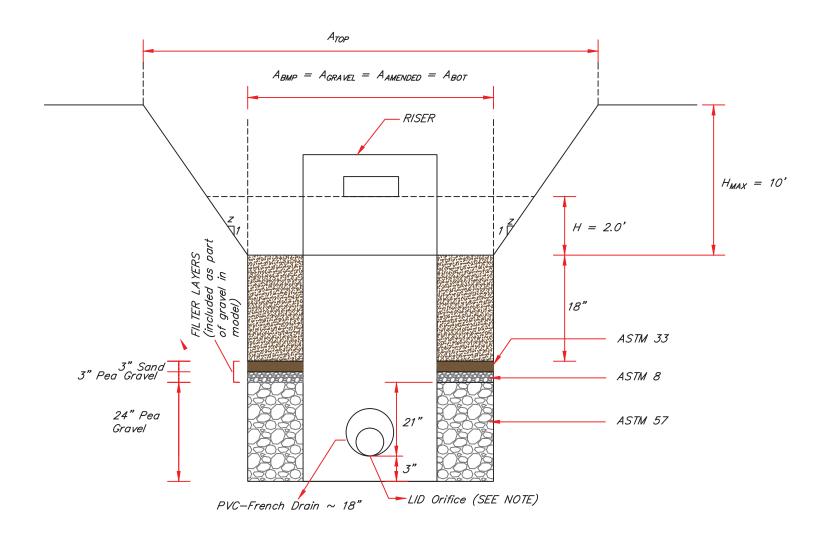


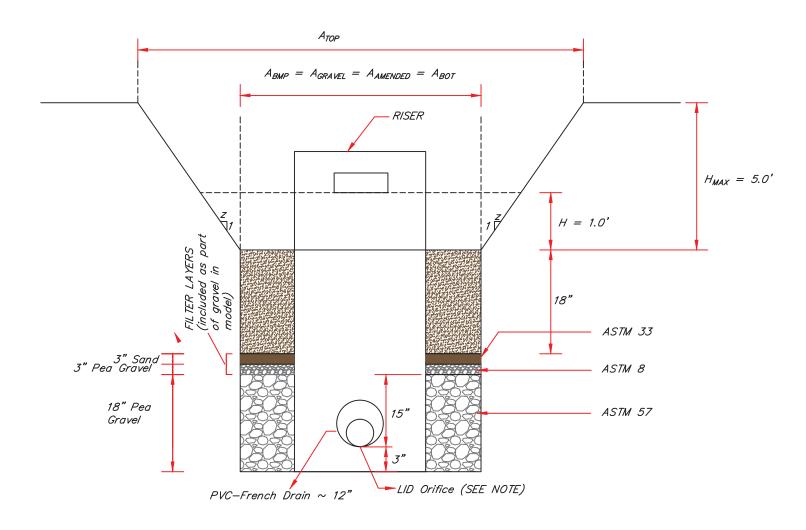
POST-DEVELOPMENT NATURAL AREAS SLOPE ANALYSIS NEWLAND SIERRA


ENGINEER OF WORK
FUSCOE ENGINEERING
6390 GREENWICH DRIVE, STE. 170
SAN DIECO, CA 92122
(858)554–1500

ERIC K. ARMSTRONG RCE 36083 DATE

BASIN M1MR1K1 DETAIL

(NOT TO SCALE)

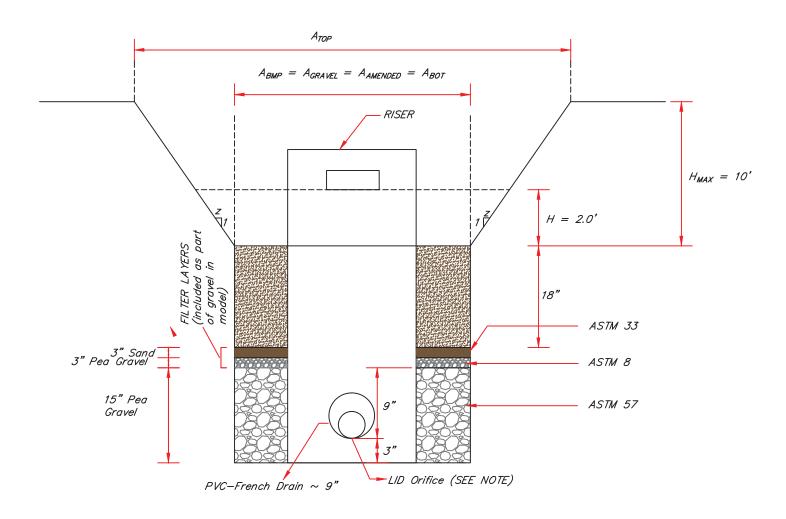


Note: $A_{BOT} = 94,224 \text{ ft}^2$ $A_{TOP} = 154,700 \text{ ft}^2$

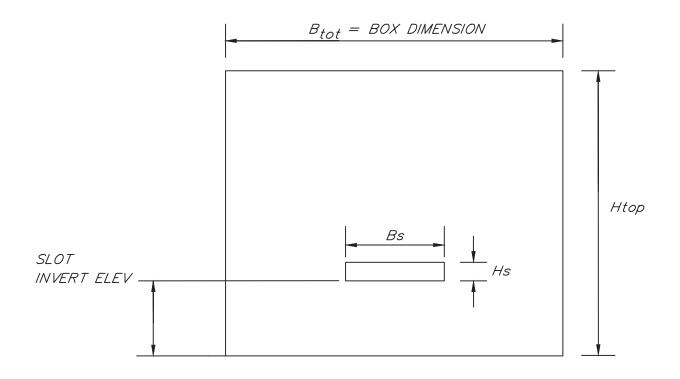
LID Diameter: 2-12 inch orifices to be used. Square Riser: 5' by 5' internal perimeter.

BASIN V11VR2 DETAIL

(NOT TO SCALE)



Note: $A_{BOT} = 20,200 \text{ ft}^2$ $A_{TOP} = 26,225 \text{ ft}^2$


LID Diameter: 2-6 inch orifices to be used. Square Riser: 3' by 3' internal perimeter.

BASIN V14 DETAIL

(NOT TO SCALE)

Note: $A_{BOT} = 7,862 \text{ ft}^2$ $A_{TOP} = 18,535 \text{ ft}^2$ LID Diameter: 1-6 inch orifices to be used. Square Riser: 2' by 2' internal perimeter.

BIO-FILTRATION OUTLET STRUCTURE DETAIL - SECTION (TYP)

NOT TO SCALE

DACINI		SLOT		SPILI	_WAY
BASIN	Bs (ft)	Hs (in)	ELEV (ft)	Btot (ft)	Htop (ft)
M1MR1K1	6.0	6.0	2.00	20.0	8.00
V11VR2	3.5	4.0	1.00	12.0	3.50
V14	1.3	3.0	2.00	8.0	8.00

NOTE: Btot IS THE INTERNAL PERIMETER OF RISER STRUCTURE.

FOR BASIN M1MR1K1 THE INTERNAL DIMENSIONS OF THE RISER STRUCTURE ARE 5' BY 5'.
FOR BASIN V11VR2 THE INTERNAL DIMENSIONS OF THE RISER STRUCTURE ARE 3' BY 3'.
FOR BASIN V14 THE INTERNAL DIMENSIONS OF THE RISER STRUCTURE ARE 2' BY 2'.

ATTACHMENT 6

SWMM Input Data in Input Format (Existing & Proposed Models)

PRE_DEV

[TITLE]

[TIMESERIES]

```
[OPTIONS]
WET_STEP 00:15:00
DRY_STEP 04:00:00
ROUTING_STEP 0:01:00
ALLOW_PONDING NO
INERTIAL_DAMPING PARTIAL
VARIABLE_STEP 0.75
LENGTHENING_STEP 0
MIN_SURFAREA 0
NORMAL FLOW LIMITED BOTH
SKIP STEADY STATE
FORCE MAIN EQUATION H-W
LINK_OFFSETS DEPTH
MIN SLOPE 0
MIN SLOPE
[EVAPORATION]
;;Type Parameters
;;-----
MONTHLY 0.06 0.08 0.11 0.16 0.18 0.21 0.21 0.20 0.16 0.12 0.08 0.06
DRY ONLY
           NO
[RAINGAGES]
;; Rain Time Snow Data
::Name Type Intrvl Catch Source
;;-----
LAKE WHOL
          INTENSITY 1:00 1.0 TIMESERIES LAKE WHOL
[SUBCATCHMENTS]
             Total Pcnt. Pcnt. Curb Snow
Raingage Outlet Area Imperv Width Slope Length Pack
;;Name
DMA-C LAKE_WHOL POC-25A 16.074 0 437 10 0
DMA-B LAKE_WHOL POC-25A 21.882 0 510 20 0
DMA-D LAKE_WHOL POC-25A 353.414 0 4847 40 0
[SUBAREAS]
;;Subcatchment N-Imperv N-Perv S-Imperv S-Perv PctZero RouteTo PctRouted
DMA-C 0.012 0.05 0.02 0.1 25 OUTLET DMA-B 0.012 0.05 0.05 0.1 25 OUTLET DMA-D 0.012 0.05 0.02 0.1 25 OUTLET DMA-D 0.012 0.05 0.02 0.1 25 OUTLET
[INFILTRATION]
;;Subcatchment Suction HydCon IMDmax
;;-----
DMA-C 6 0.1 0.32
DMA-B 3 0.2 0.31
DMA-D 9 0.025 0.33
[OUTFALLS]
;; Invert Outfall Stage/Table
;;Name Elev. Type Time Series
                                                  Gate
;;-----
        0 FREE
POC-25A
```

PRE_DEV

;;Name	Date	Time	Value
LAKE_WHOL			
[REPORT] INPUT NO CONTROLS NO SUBCATCHMENTS AL NODES ALL LINKS ALL	L		
[TAGS]			
[MAP] DIMENSIONS 1287. Units None	606 2381.88	86 6519.5	97 7077.860
[COORDINATES] ;;Node	X-Coord		Y-Coord
	3762.923		2844.115
[VERTICES] ;;Link ;;	X-Coord		Y-Coord
[Polygons] ;;Subcatchment ;;	X-Coord		Y-Coord
DMA-C	4425.929 2273.231 6281.780		6092.899 6063.052 6069.915
[SYMBOLS] ;;Gage ;;	X-Coord		Y-Coord
LAKE_WHOL			6864.407

[TITLE]

[OPTIONS] NORMAL FLOW LIMITED BOTH SKIP_STEADY_STATE NO FORCE_MAIN_EQUATION H-W LINK OFFSETS DEPTH MIN_SLOPE

[EVAPORATION]

;;Type Parameters ;;-----

[RAINGAGES]
;; Rain Time Snow Data
;;Name Type Intrvl Catch Source ;;-----

LAKE_WHOL INTENSITY 1:00 1.0 TIMESERIES LAKE_WHOL

[SUBCATCHMENTS]

;; ;;Name	Raingage LAKE_WHOL LAKE_WHOL LAKE_WHOL LAKE_WHOL LAKE_WHOL LAKE_WHOL LAKE_WHOL	Outlet	Total Area	Pcnt. Imperv	Width	Pcnt. Slope	Curb Length	Snow Pack
;;								
H1-D-S	LAKE_WHOL	Н1	1.523	67.08	439	1.5	0	
H2-D-S	LAKE_WHOL	H2	0.429	67.27	103	1.4	0	
H4-D-S	LAKE_WHOL	H4	0.665	67.13	115	1.2	0	
H5-D-S	LAKE_WHOL	Н5	0.637	67.37	113	1.3	0	
H6-D-S	LAKE_WHOL	Н6	0.615	67.09	111	1.4	0	
H7-D-S	LAKE_WHOL	Н7	0.541	67.11	114	1.4	0	
H8-D-S	LAKE_WHOL	H8HR1	18.138	65.00	707	1.5	0	
HR1-D-S	LAKE_WHOL	H8HR1	4.173	90.00	212	1.2	0	
H9-D-S	LAKE_WHOL	H9HR2	2.551	65.00	235	1.2	0	
HR2-D-S	LAKE_WHOL	H9HR2	1.737	90.00	90	1.3	0	
M1-D-S	LAKE_WHOL	M1MR1K1	39.309	65.00	1093	1.4	0	
K1-D-S	LAKE_WHOL	M1MR1K1	4.398	74.77	717	1.5	0	
MR1-D-S	LAKE WHOL	M1MR1K1	4.706	90.00	40	1.5	0	
V1-D-S	LAKE WHOL	V1	3.328	78.03	213	1.2	0	
V2-B-S	LAKE WHOL	V2	1.872	75.00	211	1.3	0	
V2-C-S	LAKE WHOL	V2	0.100	75.00	17	1.2	0	
V2-D-S	LAKE WHOL	V2	1.354	82.43	514	1.4	0	
V3-B-S	LAKE WHOL	V3	0.172	75.00	114	1.5	0	
V3-D-S	LAKE WHOL	V3	0.911	78.63	170	1.3	0	
V4-C-S	LAKE WHOL	V4	0.398	75.00	280	1.3	0	
V4-D-S	LAKE_WHOL LAKE_WHOL LAKE_WHOL LAKE_WHOL LAKE_WHOL LAKE_WHOL LAKE_WHOL	V4	1.268	75.00	202	1.2	0	
V5-C-S	LAKE WHOL	V5	2.572	78.03	226	1.5	0	
V6-C-S	LAKE WHOL	V6	1.053	78.04	95	1.3	0	
V7-B-S	LAKE WHOL	V7	1.977	75.00	168	1.3	0	
V7-C-S	LAKE WHOL	V7	0.025	75.00	64	1.2	0	
V7-D-S	LAKE WHOL	V7	0.725	86.40	191	1.4	0	
V8-C-S	LAKE WHOL	V8	2.418	51.47	250	1.5	0	
V8-D-S	LAKE WHOL	V8	0.092	50.00	122	1.4	0	
V9-B-S	LAKE WHOL	V9	0.329	75.00	287	1.2	0	
V9-C-S	LAKE WHOL	V9	2.276	78.67	309	1.4	0	
V9-D-S	LAKE_WHOL LAKE_WHOL LAKE_WHOL LAKE_WHOL LAKE_WHOL	V9 V9	0.141	75.00	198	1.5	0	
	_							

