.5	Trans-1,3-dichloropropene	ND	80	0.5

Report Date: 04/11/2006

Approval:

Director

RL = Reporting Limit

MCL = Maximum Contaminant Level

MDL = Method Detection Limit

N/A = Not Applicable

Page 1 of 2

hala Ethuri

ENVIRONMENTAL ENGINEERING LABORATORY, INC.

3538 Hancock St. San Diego, CA 92110 | P:(619)298-6131 | F:(619)298-6141 | ELAP Cert.#2616

Recipient:

Tom Lindenmeyer

JACUMBA COMM.SERVICE DIST.

BOX 425

JACUMBA, CA 92034

Reference:

0631270

Lab ID:

0631270-001

Sample #:

Project#:

Comment:

VOC analyzed past holding time

Matrix:

Received:

WATER

Sampled:

03/15/2006

6:05 03/15/2006 11:45

Result

ug/L

MCL

ug/L

RL

ug/L

Collection Address:

Sample Location:

Description:

Date Started:

03/15/2006

MW-1

Date Completed:

04/11/2006

PS Code:

WAT

Analyzed: 4/5/2006 Analyst:

@

14:34

Method:

Parameter

EPA 524.2

Dilution Factor: 1

VOC By EPA 502.2/524.2

Parameter	Result ug/L	MCL ug/L	RL ug/L
Trichloroethylene (TCE)	ND	5	0.5
Trichlorofluoromethane	ND	150	5.00
Trichlorotrifluoromethane	ND	1200	10.0
Vinyl Chloride	ND,	0.5	
Xylenes	ND	1750	0,5
	IND	1/30	0.5

Surrogates	% Recovered	QC Limits (%)		
4-Bromofluorobenzene	70%	40	140	

Report Date: 04/11/2006

RL = Reporting Limit

MCL = Maximum Contaminant Level

Director MDL = Method Detection Limit

N/A = Not-Applicable

Page 2 of 2

Environmental Engineering Lab

3538 Hancock Street, San Diego, CA 92110 Ph: 619-298-6131

Approval:

3538 Hancock St. San Dlego, CA 92110 | P:(619)298-6131 | F:(619)298-6141 | ELAP Cert.#2616

Recipient:

Tom Lindenmeyer

JACUMBA COMM.SERVICE DIST.

BOX 425

JACUMBA, CA 92034

Reference:

0631270

Lab ID:

0631270-001

Sample #:

Project#:

Comment:

VOC analyzed past holding time

Matrix:

WATER

Sampled: Received: 03/15/2006 6:05

03/15/2006

11:45

Collection Address: Sample Location:

MW-1

Description:

Date Started:

03/15/2006

Date Completed: PS Code:

04/11/2006 WAT

Carbamates By 531.1					Dilution	10		74
Parameter	Result	Units	RL	MCL	Factor	Method	Analyzed	<u>Analyst</u>
3-Hydroxycarbofuran	ND	μg/L	3	NA	1	EPA 531.1	03/27/2006 13:34	BSK
Aldicarb	ND	μg/L	3	NA	1	EPA 531.1	03/27/2006 13:34	BSK
Aldicarb Sulfoxide	ND	μg/L	3	NA	1	EPA 531.1	03/27/2006 13:34	BSK
Aldicard Sulfone	ND	μg/L	2	NA	1	EPA 531.1	03/27/2006 13:34	BSK
BDMC	100	%	•	-	1	EPA 531.1	03/27/2006 13:34	BSK
Carbaryl	ND	μg/L	5	NA	1	EPA 531.1	03/27/2006 13:34	BSK
Carbofuran	ND	μg/L	5	18	1	EPA 531.1	03/27/2006 13:34	BSK.
Methomyl	ND	μg/L	2	NA	1	EPA 531.1	03/27/2006 13:34	BSK
Oxamyl	ND	μg/L	20	50	1	EPA 531.1	03/27/2006 13:34	BSK
Coliform Total (1) Colilert					Dilution			
Parameter	Result	Units	RL	MCL	Factor	Method	Analyzed	Analyst
Chlorine Residual	NA	mg/L	0.1		1	SM4500G	03/15/2006 13:50	
Coliform, E. Coli.	Absent	None	0	.0	1	SM 9223	03/15/2006 13:50	MEH
Total Coliform	Absent	None	0	0	1	SM 9223	03/15/2006 13:50	MEH
General Physical	**				Dilution			
<u>Parameter</u>	Result	Units	RL	MCL	Factor	Method	Analyzed	Analyst
Color, Visual	<4	UNITS	3	- 15	1	SM 2120B	03/20/2006 16:16	
Odor	ND	TON-	1 20		112	SM 2150	03/20/2006 16:16	
Turbidity	4.08	NTU	0.10	1.0	1	SM2130B	03/16/2006 17:01	FN
Gross Alpha and Beta			€		Dilution	81		
Parameter	Result	Units	RL	MCL	Factor	Method	Analyzed	Analyst
Gross Alpha Counting Error	0.710	pCi/L	0	0	1	EPA900.0	03/30/2006 14:32	TLI
Gross Beta Counting Error	0.660	pCi/L	0	.0	1	EPA900.0	03/30/2006 14:32	TLI
Radioactivity, Gross Alpha	0.00	pCi/L	0	15	1	EPA900.0	03/30/2006 14:32	TLI
Radioactivity, Gross Beta	1.29	pCi/L	0	0	1	EPA900.0	03/30/2006 14:32	TLI

RL = Reporting Limit

MCL = Maximum Contaminant Level

MDL = Method Detection Limit

N/A = Not Applicable

Page 1 of 4

3538 Hancock St. San Diego, CA 92110 | P:(619)298-6131 | F:(619)298-6141 | ELAP Cert.#2616

Recipient:

Tom Lindenmeyer

JACUMBA COMM.SERVICE DIST.

BOX 425

JACUMBA, CA 92034

Reference:

0631270

Lab ID:

Sample #:

Project#:

Silvex

Comment:

0631270-001

VOC analyzed past holding time

Matrix: Sampled:

Received:

WATER

03/15/2006

03/15/2006

6:05

11:45

03/21/2006 13:33

BSK

Collection Address:

Sample Location:

MW-1

Description:

Date Started:

03/15/2006

Date Completed:

04/11/2006

PS Code:

Dilution

1

Dilution

50

WAT

EPA 515.1

Herbicides by EPA 515.1

Parameter	. <u>I</u>	Result	Units	<u>RL</u>	MCL	Factor	Method	Analyzed	Analyst	
2,4-D (Dichlorophenoxy) Acetic Acid		ND	μ g/ L	10	70	1	EPA 515.1	03/21/2006 13:33	MEH	
2.4.5-T		ND	μg/L	1	NA	1	EPA 515.1	03/21/2006 13:33		
Bentazon		ND	μg/L =	2	18	1	EPA 515.1	03/21/2006 13:33	BSK	
Dalapon		ND	μg/L	10	200	1	EPA 515.3	03/21/2006 13:33	BSK	
Dicamba		ND	μg/L	1.5	NA	1	EPA 515.1	03/21/2006 13:33	BSK	
Dinoseb		ND	μ g /L	2	7	1	EPA 515.1	03/21/2006 13:33	BSK	
Pentachlorophenol		ND	μ g/L	0.2	1	1	EPA 515.1	03/21/2006 13:33	BSK	
Picloram		ND	μg/L	_{+:} 1	500	1	EPA 515.1	03/21/2006 13:33	BSK	

μg/L

Pesticides and PCBs by EPA 505

					DITUTION			
Parameter	Result	<u>Units</u>	<u>RL</u>	MCL	Factor	Method	Analyzed	<u>Analyst</u>
Aldrin	ND	μg/L	0.075	NA	1	EPA 505	03/20/2006 13:32	BSK
Chlordane	ND	μg/L	0.1	0.1	1	EPA 505	03/20/2006 13:32	BSK
Chlorothalonil (Daconil, Bravo)	ND	μg/L	5.0	NA	1	EPA 505	03/20/2006 13:32	BSK
Dieldrin	ND	μg/L	0.02	NA	1	EPA 505	03/20/2006 13:32	BSK
Endrin	ND	μg/L	0.1	2	1	EPA 505	03/20/2006 13:32	BSK
Heptachlor	ND	μg/L	0.01	0.01	1	EPA 505	03/20/2006 13:32	BSK
Heptachlor epoxide	ND	μg/L	0.01	0.01	1.	EPA 505	03/20/2006 13:32	BSK
Hexachlorobenzene	ND	μg/L	0	1	1	EPA 505	03/20/2006 13:32	BSK
Hexachlorocyclopentadiene	ND	μg/L	1	50	1	EPA 505	03/20/2006 13:32	BSK
Lindane (BHC gamma isomer)	ND	μg/L	0.2	0.2	1	EPA 505	03/20/2006 13:32	BSK
Methoxychlor	ND	μg/L	10	30	1	EPA 505	03/20/2006 13:32	BSK
PCBs: Arolchlor Screen	ND	μg/L	0.2	0.5	1	EPA 505	03/20/2006 13:32	BSK
Toxaphene	ND	μg/L	1	3	1	EPA 505	03/20/2006 13:32	BSK
Trifluralin	ND	μg/L	1	NA	1	EPA 505	03/20/2006 13:32	BSK

RL = Reporting Limit

MCL = Maximum Contaminant Level

ND

MDL = Method Detection Limit

N/A = Not Applicable

Page 2 of 4

3538 Hancock St. San Diego, CA 92110 | P:(619)298-6131 | F:(619)298-6141 | ELAP Cert.#2616

Recipient:

Tom Lindenmeyer

JACUMBA COMM.SERVICE DIST.

