DEXTER WILSON ENGINEERING, INC.

WATER • WASTEWATER • RECYCLED WATER
CONSULTING ENGINEERS

MASTER PLAN OF SEWER FOR THE NEWLAND SIERRA PROJECT

January 30, 2017

MASTER PLAN OF SEWER FOR THE NEWLAND SIERRA PROJECT

January 30, 2017

Prepared for:
Newland Sierra, LLC
4790 Eastgate Mall, Suite 150
San Diego, CA 92121

Prepared by:

Dexter Wilson Engineering, Inc. 2234 Faraday Avenue Carlsbad, CA 92008

Job No: 990-001

TABLE OF CONTENTS

	Page No	<u>o.</u>
CHAPTER 1	INTRODUCTION1	-1
	PROJECT OVERVIEW1-	.1
	DEVELOPMENT PLAN1-	.1
	STUDY AREA1-	.3
	PURPOSE OF STUDY1-	3
CHAPTER 2	DESIGN CRITERIA 2-	1
	SEWER SYSTEM2-	
	Sewage Flows2-	
	Gravity Sewers2-	1
CHAPTER 3	PROJECTED SEWAGE FLOWS	1
	Newland Sierra Sewage Flows	1
CHAPTER 4	EXISTING AND PROPOSED SEWER FACILITIES 4-	1
	Existing Sewer Facilities4-	1
	Proposed Sewer Facilities4-	1
	Onsite Sewer Facilities4-	3
	Offsite Sewer Facilities4-	3
A DDENIDIN A	CENTED ANALYZIC	

LIST OF TABLES

	Page No.
TABLE 1-1	NEWLAND SIERRA PROPOSED LAND USE SUMMARY
TABLE 2-1	RECOMMENDED UNIT SEWAGE GENERATION FACTORS2-2
TABLE 3-1	NEWLAND SIERRA PROJECTED SEWAGE FLOWS

LIST OF FIGURES

	Page	No.
FIGURE 1-1	LOCATION MAP	. 1-4
FIGURE 1-2	PROPOSED LAND USE PLAN	. 1-5
FIGURE 4-1	EXISTING SEWER FACILITIES	. 4-2
FIGURE 4-2	PROPOSED ONSITE SEWER FACILITIES	. 4-4

INTRODUCTION

This report provides a master plan of sewer for the Newland Sierra project. This report will provide information concerning projected sewage flows, existing facilities, proposed major facilities and onsite improvements necessary to provide adequate sewer service to the project. An offsite sewer system evaluation has been prepared by the Vallecitos Water District.