				POST D	EV			
V10-C-S	LAKE WHOL	V1()	0.717	75.00	96	1.2	0
V10-D-S	LAKE WHOL	V1()	8.862	78.20	277	1.4	0
V11-B-S	LAKE WHOL	V11	LVR2	3.321	75.00	190	1.5	0
V11-C-S	LAKE WHOL	V1.	LVR2	6.342	80.48	392	1.3	0
V11-D-S	LAKE WHOL	V1:	LVR2	0.128	75.00	103	1.4	0
VR2-B-S	LAKE WHOL	V1.	LVR2	1.569	90.00	80	1.2	0
VR2-C-S	LAKE WHOL	V1.	LVR2	0.033	90.00	17	1.5	0
V12-B-S	LAKE_WHOL	V12	2VR1	0.190	92.89	38	1.4	0
VR1-B-S	LAKE_WHOL	V12	2VR1	0.860	90.00	90	1.3	0
VR1-C-S	LAKE_WHOL	V12	2VR1	0.141	90.00	114	1.4	0
VR1-D-S	LAKE_WHOL	V12	2VR1	2.273	90.00	70	1.5	0
V13-B-S	LAKE_WHOL	V13	3	1.887	75.00	113	1.5	0
V13-D-S	LAKE_WHOL	V13	3	1.601	78.17	156	1.5	0
V14-B-S	LAKE_WHOL	V14	1	2.459	80.51	230	1.3	0
V14-D-S	LAKE_WHOL	V14	1	2.511	75.00	209	1.3	0
V15-B-S	LAKE_WHOL	V15		3.984	80.42	274	1.2	0
V15-D-S	LAKE_WHOL	V15		3.314	75.00	222	1.5	0
V16-B-S	LAKE_WHOL	V16		2.114	51.79	191	1.3	0
V16-D-S	LAKE_WHOL	V16		0.553	50.00	132	1.2	0
H1	LAKE_WHOL		C-25	0.04867	0	10	1.4	0
H2	LAKE_WHOL	POO	C-25	0.01504	0	10	1.2	0
H4	LAKE_WHOL		C-25	0.02181	0	10	1.4	0
Н5	LAKE_WHOL		C-25	0.02319	0	10	1.3	0
Н6	LAKE_WHOL		C-25	0.01974	0	10	1.2	0
Н7	LAKE_WHOL		C-25	0.01756	0	10	1.3	0
H8HR1	LAKE_WHOL		C-25	0.74529	0	10	1.4	0
H9HR2	LAKE_WHOL		C-25	0.17057	0	10	1.5	0
M1MR1K1	LAKE_WHOL	D-I		2.26974	0	10	1.2	0
V1	LAKE_WHOL		C-25	0.13464	0	10	1.3	0
V2	LAKE_WHOL		C-25	0.13407	0	10	1.4	0
V3	LAKE_WHOL		C-25	0.04408	0	10	1.5	0
V4	LAKE_WHOL		C-25	0.06474	0	10	1.5	0
V5	LAKE_WHOL		C-25	0.10376	0	10	1.4	0
V6	LAKE_WHOL		C-25	0.04258	0	10	1.3	0
V7	LAKE_WHOL		C-25	0.11019	0	10	1.2	0
V8	LAKE_WHOL		C-25	0.07117	0	10	1.5	0
V9	LAKE_WHOL		2-25	0.11134	0	10	1.3	0
V10	LAKE_WHOL		C-25	0.37821	0	10	1.2	0
V11VR2	LAKE_WHOL	D11		0.463728		10	1.5	0
V12VR1	LAKE_WHOL		C-25	0.16311	0	10	1.3	0
V13	LAKE_WHOL		C-25	0.06761	0	10	1.2	0
V14	LAKE_WHOL	D14		0.180487		10	1.4	0
V15	LAKE_WHOL		2-25	0.28788	0	10	1.5	0
V16	LAKE_WHOL		2-25	0.07576 0.442	0	10	1.4	0
OFF-1-B OFF-1-D	LAKE_WHOL		C-25 C-25	245.952	0	10.3 3373	15 40	0
011-1-0	TAVE_MHOT	POC	,-25	243.932	U	3313	40	0
[SUBAREAS]								
;;Subcatchment								
	N-Imperv	N-Perv	S-Imperv	S-Perv	PctZero	Rout	еТо	PctRouted
H1-D-S	N-Imperv 0.012	N-Perv 	S-Imperv 0.05	S-Perv 0.10	PctZero 25	Rout		PctRouted
H1-D-S H2-D-S							 ET	PctRouted
	0.012	0.05	0.05	0.10	25	OUTL	 ET ET	PctRouted
H2-D-S	0.012 0.012	0.05 0.05	0.05 0.05	0.10 0.10	25 25	OUTL:	 ET ET	PctRouted
H2-D-S H4-D-S	0.012 0.012 0.012 0.012	0.05 0.05 0.05	0.05 0.05 0.05	0.10 0.10 0.10 0.10	25 25 25 25	OUTL: OUTL: OUTL:	 ET ET ET	PctRouted
H2-D-S H4-D-S H5-D-S	0.012 0.012 0.012 0.012 0.012	0.05 0.05 0.05 0.05	0.05 0.05 0.05 0.05 0.05	0.10 0.10 0.10 0.10	25 25 25 25 25 25	OUTL: OUTL: OUTL: OUTL:	 ET ET ET ET	PctRouted
H2-D-S H4-D-S H5-D-S H6-D-S	0.012 0.012 0.012 0.012 0.012	0.05 0.05 0.05 0.05 0.05	0.05 0.05 0.05 0.05 0.05 0.05	0.10 0.10 0.10 0.10 0.10	25 25 25 25 25 25 25	OUTL: OUTL: OUTL: OUTL: OUTL:	 ET ET ET ET ET	PctRouted
H2-D-S H4-D-S H5-D-S H6-D-S H7-D-S	0.012 0.012 0.012 0.012 0.012 0.012 0.012	0.05 0.05 0.05 0.05 0.05 0.05	0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.10 0.10 0.10 0.10 0.10 0.10	25 25 25 25 25 25 25 25	OUTL: OUTL: OUTL: OUTL: OUTL: OUTL:	 3T 3T 3T 3T 3T 3T	PctRouted
H2-D-S H4-D-S H5-D-S H6-D-S H7-D-S H8-D-S	0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012	0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.10 0.10 0.10 0.10 0.10 0.10 0.10	25 25 25 25 25 25 25 25 25 25	OUTL: OUTL: OUTL: OUTL: OUTL: OUTL: OUTL:	 ET ET ET ET ET ET	PctRouted
H2-D-S H4-D-S H5-D-S H6-D-S H7-D-S H8-D-S HR1-D-S	0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	25 25 25 25 25 25 25 25 25 25 25	OUTL: OUTL: OUTL: OUTL: OUTL: OUTL: OUTL: OUTL:	 3T 3T 3T 3T 3T 3T 3T	PctRouted
H2-D-S H4-D-S H5-D-S H6-D-S H7-D-S H8-D-S HR1-D-S H9-D-S	0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	25 25 25 25 25 25 25 25 25 25 25 25 25	OUTL OUTL OUTL OUTL OUTL OUTL OUTL OUTL	27 27 27 27 27 27 27 27 27	PctRouted
H2-D-S H4-D-S H5-D-S H6-D-S H7-D-S H8-D-S HR1-D-S H9-D-S HR2-D-S	0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	25 25 25 25 25 25 25 25 25 25 25 25 25 2	OUTL:	27 27 27 27 27 27 27 27 27 27	PctRouted
H2-D-S H4-D-S H5-D-S H6-D-S H7-D-S H8-D-S HR1-D-S H9-D-S HR2-D-S M1-D-S	0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	25 25 25 25 25 25 25 25 25 25 25 25 25 2	OUTL:	27 27 27 27 27 27 27 27 27 27 27	PctRouted
H2-D-S H4-D-S H5-D-S H6-D-S H7-D-S H8-D-S HR1-D-S H9-D-S HR2-D-S M1-D-S K1-D-S	0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	25 25 25 25 25 25 25 25 25 25 25 25 25 2	OUTL:	27 27 27 27 27 27 27 27 27 27 27	PctRouted
H2-D-S H4-D-S H5-D-S H6-D-S H7-D-S H8-D-S HR1-D-S H9-D-S M1-D-S K1-D-S MR1-D-S	0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	25 25 25 25 25 25 25 25 25 25 25 25 25 2	OUTL:	72 72 72 72 73 73 73 73 73 73 73 73	PctRouted
H2-D-S H4-D-S H5-D-S H6-D-S H7-D-S H8-D-S HR1-D-S H9-D-S HR2-D-S M1-D-S K1-D-S V1-D-S V2-B-S V2-C-S	0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	25 25 25 25 25 25 25 25 25 25 25 25 25 2	OUTL:		PctRouted
H2-D-S H4-D-S H5-D-S H6-D-S H7-D-S H8-D-S HR1-D-S H9-D-S HR2-D-S M1-D-S K1-D-S V1-D-S V2-B-S V2-C-S V2-D-S	0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	25 25 25 25 25 25 25 25 25 25 25 25 25 2	OUTL:	3T 3T 3T 3T 3T 3T 3T 3T 3T 3T 3T 3T 3T	PctRouted
H2-D-S H4-D-S H5-D-S H6-D-S H7-D-S H8-D-S HR1-D-S H9-D-S M1-D-S K1-D-S W1-D-S V1-D-S V2-B-S V2-C-S V2-D-S V3-B-S	0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	25 25 25 25 25 25 25 25 25 25 25 25 25 2	OUTL:	3T 3T 3T 3T 3T 3T 3T 3T 3T 3T 3T 3T 3T	PctRouted
H2-D-S H4-D-S H5-D-S H6-D-S H7-D-S H8-D-S HR1-D-S HR2-D-S M1-D-S K1-D-S W1-D-S V1-D-S V2-B-S V2-C-S V2-D-S V3-B-S V3-D-S	0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	25 25 25 25 25 25 25 25 25 25 25 25 25 2	OUTL:	3T 2T 2T 2T 2T 2T 2T 2T 2T 2T 2	PctRouted
H2-D-S H4-D-S H5-D-S H6-D-S H7-D-S H8-D-S HR1-D-S HR2-D-S M1-D-S K1-D-S V1-D-S V1-D-S V2-B-S V2-C-S V3-B-S V3-D-S V4-C-S	0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	25 25 25 25 25 25 25 25 25 25 25 25 25 2	OUTL:	3T 3T 3T 3T 3T 3T 3T 3T 3T 3T 3T 3T 3T 3	PctRouted
H2-D-S H4-D-S H5-D-S H6-D-S H7-D-S H8-D-S HR1-D-S HR1-D-S M1-D-S K1-D-S M1-D-S V1-D-S V2-B-S V2-C-S V2-D-S V3-D-S V4-C-S V4-D-S	0.012 0.012	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	25 25 25 25 25 25 25 25 25 25 25 25 25 2	OUTL:	27 27 27 27 27 27 27 27 27 27 27 27 27 2	PctRouted
H2-D-S H4-D-S H5-D-S H6-D-S H7-D-S H8-D-S HR1-D-S H9-D-S M1-D-S K1-D-S M1-D-S V1-D-S V2-B-S V2-C-S V2-D-S V3-B-S V4-C-S V4-C-S V4-D-S V5-C-S	0.012 0.012	0.05 0.05	0.05 0.05	0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	25 25 25 25 25 25 25 25 25 25 25 25 25 2	OUTL:	2T 2T 2T 2T 2T 2T 2T 2T 2T 2T 2T 2T 2T 2	PctRouted
H2-D-S H4-D-S H5-D-S H6-D-S H7-D-S H8-D-S HR1-D-S H9-D-S HR2-D-S M1-D-S X1-D-S X1-D-S V1-D-S V2-B-S V2-C-S V2-D-S V3-B-S V3-D-S V4-C-S V4-D-S V5-C-S V6-C-S	0.012 0.012	0.05 0.05	0.05 0.05	0.10 0.10	25	OUTL:		PctRouted
H2-D-S H4-D-S H5-D-S H6-D-S H7-D-S H8-D-S HR1-D-S H9-D-S M1-D-S K1-D-S W1-D-S V1-D-S V2-B-S V2-C-S V2-D-S V3-B-S V3-D-S V4-C-S V4-D-S V4-D-S V5-C-S V6-C-S V7-B-S	0.012 0.012	0.05 0.05	0.05 0.05	0.10 0.10	25	OUTL:		PctRouted
H2-D-S H4-D-S H5-D-S H6-D-S H7-D-S H8-D-S HR1-D-S H9-D-S M1-D-S K1-D-S W1-D-S V2-B-S V2-C-S V2-D-S V3-B-S V4-C-S V4-C-S V4-C-S V4-C-S V5-C-S V7-B-S V7-C-S	0.012 0.012	0.05 0.05	0.05 0.05	0.10 0.10	25 25 25 25 25 25 25 25 25 25 25 25 25 2	OUTL:		PctRouted
H2-D-S H4-D-S H5-D-S H6-D-S H7-D-S H8-D-S HR1-D-S HR2-D-S M1-D-S K1-D-S W1-D-S V2-B-S V2-C-S V2-D-S V3-B-S V4-C-S V4-C-S V4-C-S V4-C-S V4-C-S V7-D-S V7-D-S	0.012 0.012	0.05 0.05	0.05 0.05	0.10 0.10	25 25 25 25 25 25 25 25 25 25 25 25 25 2	OUTL:		PctRouted
H2-D-S H4-D-S H5-D-S H6-D-S H7-D-S H8-D-S HR1-D-S H9-D-S M1-D-S K1-D-S W1-D-S V2-B-S V2-C-S V2-D-S V3-B-S V4-C-S V4-C-S V4-C-S V4-C-S V7-B-S V7-B-S V7-C-S	0.012 0.012	0.05 0.05	0.05 0.05	0.10 0.10	25 25 25 25 25 25 25 25 25 25 25 25 25 2	OUTL:		PctRouted

				POST_D	DEV	
V8-D-S	0.012	0.05	0.05	0.10	25	OUTLET
V9-B-S	0.012	0.05	0.05	0.10	25	OUTLET
V9-C-S	0.012	0.05	0.05	0.10	25	OUTLET
V9-D-S	0.012	0.05	0.05	0.10	25	OUTLET
V10-C-S	0.012	0.05	0.05	0.10	25	OUTLET
V10-D-S	0.012	0.05	0.05	0.10	25	OUTLET
V11-B-S	0.012	0.05	0.05	0.10	25	OUTLET
V11-C-S	0.012	0.05	0.05	0.10	25	OUTLET
V11-D-S	0.012	0.05	0.05	0.10	25	OUTLET
VR2-B-S	0.012	0.05	0.05	0.10	25	OUTLET
VR2-C-S	0.012	0.05	0.05	0.10	25	OUTLET
V12-B-S	0.012	0.05	0.05	0.10	25	OUTLET
VR1-B-S	0.012	0.05	0.05	0.10	25	OUTLET
VR1-C-S	0.012	0.05	0.05	0.10	25	OUTLET
VR1-D-S	0.012	0.05	0.05	0.10	25	OUTLET
V13-B-S	0.012	0.05	0.05	0.10	25	OUTLET
V13-D-S	0.012	0.05	0.05	0.10	25	OUTLET
V14-B-S	0.012	0.05	0.05	0.10	25	OUTLET
V14-D-S	0.012	0.05	0.05	0.10	25	OUTLET
V15-B-S	0.012	0.05	0.05	0.10	25	OUTLET
V15-D-S	0.012	0.05	0.05	0.10	25	OUTLET
V16-B-S	0.012	0.05	0.05	0.10	25	OUTLET
V16-D-S	0.012	0.05	0.05	0.10	25	OUTLET
H1	0.012	0.05	0.05	0.10	25	OUTLET
H2	0.012	0.05	0.05	0.10	25	OUTLET
H4	0.012	0.05	0.05	0.10	25	OUTLET
H5	0.012	0.05	0.05	0.10	25	OUTLET
H6	0.012	0.05	0.05	0.10	25	OUTLET
H7	0.012	0.05	0.05	0.10	25	OUTLET
H8HR1	0.012	0.05	0.05	0.10	25	OUTLET
H9HR2	0.012	0.05	0.05	0.10	25 25	OUTLET
M1MR1K1 V1	0.012 0.012	0.05	0.05	0.10	25	OUTLET
V2	0.012	0.05	0.05	0.10	25	OUTLET OUTLET
V3	0.012	0.05	0.05	0.10	25	OUTLET
V4	0.012	0.05	0.05	0.10	25	OUTLET
V5	0.012	0.05	0.05	0.10	25	OUTLET
V6	0.012	0.05	0.05	0.10	25	OUTLET
V7	0.012	0.05	0.05	0.10	25	OUTLET
V8	0.012	0.05	0.05	0.10	25	OUTLET
V9	0.012	0.05	0.05	0.10	25	OUTLET
V10	0.012	0.05	0.05	0.10	25	OUTLET
V11VR2	0.012	0.05	0.05	0.10	25	OUTLET
V12VR1	0.012	0.05	0.05	0.10	25	OUTLET
V13	0.012	0.05	0.05	0.10	25	OUTLET
V14	0.012	0.05	0.05	0.10	25	OUTLET
V15	0.012	0.05	0.05	0.10	25	OUTLET
V16	0.012	0.05	0.05	0.10	25	OUTLET
OFF-1-B	0.012		0.05	0.10	25	OUTLET
OFF-1-D	0.012	0.05	0.05	0.10	25	OUTLET
[INFILTRATION]						
;;Subcatchment	Suction	HydCon	IMDmax			
;;						
H1-D-S	9.0	0.01875	0.33			
H2-D-S	9.0	0.01875	0.33			
H4-D-S	9.0	0.01875	0.33			
H5-D-S	9.0	0.01875	0.33			

[INFILTRATION]			
;;Subcatchment			
;;			
		0.01875	
H2-D-S	9.0	0.01875	0.33
H4-D-S	9.0	0.01875	0.33
H5-D-S	9.0	0.01875	0.33
H6-D-S	9.0	0.01875	0.33
H7-D-S	9.0	0.01875	0.33
H8-D-S	9.0	0.01875	0.33
HR1-D-S	9.0	0.01875	0.33
H9-D-S	9.0	0.01875	0.33
HR2-D-S	9.0	0.01875	0.33
M1-D-S	9.0	0.01875	0.33
K1-D-S	9.0	0.01875	0.33
MR1-D-S	9.0	0.01875	0.33
V1-D-S	9.0	0.01875	0.33
		0.15	
V2-C-S	6.0	0.075	0.32
V2-D-S	9.0	0.01875	0.33
V3-B-S	3.0	0.15	0.31
V3-D-S	9.0	0.01875	0.33
V4-C-S	6.0	0.075	0.32
V4-D-S	9.0	0.01875	0.33
V5-C-S	6.0	0.075	0.32
V6-C-S	6.0	0.075	0.32