BOX 425

JACUMBA, CA 92034

Reference:

0631270

Lab ID:

0631270-001

Sample #:

Project#:

Comment:

VOC analyzed past holding time

Matrix:

WATER

Sampled: Received:

Date Started:

PS Code:

03/15/2006

6:05

11:45

03/15/2006

Collection Address:

MW-1

Sample Location: Description:

Date Completed:

03/15/2006 04/11/2006

WAT

SVOCs By EPA 525.2 (Full List)

Parameter		Result	<u>Units</u>	$\underline{\mathbf{RL}}$	MCL	Factor	Method	Analyzed	Analyst
1,3-Dimethyl-2-nitrobenzene		110	%	25	<u></u>	1	EPA 525.2	04/04/2006 13:34	
Alachlor		ND	μg/L	1	2	1	EPA 525.2	04/04/2006 13:34	BSK
Atrazine		ND	μg/L	0.5	1	1	EPA 525.2	04/04/2006 13:34	BSK
Benzo (a) Pyrene		ND	μg/L	0.1	0.2	1	EPA 525.2	04/04/2006 13:34	
Bis(2-ethylhexyl)adipate		ND	μg/L	3	400	1	EPA 525.2	04/04/2006 13:34	BSK
Bis(2-ethylhexyl)phthalate	5	ND	μg/L	3	4	1	EPA 525.2	04/04/2006 13:34	
Bromacil (Hyvar)		ND	μg/L	10	NA	1	EPA 525.2	04/04/2006 13:34	
Butachlor		ND	μg/L	0.38	NA	1	EPA 525.2	04/04/2006 13:34	
Diazinon		ND	μg/L	0.25	NA	1	EPA 525.2	04/04/2006 13:34	
Dimethoate (Cygon)		ND	μg/L	10	NA	1	EPA 525.2	04/04/2006 13:34	
Metolachlor	,	ND	μg/L	0.5	NA	1	EPA 525.2	04/04/2006 13:34	
Metribuzin		ND	μg/L	0.5	NA	1	EPA 525.2	04/04/2006 13:34	BSK
Molinate (Ordram)		ND	μg/L	2	20	1	EPA 525.2	04/04/2006 13:34	
Prometryn (Caparol)		ND	μg/L	2	NA	1	EPA 525.2	04/04/2006 13:34	
Propachlor		ND	μg/L	0.5	NA	1	EPA 525.2	04/04/2006 13:34	
Simazine		ND	μg/L	1	4	1	EPA 525.2	04/04/2006 13:34	BSK
Thiobencarb (Bolero)		ND	μg/L	1	70	1	EPA 525.2	04/04/2006 13:34	BSK
(T) T)	79		1-0	•	,,	•	DI R 323.2	04/04/2000 13.34	DSIL
Test Parameters	•					Dilution			
Parameter		Result	<u>Units</u>	<u>RL</u>	MCL	Factor	Method	Analyzed	Analyst
Diquat By EPA 549		ND	ug/L	4.0	20	1	549	03/17/2006 13:31	BSK
Endothall By EPA 548		ND	ug/L	45	100	1	548.1	03/20/2006 13:31	BSK
Charles A. P. ED. 445							270.1	05/20/2000 15/51	DOL

Endothall By EPA 548 ND Glyphosate By EPA 547 ND Uranium ND

ug/L 45 ug/L pCi/L

100 25 700 2.0 20

1 1

547 03/17/2006 13:31 EPA 908.0 03/28/2006

BSK BSK

RL = Reporting Limit

MCL = Maximum Contaminant Level

MDL = Method Detection Limit

N/A = Not Applicable

Page 3 of 4

3538 Hancock St. San Diego, CA 92110 | P:(619)298-6131 | F:(619)298-6141 | ELAP Cert.#2616

Recipient:

Tom Lindenmeyer

JACUMBA COMM.SERVICE DIST.

BOX 425

JACUMBA, CA 92034

Reference:

0631270

Lab ID:

0631270-001

Sample #:

Project#:

Comment:

VOC analyzed past holding time

Matrix: Sampled: WATER

03/15/2006 6:05

11:45

Received:

03/15/2006

Sample Location:

MW-1

Description:

Date Started:

Collection Address:

03/15/2006

Date Completed:

04/11/2006

PS Code:

WAT

Title 22 Primary Inorganic Chemicals					Dilution			
Parameter	Result	Units	RL	MCL	<u>Factor</u>	Method	Analyzed	Analyst
Aluminum	770	ug/L	50.0	1000	1	SM 3120B	03/29/2006 10:43	JLA
Antimony	ND	ug/L	6.0	6	1	SM 3113B	03/29/2006 10:44	JLA
Arsenic	ND	ug/L	2.0	50	1	SM 3120B	03/29/2006 10:44	JLA
Barium	180	ug/L	100.0	1000	1	SM 3120B	03/29/2006 10:44	JLA
Beryllium	ND	ug/L	1.0	4	1	SM 3120B	03/29/2006 10:44	JLA
Cadmium	ND	ug/L	1.0	5	1	SM 3120B	03/29/2006 10:44	JLA
Chromium, Total (screen)	ND	μg/L	1.0	-	1	SM 3120B	03/29/2006 10:44	MEH
Cyanide, Total	ND	ug/L	100	150	1	SM4500E	03/21/2006	MEH
Fluoride	1.96	mg/L	0.1	2.0	1	EPA 300.0	03/15/2006 16:49	MEH
Lead	ND	ug/L	5.0	15	1	SM 3113B	03/29/2006 10:44	JLA
Mercury	ND	ug/L	1.0	2	1	SM3112B	03/29/2006 10:44	JLA
Nickel	ND	ug/L	10	100	1	SM 3120B	03/29/2006 10:44	JLA
Nitrate + Nitrite (as N)	ND	μg/L	400	10,000	1	EPA 300.0	03/15/2006 10:43	MEH
Nitrogen, Nitrate (as NO3)	ND	mg/L	2.0	45	1	EPA 300.0	03/15/2006 14:38	MEH
Nitrogen, Nitrite (as N)	ND	ug/L	400	1000	1	EPA 300.0	03/15/2006 14:38	MEH
Selenium	ND	ug/L	5.0	50	1	SM 3113B	03/29/2006 10:44	JLA
Thallium	ND	ug/L	1.0	2	1	EPA 200.9	03/29/2006 10:44	
4								

Report Date: 04/11/2006

Approval:

Director

E Houri

RECEIVED MAY 0 9 2006 ENVIRONMENTAL ENGINEERING LABORATORY, INC.

3538 Hancock St. San Diego, CA 92110 | P:(619)298-6131 | F:(619)298-6141 | ELAP Cert.#2616

Recipient:

Tom Lindenmeyer

JACUMBA COMM.SERVICE DIST.