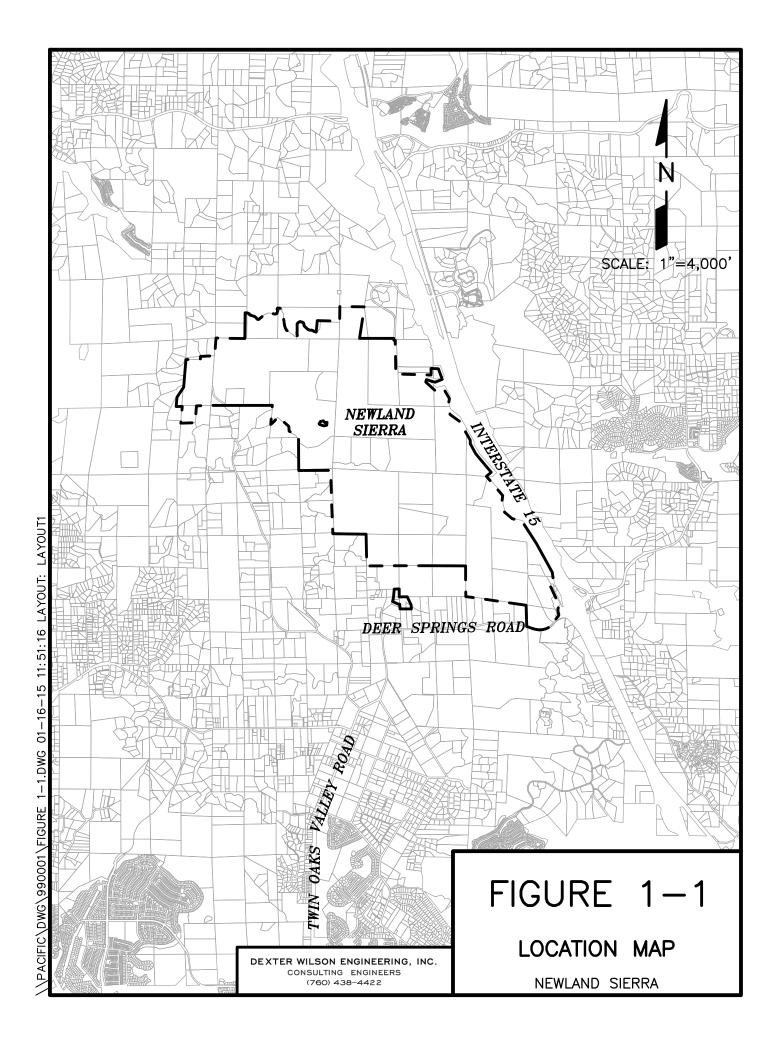
PROJECT OVERVIEW

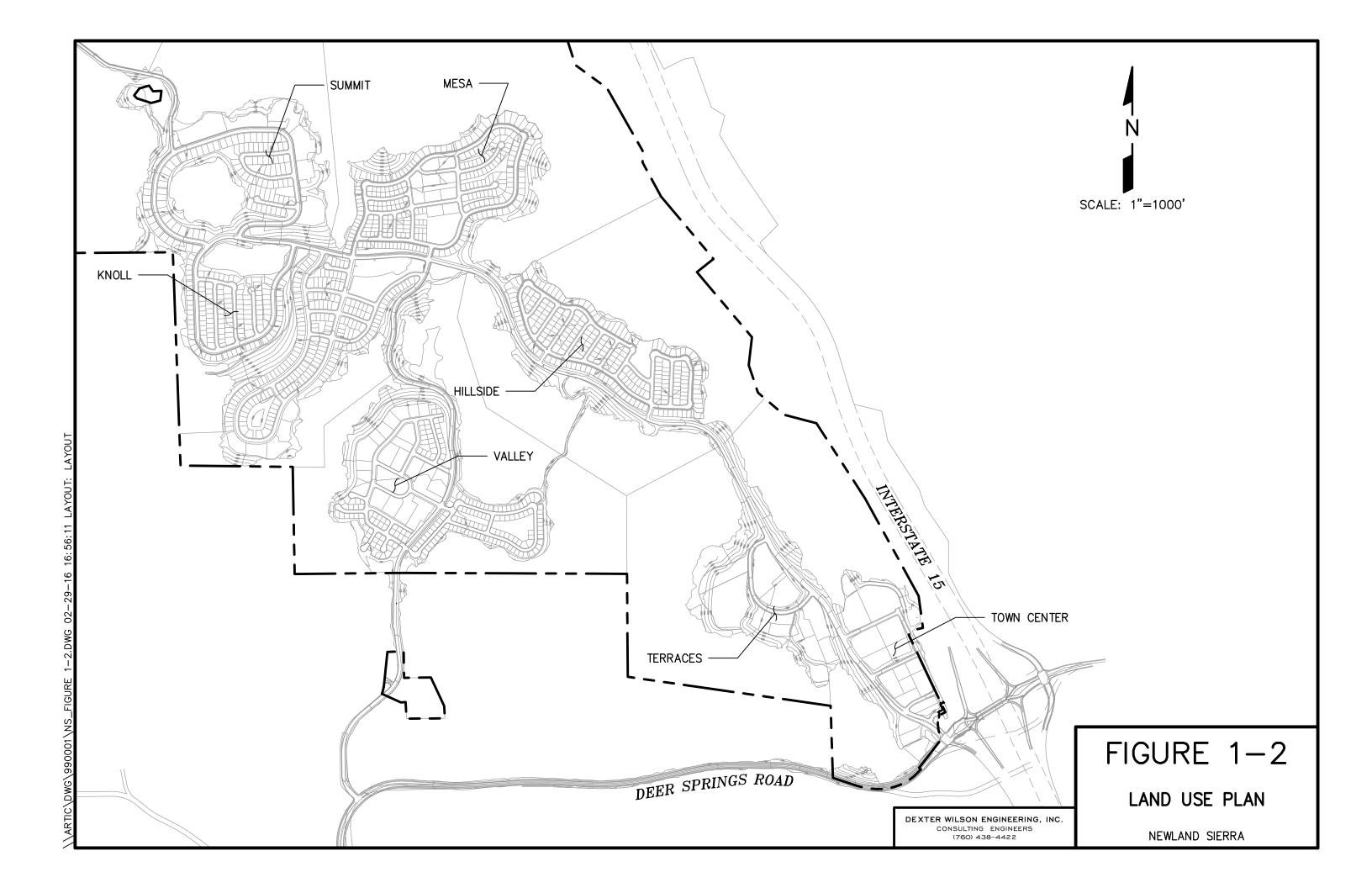
The Newland Sierra project is located within an unincorporated portion of the County of San Diego. The project is located on the north side of Deer Springs Road, just west of Interstate 15. Figure 1-1 provides a location map of the project. The project application includes a general plan amendment, specific plan, rezone, EIR, and tentative map.