					-			
V7-B-S	3.0	0.15	0.31					
V7-C-S	6.0	0.075	0.32					
V7-D-S	9.0	0.01875	0.33					
V8-C-S	6.0	0.075	0.32					
V8-D-S	9.0	0.01875	0.33					
V9-B-S	3.0	0.15	0.31					
V9-C-S	6.0	0.075	0.32					
V9-D-S	9.0	0.01875	0.33					
V10-C-S	6.0	0.075	0.32					
V10-D-S	9.0	0.01875	0.33					
V11-B-S	3.0	0.15	0.31					
V11-C-S	6.0	0.075	0.32					
V11-D-S	9.0	0.01875	0.33					
VR2-B-S	3.0	0.15	0.31					
VR2-C-S	6.0	0.075	0.32					
V12-B-S	3.0	0.15	0.31					
VR1-B-S	3.0	0.15	0.31					
VR1-C-S	6.0	0.075	0.32					
VR1-D-S	9.0	0.01875	0.33					
V13-B-S	3.0	0.15	0.31					
V13-D-S	9.0	0.01875	0.33					
V14-B-S	3.0	0.15	0.31					
V14-D-S	9.0	0.01875	0.33					
V15-B-S	3.0	0.15	0.31					
V15-D-S	9.0	0.01875	0.33					
V16-B-S	3.0	0.15	0.31					
V16-D-S	9.0	0.01875	0.33					
Н1	9.0	0.01875	0.33					
H2			0.33					
	9.0	0.01875						
H4	9.0	0.01875	0.33					
Н5	9.0	0.01875	0.33					
Н6	9.0	0.01875	0.33					
н7	9.0	0.01875	0.33					
H8HR1	9.0	0.01875	0.33					
H9HR2	9.0	0.01875	0.33					
M1MR1K1	9.0	0.01875	0.33					
V1	9.0	0.01875	0.33					
			0.33					
V2	9.0	0.01875	0.33					
V2 V3	9.0 9.0	0.01875 0.01875	0.33					
V2	9.0 9.0 6.0	0.01875						
V2 V3 V4	9.0 9.0 6.0	0.01875 0.01875 0.075	0.33 0.32					
V2 V3 V4 V5	9.0 9.0 6.0 3.0	0.01875 0.01875 0.075 0.15	0.33 0.32 0.31					
V2 V3 V4 V5 V6	9.0 9.0 6.0 3.0 6.0	0.01875 0.01875 0.075 0.15 0.075	0.33 0.32 0.31 0.32					
V2 V3 V4 V5 V6 V7	9.0 9.0 6.0 3.0 6.0 9.0	0.01875 0.01875 0.075 0.15 0.075 0.01875	0.33 0.32 0.31 0.32 0.33					
V2 V3 V4 V5 V6	9.0 9.0 6.0 3.0 6.0	0.01875 0.01875 0.075 0.15 0.075	0.33 0.32 0.31 0.32					
V2 V3 V4 V5 V6 V7 V8	9.0 9.0 6.0 3.0 6.0 9.0	0.01875 0.01875 0.075 0.15 0.075 0.01875 0.075	0.33 0.32 0.31 0.32 0.33 0.32					
V2 V3 V4 V5 V6 V7 V8 V9	9.0 9.0 6.0 3.0 6.0 9.0 6.0	0.01875 0.01875 0.075 0.15 0.075 0.01875 0.075 0.075	0.33 0.32 0.31 0.32 0.33 0.32 0.32					
V2 V3 V4 V5 V6 V7 V8 V9 V10	9.0 9.0 6.0 3.0 6.0 9.0 6.0 6.0	0.01875 0.01875 0.075 0.15 0.075 0.01875 0.075 0.075 0.075	0.33 0.32 0.31 0.32 0.33 0.32 0.32					
V2 V3 V4 V5 V6 V7 V8 V9	9.0 9.0 6.0 3.0 6.0 9.0 6.0	0.01875 0.01875 0.075 0.15 0.075 0.01875 0.075 0.075	0.33 0.32 0.31 0.32 0.33 0.32 0.32					
V2 V3 V4 V5 V6 V7 V8 V9 V10 V11VR2	9.0 9.0 6.0 3.0 6.0 9.0 6.0 6.0 6.0	0.01875 0.01875 0.075 0.15 0.075 0.01875 0.075 0.075 0.075 0.075	0.33 0.32 0.31 0.32 0.33 0.32 0.32 0.32					
V2 V3 V4 V5 V6 V7 V8 V9 V10 V11VR2 V12VR1	9.0 9.0 6.0 3.0 6.0 9.0 6.0 6.0 6.0 6.0	0.01875 0.01875 0.075 0.15 0.075 0.01875 0.075 0.075 0.075 0.075 0.075	0.33 0.32 0.31 0.32 0.33 0.32 0.32 0.32 0.32					
V2 V3 V4 V5 V6 V7 V8 V9 V10 V11VR2 V12VR1 V13	9.0 9.0 6.0 3.0 6.0 9.0 6.0 6.0 6.0 6.0 3.0 9.0	0.01875 0.01875 0.075 0.15 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.15	0.33 0.32 0.31 0.32 0.33 0.32 0.32 0.32 0.32 0.32					
V2 V3 V4 V5 V6 V7 V8 V9 V10 V11VR2 V12VR1 V13 V14	9.0 9.0 6.0 3.0 6.0 9.0 6.0 6.0 6.0 6.0 9.0 3.0	0.01875 0.01875 0.075 0.15 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.15 0.15	0.33 0.32 0.31 0.32 0.33 0.32 0.32 0.32 0.32 0.32 0.32					
V2 V3 V4 V5 V6 V7 V8 V9 V10 V11VR2 V12VR1 V13	9.0 9.0 6.0 3.0 6.0 9.0 6.0 6.0 6.0 6.0 3.0 9.0	0.01875 0.01875 0.075 0.15 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.15	0.33 0.32 0.31 0.32 0.33 0.32 0.32 0.32 0.32 0.32					
V2 V3 V4 V5 V6 V7 V8 V9 V10 V11VR2 V12VR1 V13 V14 V15	9.0 9.0 6.0 3.0 6.0 9.0 6.0 6.0 6.0 6.0 9.0 3.0 9.0	0.01875 0.01875 0.075 0.15 0.075 0.01875 0.075 0.075 0.075 0.075 0.075 0.15 0.15 0.15	0.33 0.32 0.31 0.32 0.33 0.32 0.32 0.32 0.32 0.32 0.33 0.31					
V2 V3 V4 V5 V6 V7 V8 V9 V10 V11VR2 V12VR1 V13 V14 V15 V16	9.0 9.0 6.0 3.0 6.0 9.0 6.0 6.0 6.0 3.0 9.0 3.0 3.0	0.01875 0.01875 0.075 0.15 0.075 0.075 0.075 0.075 0.075 0.075 0.15 0.15 0.15 0.15	0.33 0.32 0.31 0.32 0.33 0.32 0.32 0.32 0.32 0.32 0.31 0.31					
V2 V3 V4 V5 V6 V7 V8 V9 V10 V11VR2 V12VR1 V13 V14 V15 V16 OFF-1-B	9.0 9.0 6.0 3.0 6.0 9.0 6.0 6.0 6.0 3.0 9.0 3.0 3.0	0.01875 0.01875 0.075 0.15 0.075 0.01875 0.075 0.075 0.075 0.075 0.15 0.15 0.15 0.15	0.33 0.32 0.31 0.32 0.33 0.32 0.32 0.32 0.32 0.32 0.31 0.31 0.31					
V2 V3 V4 V5 V6 V7 V8 V9 V10 V11VR2 V12VR1 V13 V14 V15 V16	9.0 9.0 6.0 3.0 6.0 9.0 6.0 6.0 6.0 3.0 9.0 3.0 3.0	0.01875 0.01875 0.075 0.15 0.075 0.075 0.075 0.075 0.075 0.075 0.15 0.15 0.15 0.15	0.33 0.32 0.31 0.32 0.33 0.32 0.32 0.32 0.32 0.32 0.31 0.31					
V2 V3 V4 V5 V6 V7 V8 V9 V10 V11VR2 V12VR1 V13 V14 V15 V16 OFF-1-B	9.0 9.0 6.0 3.0 6.0 9.0 6.0 6.0 6.0 3.0 9.0 3.0 3.0	0.01875 0.01875 0.075 0.15 0.075 0.01875 0.075 0.075 0.075 0.075 0.15 0.15 0.15 0.15	0.33 0.32 0.31 0.32 0.33 0.32 0.32 0.32 0.32 0.32 0.31 0.31 0.31					
V2 V3 V4 V5 V6 V7 V8 V9 V10 V11VR2 V12VR1 V13 V14 V15 V16 OFF-1-B	9.0 9.0 6.0 3.0 6.0 9.0 6.0 6.0 6.0 3.0 9.0 3.0 3.0	0.01875 0.01875 0.075 0.15 0.075 0.01875 0.075 0.075 0.075 0.075 0.15 0.15 0.15 0.15	0.33 0.32 0.31 0.32 0.33 0.32 0.32 0.32 0.32 0.32 0.31 0.31 0.31					
V2 V3 V4 V5 V6 V7 V8 V9 V10 V11VR2 V12VR1 V13 V14 V15 V16 OFF-1-B OFF-1-D	9.0 9.0 6.0 3.0 6.0 9.0 6.0 6.0 6.0 3.0 9.0 3.0 3.0	0.01875 0.01875 0.075 0.15 0.075 0.01875 0.075 0.075 0.075 0.075 0.15 0.15 0.15 0.15	0.33 0.32 0.31 0.32 0.33 0.32 0.32 0.32 0.32 0.32 0.31 0.31 0.31					
V2 V3 V4 V5 V6 V7 V8 V9 V10 V11VR2 V12VR1 V13 V14 V15 V16 OFF-1-B OFF-1-D	9.0 9.0 6.0 3.0 6.0 9.0 6.0 6.0 6.0 3.0 9.0 3.0 3.0 3.0	0.01875 0.01875 0.075 0.15 0.075 0.01875 0.075 0.075 0.075 0.075 0.15 0.15 0.15 0.15 0.15 0.15 0.20 0.025	0.33 0.32 0.31 0.32 0.33 0.32 0.32 0.32 0.32 0.32 0.31 0.31 0.31					
V2 V3 V4 V5 V6 V7 V8 V9 V10 V11VR2 V12VR1 V13 V14 V15 V16 OFF-1-B OFF-1-D	9.0 9.0 6.0 3.0 6.0 9.0 6.0 6.0 6.0 3.0 9.0 3.0 3.0 3.0 9.0	0.01875 0.01875 0.075 0.15 0.075 0.075 0.075 0.075 0.075 0.075 0.15 0.15 0.15 0.15 0.15 0.20 0.025	0.33 0.32 0.31 0.32 0.33 0.32 0.32 0.32 0.32 0.32 0.31 0.31 0.31					
V2 V3 V4 V5 V6 V7 V8 V9 V10 V11VR2 V12VR1 V13 V14 V15 V16 OFF-1-B OFF-1-D	9.0 9.0 6.0 3.0 6.0 9.0 6.0 6.0 6.0 3.0 9.0 3.0 3.0 3.0 9.0	0.01875 0.01875 0.075 0.15 0.075 0.01875 0.075 0.075 0.075 0.075 0.15 0.15 0.15 0.15 0.15 0.15 0.20 0.025	0.33 0.32 0.31 0.32 0.33 0.32 0.32 0.32 0.32 0.32 0.31 0.31 0.31					
V2 V3 V4 V5 V6 V7 V8 V9 V10 V11VR2 V12VR1 V13 V14 V15 V16 OFF-1-B OFF-1-D [LID_CONTROLS] ;;	9.0 9.0 6.0 3.0 6.0 9.0 6.0 6.0 6.0 3.0 9.0 3.0 3.0 9.0 3.0 9.0	0.01875 0.01875 0.075 0.15 0.075 0.075 0.075 0.075 0.075 0.075 0.15 0.15 0.15 0.15 0.15 0.20 0.025	0.33 0.32 0.31 0.32 0.33 0.32 0.32 0.32 0.32 0.32 0.31 0.31 0.31					
V2 V3 V4 V5 V6 V7 V8 V9 V10 V11VR2 V12VR1 V13 V14 V15 V16 OFF-1-B OFF-1-D [LID_CONTROLS] ;; ;;	9.0 9.0 6.0 3.0 6.0 9.0 6.0 6.0 6.0 3.0 9.0 3.0 3.0 3.0 9.0	0.01875 0.01875 0.075 0.15 0.075 0.01875 0.075 0.075 0.075 0.075 0.15 0.15 0.15 0.15 0.15 0.15	0.33 0.32 0.31 0.32 0.33 0.32 0.32 0.32 0.32 0.31 0.33 0.31 0.31 0.31 0.31			E		
V2 V3 V4 V5 V6 V7 V8 V9 V10 V11VR2 V12VR1 V13 V14 V15 V16 OFF-1-B OFF-1-D [LID_CONTROLS] ;; ;;	9.0 9.0 6.0 3.0 6.0 9.0 6.0 6.0 6.0 3.0 9.0 3.0 3.0 3.0 9.0	0.01875 0.01875 0.075 0.15 0.075 0.01875 0.075 0.075 0.075 0.075 0.15 0.15 0.15 0.15 0.15 0.20 0.025	0.33 0.32 0.31 0.32 0.33 0.32 0.32 0.32 0.32 0.31 0.31 0.31 0.31 0.31	0	0	5		
V2 V3 V4 V5 V6 V7 V8 V9 V10 V11VR2 V12VR1 V13 V14 V15 V16 OFF-1-B OFF-1-D [LID_CONTROLS] ;; ;;	9.0 9.0 6.0 3.0 6.0 9.0 6.0 6.0 6.0 3.0 9.0 3.0 3.0 3.0 9.0	0.01875 0.01875 0.075 0.15 0.075 0.01875 0.075 0.075 0.075 0.075 0.15 0.15 0.15 0.15 0.15 0.20 0.025	0.33 0.32 0.31 0.32 0.33 0.32 0.32 0.32 0.32 0.31 0.31 0.31 0.31 0.31		0 0.1	5 5	5	1.5
V2 V3 V4 V5 V6 V7 V8 V9 V10 V11VR2 V12VR1 V13 V14 V15 V16 OFF-1-B OFF-1-D [LID_CONTROLS] ;; ;;	9.0 9.0 6.0 3.0 6.0 9.0 6.0 6.0 6.0 3.0 9.0 3.0 3.0 3.0 9.0 Type/Layer BC SURFACE SOIL	0.01875 0.01875 0.075 0.15 0.075 0.01875 0.075 0.075 0.075 0.15 0.15 0.15 0.15 0.15 0.20 0.025	0.33 0.32 0.31 0.32 0.33 0.32 0.32 0.32 0.32 0.31 0.31 0.31 0.31 0.31 0.31	0.2	0.1		5	1.5
V2 V3 V4 V5 V6 V7 V8 V9 V10 V11VR2 V12VR1 V13 V14 V15 V16 OFF-1-B OFF-1-D [LID_CONTROLS] ;; ;;	9.0 9.0 6.0 3.0 6.0 9.0 6.0 6.0 6.0 3.0 9.0 3.0 3.0 3.0 3.0 9.0 Type/Layer 	0.01875 0.01875 0.075 0.15 0.075 0.01875 0.075 0.075 0.075 0.15 0.15 0.15 0.15 0.15 0.20 0.025	0.33 0.32 0.31 0.32 0.33 0.32 0.32 0.32 0.32 0.31 0.31 0.31 0.31 0.31 0.31 0.4 0.67	0.2	0.1		5	1.5
V2 V3 V4 V5 V6 V7 V8 V9 V10 V11VR2 V12VR1 V13 V14 V15 V16 OFF-1-B OFF-1-D [LID_CONTROLS] ;; ;;	9.0 9.0 6.0 3.0 6.0 9.0 6.0 6.0 6.0 3.0 9.0 3.0 3.0 3.0 9.0 Type/Layer BC SURFACE SOIL	0.01875 0.01875 0.075 0.15 0.075 0.01875 0.075 0.075 0.075 0.15 0.15 0.15 0.15 0.15 0.20 0.025	0.33 0.32 0.31 0.32 0.33 0.32 0.32 0.32 0.32 0.31 0.31 0.31 0.31 0.31 0.31	0.2	0.1		5	1.5
V2 V3 V4 V5 V6 V7 V8 V9 V10 V11VR2 V12VR1 V13 V14 V15 V16 OFF-1-B OFF-1-D [LID_CONTROLS] ;; ;;	9.0 9.0 6.0 3.0 6.0 9.0 6.0 6.0 6.0 3.0 9.0 3.0 3.0 3.0 3.0 9.0 Type/Layer 	0.01875 0.01875 0.075 0.15 0.075 0.01875 0.075 0.075 0.075 0.15 0.15 0.15 0.15 0.15 0.20 0.025	0.33 0.32 0.31 0.32 0.33 0.32 0.32 0.32 0.32 0.31 0.31 0.31 0.31 0.31 0.31 0.4 0.67	0.2	0.1		5	1.5
V2 V3 V4 V5 V6 V7 V8 V9 V10 V11VR2 V12VR1 V13 V14 V15 V16 OFF-1-B OFF-1-D [LID_CONTROLS] ;; ;;	9.0 9.0 6.0 3.0 6.0 9.0 6.0 6.0 6.0 3.0 9.0 3.0 3.0 3.0 9.0 Type/Layer BC SURFACE SURFACE SOIL STORAGE DRAIN	0.01875 0.01875 0.075 0.15 0.075 0.01875 0.075 0.075 0.075 0.15 0.15 0.15 0.15 0.15 0.20 0.025	0.33 0.32 0.31 0.32 0.33 0.32 0.32 0.32 0.32 0.31 0.31 0.31 0.31 0.31 0.31 0.4 0.67	0.2	0.1		5	1.5
V2 V3 V4 V5 V6 V7 V8 V9 V10 V11VR2 V12VR1 V13 V14 V15 V16 OFF-1-B OFF-1-D [LID_CONTROLS] ;; ;;	9.0 9.0 6.0 3.0 6.0 9.0 6.0 6.0 6.0 3.0 9.0 3.0 3.0 3.0 9.0 Type/Layer BC SURFACE SURFACE SOIL STORAGE DRAIN BC	0.01875 0.01875 0.075 0.15 0.075 0.01875 0.075 0.075 0.075 0.15 0.01875 0.15 0.15 0.15 0.15 0.20 0.025 Parameters	0.33 0.32 0.31 0.32 0.33 0.32 0.32 0.32 0.32 0.31 0.33 0.31 0.31 0.31 0.31 0.35 0.31 0.31 0.31	0.2	0.1 0 6	5	5	1.5
V2 V3 V4 V5 V6 V7 V8 V9 V10 V11VR2 V12VR1 V13 V14 V15 V16 OFF-1-B OFF-1-D [LID_CONTROLS] ;; ;;	9.0 9.0 6.0 3.0 6.0 9.0 6.0 6.0 6.0 3.0 9.0 3.0 3.0 9.0 Type/Layer BC SURFACE SOIL STORAGE DRAIN BC SURFACE	0.01875 0.01875 0.075 0.15 0.075 0.075 0.075 0.075 0.075 0.15 0.01875 0.15 0.15 0.15 0.20 0.025 Parameters	0.33 0.32 0.31 0.32 0.33 0.32 0.32 0.32 0.32 0.31 0.31 0.31 0.31 0.31 0.31 0.35 0.05 0.4 0.67 0.5	0.2 0 3	0.1 0 6	5		
V2 V3 V4 V5 V6 V7 V8 V9 V10 V11VR2 V12VR1 V13 V14 V15 V16 OFF-1-B OFF-1-D [LID_CONTROLS] ;; ;;	9.0 9.0 6.0 3.0 6.0 9.0 6.0 6.0 6.0 3.0 9.0 3.0 3.0 3.0 9.0 Type/Layer BC SURFACE SURFACE SOIL STORAGE DRAIN BC	0.01875 0.01875 0.075 0.15 0.075 0.075 0.075 0.075 0.075 0.15 0.01875 0.15 0.15 0.15 0.20 0.025 Parameters	0.33 0.32 0.31 0.32 0.33 0.32 0.32 0.32 0.32 0.31 0.33 0.31 0.31 0.31 0.31 0.35 0.31 0.31	0.2	0.1 0 6	5	5	1.5
V2 V3 V4 V5 V6 V7 V8 V9 V10 V11VR2 V12VR1 V13 V14 V15 V16 OFF-1-B OFF-1-D [LID_CONTROLS] ;; ;;	9.0 9.0 6.0 3.0 6.0 9.0 6.0 6.0 6.0 3.0 9.0 3.0 3.0 3.0 3.0 9.0 Type/Layer BC SURFACE SOIL STORAGE DRAIN BC SURFACE SOIL	0.01875 0.01875 0.075 0.15 0.075 0.01875 0.075 0.075 0.075 0.15 0.15 0.15 0.15 0.15 0.20 0.025 Parameters	0.33 0.32 0.31 0.32 0.33 0.32 0.32 0.32 0.32 0.31 0.33 0.31 0.31 0.31 0.31 0.35 0.05 0.4 0.67 0.5	0.2 0 3	0.1 0 6	5		
V2 V3 V4 V5 V6 V7 V8 V9 V10 V11VR2 V12VR1 V13 V14 V15 V16 OFF-1-B OFF-1-D [LID_CONTROLS] ;; ;;	9.0 9.0 6.0 3.0 6.0 9.0 6.0 6.0 6.0 3.0 9.0 3.0 3.0 3.0 3.0 9.0 Type/Layer BC SURFACE SOIL STORAGE DRAIN BC SURFACE SOIL STORAGE SOIL STORAGE	0.01875 0.01875 0.075 0.15 0.075 0.01875 0.075 0.075 0.075 0.15 0.15 0.15 0.15 0.15 0.20 0.025 Parameters	0.33 0.32 0.31 0.32 0.33 0.32 0.32 0.32 0.32 0.31 0.31 0.31 0.31 0.31 0.31 0.35 0.4 0.67 0.5	0.2 0 3 0.1 0.2	0.1 0 6	5		
V2 V3 V4 V5 V6 V7 V8 V9 V10 V11VR2 V12VR1 V13 V14 V15 V16 OFF-1-B OFF-1-D [LID_CONTROLS] ;; ;;	9.0 9.0 6.0 3.0 6.0 9.0 6.0 6.0 6.0 3.0 9.0 3.0 3.0 3.0 3.0 9.0 Type/Layer BC SURFACE SOIL STORAGE DRAIN BC SURFACE SOIL	0.01875 0.01875 0.075 0.15 0.075 0.01875 0.075 0.075 0.075 0.15 0.15 0.15 0.15 0.15 0.20 0.025 Parameters	0.33 0.32 0.31 0.32 0.33 0.32 0.32 0.32 0.32 0.31 0.33 0.31 0.31 0.31 0.31 0.35 0.05 0.4 0.67 0.5	0.2 0 3	0.1 0 6	5		
V2 V3 V4 V5 V6 V7 V8 V9 V10 V11VR2 V12VR1 V13 V14 V15 V16 OFF-1-B OFF-1-D [LID_CONTROLS] ;; ;;	9.0 9.0 6.0 3.0 6.0 9.0 6.0 6.0 6.0 3.0 9.0 3.0 3.0 3.0 3.0 9.0 Type/Layer BC SURFACE SOIL STORAGE DRAIN BC SURFACE SOIL STORAGE SOIL STORAGE	0.01875 0.01875 0.075 0.15 0.075 0.01875 0.075 0.075 0.075 0.15 0.15 0.15 0.15 0.15 0.20 0.025 Parameters	0.33 0.32 0.31 0.32 0.33 0.32 0.32 0.32 0.32 0.31 0.31 0.31 0.31 0.31 0.31 0.35 0.4 0.67 0.5	0.2 0 3 0.1 0.2	0.1 0 6	5		
V2 V3 V4 V5 V6 V7 V8 V9 V10 V11VR2 V12VR1 V13 V14 V15 V16 OFF-1-B OFF-1-D [LID_CONTROLS] ;; ;;	9.0 9.0 6.0 3.0 6.0 9.0 6.0 6.0 6.0 3.0 9.0 3.0 3.0 3.0 3.0 9.0 Type/Layer BC SURFACE SOIL STORAGE DRAIN BC SURFACE SOIL STORAGE SOIL STORAGE	0.01875 0.01875 0.075 0.15 0.075 0.01875 0.075 0.075 0.075 0.15 0.15 0.15 0.15 0.15 0.20 0.025 Parameters	0.33 0.32 0.31 0.32 0.33 0.32 0.32 0.32 0.32 0.31 0.31 0.31 0.31 0.31 0.31 0.35 0.4 0.67 0.5	0.2 0 3 0.1 0.2	0.1 0 6	5		
V2 V3 V4 V5 V6 V7 V8 V9 V10 V11VR2 V12VR1 V13 V14 V15 V16 OFF-1-B OFF-1-D [LID_CONTROLS] ;; ;;	9.0 9.0 6.0 3.0 6.0 9.0 6.0 6.0 6.0 3.0 9.0 3.0 3.0 3.0 3.0 9.0 Type/Layer BC SURFACE SOIL STORAGE DRAIN BC SURFACE SOIL STORAGE DRAIN BC SURFACE SOIL STORAGE DRAIN BC	0.01875 0.01875 0.075 0.15 0.075 0.075 0.075 0.075 0.075 0.15 0.15 0.15 0.15 0.20 0.025 Parameters 	0.33 0.32 0.31 0.32 0.33 0.32 0.32 0.32 0.32 0.31 0.31 0.31 0.31 0.31 0.31 0.35 0.4 0.67 0.5	0.2 0 3 0.1 0.2 0	0.1 0 6 1.0 0.1 0	5 5 5		
V2 V3 V4 V5 V6 V7 V8 V9 V10 V11VR2 V12VR1 V13 V14 V15 V16 OFF-1-B OFF-1-D [LID_CONTROLS] ;; ;;	9.0 9.0 6.0 3.0 6.0 9.0 6.0 6.0 6.0 3.0 9.0 3.0 3.0 3.0 9.0 Type/Layer BC SURFACE SOIL STORAGE DRAIN BC SURFACE SOIL STORAGE DRAIN BC SURFACE SOIL STORAGE DRAIN BC SURFACE SOIL STORAGE DRAIN	0.01875 0.01875 0.075 0.15 0.075 0.01875 0.075 0.075 0.075 0.15 0.15 0.15 0.15 0.20 0.025 Parameters	0.33 0.32 0.31 0.32 0.33 0.32 0.32 0.32 0.32 0.31 0.33 0.31 0.31 0.31 0.31 0.35 0.30	0.2 0 3 0.1 0.2 0 3	0.1 0 6 1.0 0.1 0	5 5 5	5	1.5
V2 V3 V4 V5 V6 V7 V8 V9 V10 V11VR2 V12VR1 V13 V14 V15 V16 OFF-1-B OFF-1-D [LID_CONTROLS] ;; ;;	9.0 9.0 9.0 6.0 3.0 6.0 9.0 6.0 6.0 6.0 3.0 9.0 3.0 3.0 9.0 Type/Layer Type/Layer BC SURFACE SOIL STORAGE DRAIN	0.01875 0.01875 0.075 0.15 0.075 0.075 0.075 0.075 0.075 0.15 0.15 0.15 0.15 0.20 0.025 Parameters	0.33 0.32 0.31 0.32 0.33 0.32 0.32 0.32 0.32 0.31 0.33 0.31 0.31 0.31 0.35 0.05 0.4 0.67 0.5	0.2 0 3 0.1 0.2 0 3	0.1 0 6 1.0 0.1 0 6	5 5 5		
V2 V3 V4 V5 V6 V7 V8 V9 V10 V11VR2 V12VR1 V13 V14 V15 V16 OFF-1-B OFF-1-D [LID_CONTROLS] ;; ;;	9.0 9.0 6.0 3.0 6.0 9.0 6.0 6.0 6.0 3.0 9.0 3.0 3.0 3.0 9.0 Type/Layer BC SURFACE SOIL STORAGE DRAIN BC SURFACE SOIL STORAGE DRAIN BC SURFACE SOIL STORAGE DRAIN BC SURFACE SOIL STORAGE DRAIN	0.01875 0.01875 0.075 0.15 0.075 0.01875 0.075 0.075 0.075 0.15 0.15 0.15 0.15 0.20 0.025 Parameters	0.33 0.32 0.31 0.32 0.33 0.32 0.32 0.32 0.32 0.31 0.33 0.31 0.31 0.31 0.31 0.35 0.30	0.2 0 3 0.1 0.2 0 3	0.1 0 6 1.0 0.1 0	5 5 5	5	1.5
V2 V3 V4 V5 V6 V7 V8 V9 V10 V11VR2 V12VR1 V13 V14 V15 V16 OFF-1-B OFF-1-D [LID_CONTROLS] ;; ;;	9.0 9.0 9.0 6.0 3.0 6.0 9.0 6.0 6.0 6.0 3.0 9.0 3.0 3.0 9.0 Type/Layer Type/Layer BC SURFACE SOIL STORAGE DRAIN	0.01875 0.01875 0.075 0.15 0.075 0.075 0.075 0.075 0.075 0.15 0.15 0.15 0.15 0.20 0.025 Parameters	0.33 0.32 0.31 0.32 0.33 0.32 0.32 0.32 0.32 0.31 0.33 0.31 0.31 0.31 0.35 0.05 0.4 0.67 0.5	0.2 0 3 0.1 0.2 0 3	0.1 0 6 1.0 0.1 0 6	5 5 5	5	1.5