BOX 425

JACUMBA, CA 92034

Reference:

0631569 0631569-001

Lab ID: Sample #:

Project#: Comment:

Matrix: Sampled: WATER

04/18/2006

Received:

04/18/2006

2:40

Collection Address:

Sample Location:

Old Hwy 80

Description:

Date Started:

04/18/2006

Date Completed: PS Code:

05/03/2006 WAT

Analyst:

Analyzed: 4/28/2006 @

Method:

EPA 524.2

Dilution Factor: 1

VOC By EPA 502.2/524.2

Parameter	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Result ug/L	MCL ug/L	RL ug/L		
1,1,1,2-Tetrachloroethane	ND	80	0,5	Chloroethane	0,60	80	0,5
1,1,1-Trichloroethane	ND	200	0,5	Chloroform		80	
1,1,2,2-Tetrachloroethane	ND	1	0.5	Chloromethane	ND	80	0,5
1,1,2-Trichloroethane	ND	5	0.5	Cis-1,2-Dichloroethylene	ND ND	6	0.5
1,1-Dichloroethane	ND	5	0.5	Cis-1,3-Dichloropropene	ND ND	80	0.5
1,1-Dichloroethylene	ND	6	0.5	Dibromochloromethane			0.5
1,1-Dichloropropene	ND	80	0,5	Dibromomethane	ND ND	80	0.5
1,2 Dichlorobenzene (o-DCB)	ND	600	.5	Dichlorodifluoromethane		80	0,5
1,2,3-Trichlorobenzene	ND	80	0.5	Dichloromethane(Methylenchlor)	ND	80	0.5
,2,3-Trichloropropane	ND	-	0,5	Ethylbenzene	ND	5	0.5
,2,4-Trichlorobenzene	ND	5	0.5	Hexachlorobutadiene	ND	300	0.5
,2,4-Trimethylbenzene	ND	80	0.5	Isopropylbenzene (Cumene)	ND	80	0.5
,2-Dichloroethane	ND	0,5	0,5	Methyl Ethyl Ketone	ND	80	0,5
,2-Dichloropropane	ND	5	0,5		ND	0,942	5
,3,5-Trimethylbenzene	ND ND	80	0,5	Methyl Tert-butyl Ether (MTBE) Monochlorobenzene	ND	5	1.0
,3-Dichlorobenzene	ND	80	0.5	Napthalene	ND	70	0,5
,3-Dichloropropane	ND	80	0.5	N-butylbenzene	ND	80	0,5
,3-Dichloropropene	ND	0.5	0,5	Nitrobenzene	ND	80	0.5
,4-Dichlorobenzene (p-DCB)	ND	5	0.5	- Parada and the control of the cont	ND		0.5
2,2-Dichloropropane	ND	80	0,5	N-propylbenzene Pentachlorothane	ND	80	0.5
-Chlorotoluene	ND	80	0,5		ND	1.0	0,5
-Chlorotoluene	ND	80	0,5	P-isopropyltoluene	ND	80	0,5
Benzene	0.70	1.0		Sec-butylbenzene	ND	80	0.5
Bromobenzene	0.70 ND	80	0.5	Styrene	ND	100	0.5
Bromochloromethane	ND	80	- X-	Tert-butylbenzene	ND	80	0,5
Bromodichloromethane			0.5	Tetrachloroethylene (PCE)	ND	5	0.5
Bromoform	ND	80	0.5	Toluene	199	150	0.5
Bromomethane	ND	80	0.5	Total Trihalomethanes	ND	80	0.5
Carbon Tetrachloride	ND	80	0.5	Trans-1,2-dichloroethylene	ND	10	0.5
Salbon Tetrachioride	ND	0.5	0.5	Trans-1,3-dichloropropene	ND	80	0,5

Report Date: 05/03/2006

Approval:

Director

RL = Reporting Limit MCL = Maximum Contaminant Level

MDL = Method Detection Limit N/A = Not Applicable

Page 1 of 2

ENVIRONMENTAL ENGINEERING L

3538 Hancock St. San Diego, CA 92110 | P:(619)298-6131 | F:(619)298-6141 | ELAP Cert.#2616

Recipient:

Tom Lindenmeyer

JACUMBA COMM.SERVICE DIST.

BOX 425

JACUMBA, CA 92034

Reference: Lab ID:

0631569 0631569-001

Sample #:

Project#: Comment:

Matrix: Sampled:

WATER 04/18/2006

Received:

04/18/2006 2:40

Collection Address:

Sample Location:

Old Hwy 80

Description:

Date Started:

04/18/2006

Date Completed:

05/03/2006

PS Code:

WAT

Analyzed: 4/28/2006 @

Analyst:

Method:

EPA 524.2

Dilution Factor: 1

VOC By EPA 502.2/524.2

Parameter	Result ug/L	MCL ug/L	RL ug/L	Parameter	Result ug/L	MCL ug/L	<u>RL</u> ug/L
Trichloroethylene (TCE)	ND	5	0.5				-
Trichlorofluoromethane	ND	150	5.00	-			25
Trichlorotrifluoromethane	ND	1200	10.0	- :			- 2
Vinyl Chloride	ND	0.5	0.5	-			i v
Xylenes	ND	1750	0.5	=			

Surrogates	% Recovered	QC Li	mits (%)
4-Bromofluorobenzene	69%	40	140

Report Date: 05/03/2006

RL = Reporting Limit

MCL = Maximum Contaminant Level

MDL = Method Detection Limit

Approval:

N/A = Not Applicable

Page 2 of 2

Environmental Engineering Lab

3538 Hancock Street, San Diego, CA 92110

Ph: 619-298-6131

Director

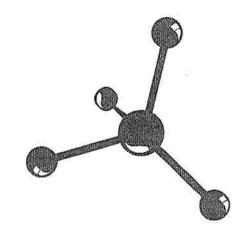
20 April 2006

Ms. Melissa Monti Petra Geotechnical 12225 World Trade Drive, Suite P San Diego, CA 92128

RE: PG041906-31

RECEIVED

APR 24 2006


Enclosed are the results of analyses for samples received by the laboratory on 19-Apr-06. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

lebecco I Johnson Tamara Davis

Laboratory Director

H&P Mobile Geochemistry operates under CA Environmental Lab Accreditation Program Numbers 1317, 1561, 1667, 1745, 1746, 1839, 2088, 2278, 2530, 2543, 2579 and 2595.

Petra Geotechnical

12225 World Trade Drive, Suite P

San Diego CA, 92128

Project: PG041906-31

Project Number: Jacumba Community Service District

Project Manager: Ms. Melissa Monti

Reported:

20-Apr-06

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-1	E604068-01	Water	18-Apr-06	19-Apr-06

Petra Geotechnical

12225 World Trade Drive, Suite P

San Diego CA, 92128

Project: PG041906-31

Project Number: Jacumba Community Service District

Project Manager: Ms. Melissa Monti

Reported: 20-Apr-06

Volatile Organic Compounds by EPA Method 8260B/5030

H&P Mobile Geochemistry

Analyte	8	Result	Reporting Limit	Units	Dilution Factor	Batch	Dromorod	A malarma d	Mathad	21
					Factor	Batch	Prepared	Analyzed	Method	Note
MW-1 (E604068-01) Water	Sampled:	18-Apr-06 Re		pr-06						
Dichlorodifluoromethane		ND	1.0	ug/l	0.1	ED61905	19-Арт-06	19-Apr-06	EPA 8260B	
Chloromethane		ND	1.0			10	11.	1199.	780	
Vinyl chloride		ND	1.0	**	10		*	17		
Bromomethane		ND	1.0		н	9		W	n.	
Chloroethane		ND	1.0				W.	. 10	n /	
Trichlorofluoromethane	ā.	ND	1.0	9)		*	ii.		W.	
1,1-Dichloroethene		ND	1.0	"	**	*	- W			
Methylene chloride		ND	1.0		**	0	0	11	(10)	
Methyl tert-butyl ether		ND	1.0		••	•		.000	\993	
trans-1,2-Dichloroethene		ND	1.0	31	•	**				
Di-isopropyl ether		ND	1.0			10		5300	3.00 %	
1,1-Dichloroethane		ND	1.0	7	**	n		5900	1,96.0	
Ethyl tert-butyl ether		ND	1.0	ji.	17	W	10	300	.00	
2,2-Dichloropropane		ND	1.0				1,00	200	5000	
cis-1,2-Dichloroethene		ND	1.0		.00		0.003	500	300	
Chloroform		ND	1.0	**			0.000	(00)	900	
Bromochloromethane		ND	1.0	n		11	4000	000	(100)	
1,1,1-Trichloroethane		ND	1.0	ü		10	15903	egra	000	
1,1-Dichloropropene		ND	1.0	Ŷ			0.000	31 0 00	(00)	
Carbon tetrachloride		ND	1.0	n	10		1,003	(100)	3003	
1,2-Dichloroethane		ND	1.0	W		"	1000	(100)	100	
Tert-amyl methyl ether		ND	1.0	iii	10	W	0.00	((**))	(n))	
Benzene		ND	0.5			W	0.000	(1995)	(00)	
Trichloroethene		ND	1.0			,	5.00	3990	300	
1,2-Dichloropropane		ND	1.0		10		N.	91	W	
Bromodichloromethane		ND	1.0	99			n	W		
Dibromomethane		ND	1.0				w		TI TI	
cis-1,3-Dichloropropene		ND	1.0				w		n	
Toluene	**	520	5.0		1	n	n	19-Apr-06	n .	
trans-1,3-Dichloropropene		ND	1.0		0.1	ü		19-Apr-06	m .	
1,1,2-Trichloroethane		ND	1.0		"	ñ	n.	13-Apt-00	n	
1,2-Dibromoethane (EDB)		ND	1.0					ш		
1,3-Dichloropropane		ND	1.0			n	n	н	n	
Tetrachloroethene		ND	1.0			ii.		u .	n	
Dibromochloromethane		ND	1.0		2003	ű		U	•	
Chlorobenzene		ND	1.0			W	0	IF		
Ethylbenzene		ND ND	0.5		50			 H	0	
1,1,1,2-Tetrachloroethane		ND	1.0	ï	(1)	#	•	11		
., ., .,		IND	1.0							