DEVELOPMENT PLAN

The Newland Sierra project encompasses a total of approximately 1,985 acres. The development plan for the project includes seven neighborhoods (also called planning areas). The land planning for the project is in the tentative map submittal stage. The project will also include parks, commercial, school, and open space land uses. Table 1-1 summarizes the proposed land use plan for the project and Figure 1-2 graphically shows the land use plan.

TABLE 1-1 NEWLAND SIERRA PROPOSED LAND USE SUMMARY


AT 1 11 1 1		D USE SUMMARY	TY .		
Neighborhood	Land Use	Acres	Units		
	Commercial	7.4	515		
Town Center	School	3.6	HAR.		
	Park	5.7	**************************************		
	Multi-Family	7.2	95		
Subtotal		23.9	95		
	Multi-Family	23.8	316		
Valley	Single Family	32	189		
	Park	12.3	POR:		
Subtotal		68.1	505		
m	Multi-Family	28.4	446		
Terraces	Water Tank	1.3			
Subtotal		29.7	446		
TT:11 · 1	Single Family	36.5	241		
Hillside	Park	2.3			
Subtotal		38.8	241		
	Multi-Family	6.1	60		
Mesa	Single Family	53.6	265		
	Park	4.1	¥447		
Subtotal		63.8	325		
	Multi-Family	4.8	29		
Lower Knoll	Single Family	44.5	203		
	Park	8.9			
Subtotal		58.2	232		
	Single Family	26.1	140		
Upper Knoll	Park	0.6	140		
Subtotal		26.7	140		
20000000	Multi-Family	14.9	49		
_	Single Family	35.4	102		
Summit	Water Tank	2.9	102		
	Park	2.0			
Subtotal	Tark	55.2	151		
Subtotal	Backbone Roads	34.0	101		
	Fuel Modification	378.2	***		
192550	Open Space	1209.0	25.871		
TO/TIAT	Open Space		0.105		
TOTAL	Prince Control of the Control of the Control	1,985.6	2,135		


STUDY AREA

The entire project is within the Vallecitos Water District Sphere of Influence. The developed area of the project will require annexation into the sewer improvement district prior to sewer service being available.

PURPOSE OF STUDY

The purpose of this report is to provide the recommended onsite sewer facilities that are necessary to provide sewer service to Newland Sierra. This plan will be compatible with the Vallecitos Water District Master Plan and the recommended facilities will be consistent with the Master Plan. The District prepared a separate study to analyze the offsite improvements necessary to support this project.

DESIGN CRITERIA

This chapter presents the design criteria used to evaluate recommended sewer system improvements for the Newland Sierra project. The criteria utilized in this study are in accordance with the 2008 Vallecitos Water District Water, Wastewater, and Recycled Water Master Plan Update, unless otherwise noted. This report was prepared by PBS&J and finalized in August 2010. The design criteria are used for evaluating the existing system as well as for design and sizing of proposed improvements to accommodate development in the study area.

SEWER SYSTEM

Sewage Flows

The sewage generation factors used to project average flows for the project are based on the Draft 2014 VWD Master Plan and are listed in Table 2-1. To convert average daily flows to peak wet weather flows, the following formula is used:

Peak Factor = 2.78Q-0.0867, Q = Average flow, mgd

Gravity Sewers

All gravity sewers have been designed to convey peak wet weather flow. For pipes with a diameter of 12-inches and smaller, the sewers have been designed to convey this flow when flowing half full. For pipes with a diameter of 15-inches and larger, the sewers have been designed to convey peak wet weather flow when flowing three-fourths full by depth. Manning's Equation with an "n" value of 0.013 was used to size all gravity sewers. All new sewers were designed to maintain a minimum velocity of two feet per second at design capacity to prevent the deposition of solids. A maximum velocity of 10 feet per second is also allowed.