				POST_	DEV			
H5 H5 H5 H5 H5	BC SURFACE SOIL STORAGE DRAIN	6.62 18 18 1.3187	0.05 0.4 0.67 0.5	0 0.2 0 3	0 0.1 0 6	5 5	5	1.5
H6 H6 H6 H6 H6	BC SURFACE SOIL STORAGE DRAIN	6.68 18 18 1.1857	0.05 0.4 0.67 0.5	0 0.2 0 3	0 0.1 0 6	5 5	5	1.5
H7 H7 H7 H7 H7	BC SURFACE SOIL STORAGE DRAIN	6.78 18 18 1.3329	0.05 0.4 0.67 0.5	0 0.2 0 3	0 0.1 0 6	5 5	5	1.5
H8HR1 H8HR1 H8HR1 H8HR1 H8HR1	BC SURFACE SOIL STORAGE DRAIN	6.10 18 27 1.3128	0.05 0.4 0.67 0.5	0 0.2 0 3	0 0.1 0 6	5 5	5	1.5
H9HR2 H9HR2 H9HR2 H9HR2 H9HR2	BC SURFACE SOIL STORAGE DRAIN	6.23 18 18 1.6133	0.05 0.4 0.75 0.5	0 0.2 0 3	0 0.1 0 6	5 5	5	1.5
M1MR1K1 M1MR1K1 M1MR1K1 M1MR1K1 M1MR1K1	BC SURFACE SOIL STORAGE DRAIN	25.64 18 30 1.01771	0.05 0.4 0.67 0.5	0 0.2 0 3	0 0.1 0 6	5 5	5	1.5
V1 V1 V1 V1 V1	BC SURFACE SOIL STORAGE DRAIN	6.34 18 18 1.0219	0.05 0.4 0.75 0.5	0 0.2 0 3	0 0.1 0 6	5 5	5	1.5
V2 V2 V2 V2 V2 V2	BC SURFACE SOIL STORAGE DRAIN	6.29 18 18 1.02625	0.05 0.4 0.67 0.5	0 0.2 0 3	0 0.1 0 6	5 5	5	1.5
V3 V3 V3 V3 V3	BC SURFACE SOIL STORAGE DRAIN	6.63 18 18 1.0839	0.05 0.4 0.67 0.5	0 0.2 0 3	0 0.1 0 6	5 5	5	1.5
V4 V4 V4 V4 V4	BC SURFACE SOIL STORAGE DRAIN	6.47 18 18 1.4464	0.05 0.4 0.75 0.5	0 0.2 0 3	0 0.1 0 6	5 5	5	1.5
V5 V5 V5 V5 V5	BC SURFACE SOIL STORAGE DRAIN	6.44 18 18 1.32595	0.05 0.4 0.67 0.5	0 0.2 0 3	0 0.1 0 6	5 5	5	1.5
V6 V6 V6 V6 V6	BC SURFACE SOIL STORAGE DRAIN	6.59 18 18 1.1218	0.05 0.4 0.67 0.5	0 0.2 0 3	0 0.1 0 6	5 5	5	1.5
V7 V7 V7 V7	BC SURFACE SOIL STORAGE DRAIN	6.48 18 18 1.2486	0.05 0.4 0.67 0.5	0 0.2 0 3	0 0.1 0 6	5 5	5	1.5

V8 V8 V8 V8	BC SURFACE SOIL STORAGE DRAIN	6.44 18 18 1.3157	0.05 0.4 0.67 0.5	0 0.2 0 3	0 0.1 0	5 5 5		1.5
V9 V9 V9 V9 V9	BC SURFACE SOIL STORAGE DRAIN	6.28 18 18 1.2357	0.05 0.4 0.67 0.5	0 0.2 0 3	0 0.1 0 6	5 5 5		1.5
V10 V10 V10 V10 V10 V10	BC SURFACE SOIL STORAGE DRAIN	6.18 18 18 1.4551	0.05 0.4 0.67 0.5	0 0.2 0 3	0 0.1 0 6	5 5		1.5
V11VR2 V11VR2 V11VR2 V11VR2 V11VR2	BC SURFACE SOIL STORAGE DRAIN	12.36 18 24 1.186791	0.05 0.4 0.67 0.5	0 0.2 0 3	0 0.1 0 6	5 5 5	i	1.5
V12VR1 V12VR1 V12VR1 V12VR1 V12VR1	BC SURFACE SOIL STORAGE DRAIN	6.48 18 18 1.6871	0.05 0.4 0.67 0.5	0 0.2 0 3	0 0.1 0 6	5 5 5		1.5
V13 V13 V13 V13 V13	BC SURFACE SOIL STORAGE DRAIN	6.33 18 18 1.3850	0.05 0.4 0.67 0.5	0 0.2 0 3	0 0.1 0 6	5 5 5		1.5
V14 V14 V14 V14 V14	BC SURFACE SOIL STORAGE DRAIN	27.01 18 18 1.5246	0.05 0.4 0.67 0.5	0 0.2 0 3	0 0.1 0 6	5 5 5		1.5
V15 V15 V15 V15 V15	BC SURFACE SOIL STORAGE DRAIN	6.32 18 18 0.9559	0.05 0.4 0.67 0.5	0 0.2 0 3	0 0.1 0 6	5 5 5		1.5
V16 V16 V16 V16 V16	BC SURFACE SOIL STORAGE DRAIN	6.33 18 18 1.2360	0.05 0.4 0.67 0.5	0 0.2 0 3	0 0.1 0	5 5 5	i	1.5
[LID_USAGE] ;;Subcatchment	LID Proce		ber Area	Width		ur FromImprv	ToPerv	Report File
H1 H2 H4 H5 H6 H7 H8HR1 H9HR2 MIMR1K1 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10	H1 H2 H4 H5 H6 H7 H8HR1 H9HR2 M1MR1K1 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2120 655 950 1010 860 765 32465 7430 98870 5865 5840 1920 2820 4520 1855 4800 3100 4850 16475	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	100 100 100 100 100 100 100 100 100 100		