Petra Geotechnical

12225 World Trade Drive, Suite P

San Diego CA, 92128

Project: PG041906-31

Project Number: Jacumba Community Service District

Project Manager: Ms. Melissa Monti

Reported: 20-Apr-06

Volatile Organic Compounds by EPA Method 8260B/5030

H&P Mobile Geochemistry

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
MW-1 (E604068-01) Water	Sampled: 18-Apr-06	Received: 19-A	pr-06				,,,,		100
m,p-Xylene	ND	1.0	ug/l	0.1	ED61905	19-Apr-06	19-Арг-06	EPA 8260B	7 7
o-Xylene	ND	0.5	If	n	It	.00.0	, 31		e (+ 1)22
Styrene	ND	1.0	II.	**	н			, in	
Bromoform	ND	1.0	U	•	**	**			1,1
Isopropylbenzene	, ND	1.0	19	•	н	**	Ñ	"	1
1,1,2,2-Tetrachloroethane	ND	1.0	0	•	tt.	**	9	**	7 10
1,2,3-Trichloropropane	ND	1.0	11	•	**			*	8.0
n-Propylbenzene	ND	1.0	0	•	**	•	n .	*	
Bromobenzene	ND	1.0	O	•	**	•	n	*	
1,3,5-Trimethylbenzene	ND	1.0	0	11	"		ñ-	"	
2-Chlorotoluene	ND	1.0	U	•	11				
4-Chlorotoluene	ND	1.0	п		11		H		
tert-Butylbenzene	ND	1.0	u	•	11				
1,2,4-Trimethylbenzene	ND	1.0	0		11			и	
sec-Butylbenzene	ND	1.0	u		n (ii .	N	
p-Isopropyltoluene	ND	1.0	n n		н			*	
1,3-Dichlorobenzene	ND	1.0	и		11	•	**	× 1	
1,4-Dichlorobenzene	ND	1.0	0		н		10.	* ·	
n-Butylbenzene	ND	1.0	п		11	•		ŷ.	
1,2-Dichlorobenzene	ND	1.0	Ħ	•	II.	,,		*	
1,2-Dibromo-3-chloropropane	ND	1.0	11		u			N .	
1,2,4-Trichlorobenzene	ND	1.0	II	•	O C	**		9	
Hexachlorobutadiene	ND	1.0	II		tr.		(0)	M	
Naphthalene	ND	1.0	11		ll.	,,,		**	
1,2,3-Trichlorobenzene	ND	1.0	II	•	**			**	
Tert-butyl alcohol	ND	5.0	lt .	***	**			*	
Surrogate: Dibromofluorometh	hane	90.2 %	75-	125	"	•	"	n	
Surrogate: 1,2-Dichloroethane		92.4 %	62-		"		"		
Surrogate: Toluene-d8		88.2 %	75-		, <i>u</i>	"	"	"	
Surrogate: 4-Bromofluorobenz	ene	95.2 %	75-		"	"	"	n	

Analyte

12225 World Trade Drive, Suite P

San Diego CA, 92128

Project: PG041906-31

Project Number: Jacumba Community Service District

Spike

Level

Source

Result

Reported: Project Manager: Ms. Melissa Monti 20-Apr-06

%REC

%REC

Limits

RPD

RPD

Limit

Notes

Volatile Organic Compounds by EPA Method 8260B/5030 - Quality Control **H&P Mobile Geochemistry**

Units

Reporting

Limit

Result

	Ttopunt								110100
Batch ED61905 - EPA 5030									
Blank (ED61905-BLK1)				Prepared	& Analyze	ed: 19-Apr	-06		
Dichlorodifluoromethane	ND	1.0	ug/l						
Chloromethane	ND	1.0	W						
Vinyl chloride	ND	1.0	ж						
Bromomethane	ND	1.0	и						
Chloroethane	ND	1.0	u						
Trichlorofluoromethane	ND	1.0	*						
1,1-Dichloroethene	ND	1.0							
Methylene chloride	ND	1.0	M						
Methyl tert-butyl ether	ND	1.0	W.						
trans-1,2-Dichloroethene	ND	1.0	ж						
Di-isopropyl ether	ND	1.0	W						
1,1-Dichloroethane	_ ND	1.0	*						
Ethyl tert-butyl ether	ND	1.0	#						
2,2-Dichloropropane	ND	1.0	ï						
cis-1,2-Dichloroethene	ND	1.0	91.						
Chloroform	ND	1.0	"						
Bromochloromethane	ND	1.0	Ü						
1,1,1-Trichloroethane	ND	1.0	**						
1,1-Dichloropropene	ND	1.0							
Carbon tetrachloride	ND	1.0	₩.						
1,2-Dichloroethane	ND	1.0	ж						
Tert-amyl methyl ether	ND	1.0	u						
Benzene	ND	0.5	н						
Trichloroethene	ND	1.0	#						
1,2-Dichloropropane	ND	1.0	Ŭ.						
Bromodichloromethane	ND	1.0							
Dibromomethane	ND	1.0	11						
cis-1,3-Dichloropropene	ND	1.0	ж						
Toluene	ND	0.5	n						
trans-1,3-Dichloropropene	ND	1.0	'n						
1,1,2-Trichloroethane	ND	1.0							
1,2-Dibromoethane (EDB)	ND	1.0							
1,3-Dichloropropane	ND	1.0	•						
Tetrachloroethene	. ND	1.0	9						

12225 World Trade Drive, Suite P

San Diego CA, 92128

Project: PG041906-31

Project Number: Jacumba Community Service District

Spike

Source

Project Manager: Ms. Melissa Monti

Reported:

RPD

20-Apr-06

%REC

Volatile Organic Compounds by EPA Method 8260B/5030 - Quality Control H&P Mobile Geochemistry

Reporting

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch ED61905 - EPA 5030										
Blank (ED61905-BLK1)				Prepared	& Analyze	d: 19-Apr	-06		+ .	
Dibromochloromethane	ND	1.0	ug/l							
Chlorobenzene	ND	1.0								
Ethylbenzene	ND	0.5	u.							
1,1,1,2-Tetrachloroethane	ND	1.0	10						15	8
m,p-Xylene	ND	1.0	10							
o-Xylene	ND	0.5	W.							
Styrene	ND	1.0	10:							
Bromoform	ND	1.0	DC							
Isopropylbenzene	ND	1.0	100							
1,1,2,2-Tetrachloroethane	ND	1.0	· ·							N
1,2,3-Trichloropropane	ND	1.0	39							G .
n-Propylbenzene	ND	1.0								
Bromobenzene	ND	1.0								
1,3,5-Trimethylbenzene	ND	1.0	(100)							
2-Chlorotoluene	ND	1.0	100							
4-Chlorotoluene	ND	1.0								
tert-Butylbenzene	ND	1.0								
1,2,4-Trimethylbenzene	ND	1.0								1. 1
sec-Butylbenzene	ND	1.0	(0.00)							
p-Isopropyltoluene	ND	1.0	(00)							
1,3-Dichlorobenzene	ND	1.0	le:							
1,4-Dichlorobenzene	ND	1.0								
n-Butylbenzene	ND	1.0	n							
1,2-Dichlorobenzene	ND	1.0								
1,2-Dibromo-3-chloropropane	ND	1.0	n							1 5 6
1,2,4-Trichlorobenzene	ND	1.0	1000							
Hexachlorobutadiene	ND	1.0	12002							ni it v
Naphthalene	ND	1.0	· u							
1,2,3-Trichlorobenzene	ND	1.0	u							0
Tert-butyl alcohol	ND	5.0	10)						7. 1	Georgia de la composição
Surrogate: Dibromofluoromethane	4.61		"	5.00		92.2	75-125			
Surrogate: 1,2-Dichloroethane-d4	4.86		"	5.00		97.2	62-139			
Surrogate: Toluene-d8	4.46		"	5.00		89.2	75-125			

12225 World Trade Drive, Suite P

San Diego CA, 92128

Project: PG041906-31

Project Number: Jacumba Community Service District

Project Manager: Ms. Melissa Monti

Reported: 20-Apr-06

Volatile Organic Compounds by EPA Method 8260B/5030 - Quality Control H&P Mobile Geochemistry