TABLE 2-1 RECOMMENDED UNIT SEWAGE GENERATION FACTORS¹

Land Use Category	Unit Flow Factor (gpd/ac)
Residential (2-4 du/ac)	750
Residential (4-8 du/ac)	1,300
Residential (8-12 du/ac)	2,100
Residential (12-15 du/ac)	2,500
Residential (15-20 du/ac)	3,300
Residential (20-30 du/ac)	4,500
Commercial	1,200
Office Professional	1,200
Schools/Public Facilities	800
Parks	250
Open Space	0
Roads, Right-of-Way	0

¹ Per Draft 2014 VWD Master Plan

PROJECTED SEWAGE FLOWS

This chapter provides the projected sewage flows from the Newland Sierra project. A small portion of the project is already within the Vallecitos Water District sewer service boundary. The remainder of development areas on the project propose annexation to Vallecitos Water District Sewer Improvement Districts 5 and 6 for sewer service.

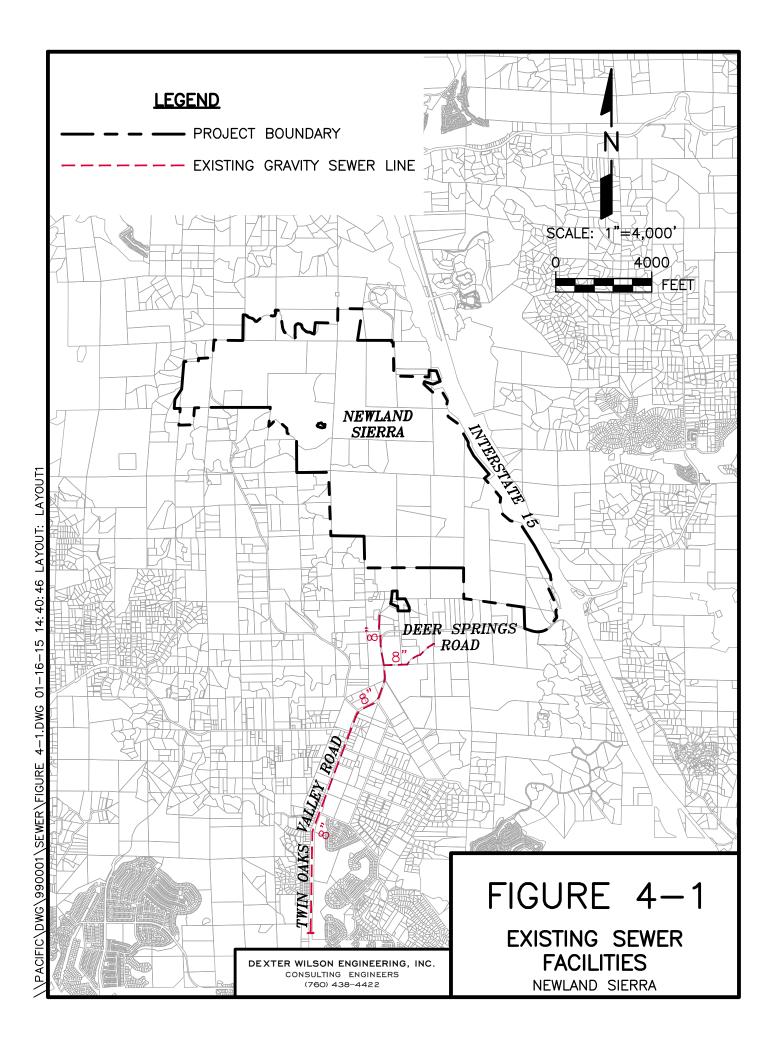
Newland Sierra Sewage Flows

Table 3-1 provides the projected sewage flows for the Newland Sierra project. The portion of the property that does not drain south does not propose any development and is not included in the projected flows for the sewer system analysis. The projected average daily flow for the project that will flow by gravity to the south is 0.54 mgd. The projected peak wet weather flow is 1.57 mgd.