				POS	ST_DEV							
V11VR2	V11VR2	1	20200		_	0	10	O	0			
V12VR1	V12VR1	1	7105			0	10		0			
V13	V13	1	2945	0		0	100		0			
V14 V15	V14 V15	1 1	7862 12540	0		0	100		0 0			
V16	V15 V16	1	12540 3300			0	100		0			
[OUTFALLS]												
;; ;;Name	Invert Elev.		Stage/Ta Time Ser		Tide Gate							
;;	0											
POC-25 [DIVIDERS]	U	FREE			NO							
;;	Invert	Diverted	Di	vider								
;;Name	Elev.	Link		pe	Parame							
D14	0	to-14		TOFF	0.9707			0	0		0	
D11R2	0	to-11R2	CU	TOFF	2.3779	933 0		0	0		0	
D-K1	0	to-K1	CU	TOFF	10.273	385 0		0	0		0	
[STORAGE]		- . * .	Q1	2			D					
	Invert Max. Elev. Depth	n Depth	Curve	Curve Params			Area	Evap. Frac.		tration	Paramete	ers
Basin14	0 8	0	TABULAR	Basin14			19705					
B-11R2 B-K1	0 4 0 8		TABULAR TABULAR				26225 154700					
[CONDUITS]	Inlet	Outlet		I	Manning	Inlet	Outle	et Ini		Max.		
;;Name	Node	Node		ngth 1	4	Offset	Offse			Flow		
to-14	D14	Basin14	10 10 10	(0.01	0	0	0		0		
-	D14 D11R2	POC-25 POC-25	10		0.01 0.01 0.01 0.01 0.01	0	0 0	0		0		
	D11R2	B-11R2	10		0.01	0	0	0		0		
ву-к1	D-K1	POC-25	10	(0.01	0	0	0		0		
to-K1	D-K1	B-K1	10	1	0.01	0	0	0		0		
[OTTEL EMC]												
[OUTLETS]	T - 1 - 1	0	3 - 1	01-1	-1	0		055/				T-1
;; ;;Name	Inlet Node	Out Nod	е	Heig	low ght	Outlet Type		Qcoeff/ QTable		Qexp	oon	Flap Gate
;; ;;Name		Nod	е	Heig		Type		QTable		Qexp	oon	_
;; Name ;; Out14 O-11R2	Node Basin14 B-11R2	Nod POC POC	e -25 -25	Heig 0 0	ght 	Type TABULAR/ TABULAR/	 HEAD HEAD	QTable Out14 O-11R2		Qexp	oon 	Gate NO NO
;; ;;Name ;;	Node Basin14	Nod POC POC	e -25	Heiq 0	ght 	Type TABULAR/	 HEAD HEAD	QTable Out14 O-11R2		Qexp	oon 	Gate NO
;; Name ;; Out14 O-11R2	Node Basin14 B-11R2	Nod POC POC	e -25 -25 -25	Heig 0 0 0	yht 	Type TABULAR/ TABULAR/ TABULAR/	 HEAD HEAD HEAD	QTable Out14 O-11R2 Out-K1		Qexp	oon 	Gate NO NO
;;;Name ;; Out14 O-11R2 Out-K1 [XSECTIONS] ;;Link	Node Basin14 B-11R2 B-K1 Shape	Nod POC POC POC	e -25 -25 -25	Heig 0 0 0 0	ght Geon	Type TABULAR/ TABULAR/ TABULAR/	HEAD HEAD HEAD	QTable Out14 O-11R2 Out-K1	 s	Qexr	oon	Gate NO NO
;;;Name ;;	Node Basin14 B-11R2 B-K1 Shape	Nod POC POC POC	e 25 -25 -25 -25	Heig 0 0 0 0	ght Geon	Type TABULAR/ TABULAR/ TABULAR/	HEAD HEAD HEAD HEAD	QTable Out14 O-11R2 Out-K1 Barrel	 s 	Qexp	oon 	Gate NO NO
;;;Name ;;	Node Basin14 B-11R2 B-K1 Shape DUMMY	Nod POC POC POC	e -25 -25 -25 -25	Heig 0 0 0 0	Geon 0	Type TABULAR/ TABULAR/ TABULAR/ n3 G 0 0	HEAD HEAD HEAD HEAD	QTable Out14 O-11R2 Out-K1 Barrel	s	Qexp	oon 	Gate NO NO
;;;Name ;;	Node Basin14 B-11R2 B-K1 Shape DUMMY	Nod	e -25 -25 -25	Heid 0 0 0 0 0 Geom2 0 0	Geon 0	Type TABULAR/ TABULAR/ TABULAR/ n3 G 0 0	HEAD HEAD HEAD HEAD	QTable Out14 O-11R2 Out-K1 Barrel	S	Qexp	oon	Gate NO NO
;;;Name ;;	Node Basin14 B-11R2 B-K1 Shape DUMMY	Nod	e -25 -25 -25	Heid 0 0 0 0 0 0 Geom2 0 0 0	Geom 0 0 0	Type TABULAR/ TABULAR/ TABULAR/ n3 G 0 0 0 0	HEAD HEAD HEAD HEAD	QTable Out14 O-11R2 Out-K1 Barrel 1 1 1	s	Qexp	oon	Gate NO NO
;;;Name ;;	Node Basin14 B-11R2 B-K1 Shape DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY	Nod	e -25 -25 -25	Heid 0 0 0 0 0 0 Geom2 0 0 0	Geom 0 0 0 0	Type TABULAR/ TABULAR/ TABULAR/ n3 G 0 0 0 0 0 0	HEAD HEAD HEAD HEAD	QTable Out14 O-11R2 Out-K1 Barrel 1 1 1 1 1	s 	Qexp	oon	Gate NO NO
;;;Name ;;	Node Basin14 B-11R2 B-K1 Shape DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY	Nod	e -25 -25 -25	Heid 0 0 0 0 0 0 Geom2 0 0 0	Geom 0 0 0	Type TABULAR/ TABULAR/ TABULAR/ n3 G 0 0 0 0	HEAD HEAD HEAD HEAD	QTable Out14 O-11R2 Out-K1 Barrel 1 1 1	s 	Qexp	oon	Gate NO NO
;;;Name ;;	Node Basin14 B-11R2 B-K1 Shape DUMMY	POC POC POC O O O O O O O O O O O O O O	e -25 -25 -25	Heic 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Geon 0 0 0 0 0	Type TABULAR/ TABULAR/ TABULAR/ n3 G 0 0 0 0 0 0	HEAD HEAD HEAD HEAD	QTable Out14 O-11R2 Out-K1 Barrel 1 1 1 1 1	S	Qexp	oon	Gate NO NO
;;;Name ;;	Node Basin14 B-11R2 B-K1 Shape DUMMY	Nod	e	Heic 0 0 0 0 0 Geom2 0 0 0 0 0 0	Geom 0 0 0 0 0 0 0 0 0	Type TABULAR/ TABULAR/ TABULAR/ n3 G 0 0 0 0 0 0	HEAD HEAD HEAD HEAD	QTable Out14 O-11R2 Out-K1 Barrel 1 1 1 1 1	s 	Qexp	oon	Gate NO NO
;;;Name ;;	Node Basin14 B-11R2 B-K1 Shape DUMMY	Nod	e	Heic 0 0 0 0 0 Geom2 0 0 0 0 0 0	Geom 0 0 0 0 0 0 0 0 0	Type TABULAR/ TABULAR/ TABULAR/ n3 G 0 0 0 0 0 0	HEAD HEAD HEAD HEAD	QTable Out14 O-11R2 Out-K1 Barrel 1 1 1 1 1	s 	Qexp	oon	Gate NO NO
;;;Name ;; Out14 O-11R2 Out-K1 [XSECTIONS] ;;Link ;; to-14 By-14 By-11R2 to-11R2 By-K1 to-K1 [LOSSES] ;;Link ;; [CURVES]	Node Basin14 B-11R2 B-K1 Shape DUMMY	Nod	e	Heic 0 0 0 0 0 Geom2 0 0 0 0 0 0	Geom 0 0 0 0 0 0 0 0 0	Type TABULAR/ TABULAR/ TABULAR/ n3 G 0 0 0 0 0 0	HEAD HEAD HEAD HEAD	QTable Out14 O-11R2 Out-K1 Barrel 1 1 1 1 1	S	Qexp	oon	Gate NO NO
;;;Name ;;	Node Basin14 B-11R2 B-K1 Shape DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY TOUMMY DUMMY DUMMY DUMMY TOUMMY DUMMY TOUMMY DUMMY TOUMMY TOUMMY TOUMMY	Nod	e	Heic 0 0 0 0 0 Geom2 0 0 0 0 0 0 0	Geom 0 0 0 0 0 0 0 0 0	Type TABULAR/ TABULAR/ TABULAR/ n3 G 0 0 0 0 0 0	HEAD HEAD HEAD HEAD	QTable Out14 O-11R2 Out-K1 Barrel 1 1 1 1 1	s	Qexp	oon	Gate NO NO
;;;Name ;; Out14 O-11R2 Out-K1 [XSECTIONS] ;;Link ;; to-14 By-14 By-11R2 to-11R2 By-K1 to-K1 [LOSSES] ;;Link ;; [CURVES] ;;Name ;;	Node Basin14 B-11R2 B-K1 Shape DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY TOUMMY DUMMY	Geom1 O O O O O V V V V V V V V	25 -25 -25 -25 -25 -25 -25 -25 -25 -25 -	Heic 0 0 0 0 0 Geom2 0 0 0 0 0 0 0	Geom 0 0 0 0 0 0 0 0 0	Type TABULAR/ TABULAR/ TABULAR/ n3 G 0 0 0 0 0 0	HEAD HEAD HEAD HEAD	QTable Out14 O-11R2 Out-K1 Barrel 1 1 1 1	s	Qexp	oon	Gate NO NO
;;;Name ;; Out14 O-11R2 Out-K1 [XSECTIONS] ;;Link ;; to-14 By-14 By-11R2 to-11R2 By-K1 to-K1 [LOSSES] ;;Link ;; [CURVES] ;;Name ;;	Node Basin14 B-11R2 B-K1 Shape DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY TOUMMY DUMMY DUMMY DUMMY TOUMMY DUMMY TOUMMY DUMMY TOUMMY TOUMMY TOUMMY	Geom1 O O O O O V V V V V V V V	25 -25 -25 -25 -25 -25 -25 -25 -25 -25 -	Heic 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Geom 0 0 0 0 0 0 0 0 0	Type TABULAR/ TABULAR/ TABULAR/ n3 G 0 0 0 0 0 0	HEAD HEAD HEAD HEAD	QTable Out14 O-11R2 Out-K1 Barrel 1 1 1 1	s	Qexp	oon	Gate NO NO
;;;Name ;; Out14 O-11R2 Out-K1 [XSECTIONS] ;;Link ;; to-14 By-14 By-11R2 to-11R2 By-K1 to-K1 [LOSSES] ;;Link ;; [CURVES] ;;Name ;;	Node Basin14 B-11R2 B-K1 Shape DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY TOUMMY DUMMY	Nod	25 -25 -25 -25 -25 -25 -25 -25 -25 -25 -	Heic 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Geom 0 0 0 0 0 0 0 0 0	Type TABULAR/ TABULAR/ TABULAR/ n3 G 0 0 0 0 0 0	HEAD HEAD HEAD HEAD	QTable Out14 O-11R2 Out-K1 Barrel 1 1 1 1	s	Qexp	oon	Gate NO NO
;;;Name ;;	Node Basin14 B-11R2 B-K1 Shape DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY TOUMMY DUMMY	Mod POC	Average Y-Value 0.000 0.822 2.325 4.271	Heic 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Geom 0 0 0 0 0 0 0 0 0	Type TABULAR/ TABULAR/ TABULAR/ n3 G 0 0 0 0 0 0	HEAD HEAD HEAD HEAD	QTable Out14 O-11R2 Out-K1 Barrel 1 1 1 1	s	Qexp	oon	Gate NO NO
;; Name ;; Link ;; Link ;; Name	Node Basin14 B-11R2 B-K1 Shape DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY TOUMMY DUMMY	Nod POC	Average0.000 0.822 2.325 4.271 6.576	Heic 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Geom 0 0 0 0 0 0 0 0 0	Type TABULAR/ TABULAR/ TABULAR/ n3 G 0 0 0 0 0 0	HEAD HEAD HEAD HEAD	QTable Out14 O-11R2 Out-K1 Barrel 1 1 1 1	s 	Qexp	oon	Gate NO NO
;; ;; Name ;;	Node Basin14 B-11R2 B-K1 Shape DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY TOUMMY DUMMY	Nod POC	Average Y-Value 0.000 0.822 2.325 4.271 6.576 8.993	Heic 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Geom 0 0 0 0 0 0 0 0 0	Type TABULAR/ TABULAR/ TABULAR/ n3 G 0 0 0 0 0 0	HEAD HEAD HEAD HEAD	QTable Out14 O-11R2 Out-K1 Barrel 1 1 1 1	S	Qexp	oon	Gate NO NO
;; ;; Name ;;	Node Basin14 B-11R2 B-K1 Shape DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY TOUMMY DUMMY	Nod POC POC POC POC POC Not Poc	Average Y-Value 0.000 0.822 2.325 4.271 6.576 8.993 10.384	Heic 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Geom 0 0 0 0 0 0 0 0 0	Type TABULAR/ TABULAR/ TABULAR/ n3 G 0 0 0 0 0 0	HEAD HEAD HEAD HEAD	QTable Out14 O-11R2 Out-K1 Barrel 1 1 1 1	S	Qexp	oon	Gate NO NO
;; ;; Name ;;	Node Basin14 B-11R2 B-K1 Shape DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY TOUMMY DUMMY	Nod POC	Average Y-Value 0.000 0.822 2.325 4.271 6.576 8.993 10.384 11.610	Heic 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Geom 0 0 0 0 0 0 0 0 0	Type TABULAR/ TABULAR/ TABULAR/ n3 G 0 0 0 0 0 0	HEAD HEAD HEAD HEAD	QTable Out14 O-11R2 Out-K1 Barrel 1 1 1 1	s 	Qexp	oon	Gate NO NO
;; Name ;; Link ;; Name	Node Basin14 B-11R2 B-K1 Shape DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY TOUMMY DUMMY	Mod POC	Average Y-Value 0.000 0.822 2.325 4.271 6.576 8.993 10.384 11.610 12.718	Heic 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Geom 0 0 0 0 0 0 0 0 0	Type TABULAR/ TABULAR/ TABULAR/ n3 G 0 0 0 0 0 0	HEAD HEAD HEAD HEAD	QTable Out14 O-11R2 Out-K1 Barrel 1 1 1 1	s	Qexp	oon	Gate NO NO
;; ;; Name ;;	Node Basin14 B-11R2 B-K1 Shape DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY TOUMMY DUMMY	Mod POC	Average Y-Value 0.000 0.822 2.325 4.271 6.576 8.993 10.384 11.610 12.718 13.737	Heic 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Geom 0 0 0 0 0 0 0 0 0	Type TABULAR/ TABULAR/ TABULAR/ n3 G 0 0 0 0 0 0	HEAD HEAD HEAD HEAD	QTable Out14 O-11R2 Out-K1 Barrel 1 1 1 1	S	Qexp	oon	Gate NO NO
;; Name ;; Link ;; Name	Node Basin14 B-11R2 B-K1 Shape DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY TOUMMY DUMMY	Mod POC	Average Y-Value 0.000 0.822 2.325 4.271 6.576 8.993 10.384 11.610 12.718	Heic 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Geom 0 0 0 0 0 0 0 0 0	Type TABULAR/ TABULAR/ TABULAR/ n3 G 0 0 0 0 0 0	HEAD HEAD HEAD HEAD	QTable Out14 O-11R2 Out-K1 Barrel 1 1 1 1	s	Qexp	oon	Gate NO NO
;; ;; Name ;;	Node Basin14 B-11R2 B-K1 Shape DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY TOUMMY DUMMY	Mod POC	Average Y-Value 0.000 0.822 2.325 4.271 6.576 8.993 10.384 11.610 12.718 13.737	Heic 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Geom 0 0 0 0 0 0 0 0 0	Type TABULAR/ TABULAR/ TABULAR/ n3 G 0 0 0 0 0 0	HEAD HEAD HEAD HEAD	QTable Out14 O-11R2 Out-K1 Barrel 1 1 1 1	S	Qexp	oon	Gate NO NO
;; ;; Name ;;	Node Basin14 B-11R2 B-K1 Shape DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY TOUMMY DUMMY	Mod POC	Average0.000 0.822 2.325 4.271 6.576 8.993 10.384 11.610 12.718 13.737 14.686	Heic 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Geom 0 0 0 0 0 0 0 0 0	Type TABULAR/ TABULAR/ TABULAR/ n3 G 0 0 0 0 0 0	HEAD HEAD HEAD HEAD	QTable Out14 O-11R2 Out-K1 Barrel 1 1 1 1	S	Qexp	oon	Gate NO NO
;;;Name ;; Out14 O-11R2 Out-K1 [XSECTIONS] ;;Link ;; to-14 By-14 By-14 By-11R2 to-11R2 By-K1 to-K1 [LOSSES] ;;Link ;; [CURVES] ;;Name ;; Out-K1	Node Basin14 B-11R2 B-K1 Shape DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY TOUMMY DUMMY	Nod POC	Average0.000 0.822 2.325 4.271 6.576 8.993 10.384 11.610 12.718 13.737 14.686 15.577 16.419 17.220	Heic 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Geom 0 0 0 0 0 0 0 0 0	Type TABULAR/ TABULAR/ TABULAR/ n3 G 0 0 0 0 0 0	HEAD HEAD HEAD HEAD	QTable Out14 O-11R2 Out-K1 Barrel 1 1 1 1	S	Qexp	oon	Gate NO NO
;; ;; Name ;;	Node Basin14 B-11R2 B-K1 Shape DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY TOUMMY DUMMY	Nod POC	Average0.000 0.822 2.325 4.271 6.576 8.993 10.384 11.610 12.718 13.737 14.686 15.577 16.419	Heic 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Geom 0 0 0 0 0 0 0 0 0	Type TABULAR/ TABULAR/ TABULAR/ n3 G 0 0 0 0 0 0	HEAD HEAD HEAD HEAD	QTable Out14 O-11R2 Out-K1 Barrel 1 1 1 1	S	Qexp	oon	Gate NO NO

Out-K1 6.000 35.21 Out-K1 6.125 38.33 Out-K1 6.250 43.72 Out-K1 6.375 50.58 Out-K1 6.500 58.63 Out-K1 6.625 67.71 Out-K1 6.750 77.71 Out-K1 6.875 88.54 Out-K1 7.000 100.1 Out-K1 7.125 112.4 Out-K1 7.250 125.5 Out-K1 7.375 139.1 Out-K1 7.500 153.4 Out-K1 7.500 153.4 Out-K1 7.625 168.3	-K1 6K1 6K1 6K1 6K1 6K1 6K1 6K1 7K1 7K1 7K1 7K1 7.	19.427 25 20.109 20.769 21.408 22.029 23.220 25 22.632 26 23.220 25 24.353 24.901 25.436 25 26.979 27.474 27.961 28.439 29.371 29.827 29.371 20 30.275 30 30.717 31.153 31.583 32.425 32.838 25 36.0 32.425 33.246 33.246 33.246 35 34.047 34.431 34.830 35.215 38.335 25 36.0 25 36.0 35.215 38.634 25 36.0 25 36.0 35.215 38.634 25 50.582 50 58.634 25 50.154 26 67.713 77.711 88.545 26 125.501 <
Out-K1 8.000 216.2 O-11R2 0.003 0.000 O-11R2 0.083 0.261 O-11R2 0.167 0.738 O-11R2 0.250 1.356 O-11R2 0.333 2.088 O-11R2 0.417 2.856 O-11R2 0.500 3.297 O-11R2 0.583 3.686 O-11R2 0.667 4.038 O-11R2 0.750 4.362 O-11R2 0.833 4.663 O-11R2 0.917 4.946 O-11R2 1.000 5.213 O-11R2 1.083 5.468 O-11R2 1.083 5.468 O-11R2 1.250 5.944 O-11R2 1.333 6.169 O-11R2 1.500 6.595 O-11R2 1.583 6.798 O-11R2 1.583 6.798 O-11R2 1.750 7.186 O-11R2 1.750 7.186 O-11R2 1.7750 7.186 O-11R2	Rating 0. R2 1. R3 1. R4 1. R5 1. R6 1. R7 1. R8 1. R8 1. R9 1. R9 1. R1 1. R1 1. R1 1. R2 1. R2 1. R3 1. R4 1. R5 1. R6 1. R7 1. R8 1.	216.244 00 0.000 03 0.261 07 738 1.356 03 2.088 17 2.856 00 3.297 03 3.686 4.038 4.038 4.663 4.946 5.213 5.468 5.711 5.944 83 6.169 6.385 6.798 6.798 6.995 7.186 7.373 7.555

0-11R2		2.167 2.250 2.333 2.417 2.500 2.583 2.667 2.750 2.833 2.917 3.000 3.083 3.167 3.250 3.333 3.417 3.500 3.583 3.667 3.750 3.833 3.917 4.000	8.077 8.243 8.407 8.567 8.724 9.773 11.561 13.829 16.485 19.476 22.765 26.327 30.141 34.190 38.462 42.944 47.627 52.502 57.562 62.800 68.209 73.785 79.522
Out14	Rating	0.000 0.083 0.167 0.250 0.333 0.417 0.500 0.583 0.667 0.750 0.833 0.917 1.000 1.083 1.167 1.250 1.333 1.417 1.500 1.583 1.417 1.500 1.583 1.667 1.750 1.833 1.917 2.000 2.083 2.167 2.250 2.333 2.417 2.500 2.583 2.667 2.750 2.833 2.917 3.000 3.083 3.167 3.250 3.333 3.417 3.500 3.583 3.417 3.500 3.583 3.667 3.750 3.833 3.917 4.000 4.083 4.167 4.250 4.333	0.000 0.099 0.281 0.517 0.745 0.881 0.999 1.105 1.201 1.290 1.373 1.452 1.526 1.597 1.665 1.794 1.854 1.913 1.971 2.026 2.080 2.184 2.283 2.332 2.470 2.184 2.283 2.379 2.425 2.470 2.5558 2.601 2.644 2.685 2.726 2.727 2.846 2.7276 2.7276 2.7276 2.7276 2.7276 2.7276 2.7276 2.7276 2.7277 3.7272 3.7