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch ED61905 - EPA 5030		55								
Blank (ED61905-BLK1)				Prepared	& Analyze	ed: 19-Apı	-06			
Surrogate: 4-Bromofluorobenzene	5.59		ug/l	5.00		112	75-125			
LCS (ED61905-BS1)				Prepared	& Analyze	ed: 19-Apı	-06			
1,1-Dichloroethene	6.00	1.0	ug/l	5.00		120	75-125			
Веплепе	5.60	0.5	11	5.00		112	75-125			
Trichloroethene	5.60	1.0	11	5.00		112	75-125			
Toluene	5.37	0.5	11.00	5.00		107	74-125			
Chlorobenzene	5.57	1.0	(100)	5.00		111	75-125			
Surrogate: Dibromofluoromethane	4.77		"	5.00		95.4	75-125			
Surrogate: 1,2-Dichloroethane-d4	4.98	E .	"	5.00		99.6	75-125			
Surrogate: Toluene-d8	4.25		× #	5.00		85.0	75-125	53		
Surrogate: 4-Bromofluorobenzene	4.87			5.00		97.4	75-125			
LCS Dup (ED61905-BSD1)	9.			Prepared	& Analyza	ed: 19-Apı	:-06			
1,1-Dichloroethene	5.91	1.0	ug/l	5.00		118	75-125	1.51	20	
Benzene	5.50	0.5		5.00		110	75-125	1.80	20	5
Trichloroethene	5.51	1.0	36	5.00		110	75-125	1.62	20	
Toluene	5.17	0.5	n	5.00		103	74-125	3.80	20	
Chlorobenzene	5.28	1.0	THE.	5.00		106	75-125	5.35	20	
Surrogate: Dibromofluoromethane	4.83		"	5.00		96.6	75-125		13	
Surrogate: I,2-Dichloroethane-d4	5.56		**	5.00		111	75-125			
Surrogate: Toluene-d8	4.39		*	5.00		87.8	75-125			
Surrogate: 4-Bromofluorobenzene	5.16		"	5.00		103	75-125			
t state that										

12225 World Trade Drive, Suite P

San Diego CA, 92128

Project: PG041906-31

Project Number: Jacumba Community Service District

Project Manager: Ms. Melissa Monti

Reported: 20-Apr-06

Notes and Definitions

DET

Analyte DETECTED

ND

Analyte NOT DETECTED at or above the reporting limit

NR

Not Reported

dry

Sample results reported on a dry weight basis

RPD

Relative Percent Difference

CHAIN-Gr-CUS FOUT KECORD

BIE ONE LABORATORIES / INC.

MOL:

Date: 4/19/06 Page \

S FORTIFIED S Special Instructions ELES SEDUIS CAN THE STATE OF THE SECOND SECO ら 3 N/A (Received on site) Sample Receipt Yes No (Yes) No Intact: (Yes) No Seal Intact: Analysis Requested Time: Time: Date: Date: 3. RELINQUISHED BY: 3. RECEIVED BY: Turnaround Requested: Printed Name: Printed Name: Signature:* Signature:* Company: Company: ☐ Onsite/24-48 hrs. Dother Stal 48 So. Vinewood Street, Escondido, CA 92029-1921 (760) 735-3208 FAX (760) 735-2469 Offsite Time: Time: Date: Date: Location Project: Jaeumba Community Service District *Signature constitutes authorization to proceed with analysis and acceptance of conditions on back 2. RELINQUISHED BY: Client: Refra Geotrchnical, Inc.
Site Address: 12225 World Trade Dr, Step 2. RECEIVED BY: Printed Name: Printed Name: ファイ Time Signature:* Signature:* Company: Company: San Diego, CM 92128 4/100 MG Date: 4/17/26 10:20am Sampler (signature): Date Time: Date: Company: Petra 6eo technica Signature: Melone Man Printed Name: Melissa Monti I. RELINQUISHED BY: Printed Name: And Ki Signature:* Ch. H I. RECEIVED BY: Sample ID Company: HA MWI

DRAFT

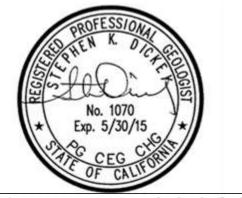
Groundwater Monitoring and Mitigation Plan – Flat Creek Watershed Analysis Jacumba Community Services District Jacumba Hot Springs, San Diego County, California

Lead Agency:

County of San Diego Planning and Development Services

5510 Overland Avenue San Diego, California 92123 Contact: Ashely Gungle

Project Proponent:


Jacumba Community Services District

P.O. Box 425
Jacumba Hot Springs, California 91934
Contact: Debby Troutt

Prepared by:

DUDEK

605 Third Street Encinitas, California 92024

Stephen K. Dickey, PG, CHG, CEG

APRIL 2015

TABLE OF CONTENTS

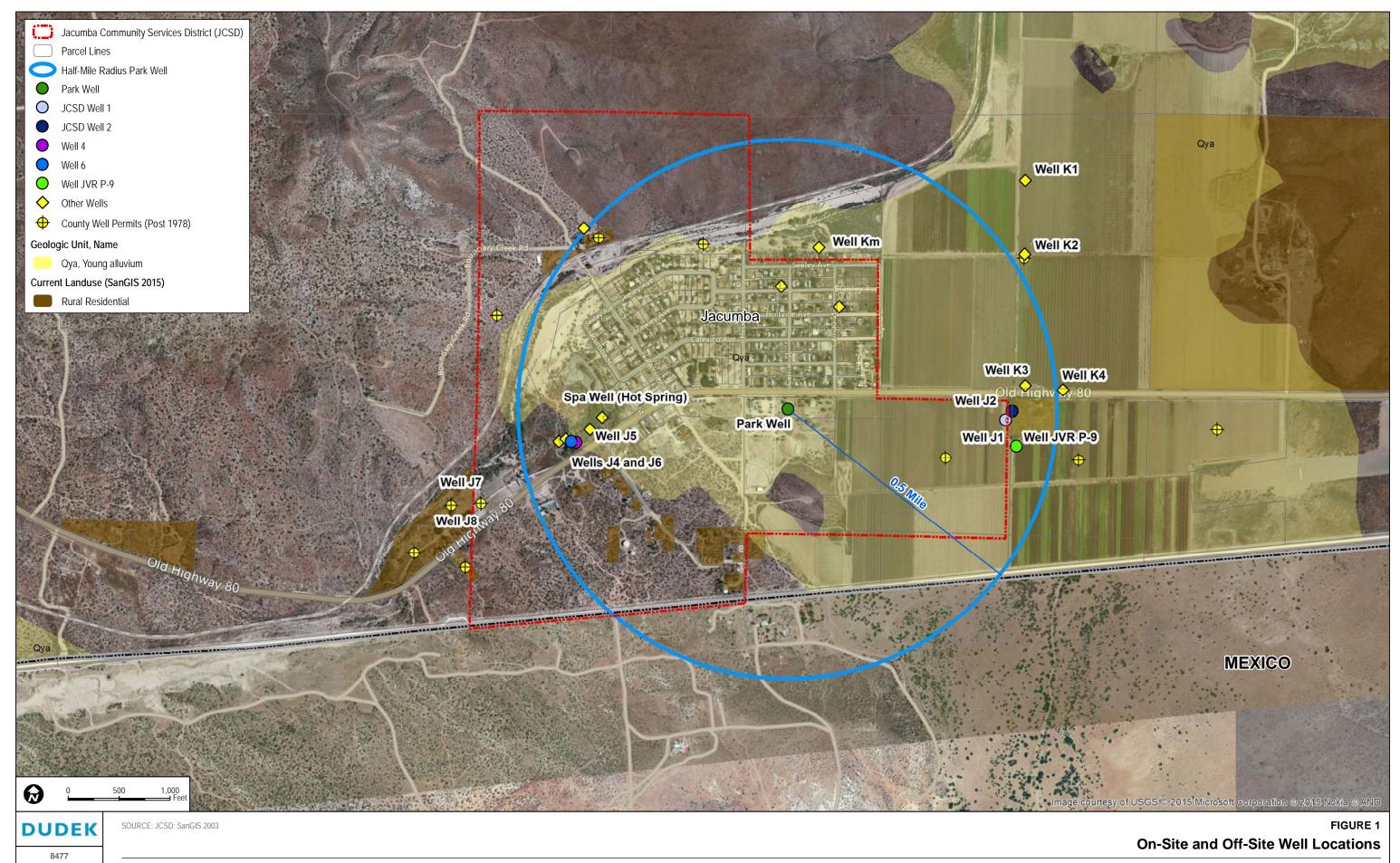
<u>Sec</u>	<u>ction</u>	Page No.
1	INTRODUCTION	1
2	ESTABLISHMENT OF GROUNDWATER THRESHOLDS	5
	2.1 Potential Off-Site Well Interference	
	2.2 Groundwater Dependent Habitat	6
3	MONITORING PROCEDURES AND MITIGATION CRITERIA	11
	3.1 Groundwater Production and Water Level Monitoring	11
	3.2 Groundwater Dependent Habitat Monitoring	11
	3.2.1 Monitoring	
	3.3 Groundwater Mitigation Criteria	12
4	REPORTING REQUIREMENTS	15
5	REFERENCES	19
6	LIST OF PREPARERS	21
FIG	BURES	
1	On-site and Off-site Well Locations	3
2	Potential Groundwater-Dependent Vegetation	9
3	Potential Groundwater-Dependent Vegetation Monitoring Locations	17
TAE	BLE	
1	JCSD Wells within 0.5 Mile Radius of Well 6	6

1 INTRODUCTION

Jacumba Community Services District (JCSD) is proposing the use of the Park Well and the potential development and use of replacement well(s) as a secondary source of groundwater to serve JCSD customers (the Project). This Groundwater Monitoring and Mitigation Plan (GMMP) has been prepared by Dudek in order to provide protection of nearby groundwater dependent habitat and ensure adequate groundwater supply for other groundwater users in the area.