Table 3-1 NEWLAND SIERRA PROJECTED SEWER FLOWS

Neighborhood	Land Use	Acres	Dwelling Units	Density,	Generation Factor, gpd/ac	Average Sewage Flow, gpd
	South Drainage Area		,			- UA.
	Commercial	7.4			1,200	8,880
m	School	3.6	5442		800	2,880
Town Center	Park	5.7		2.05	250	1,425
	Multi-Family	7.2	95	13.2	2,500	18,000
Subtotal		23.9	95	Maria III		31,185
	Multi-Family	23.8	316	13.3	2,500	59,500
Valley	Single Family	32	189	5.9	1,300	41,600
	Park	12.3	1999		250	3,075
Subtotal		68.1	505	THE REAL PROPERTY.		104.175
m	Multi-Family	28.4	446	15.7	3,300	93,720
Terraces	Water Tank	1.3	***		800	1,040
Subtotal	92 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	29.7	446	i lasti	A-TRANSPORT	94,760
*****	Single Family	36.5	241	6.6	1,300	47,450
Hillside	Park	2.3			250	575
Subtotal		38.8	241			48,025
	Multi-Family	6.1	60	9.8	2,100	12,810
Mesa	Single Family	53.6	265	4.9	1,300	69,680
	Park	4.1			250	1,025
Subtotal	The Mark Street	63.8	325			83,515
	Multi-Family	4.8	29	6.0	1,300	6,240
Lower Knoll	Single Family	44.5	203	4.6	1,300	57,850
	Park	8.9		***	250	2,225
Subtotal		58.2	232			66,315
77 77 11	Single Family	26.1	140	5.3	1,300	33,930
Upper Knoll	Park	0.6	***		250	150
Subtotal		26.7	140	100	ADVIE SERVICE	34,080
	Multi-Family	14.9	49	3.4	750	11,175
G :	Single Family	35.4	102	2.9	750	26,550
Summit	Water Tank	2.9			800	2,320
	Park	2.0			250	500
Subtotal		55.2	151			40,545
515	Backbone Roads Fuel Modification –	34.0	444	***	0	0
***	Irrigated	131.0	(292	222	250	32,750
	Open Space	544.4		***	0	00
South Drainage A		1,073.8	2,135		Name of Street, or other	535,350
Areas Tributary to	North Drainage Area		1/			
	Open Space	911.8			0	0
North Drainage A	rea Subtotal	911.8	14 32 53	1 TO 1	1 3 2 2	0
TOTAL	Sales de la	1,985.6	2,135			535,350