Out14		4.417 4.500 4.583 4.667 4.750 4.833 4.917 5.000 5.083 5.167 5.250 5.333 5.417 5.500 5.583 5.667 5.750 6.000 6.083 6.167 6.250 6.333 6.417 6.500 6.383 6.417 7.500 6.583 6.667 6.750 6.833 6.417 7.500 7.333 7.417 7.500 7.583 7.667 7.750 7.583 7.667 7.750 7.583 7.667 7.750 7.883 7.917	3.380 3.413 3.445 3.477 3.509 3.541 3.572 3.603 3.633 3.664 3.724 3.754 3.783 3.812 3.841 3.870 3.899 3.927 3.955 4.580 5.698 7.138 8.838 10.763 12.888 15.196 17.673 20.308 23.092 24.018 25.018 26.018 27.018 27.018 28.018 29.078 30.092 26.018 29.078 30.092 26.018 29.078 30.092 26.018 29.078 30.092 26.018 29.078 30.092 26.018 29.078 30.092 26.018 29.078 30.092 26.018 29.078 30.092 26.018 29.078 30.092 26.018 27.038 28.092 26.018 29.078 30.092 26.018 27.038 28.092 26.018 29.078 30.092 26.018 27.038 28.092 26.018 29.078 30.092 26.018 27.038 28.092 29.078 30.092 20.018 20.01
Dut14 B-K1 B-K1 B-K1 B-K1 B-K1 B-K1 B-K1 B-K	Storage	8.000 0.00 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00 5.25 5.50 5.75 6.00 6.25 6.50 6.75 7.00 7.25 7.50 7.75	74.724 107009 108583 110151 111714 113272 114824 116371 117913 119449 120980 122505 124025 125540 127049 128553 130051 131544 133032 134514 135991 137462 138929 140389 141845 143294 144739 146178 147612 149040 150463 151881 153293

				POST_DI
B-K1		8.00	154700	
B-11R2 B-11R2 B-11R2 B-11R2 B-11R2 B-11R2 B-11R2 B-11R2 B-11R2 B-11R2 B-11R2 B-11R2 B-11R2 B-11R2 B-11R2 B-11R2	Storage	0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50	21405 21706 22008 22309 22610 22911 23213 23514 23815 24116 24418 24719 25020 25321 25623	
B-11R2 B-11R2		3.75 4.00	25924 26225	
Basin14	Storage	0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.25 3.75 4.00 4.25 4.50 4.75 5.00 5.25 5.50 5.75 6.00 6.25 6.50 6.75 7.00 7.25 7.50 8.00 7.75 8.00	9847 10100 10355 10611 10868 11126 11385 11645 11907 12170 12434 12699 12965 13232 13501 13771 14042 14314 14587 14861 15137 15414 15692 15971 16251 16532 16815 17099 17384 17670 17957 18245	
[TIMESERIES]		0.00	10000	
;;Name;	Date	Time	Value	
LAKE_WHOL [REPORT] INPUT NO CONTROLS NO SUBCATCHMENTS ALI NODES ALL LINKS ALL	FILE "L-Wol			
[TAGS]				
[MAP] DIMENSIONS 650.00 Units None	00 2800.000	8350.000	7200.000	
[COORDINATES] ;;Node	X-Coord	Y	-Coord	
;; POC-25	4500.000		5000.000	
D14	7000.000		1400.000	

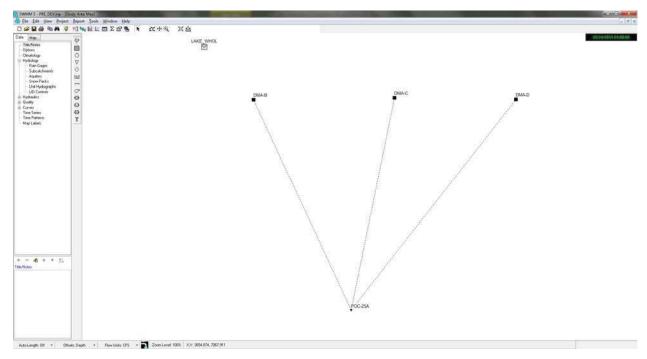
D11R2 D-K1 Basin14 B-11R2 B-K1	7000.000 2000.000 7000.000 6500.000 2500.000	5540.000 4700.000 4000.000 6000.000 4350.000
[VERTICES] ;;Link	X-Coord	Y-Coord
;; By-14	4482.176	4984.722
[Polygons] ;;Subcatchment ;;	X-Coord	Y-Coord
H1-D-S H2-D-S	2500.000 3000.000	3000.000
H4-D-S H5-D-S	3500.000 4000.000	3000.000 3000.000
H6-D-S	4500.000	3000.000
H7-D-S H8-D-S	5000.000	3000.000 3500.000
HR1-D-S	1000.000	4000.000
H9-D-S HR2-D-S	1000.000	4500.000 5000.000
M1-D-S	1000.000	3000.000
K1-D-S MR1-D-S	1500.000 2000.000	3000.000 3000.000
V1-D-S	2500.000	7000.000
V2-B-S V2-C-S	1000.000	7000.000
V2-D-S	1500.000 2000.000	7000.000 7000.000
V3-B-S	3000.000	7000.000
V3-D-S V4-C-S	3500.000 8000.000	7000.000 6000.000
V4-D-S	7500.000	5500.000
V5-C-S V6-C-S	4000.000 7000.000	7000.000 3500.000
V7-B-S	5000.000	7000.000
V7-C-S V7-D-S	5500.000 5500.000	7000.000 6500.000
V8-C-S	6000.000	7000.000
V8-D-S	6500.000	7000.000
V9-B-S V9-C-S	1000.000	6500.000 6000.000
V9-D-S	1000.000	5500.000
V10-C-S V10-D-S	7500.000 8000.000	5000.000 5500.000
V11-B-S	7000.000	7000.000
V11-C-S V11-D-S	7500.000 8000.000	7000.000 7000.000
VR2-B-S	8000.000	6500.000
VR2-C-S V12-B-S	6500.000 8000.000	6500.000 5000.000
VR1-B-S	8000.000	4500.000
VR1-C-S VR1-D-S	8000.000	4000.000
V13-B-S	8000.000 4333.000	3500.000 7000.000
V13-D-S	4666.000	7000.000
V14-B-S V14-D-S	7500.000 8000.000	3000.000 3000.000
V15-B-S	7000.000	3000.000
V15-D-S V16-B-S	6500.000 5500.000	3000.000
V16-D-S	6000.000	3000.000
H1 H2	2500.000 3000.000	4000.000
H4	3500.000	4000.000
H5 H6	4000.000 4500.000	4000.000
Н7	5000.000	4000.000
H8HR1 H9HR2	2000.000	5000.000 5300.000
M1MR1K1	2000.000	4000.000
V1 V2	2500.000 2000.000	6000.000
V2 V3	3000.000	6000.000
V4	7000.000	5350.000

V5	4000.000	6000.000
V6	6500.000	4000.000
V7	5000.000	6000.000
V8	6000.000	6000.000
V9	2000.000	5650.000
V10	7000.000	5000.000
V11VR2	7000.000	6000.000
V12VR1	7000.000	4700.000
V13	4500.000	6000.000
V14	7496.991	3747.222
V15	6000.000	4000.000
V16	5500.000	4000.000
OFF-1-B	5500.000	6000.000
OFF-1-D	3500.000	6000.000
[SYMBOLS]		
;;Gage	X-Coord	Y-Coord
;;	6600 000	
LAKE_WHOL	6600.000	5075.000

ATTACHMENT 7

EPA SWMM FIGURES AND EXPLANATIONS

Per the attached, the reader can see the screens associated with the EPA-SWMM Model in both pre-development and post-development conditions. Each portion, i.e., sub-catchments, outfalls, storage units, weir as a discharge, and outfalls (point of compliance), are also shown.

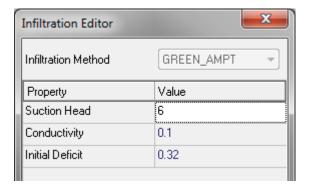

Variables for modeling are associated with typical recommended values by the EPA-SWMM model, typical values found in technical literature (such as Maidment's Handbook of Hydrology). Recommended values for the SWMM model have been attained from the interim Orange County criteria established for their SWMM calibration. Currently, no recommended values have been established by the San Diego County HMP Permit for the SWMM Model.

Soil characteristics of the existing soils were determined from the site specific NRCS Web Soil Survey (located in Attachment 8 of this report).

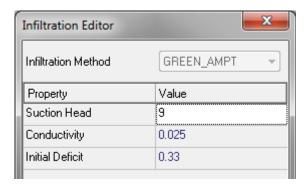
Some values incorporated within the SWMM model have been determined from the professional experience of REC using conservative assumptions that have a tendency to increase the size of the needed BMP and also generate a long-term runoff as a percentage of rainfall similar to those measured in gage stations in Southern California by the USGS.

A technical document prepared by Tory R Walker Engineering for the Cities of San Marcos, Oceanside and Vista (Reference [1]) can also be consulted for additional information regarding typical values for SWMM parameters.

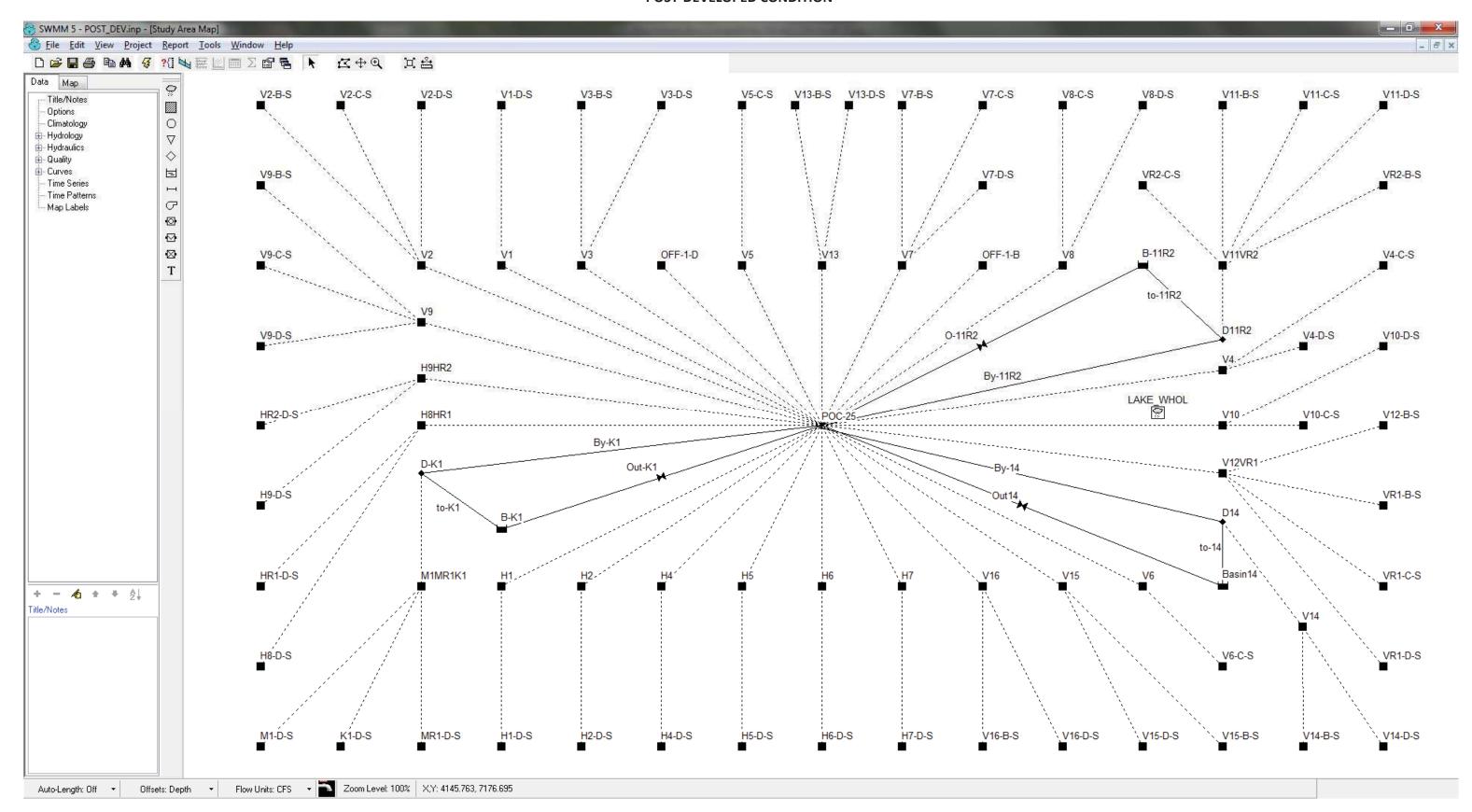
PRE-DEVELOPED CONDITION


Rain Gage LAKE_WH	
Property	Value
Name	LAKE_WHOL
X-Coordinate	1525.424
Y-Coordinate	6864.407
Description	
Tag	
Rain Format	INTENSITY
Time Interval	1:00
Snow Catch Factor	1.0
Data Source	TIMESERIES
TIME SERIES:	
- Series Name	LAKE_WHOL
DATA FILE:	
- File Name	×
- Station ID	×
- Rain Units	IN
User-assigned name o	frain gage

Outfall POC-25A	
Property	Value
Name	POC-25A
X-Coordinate	3762.923
Y-Coordinate	2844.115
Description	
Tag	
Inflows	NO
Treatment	NO
Invert El.	0
Tide Gate	NO
Туре	FREE
Fixed Outfall	
Fixed Stage	0
Tidal Outfall	
Curve Name	×
Time Series Outfall	
Series Name	×
User-assigned name of	outfall

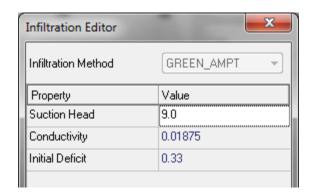

Property	Value
Name	DMA-B
X-Coordinate	2273.231
Y-Coordinate	6063.052
Description	
Tag	
Rain Gage	LAKE_WHOL
Outlet	POC-25A
Area	21.882
Width	510
% Slope	20
% Imperv	0
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.1
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	0
Land Uses	0
Initial Buildup	NONE
Curb Length	0
User-assigned name	of subcatchment

Infiltration Editor	X
Infiltration Method	GREEN_AMPT ▼
Property	Value
Suction Head	3
Conductivity	0.2
Initial Deficit	0.31


Property	Value
Name	DMA-C
X-Coordinate	4425.929
Y-Coordinate	6092.899
Description	
Tag	
Rain Gage	LAKE_WHOL
Outlet	POC-25A
Area	16.074
Width	437
% Slope	10
% Imperv	0
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.02
Dstore-Perv	0.1
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	0
Land Uses	0
Initial Buildup	NONE
Curb Length	0
User-assigned name	of autoatobroant

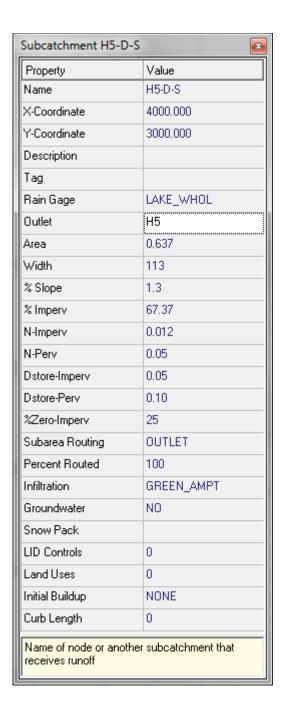
Property	Value
Name	DMA-D
X-Coordinate	6281.780
Y-Coordinate	6069.915
Description	
Tag	
Rain Gage	LAKE_WHOL
Outlet	POC-25A
Area	353.414
Width	4847
% Slope	40
% Imperv	0
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.02
Dstore-Perv	0.1
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	0
Land Uses	0
Initial Buildup	NONE
Curb Length	0
User-assigned name	-f

POST-DEVELOPED CONDITION


Property	Value
Name	LAKE_WHOL
X-Coordinate	6600.000
Y-Coordinate	5075.000
Description	
Tag	
Rain Format	INTENSITY
Time Interval	1:00
Snow Catch Factor	1.0
Data Source	TIMESERIES
TIME SERIES:	
- Series Name	LAKE_WHOL
DATA FILE:	
- File Name	×
- Station ID	×
- Rain Units	IN
User-assigned name o	ıf rain gage

D	Makin
Property	Value
Name	POC-25
X-Coordinate	4500.000
Y-Coordinate	5000.000
Description	
Tag	
Inflows	NO
Treatment	NO
Invert El.	0
Tide Gate	NO
Туре	FREE
Fixed Outfall	
Fixed Stage	0
Tidal Outfall	
Curve Name	×
Time Series Outfall	
Series Name	×
User-assigned name of	f outfall

Property	Value
Name	H1-D-S
X-Coordinate	2500.000
Y-Coordinate	3000.000
Description	
Tag	
Rain Gage	LAKE_WHOL
Outlet	H1
Area	1.523
Width	439
% Slope	1.5
% Imperv	67.08
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	0
Land Uses	0
Initial Buildup	NONE
Curb Length	0
Name of node or and	other subcatchment that


Infiltration Editor	X
Infiltration Method	GREEN_AMPT ▼
Property	Value
Suction Head	9.0
Conductivity	0.01875
Initial Deficit	0.33

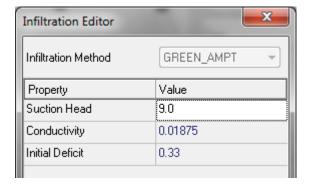
X-Coordinate 3 Y-Coordinate 3 Description Tag	H2-D-S 3000.000 3000.000 AKE_WH0L H2 0.429
Y-Coordinate 3 Description Tag Rain Gage L Outlet H Area C Width 1	.AKE_WHOL H2 0.429
Description Tag Rain Gage Outlet Area Width Description Call Call Call Call Call Call Call Cal	.AKE_WHOL 12 0.429
Tag Rain Gage L Outlet Area Width 1	H2 0.429
Rain Gage L Outlet F Area C Width 1	H2 0.429
Outlet F Area C Width 1	H2 0.429
Area C	0.429
Width 1	
	100
% Clone 1	103
∿ giohe	1.4
% Imperv 6	67.27
N-Imperv C	0.012
N-Perv C	0.05
Dstore-Imperv C	0.05
Dstore-Perv C	0.10
%Zero-Imperv 2	25
Subarea Routing C	DUTLET
Percent Routed 1	100
Infiltration G	GREEN_AMPT
Groundwater N	40
Snow Pack	
LID Controls C)
Land Uses 0)
Initial Buildup N	NONE
Curb Length C)