As described in the Groundwater Resources Investigation Report – Flat Creek Watershed for the Jacumba Community Services District (Dudek, 2015), JCSD is proposing to develop additional production capacity of 100 acre-feet per year of groundwater from the Park Well and/or replacement well(s) yet to be completed. These wells are intended to serve as a redundant backup supply in the event JCSD's main potable supply well goes offline as well as to increase the reliability and versatility of JCSD's water supply system. In addition, JCSD intends to use these wells to supplement its sales of non-potable water from Well 6 for construction related uses in the region. To facilitate sales of water suitable for construction-related uses, water will be extracted from the Park Well using a new submersible pump and discharged to a 12,000 gallon water tower. The Park Well is located at the east end of downtown Jacumba Hot Springs on assessor's parcel number (APN) 660-140-07 (Figure 1).

In order to provide a conservative analysis, the Groundwater Resources Investigation Report – Flat Creek Watershed for the Jacumba Community Services District assumed that the Park Well would supply up to 100 acre-feet per year. Results of the Groundwater Resources Investigation indicate that short-term pumping of the Park Well and replacement well(s) to meet water demand would result in a less than significant impact to groundwater storage. Assuming a maximum groundwater extraction rate up to 200 gallons per minute continuously over a 90 day period (25.9 million gallons or 80 acre-feet) from the Park Well, the estimated drawdown at the nearest well (Well Km) is 0.58 feet based on the Theis semi-log approximation (Dudek, 2015). If pumping is amortized over 1 year at a production rate of 100 acre-feet per year, predicted drawdown is 1.36 feet at Well Km. Amortizing pumping over 5 years at an annual pumping rate of 100 acre-feet per year results in predicted drawdown at Well Km of 3.79 feet. This is less than the County of San Diego well interference threshold guidance for alluvial wells of 5 feet.


The drawdown at the nearest groundwater dependent habitat, riparian and bottomland habitat associated with Boundary Creek located approximately 1,620 feet north of the Park Well, as a result of extraction of groundwater is estimated after 90 days, 1 year and 5 years is predicted to be 0.69 feet, 1.46 feet, and 3.92 feet, respectively (Dudek 2015). The Project is unlikely to draw down the groundwater table to the detriment of groundwater-dependent habitat, typically a drop of 3 feet

DUDEK

or more from historical low groundwater levels as Boundary Creek represents as recharge boundary. Thus, impacts to groundwater dependent habitat would be less than significant.

Because actual conditions during groundwater extraction for the Projects may vary from conditions assumed in the Groundwater Resources Investigation (Dudek, 2105) this GMMP has been prepared for the JCSD. This GMMP establishes protective groundwater drawdown thresholds for off-site well interference and groundwater-dependent habitat.

This GMMP also describes the monitoring, mitigation and reporting procedures by which the County of San Diego Planning and Development Services (PDS) can ensure that the conditions and criteria for the Project's groundwater extraction activities are continually being upheld. A 5-year monitoring period is proposed to assess the impact of groundwater extractions.

GROUNDWATER MONITORING AND MITIGATION PLAN - JACUMBA COMMUNITY SERVICES DISTRICT

APRIL 2015

2 ESTABLISHMENT OF GROUNDWATER THRESHOLDS

According to the County of San Diego Guidelines for Determining Significance and Report Format Content Requirements (County of San Diego, 2007), this Project-related groundwater extraction would incur a significant well interference impact if after a five year projection of drawdown, the results indicate a decrease in water level of 5 feet or more in the off-site wells. If site-specific data indicates alluvium or sedimentary rocks exist which substantiate a saturated thickness greater than 100 feet in off-site wells, a decrease in saturated thickness of 5% or more in the off-site wells would be considered a significant impact. The County's Guidelines for Determining Significance for Biological Resources (County of San Diego, 2010) defines a project-related drawdown of 3 feet below historical low groundwater levels as causing a significant impact to riparian habitat of a groundwater sensitive natural community. Additionally, groundwater resources for proposed projects requiring a potable water source must not exceed the Primary State or Federal Maximum Contaminant Levels (MCLs) for applicable contaminants. The thresholds established below incorporate these guidelines and represent a conservative basis for monitoring and mitigating potential groundwater impacts related to the Project.

2.1 Potential Off-Site Well Interference

As described in the Groundwater Resources Investigation Report – Flat Creek Watershed (Dudek, 2015), wells identified near the pumping well (Park Well) include Well Km Well K3, Spa Well and JCSD Wells 1, 2, 4, 5 and 6 (Figure 1).

Four existing JCSD groundwater wells (Wells 2, 4, 5 and 6) will be included in the groundwater monitoring program (Figure 1). Additionally, Jacumba Valley Ranch Wells Km and K3, and piezometer P-9 will be included if property access is granted. Accessible wells will be fitted with pressure transducers prior to the onset of Project pumping. The pressure transducers will record the water level in the wells at 15 minute intervals for approximately 1 month prior to the onset of Project related groundwater extraction. Transducer accuracy will be confirmed through manual water level measurements recorded with a sounder. Manual water levels will also be recorded for JCSD Wells 2, 4, 5 and 6 and the Park Monitoring Well on a weekly basis during Project pumping.

An additional three wells were identified within a 0.5 mile radius of the Park Well and are indicated in Table 1.

Table 1
JCSD Wells within 0.5 Mile Radius of Well 6

Well Number	Use	Distance from Park Well (feet)					
Jacumba Community Service District Wells							
Well 1	Public/Inactive	2,136					
Well 2	Public/Inactive	2,195					
Well 4	Public/Active	2,147					
Well 5	Public/Inactive	1,906					
Well 6	Public/Active (Non-Potable)	2,206					
	Jacumba Ranch Wells						
Well Km	Small Water System/Active	1,688					
Well K3	Irrigation	2,136					
Piezometer P-9	Monitoring Point	2,256					
	Other Wells						
Spa Well	Private/Active Hot Well	1,829					

The measurements collected from the JCSD wells will be used to establish a water level baseline and capture water level patterns generated by pumping of these wells. An understanding of these patterns will allow for their continued use as monitoring wells despite the possibility that they may be pumped over the duration of the Projects. During pumping at the Park Well, a maximum drawdown of 5 feet below the water level baseline at Well Km will be allowed. This threshold is protective of a maximum drawdown of 5 feet at the closest property with a Small Water System well located within 0.5 mile feet from the pumping well. If Well Km is not accessible for water level monitoring, a maximum drawdown of 3.85 feet and 3.93 feet below the water level baseline will be allowed at JCSD Wells 2 and 4 to ensure that water level threshold of 5 feet is not exceeded at Well Km.