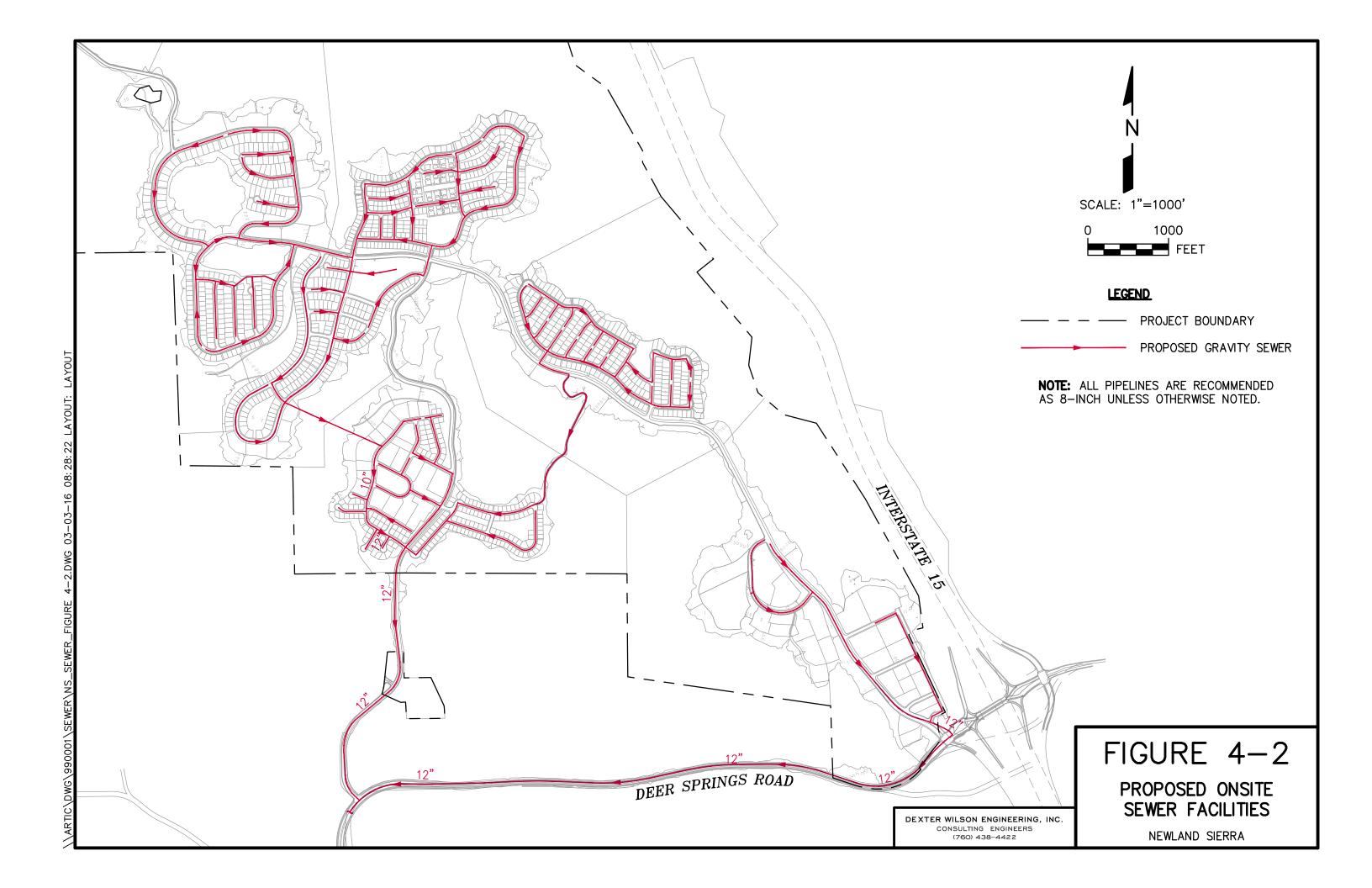
EXISTING AND PROPOSED SEWER FACILITIES


There are existing sewer facilities in the vicinity of the Newland Sierra project, but offsite sewer facility improvements will be necessary to serve the project. This chapter provides a description of existing facilities and summarizes new facilities that will be required to serve the project. Figure 4-1 graphically shows existing sewer facilities in the vicinity of the project.

Existing Sewer Facilities

Many of the existing residences to the west and south of the project are served by septic sewer systems. There is an existing 8-inch gravity sewer line adjacent to Sarver Lane to the south of the project. This line conveys flow south in Twin Oaks Valley Road. The gravity sewer line generally follows Twin Oaks Valley Road to the south and increases in size before eventually crossing Freeway 78. From this location, a gravity sewer interceptor conveys sewage westerly to Lift Station Number 1 near the intersection of San Marcos Boulevard and Pacific Street. From this location, the District has the option of pumping flow through Lift Station Number 1 to their Meadowlark Treatment Plant or sewage can flow by gravity through the District land outfall to the Encina Wastewater Authority. The Encina Wastewater Authority operates a treatment plant and ocean outfall in Carlsbad.

Proposed Sewer Facilities


Sewer service to the Newland Sierra project will require the construction of onsite and offsite sewer conveyance facilities, as described in more detail below.

Onsite Sewer Facilities. The onsite sewer system will consist of gravity sewer lines that collect flow and convey it south to Deer Spring Road. Figure 4-2 graphically shows the proposed onsite sewer system improvements for the project. Sewer lines are generally located in street right-of-ways, but there are a two locations where onsite easements will be dedicated to VWD to maintain gravity flow.

A hydraulic analysis was conducted in order to determine sewer line sizes. Slopes were assumed based on a review of the project tentative map. These slopes and the associated sewer line sizing will be verified as engineering progresses on the project and actual pipe slopes become known. Appendix A contains the sewer system analysis and Exhibit A provides the corresponding node diagram for the system analysis. The analysis demonstrates that sewage can be conveyed from the project using 8-inch through 12-inch sewer lines.

Offsite Sewer Facilities. The District has performed an analysis dated October 28, 2106 of offsite sewer facility requirements that evaluates the impact of flows from the project on the existing and proposed sewer system. This analysis evaluates the impact from the project boundary to the Encina Wastewater Authority.