Property	Value
Name	H4-D-S
X-Coordinate	3500.000
Y-Coordinate	3000.000
Description	
Tag	
Rain Gage	LAKE_WHOL
Outlet	H4
Area	0.665
Width	115
% Slope	1.2
% Imperv	67.13
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	0
Land Uses	0
Initial Buildup	NONE
Curb Length	0
Name of node or and	other subcatchment that

Infiltration Editor	X
Infiltration Method	GREEN_AMPT ▼
Property	Value
Suction Head	9.0
Conductivity	0.01875
Initial Deficit	0.33

Property	Value
Name	H6-D-S
X-Coordinate	4500.000
Y-Coordinate	3000.000
Description	
Tag	
Rain Gage	LAKE_WHOL
Outlet	H6
Area	0.615
Width	111
% Slope	1.4
% Imperv	67.09
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	0
Land Uses	0
Initial Buildup	NONE
Curb Length	0
Name of node or and	other subcatchment that

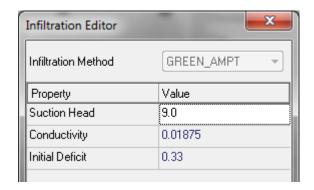
Infiltration Editor	X
Infiltration Method	GREEN_AMPT ▼
Property	Value
Suction Head	9.0
Conductivity	0.01875
Initial Deficit	0.33


Subcatchment H7-E Property	Value
Name	H7-D-S
X-Coordinate	5000.000
Y-Coordinate	3000.000
Description	3000.000
Tag	LAKE MAIOL
Rain Gage	LAKE_WHOL
Outlet .	H7
Area	0.541
Width	114
% Slope	1.4
% Imperv	67.11
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	0
Land Uses	0
Initial Buildup	NONE
Curb Length	0
Name of node or ano receives runoff	ther subcatchment that

×
GREEN_AMPT ▼
Value
9.0
0.01875
0.33

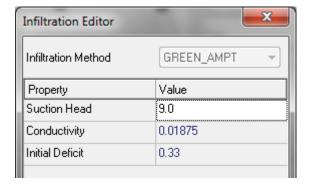
Subcatchment H8-D-S	
Property Name	Value H8-D-S
X-Coordinate	1000.000
Y-Coordinate	3500.000
	3500.000
Description	
Tag	
Rain Gage	LAKE_WHOL
Outlet	H8HR1
Area	18.138
Width	707
% Slope	1.5
% Imperv	65.00
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	0
Land Uses	0
Initial Buildup	NONE
Curb Length	0
Name of node or and receives runoff	ther subcatchment that

Infiltration Editor	×
Infiltration Method	GREEN_AMPT ▼
Property	Value
Suction Head	9.0
Conductivity	0.01875
Initial Deficit	0.33


Subcatchment HR1- Property	Value
Name	HR1-D-S
X-Coordinate	1000.000
Y-Coordinate	4000.000
Description	
Tag	
Rain Gage	LAKE_WHOL
Outlet	H8HR1
Area	4.173
Width	212
% Slope	1.2
% Imperv	90.00
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	0
Land Uses	0
Initial Buildup	NONE
Curb Length	0
Name of node or and receives runoff	ther subcatchment that

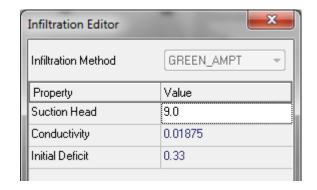
Property	Value
Name	H9-D-S
X-Coordinate	1000.000
Y-Coordinate	4500.000
Description	
Tag	
Rain Gage	LAKE_WHOL
Outlet	H9HR2
Area	2.551
Width	235
% Slope	1.2
% Imperv	65.00
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	0
Land Uses	0
Initial Buildup	NONE
Curb Length	0
Name of node or and	other subcatchment that

nfiltration Editor	X
Infiltration Method	GREEN_AMPT ▼
Property	Value
Suction Head	9.0
Conductivity	0.01875
Initial Deficit	0.33


Property	Value
Name	HR2-D-S
X-Coordinate	1000.000
Y-Coordinate	5000.000
Description	
Tag	
Rain Gage	LAKE_WHOL
Outlet	H9HR2
Area	1.737
Width	90
% Slope	1.3
% Imperv	90.00
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	0
Land Uses	0
Initial Buildup	NONE
Curb Length	0
Name of node or and receives runoff	ther subcatchment that

Property	Value
Name	M1-D-S
X-Coordinate	1000.000
Y-Coordinate	3000.000
Description	
Tag	
Rain Gage	LAKE_WHOL
Outlet	M1MR1K1
Area	39.309
Width	1093
% Slope	1.4
% Imperv	65.00
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	0
Land Uses	0
Initial Buildup	NONE
Curb Length	0
Name of node or and receives runoff	ther subcatchment that

Infiltration Editor	×
Infiltration Method	GREEN_AMPT ▼
Property	Value
Suction Head	9.0
Conductivity	0.01875
Initial Deficit	0.33


Subcatchment K1-D Property	Value
Name	K1-D-S
X-Coordinate	1500.000
Y-Coordinate	3000.000
Description	0000.000
Tag	
Rain Gage	LAKE_WHOL
Outlet	M1MR1K1
Area	4.398
Width	717
% Slope	1.5
% Imperv	74.77
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	0
Land Uses	0
Initial Buildup	NONE
Curb Length	0
Name of node or ano receives runoff	ther subcatchment that

Property	Value
Name	MR1-D-S
X-Coordinate	2000.000
Y-Coordinate	3000.000
Description	
Tag	
Rain Gage	LAKE_WHOL
Outlet	M1MR1K1
Area	4.706
Width	40
% Slope	1.5
% Imperv	90.00
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	0
Land Uses	0
Initial Buildup	NONE
Curb Length	0
Name of pode or and	ther subcatchment that

Infiltration Editor	×
Infiltration Method	GREEN_AMPT ▼
Property	Value
Suction Head	9.0
Conductivity	0.01875
Initial Deficit	0.33


Property	Value
Name	V1-D-S
X-Coordinate	2500.000
Y-Coordinate	7000.000
Description	
Tag	
Rain Gage	LAKE_WHOL
Outlet	V1
Area	3.328
Width	213
% Slope	1.2
% Imperv	78.03
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	0
Land Uses	0
Initial Buildup	NONE
Curb Length	0

Property	Value
Name	V2-B-S
X-Coordinate	1000.000
Y-Coordinate	7000.000
Description	
Tag	
Rain Gage	LAKE_WHOL
Outlet	V2
Area	1.872
Width	211
% Slope	1.3
% Imperv	75.00
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	0
Land Uses	0
Initial Buildup	NONE
Curb Length	0
Name of node or and	ther subcatchment that

Infiltration Editor	×
Infiltration Method	GREEN_AMPT ▼
Property	Value
Suction Head	3.0
Conductivity	0.15
Initial Deficit	0.31


Property	Value
Name	V2-C-S
X-Coordinate	1500.000
Y-Coordinate	7000.000
Description	
Tag	
Rain Gage	LAKE_WHOL
Outlet	V2
Area	0.100
Width	17
% Slope	1.2
% Imperv	75.00
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	0
Land Uses	0
Initial Buildup	NONE
Curb Length	0

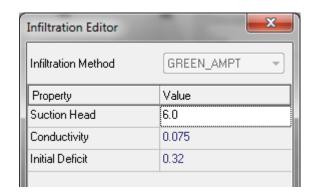
Property	Value
Name	V2-D-S
X-Coordinate	2000.000
Y-Coordinate	7000.000
Description	
Tag	
Rain Gage	LAKE_WHOL
Outlet	V2
Area	1.354
Width	514
% Slope	1.4
% Imperv	82.43
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	0
Land Uses	0
Initial Buildup	NONE
Curb Length	0
Name of node or and	ther subcatchment that

Infiltration Editor	X
Infiltration Method	GREEN_AMPT ▼
Property	Value
Suction Head	9.0
Conductivity	0.01875
Initial Deficit	0.33


Property	Value
Name	V3-B-S
X-Coordinate	3000.000
Y-Coordinate	7000.000
Description	
Tag	
Rain Gage	LAKE_WHOL
Outlet	V3
Area	0.172
Width	114
% Slope	1.5
% Imperv	75.00
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	0
Land Uses	0
Initial Buildup	NONE
Curb Length	0

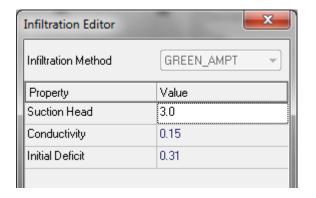
Property	Value
Name	V3-D-S
X-Coordinate	3500.000
Y-Coordinate	7000.000
Description	
Tag	
Rain Gage	LAKE_WHOL
Outlet	V3
Area	0.911
Width	170
% Slope	1.3
% Imperv	78.63
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	0
Land Uses	0
Initial Buildup	NONE
Curb Length	0
Name of node or and	other subcatchment that

Infiltration Editor	X
Infiltration Method	GREEN_AMPT ▼
Property	Value
Suction Head	9.0
Conductivity	0.01875
Initial Deficit	0.33

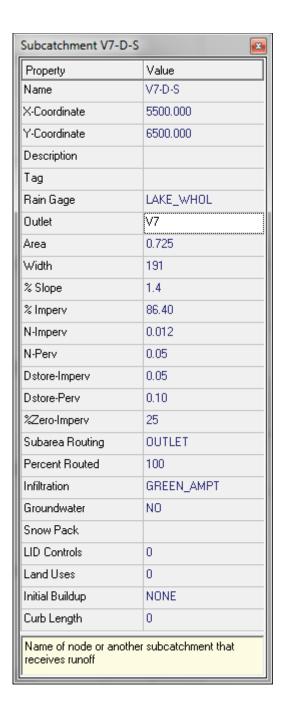

Property	Value
Name	V4-C-S
X-Coordinate	8000.000
Y-Coordinate	6000.000
Description	
Tag	
Rain Gage	LAKE_WHOL
Outlet	V4
Area	0.398
Width	280
% Slope	1.3
% Imperv	75.00
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	0
Land Uses	0
Initial Buildup	NONE
Curb Length	0
Name of node or and	ther subcatchment that

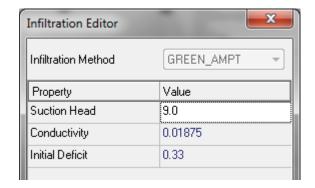
Property	Value
Name	V4-D-S
X-Coordinate	7500.000
Y-Coordinate	5500.000
Description	
Tag	
Rain Gage	LAKE_WHOL
Outlet	V4
Area	1.268
Width	202
% Slope	1.2
% Imperv	75.00
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	0
Land Uses	0
Initial Buildup	NONE
Curb Length	0
Name of node or and	other subcatchment that

Infiltration Editor	×
Infiltration Method	GREEN_AMPT ▼
Property	Value
Suction Head	9.0
Conductivity	0.01875
Initial Deficit	0.33

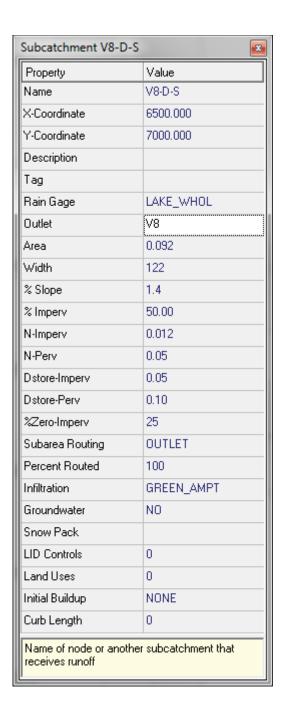

Property	Value
Name	V5-C-S
X-Coordinate	4000.000
Y-Coordinate	7000.000
Description	
Tag	
Rain Gage	LAKE_WHOL
Outlet	V5
Area	2.572
Width	226
% Slope	1.5
% Imperv	78.03
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	0
Land Uses	0
Initial Buildup	NONE
Curb Length	0
Name of node or ano	ther subcatchment that

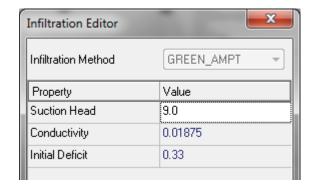
Property	Value
Name	V6-C-S
X-Coordinate	7000.000
Y-Coordinate	3500.000
Description	
Tag	
Rain Gage	LAKE_WHOL
Outlet	V6
Area	1.053
Width	95
% Slope	1.3
% Imperv	78.04
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	0
Land Uses	0
Initial Buildup	NONE
Curb Length	0
Name of node or and	other subcatchment that


Infiltration Editor	×
Infiltration Method	GREEN_AMPT ▼
Property	Value
Suction Head	6.0
Conductivity	0.075
Initial Deficit	0.32

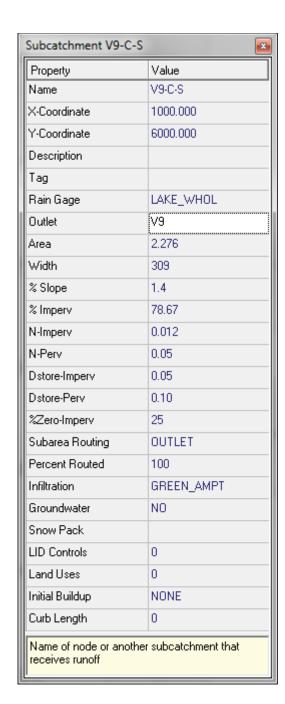

Property	Value
Name	V7-B-S
X-Coordinate	5000.000
Y-Coordinate	7000.000
Description	
Tag	
Rain Gage	LAKE_WHOL
Outlet	V7
Area	1.977
Width	168
% Slope	1.3
% Imperv	75.00
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	0
Land Uses	0
Initial Buildup	NONE
Curb Length	0

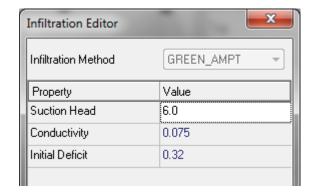
Property	Value
Name	V7-C-S
X-Coordinate	5500.000
Y-Coordinate	7000.000
Description	
Tag	
Rain Gage	LAKE_WHOL
Outlet	V7
Area	0.025
Width	64
% Slope	1.2
% Imperv	75.00
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	0
Land Uses	0
Initial Buildup	NONE
Curb Length	0
Name of node or and	ther subcatchment that


Infiltration Editor	X
Infiltration Method	GREEN_AMPT ▼
Property	Value
Suction Head	6.0
Conductivity	0.075
Initial Deficit	0.32



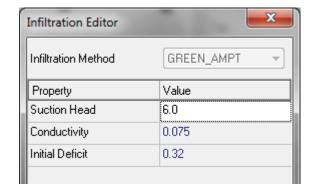
Property	Value
Name	V8-C-S
X-Coordinate	6000.000
Y-Coordinate	7000.000
Description	
Tag	
Rain Gage	LAKE_WHOL
Outlet	V8
Area	2.418
Width	250
% Slope	1.5
% Imperv	51.47
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	0
Land Uses	0
Initial Buildup	NONE
Curb Length	0
Name of node or and	ther subcatchment that


Infiltration Editor	X
Infiltration Method	GREEN_AMPT ▼
Property	Value
Suction Head	6.0
Conductivity	0.075
Initial Deficit	0.32



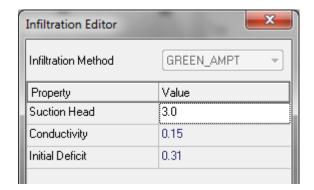
Property	Value
Name	V9-B-S
X-Coordinate	1000.000
Y-Coordinate	6500.000
Description	
Tag	
Rain Gage	LAKE_WHOL
Outlet	V9
Area	0.329
Width	287
% Slope	1.2
% Imperv	75.00
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	0
Land Uses	0
Initial Buildup	NONE
Curb Length	0
Name of node or and	other subcatchment that

Infiltration Editor	X
Infiltration Method	GREEN_AMPT ▼
Property	Value
Suction Head	3.0
Conductivity	0.15
Initial Deficit	0.31



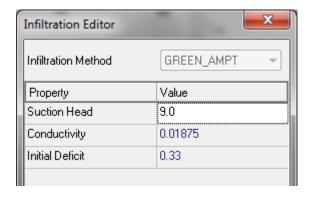
Property	Value
Name	V9-D-S
X-Coordinate	1000.000
Y-Coordinate	5500.000
Description	
Tag	
Rain Gage	LAKE_WHOL
Outlet	V9
Area	0.141
Width	198
% Slope	1.5
% Imperv	75.00
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	0
Land Uses	0
Initial Buildup	NONE
Curb Length	0
Name of node or and	other subcatchment that

Infiltration Editor	X
Infiltration Method	GREEN_AMPT ▼
Property	Value
Suction Head	9.0
Conductivity	0.01875
Initial Deficit	0.33


Property	Value
Name	V10-C-S
X-Coordinate	7500.000
Y-Coordinate	5000.000
Description	
Tag	
Rain Gage	LAKE_WHOL
Outlet	V10
Area	0.717
Width	96
% Slope	1.2
% Imperv	75.00
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	0
Land Uses	0
Initial Buildup	NONE
Curb Length	0

Property	Value
Name	V10-D-S
X-Coordinate	8000.000
Y-Coordinate	5500.000
Description	
Tag	
Rain Gage	LAKE_WHOL
Outlet	V10
Area	8.862
Width	277
% Slope	1.4
% Imperv	78.20
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	0
Land Uses	0
Initial Buildup	NONE
Curb Length	0
Name of node or and	ther subcatchment that

Infiltration Editor	X
Infiltration Method	GREEN_AMPT ▼
Property	Value
Suction Head	9.0
Conductivity	0.01875
Initial Deficit	0.33


Property	Value
Name	V11-B-S
X-Coordinate	7000.000
Y-Coordinate	7000.000
Description	
Tag	
Rain Gage	LAKE_WHOL
Outlet	V11VR2
Area	3.321
Width	190
% Slope	1.5
% Imperv	75.00
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	0
Land Uses	0
Initial Buildup	NONE
Curb Length	0