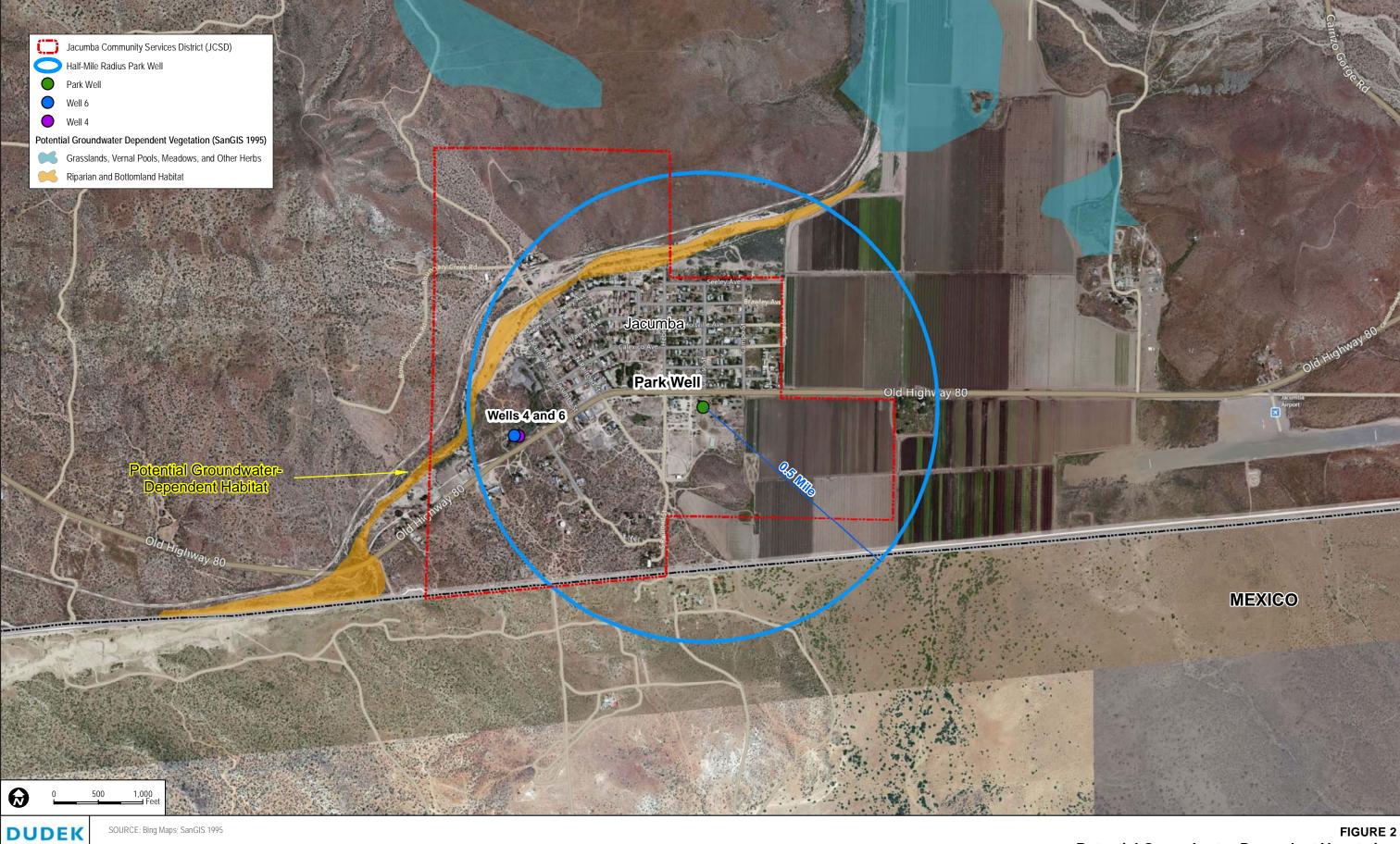
Results of the off-site well interference analysis detailed in the Groundwater Resources Investigation Report conclude that well interference is not anticipated to pose a significant impact. A groundwater monitoring program will be implemented in order to establish a water level baseline in the JCSD wells and characterize change in water levels due to potable and non-potable water system pumping.

2.2 Groundwater Dependent Habitat

Groundwater-dependent vegetation communities mapped approximately 1,620 feet north of the Park Well that may depend on groundwater include riparian and bottomland habitat associated with Boundary Creek (Figure 2). Drawdown at the closest groundwater dependent habitat as a

result of pumping from the Park Well after 90 days, 1 year and 5 years is predicted to be 0.69 feet, 1.46 feet, and 3.92 feet, respectively. The Project is unlikely to draw down the groundwater table to the detriment of groundwater-dependent habitat, typically a drop of 3 feet or more from historical low groundwater levels as Boundary Creek represents a recharge boundary.

Therefore, project-related groundwater production from the Park Well is not anticipated to result in drawdown of the groundwater table to the detriment of this groundwater-dependent habitat.


Due to the limited potential for impacts to groundwater dependent habitat Dudek recommends no initial monitoring of the groundwater dependent habitat. Monitoring of the groundwater dependent habitat would be required in the event that water levels in Well 4 drop below historical low groundwater levels, which were recorded at 23 feet below ground surface. Aquifer water level monitoring for the duration of pumping at the Park Well for the Project is proposed. Biological monitoring procedures are described below in Section 3.2.

2.3 Water Quality

Water quality testing performed in 2005 and 2006 on the Park Well indicated elevated concentrations of toluene at 291 μ g/L, 199 μ g/L and 520 μ g/L, which are above the drinking water MCL of 150 μ g/L. Sampling of monitoring wells located to the west of the Park Well at Former Chevron Service Station No. 20-5934 in 2014 detected low concentrations of hydrocarbons (AECOM 2015).

Water quality impacts to groundwater resources could potentially by significant if resampling of the Park Well indicates concentrations of VOCs and hydrocarbons above drinking water MCLs. Mitigation consisting of wellhead treatment will be required if current concentrations of VOCs and hydrocarbons exceed drinking water MCLs as discussed in Section 3.

8477 APRIL 2015 **Potential Groundwater-Dependent Vegetation**

3 MONITORING PROCEDURES AND MITIGATION CRITERIA

The groundwater monitoring, water quality monitoring and, if necessary, biological monitoring procedures, and mitigation criteria outlined below will be followed during pumping at the Park Well. The groundwater monitoring program defined herein will be carried out under the direction of a Certified Hydrogeologist registered in the State of California.

3.1 Groundwater Production and Water Level Monitoring

Pressure transducers will be maintained in a network of the four JCSD groundwater wells (Well 2, Well 4, Well 5 and Well 6, Figure 1) as well as in the production well (Park Well). Additionally, Jacumba Valley Ranch Wells Km and K3, and piezometer P-9 will be included if property access is granted. The pressure transducers will be programed to record the water level every 15 minutes. In addition, ambient barometric pressure and temperature will be recorded at 15 minute intervals with a barometric logger. Manual water level measurements may be required for wells where a pressure transducer cannot initially be fitted in the well due to lack of appropriately sized port or sounding tube.

Transducer data will be downloaded on a weekly basis at all the instrumented wells for 1 month prior to the onset of Project related groundwater extraction. Transducer data will also be downloaded weekly during periods of pumping for non-potable construction water supply to the Projects. Cumulative groundwater usage will be monitored at the Park Well using an instantaneous flow meter. Flow rate and volume measurements will be recorded daily during pumping for the Projects.

3.2 Groundwater Dependent Habitat Monitoring

The following monitoring program will be carried out for groundwater dependent habitat if water levels in Well 4 drop below the established threshold. The goal would be to determine if the project's use of groundwater is impacting groundwater dependent habitat in the vicinity of the production well.

3.2.1 Monitoring

Baseline data will be collected within a 0.5 mile radius of the Park Well and confined to groundwater dependent habitat; specifically the riparian corridor associated with Boundary Creek. Potentially affected native trees within the study area would be evaluated for overall physical condition and attributes. The trees would be inventoried by an ISA Certified Arborist or Registered Professional Forester with specific experience evaluating riparian dominant species such as cottonwoods and willows.

The baseline monitoring evaluations would include the following:

- Establishment of 18 equidistant plots or transects within the riparian and bottomland habitat within 0.5 mile of the Park Well. Sample plots/transects would include the range of existing habitat conditions, including elevation, slope and aspect, proximity to roads and other land uses.
- Tagging of trees and recording species, tag number, trunk diameter at breast height (dbh) (in.), height (ft.) and dominance (i.e., whether the tree is under the canopy of another tree or forms the uppermost canopy). Slope, aspect, and elevation of each tree location, existing understory species (including proportion of natives to exotics), presence of debris and litter, and soil type, depth, and parent material will be noted for each tree or plot/transect.
- Assessment of tree status, including documentation of:
 - o Dbh measured at 4.5 feet above ground (according to standard practices)
 - Number of stems
 - Overall tree height (based on ocular estimates)
 - o Tree crown spread (measurement in each cardinal direction, based on ocular estimate)
 - o Overall tree health condition (Good, Fair, Poor, Dead)
 - o Overall tree structural condition (Good, Fair, Poor, Dead)
 - o Pest presence (Type, Extent minimal, moderate, high)
 - Disease presence (Type, Extent minimal, moderate, high)
 - Other specific comments
- Assessment of seedling establishment and sapling tree densities and conditions
- The data collection procedure will include full data collection at each plot/transect so that consistency is maintained among sampling plots.
- Creation of database using GIS or similar application

3.3 Water Quality

The Park Well will be re-sampled for hydrocarbons and VOCs to determine current concentrations prior to use. If hydrocarbons or VOCs are detected, wellhead treatment will be provided.

3.3.1 Sampling

The Park Well will be resampled using established protocols as generally outlined in U.S. Environmental Protection Agency (EPA) *Field Sampling Guidance #1220 Groundwater Well Sampling* (EPA 2004). A minimum of three purge volumes (136 gallons based on 2014 water levels) will be pumped form the Park Well in order to collect a representative sample of water quality. Field water quality parameters will be monitored and have stabilized prior to sample collection.