APPENDIX A

SEWER ANALYSIS

						BASE DATA FO	OR SEWER HYD	RAULIC AN	ALYSIS	
From	То	From Elev	To Elev	Distance	$Slope^1$	Units Added	Node Base Flow, gpd ²	Added Flow, gpd	Total Added Flow,gpd	Added Flow Components
28	26	1312	1268	800	5.50%	290	2977	74,625	77,602	Upper Knoll, Summit
26	24	1268	1225	1050	4.10%	393	2977	102,798	105,776	Mesa, 1/3 Lower Knoll SF
24	22	1225	1195	1100	2.73%	68	2977	19,283	22,261	1/3 Lower Knoll SF
22	20	1195	915	1335	20.97%	98	2977	27,748	30,726	1/3 Lower Knoll SF, Lower Knoll MF, Lower Knoll Park
20	18	915	885	800	3.75%	182	2977	34,950	37,927	1/2 Valley MF, 1/8 Valley SF
18	12	885	875	800	1.25%	24	2977	5,200	8,177	1/8 Valley SF
16	14	919	896	1250	1.84%	288	2977	58,425	61,402	Hillside, 1/4 Valley SF
14	12	896	875	730	2.88%	47	2977	10,400	13,377	1/4 Valley SF
12	4			3500	1.61%	206	2977	43,225	46,202	1/2 Valley MF, 1/4 Valley SF, Valley Park
10	8			2200	4.62%	446	2977	94,760	97,737	Terraces
8	4			7500	0.29%	95	2977	31,185	34,162	Town Center
4	2			350	3.16%				0	
TOTAL					28	2,135	32,750	502,600	535,350	

Notes:

- Maximum Slope used for hydraulic analysis is 15%
 Node base flow is defined as the generation of sewer included for Fuel Modification, Open Space, and additional park space that is not within a neighborhood. This flow is factored equally among all nodes contributing to sewer system.

SEWER STUDY SUMMARY

						DEMEN 51051 5011211								
DATE:		9/19/2016				New	vland Sierra	SHT1OF1						
JOB NUME	BER:	990-001		: 9		REFER TO PLAN SHEET:								
		LENGTH	IN LINE	AVG. DRY	PEAKING FACTOR	PEAK WET	PEAK FLOW (DESIGN	LINE SIZE	DESIGN	DEPTH K'		(2)	C _a for	VELOCITY
FROM	TO	LENGTH	FLOW	WEATHER	FACTOR	WEATHER	FLOW)		DESIGN	DEFINK	dn (feet)	dn/D ⁽²⁾	(3)	

FROM	то	LENGTH	IN LINE FLOW	AVG. DRY WEATHER	PEAKING FACTOR	PEAK WET WEATHER	PEAK FLOW FLO	•	LINE SIZE	DESIGN	DEPTH K'	dn (feet)	dn/D ⁽²⁾	C _a for	VELOCITY
		(ft)	(gpd)	FLOW (gpd)	AVG. DRY TO PEAK WET	FLOW (gpd)	M.G.D.	C.F.S.	(inches)	SLOPE (%)	(,)			Velocity ⁽³⁾	(f.p.s.)
28	26	800.00	77,602	77,602	3.472	269,464	0.269	0.417	8	5.50	0.068143	0.17333	0.26	0.1623	5.78
26	24	1050.00	105,776	183,378	3.222	590,855	0.591	0.914	8	4.10	0.173159	0.28000	0.42	0.3130	6.57
24	22	1100.00	22,261	205,638	3.190	656,008	0.656	1.015	8	2.73	0.235468	0.33333	0.50	0.3930	5.81
22	20	1335.00	30,726	236,364	3.152	744,946	0.745	1.153	8	15.00	0.114073	0.22667	0.34	0.2355	11.01
20	18	800.00	37,927	274,291	3.111	853,360	0.853	1.320	10	3.75	0.144143	0.31667	0.38	0.2739	6.94
18	12	800.00	8,177	282,469	3.103	876,558	0.877	1.356	12	1.25	0.157708	0.40000	0.40	0.2934	4.62
12	4	3500.00	46,202	403,450	3.008	1,213,756	1.214	1.878	12	1.61	0.192245	0.45000	0.45	0.3428	5.48
4	2	350.00	-	535,350	2.935	1,571,416	1.571	2.432	12	3.16	0.177690	0.43000	0.43	0.3229	7.53
		*			-										
											. —————				
16	14	1250.00	61,402	61,402	3.544	217,599	0.218	0.337	8	1.84	0.095138	0.20667	0.31	0.2074	3.65
														- 4000	4.50

	14	12	730.00	13,377	74,780	3.484	260,500	0.261	0.403	8	2.88	0.091089	0.20000	0.30	0.1982	4.58
			·			>										
- 1	10	0	2200.00	97,737	97,737	3.403	332,636	0.333	0.515	8	4.62	0.091827	0.20000	0.30	0.1982	5.84
- 11	1 10 1	0	1 2200.00 1	เฮเเจเเ	01,101	0.100	00-,000	0.000								