Water quality samples will be submitted to a California accredited laboratory for chemical analysis of total petroleum hydrocarbons as gasoline (TPH-g) and total petroleum hydrocarbons as diesel (TPH-d) by (EPA) Method 8015B (M), and of benzene, toluene, ethylbenzene, total xylenes (collectively referred to as BTEX), and fuel oxygenate compounds: methyl-t-butyl ether (MTBE), tert-amyl-methyl ether, tert-butyl alcohol (TBA), diisopropyl ether, ethyl-t-butyl ether, and ethanol by EPA Method 8260B.

3.3.2 Mitigation

If water quality results from resampling of the Park Well indicate concentrations of VOCs or hydrocarbons detected above drinking water MCLs, wellhead treatment will be required. Final system design will be based on updated water quality results. Conceptual wellhead treatment design to remove VOCs and hydrocarbons includes the following equipment: 20,000 gallon Baker tank, filter skid for pre-filtration, liquid phase carbon vessels to remove VOCs and hydrocarbons, discharge header to 12,000 gallon water tower(s), automated controls and water level switches. All equipment would be installed and maintained by a commercial vendor such as Drewelow Remediation Equipment, Inc. (http://www.dre-equip.com) who has provided initial conceptual design and cost estimate (Pers. comm. David Drewelow, March 27, 2015). This would include system prove out, periodic water quality sampling and system maintenance. Final design and standard operating procedures including periodic water quality monitoring will prepared by a licensed California Professional Engineer.

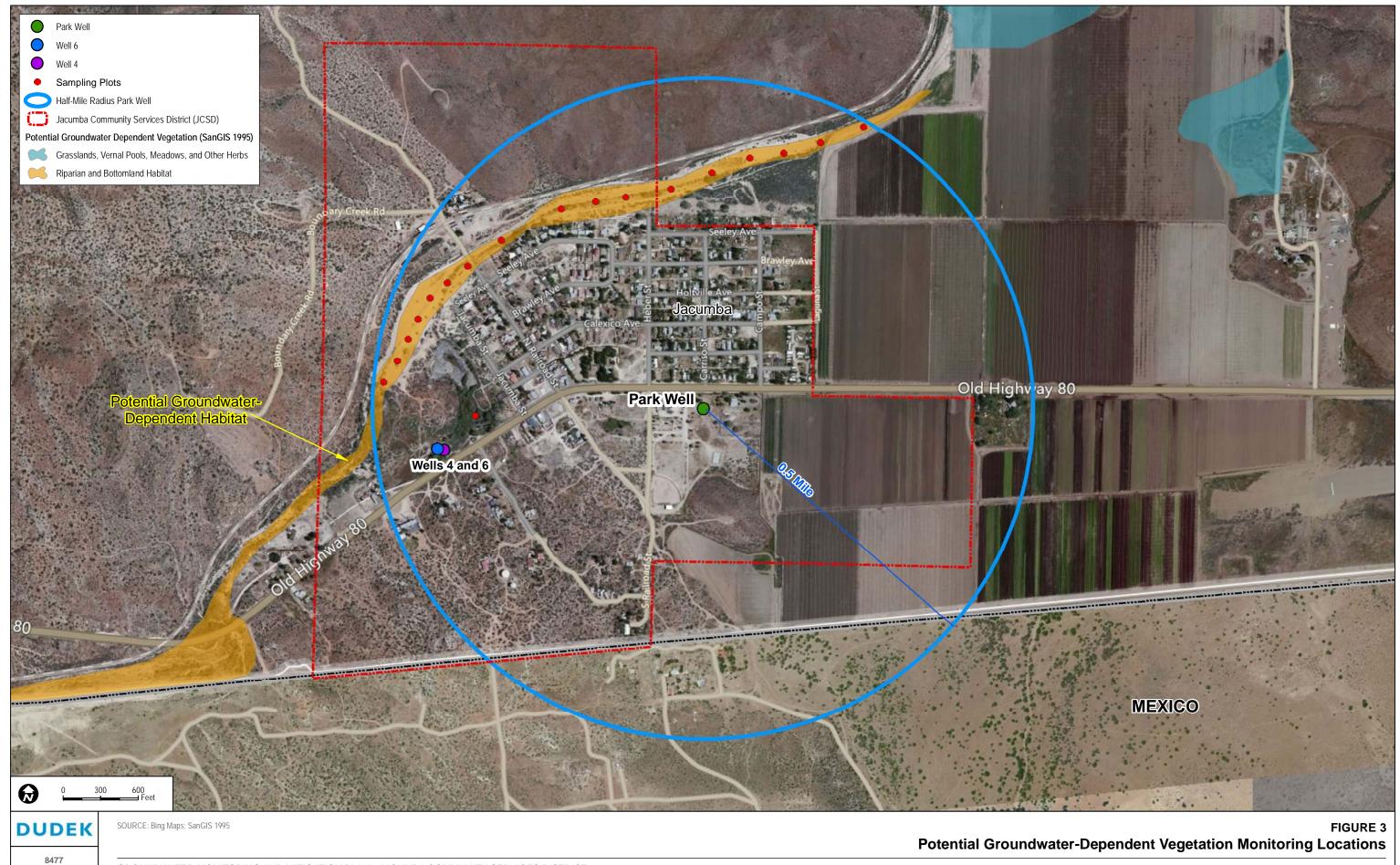
3.4 Groundwater Mitigation Criteria

The following mitigation criteria will be established to protect groundwater resources and groundwater-dependent habitat in the Project area:

If the groundwater levels at Jacumba Valley Ranch Well Km drops 5 feet below the
baseline water level, groundwater pumping at the Park Well will cease until the water
level at the well that experienced the threshold exceedance has increased above the
threshold and remained there for at least 30 continuous days. Additionally, written
permission from the County Planning and Development Services (PDS) must be obtained

before production may be resumed. If Well Km is not accessible, than the well interference threshold will be 3.85 feet at Well 2 and 3.93 feet at Well 4 in order to ensure that Well Km does not exceed the maximum drawdown of 5 feet.

- If groundwater levels at Well 4 drops more than 23 feet below ground surface, than monitoring of the groundwater dependent habitat would be triggered.
- If the groundwater levels exceed historical low water levels in Well 4 (lowest recorded static water level in Well 4 is 23 bgs) and there is evidence of deteriorating riparian habitat health by the Arborist or Forester, there may be a temporary or permanent cessation of pumping at the Park Well.


4 REPORTING REQUIREMENTS

A groundwater monitoring report will be completed by a Certified Hydrogeologist registered in the State of California and submitted to the County PDS annually for groundwater extraction from the Park Well no later than 28 days following the end of the calendar year. The reports will include the following information:

- Water level hydrographs and tabulated water level data for each monitoring well.
- Tabulated groundwater production volumes from each production well.
- Documentation of groundwater drawdown at JCSD Wells 2, 4, 5, 6 and Park Monitoring Well included in the groundwater monitoring program.
- Documentation of any threshold-included curtailment of groundwater production.
- Documentation of groundwater dependent habitat monitoring, if necessary, as described above.

If the baseline water levels at the JCSD wells included in the groundwater monitoring program are exceeded by 5 feet, the County PDS will be notified via letter and electronic mail within one working day of the exceedance. Additionally, if water level thresholds at the off-site wells are exceeded by their respective thresholds, pumping of the Park Well shall cease and the County PDS notified via letter and electronic mail within one working day.

GROUNDWATER MONITORING AND MITIGATION PLAN - JACUMBA COMMUNITY SERVICES DISTRICT

APRIL 2015

5 REFERENCES

- AECOM. 2015. Second Semiannual 2014 Groundwater Monitoring Report Former Chevron Service Station 205934, 44485 Old Highway 80, Jacumba, California SDDEH Case No. H29832-002. January 30, 2015.
- County of San Diego. 2007 County of San Diego, Guidelines for Determining Significance and Report Format and Content Requirements: Groundwater Resources. Land Use and Environment Group, Department of Planning and Land Use, Department of Public Works. March 19, 2007.
- County of San Diego. 2010 County of San Diego, Guidelines for Determining Significance: Biological Resources. Land Use and Environment Group, Department of Planning and Land Use, Department of Public Works. September 15, 2010.
- David Drewelow, 2015. Park Well Remediation Conceptual Design and Costs. March 27, 2015.
- Dudek. 2015. Jacumba Community Services District Groundwater Resources Investigation Report Flat Creek Watershed. Prepared for Jacumba Community Services District. April 2015.
- U.S. Environmental Protection Agency (EPA). 2004. Field Sampling Guidance Document #1220 Groundwater Well Sampling. Revision 1. September 2004.

6 LIST OF PREPARERS

This GMMP was prepared by Dudek Hydrogeologist, Trey Driscoll, PG, CHG. Dudek arborist, Michael S. Huff prepared the monitoring program for the groundwater dependent habitat. Dudek Hydrogeologist Stephen K. Dickey, PG, CHG, CEG, provided review assistance and coordination with the County as the County-approved hydrogeologist.