0.677

12

0.437

3.316

131,900

437,348

Max dn/D 0.50

0.1982

0.3032

0.41

4.58

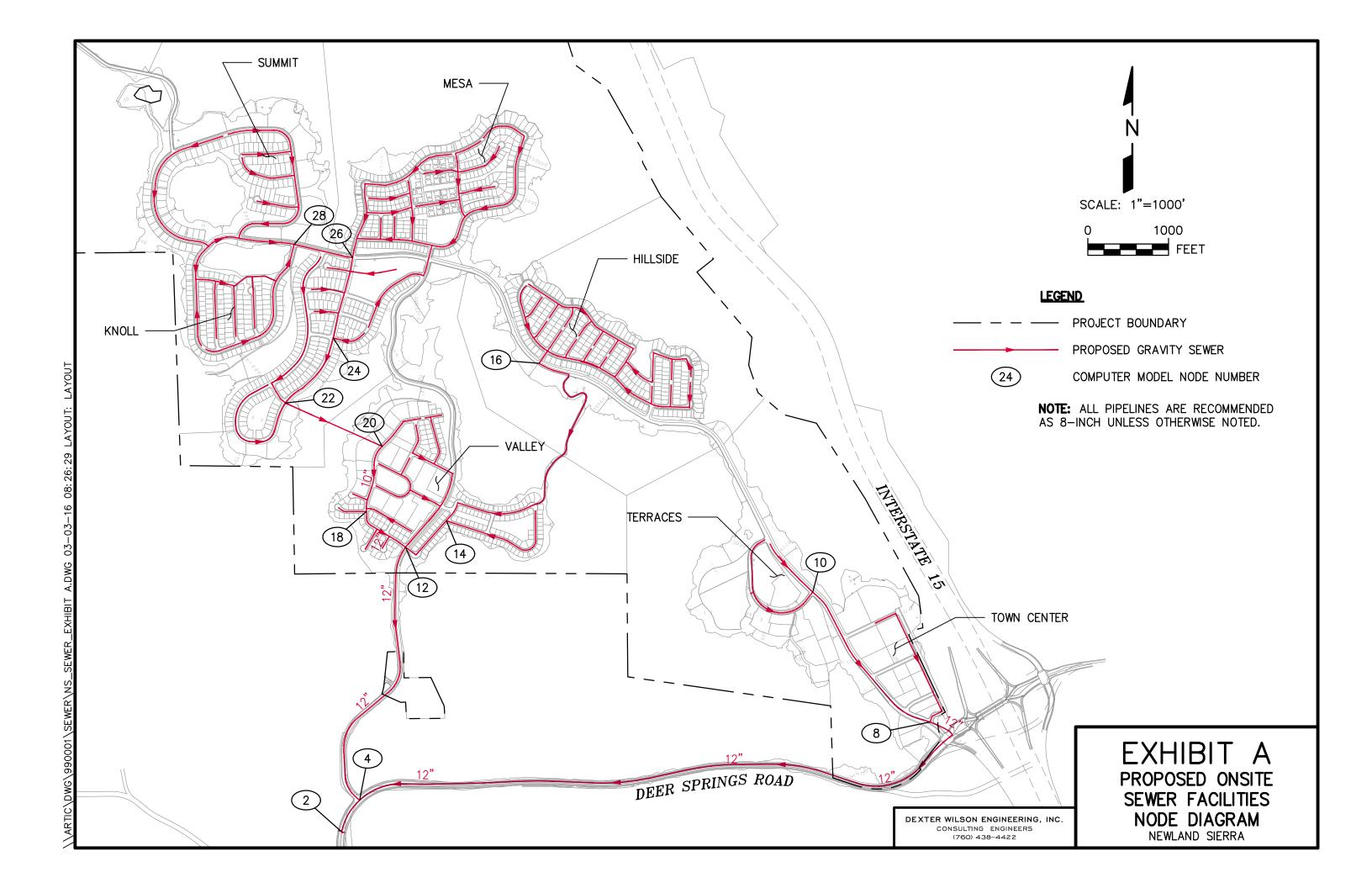
2.23

0.091089

0.163364

0.41000

0.29


7500.00

34,162

¹ K' based on n = 0.013

² dn/D using K' in Brater King Table 7-14

³ From Brater King Table 7-4 based on dn/D