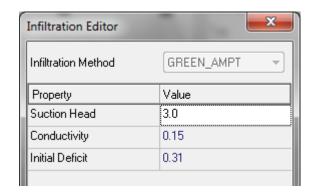
Property	Value
Name	V11-C-S
X-Coordinate	7500.000
Y-Coordinate	7000.000
Description	
Tag	
Rain Gage	LAKE_WHOL
Outlet	V11VR2
Area	6.342
Width	392
% Slope	1.3
% Imperv	80.48
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	0
Land Uses	0
Initial Buildup	NONE
Curb Length	0
Name of node or and	other subcatchment that

Infiltration Editor	×
Infiltration Method	GREEN_AMPT ▼
Property	Value
Suction Head	6.0
Conductivity	0.075
Initial Deficit	0.32

Property	Value
Name	V11-D-S
X-Coordinate	8000.000
Y-Coordinate	7000.000
Description	
Tag	
Rain Gage	LAKE_WHOL
Outlet	V11VR2
Area	0.128
Width	103
% Slope	1.4
% Imperv	75.00
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	0
Land Uses	0
Initial Buildup	NONE
Curb Length	0
	ther subcatchment that

Property	Value
Name	VR2-B-S
X-Coordinate	8000.000
Y-Coordinate	6500.000
Description	
Tag	
Rain Gage	LAKE_WHOL
Outlet	V11VR2
Area	1.569
Width	80
% Slope	1.2
% Imperv	90.00
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	0
Land Uses	0
Initial Buildup	NONE
Curb Length	0
Name of node or and	other subcatchment that

Infiltration Editor	×
Infiltration Method	GREEN_AMPT ▼
Property	Value
Suction Head	3.0
Conductivity	0.15
Initial Deficit	0.31


Property	Value
Name	VR2-C-S
X-Coordinate	6500.000
Y-Coordinate	6500.000
Description	
Tag	
Rain Gage	LAKE_WHOL
Outlet	V11VR2
Area	0.033
Width	17
% Slope	1.5
% Imperv	90.00
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	0
Land Uses	0
Initial Buildup	NONE
Curb Length	0

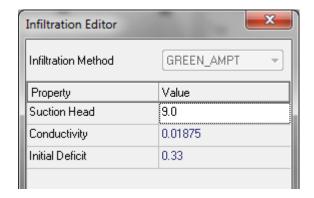
Property	Value
Name	V12-B-S
X-Coordinate	8000.000
Y-Coordinate	5000.000
Description	
Tag	
Rain Gage	LAKE_WHOL
Outlet	V12VR1
Area	0.190
Width	38
% Slope	1.4
% Imperv	92.89
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	0
Land Uses	0
Initial Buildup	NONE
Curb Length	0
Name of node or and	other subcatchment that

Infiltration Editor	×
Infiltration Method	GREEN_AMPT ▼
Property	Value
Suction Head	3.0
Conductivity	0.15
Initial Deficit	0.31

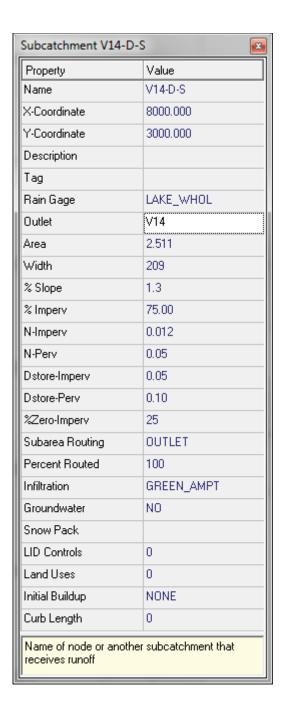
Property	Value
Name	VR1-B-S
X-Coordinate	8000.000
Y-Coordinate	4500.000
Description	
Tag	
Rain Gage	LAKE_WHOL
Outlet	V12VR1
Area	0.860
Width	90
% Slope	1.3
% Imperv	90.00
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	0
Land Uses	0
Initial Buildup	NONE
Curb Length	0

Property	Value
Name	VR1-C-S
X-Coordinate	8000.000
Y-Coordinate	4000.000
Description	
Tag	
Rain Gage	LAKE_WHOL
Outlet	V12VR1
Area	0.141
Width	114
% Slope	1.4
% Imperv	90.00
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	0
Land Uses	0
Initial Buildup	NONE
Curb Length	0
Name of node or and	ther subcatchment that

nfiltration Editor	
Infiltration Method	GREEN_AMPT +
Property	Value
Suction Head	6.0
Conductivity	0.075
Initial Deficit	0.32


Property	Value
Name	VR1-D-S
X-Coordinate	8000.000
Y-Coordinate	3500.000
Description	
Tag	
Rain Gage	LAKE_WHOL
Outlet	V12VR1
Area	2.273
Width	70
% Slope	1.5
% Imperv	90.00
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	0
Land Uses	0
Initial Buildup	NONE
Curb Length	0

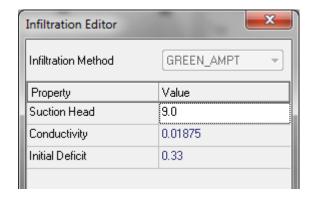
Property	Value
Name	V13-B-S
X-Coordinate	4333.000
Y-Coordinate	7000.000
Description	
Tag	
Rain Gage	LAKE_WHOL
Outlet	V13
Area	1.887
Width	113
% Slope	1.5
% Imperv	75.00
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	0
Land Uses	0
Initial Buildup	NONE
Curb Length	0
Name of node or and	other subcatchment that


Infiltration Editor	X
Infiltration Method	GREEN_AMPT ▼
Property	Value
Suction Head	3.0
Conductivity	0.15
Initial Deficit	0.31

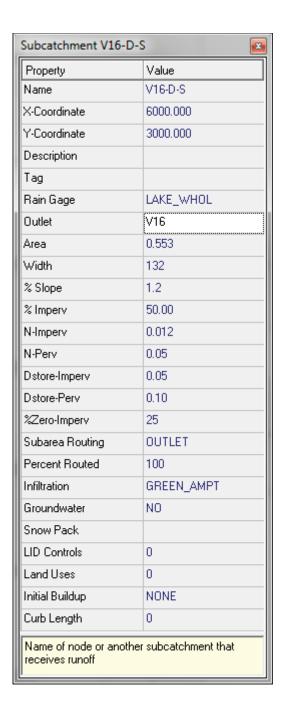
Subcatchment V13- Property	Value
Name	V13-D-S
X-Coordinate	4666.000
Y-Coordinate	7000.000
Description	1000.000
Tag	
Rain Gage	LAKE_WHOL
Outlet	V13
Area	1.601
Width	156
% Slope	1.5
% Imperv	78.17
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	0
Land Uses	0
Initial Buildup	NONE
Curb Length	0
Name of node or and receives runoff	ther subcatchment that

Property	Value
Name	V14-B-S
X-Coordinate	7500.000
Y-Coordinate	3000.000
Description	
Tag	
Rain Gage	LAKE_WHOL
Outlet	V14
Area	2.459
Width	230
% Slope	1.3
% Imperv	80.51
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	0
Land Uses	0
Initial Buildup	NONE
Curb Length	0
Name of node or and	other subcatchment that

Infiltration Editor	X
Infiltration Method	GREEN_AMPT ▼
Property	Value
Suction Head	3.0
Conductivity	0.15
Initial Deficit	0.31

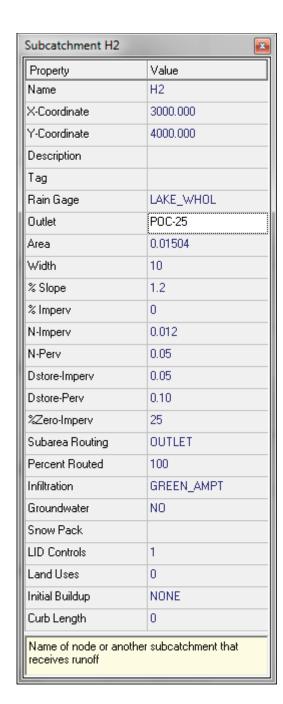


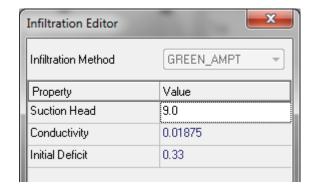
Property	Value
Name	V15-B-S
X-Coordinate	7000.000
Y-Coordinate	3000.000
Description	
Tag	
Rain Gage	LAKE_WHOL
Outlet	V15
Area	3.984
Width	274
% Slope	1.2
% Imperv	80.42
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	0
Land Uses	0
Initial Buildup	NONE
Curb Length	0
Name of node or and	ther subcatchment that


Infiltration Editor	×
Infiltration Method	GREEN_AMPT ▼
Property	Value
Suction Head	3.0
Conductivity	0.15
Initial Deficit	0.31


Property	Value
Name	V15-D-S
X-Coordinate	6500.000
Y-Coordinate	3000.000
Description	
Tag	
Rain Gage	LAKE_WHOL
Outlet	V15
Area	3.314
Width	222
% Slope	1.5
% Imperv	75.00
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	0
Land Uses	0
Initial Buildup	NONE
Curb Length	0

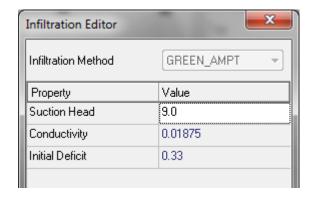
Property	Value
Name	V16-B-S
X-Coordinate	5500.000
Y-Coordinate	3000.000
Description	
Tag	
Rain Gage	LAKE_WHOL
Outlet	V16
Area	2.114
Width	191
% Slope	1.3
% Imperv	51.79
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	0
Land Uses	0
Initial Buildup	NONE
Curb Length	0
Land Uses Initial Buildup	0 NONE


	X
1PT	~]



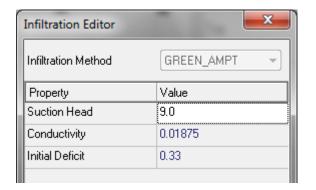
Property	Value
Name	H1
X-Coordinate	2500.000
Y-Coordinate	4000.000
Description	
Tag	
Rain Gage	LAKE_WHOL
Outlet	POC-25
Area	0.04867
Width	10
% Slope	1.4
% Imperv	0
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	1
Land Uses	0
Initial Buildup	NONE
Curb Length	0
Name of node or and	ther subcatchment that

Infiltration Editor	X
Infiltration Method	GREEN_AMPT ▼
Property	Value
Suction Head	9.0
Conductivity	0.01875
Initial Deficit	0.33



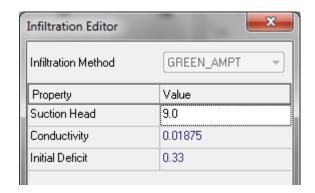
Property	Value
Name	H4
X-Coordinate	3500.000
Y-Coordinate	4000.000
Description	
Tag	
Rain Gage	LAKE_WHOL
Outlet	POC-25
Area	0.02181
Width	10
% Slope	1.4
% Imperv	0
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	1
Land Uses	0
Initial Buildup	NONE
Curb Length	0

X
GREEN_AMPT ▼
Value
9.0
0.01875
0.33


Property	Value
Name	H5
X-Coordinate	4000.000
Y-Coordinate	4000.000
Description	
Tag	
Rain Gage	LAKE_WHOL
Outlet	POC-25
Area	0.02319
Width	10
% Slope	1.3
% Imperv	0
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	1
Land Uses	0
Initial Buildup	NONE
Curb Length	0

Property	Value
Name	H6
X-Coordinate	4500.000
Y-Coordinate	4000.000
Description	
Tag	
Rain Gage	LAKE_WHOL
Outlet	POC-25
Area	0.01974
Width	10
% Slope	1.2
% Imperv	0
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	1
Land Uses	0
Initial Buildup	NONE
Curb Length	0
Name of node or and	ther subcatchment that

Infiltration Editor	X
Infiltration Method	GREEN_AMPT ▼
Property	Value
Suction Head	9.0
Conductivity	0.01875
Initial Deficit	0.33


Property	Value
Name	H7
X-Coordinate	5000.000
Y-Coordinate	4000.000
Description	
Tag	
Rain Gage	LAKE_WHOL
Outlet	POC-25
Area	0.01756
Width	10
% Slope	1.3
% Imperv	0
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	1
Land Uses	0
Initial Buildup	NONE
Curb Length	0
Name of node or another subcatchment that receives runoff	

Property	Value
Name	H8HR1
X-Coordinate	2000.000
Y-Coordinate	5000.000
Description	
Tag	
Rain Gage	LAKE_WHOL
Outlet	POC-25
Area	0.74529
Width	10
% Slope	1.4
% Imperv	0
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	1
Land Uses	0
Initial Buildup	NONE
Curb Length	0

Infiltration Editor	
Infiltration Method	GREEN_AMPT ▼
Property	Value
Suction Head	9.0
Conductivity	0.01875
Initial Deficit	0.33


Subcatchment H9HR2	
Property	Value
Name	H9HR2
X-Coordinate	2000.000
Y-Coordinate	5300.000
Description	
Tag	
Rain Gage	LAKE_WHOL
Outlet	POC-25
Area	0.17057
Width	10
% Slope	1.5
% Imperv	0
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	1
Land Uses	0
Initial Buildup	NONE
Curb Length	0
Name of node or another subcatchment that receives runoff	

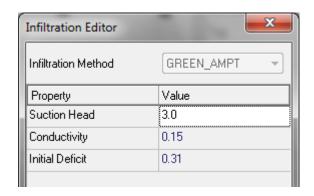
X-Coordinate 2000.000 Y-Coordinate 4000.000 Description Image (Initial Buildup) Tag (Initial Buildup) LAKE_WHOL (Initial Buildup) Under (Initial Buildup) LAKE_WHOL (Initial Buildup) LAKE_WHOL (Initial Buildup) LAKE_WHOL (Initial Buildup) LAKE_WHOL (Initial Buildup) LAKE_WHOL (Initial Buildup) LAKE_WHOL (Initial Buildup) LAMOU.000 LAKE_WHOL (Initial Buildup) LAMOU.000 LAKE_WHOL (Initial Buildup) LAMOU.000 LAKE_WHOL (Initial Buildup) LAKE_WHOL (Initial Buildup)	Property	Value
Y-Coordinate 4000.000 Description Tag Rain Gage LAKE_WHOL Outlet D-K1 Area 2.26974 Width 10 % Slope 1.2 % Imperv 0 N-Imperv 0.05 Dstore-Imperv 0.05 Dstore-Perv 0.10 %Zero-Imperv 25 Subarea Routing OUTLET Percent Routed 100 Infiltration GREEN_AMPT Groundwater NO Snow Pack LID Controls LID Controls 1 Land Uses 0 Initial Buildup NONE	Name	M1MB1K1
Description Tag Rain Gage LAKE_WHOL Outlet D-K1 Area 2.26974 Width 10 % Slope 1.2 % Imperv 0 N-Imperv 0.012 N-Perv 0.05 Dstore-Imperv 0.05 Dstore-Perv 0.10 %Zero-Imperv 25 Subarea Routing OUTLET Percent Routed 100 Infiltration GREEN_AMPT Groundwater NO Snow Pack LID Controls LID Controls 1 Land Uses 0 Initial Buildup NONE	X-Coordinate	2000.000
Tag LAKE_WHOL Outlet D-K1 Area 2.26974 Width 10 % Slope 1.2 % Imperv 0 N-Imperv 0.012 N-Perv 0.05 Dstore-Imperv 0.05 Dstore-Perv 0.10 %Zero-Imperv 25 Subarea Routing OUTLET Percent Routed 100 Infiltration GREEN_AMPT Groundwater NO Snow Pack LID Controls LID Controls 1 Land Uses 0 Initial Buildup NONE	Y-Coordinate	4000.000
Rain Gage LAKE_WHOL Outlet D-K1 Area 2.26974 Width 10 % Slope 1.2 % Imperv 0 N-Imperv 0.012 N-Perv 0.05 Dstore-Imperv 0.05 Dstore-Perv 0.10 %Zero-Imperv 25 Subarea Routing OUTLET Percent Routed 100 Infiltration GREEN_AMPT Groundwater NO Snow Pack LID Controls LID Controls 1 Land Uses 0 Initial Buildup NONE	Description	
Outlet D-K1 Area 2.26974 Width 10 % Slope 1.2 % Imperv 0 N-Imperv 0.012 N-Perv 0.05 Dstore-Imperv 0.05 Dstore-Perv 0.10 %Zero-Imperv 25 Subarea Routing OUTLET Percent Routed 100 Infiltration GREEN_AMPT Groundwater NO Snow Pack LID Controls LID Controls 1 Land Uses 0 Initial Buildup NONE	Tag	
Outlet D-K1 Area 2.26974 Width 10 % Slope 1.2 % Imperv 0 N-Imperv 0.012 N-Perv 0.05 Dstore-Imperv 0.10 %Zero-Imperv 25 Subarea Routing OUTLET Percent Routed 100 Infiltration GREEN_AMPT Groundwater NO Snow Pack LID Controls 1 Land Uses 0 Initial Buildup NONE	Rain Gage	
Area 2.26974 Width 10 % Slope 1.2 % Imperv 0 N-Imperv 0.012 N-Perv 0.05 Dstore-Imperv 0.10 %Zero-Imperv 25 Subarea Routing OUTLET Percent Routed 100 Infiltration GREEN_AMPT Groundwater NO Snow Pack LID Controls LID Controls 1 Land Uses 0 Initial Buildup NONE	Outlet	D-K1
% Slope 1.2 % Imperv 0 N-Imperv 0.012 N-Perv 0.05 Dstore-Imperv 0.05 Dstore-Perv 0.10 %Zero-Imperv 25 Subarea Routing OUTLET Percent Routed 100 Infiltration GREEN_AMPT Groundwater NO Snow Pack I LID Controls 1 Land Uses 0 Initial Buildup NONE	Area	
% Imperv 0 N-Imperv 0.012 N-Perv 0.05 Dstore-Imperv 0.05 Dstore-Perv 0.10 %Zero-Imperv 25 Subarea Routing OUTLET Percent Routed 100 Infiltration GREEN_AMPT Groundwater NO Snow Pack LID Controls LID Controls 1 Land Uses 0 Initial Buildup NONE	Width	10
N-Imperv 0.012 N-Perv 0.05 Dstore-Imperv 0.05 Dstore-Perv 0.10 %Zero-Imperv 25 Subarea Routing OUTLET Percent Routed 100 Infiltration GREEN_AMPT Groundwater NO Snow Pack LID Controls LID Controls 1 Land Uses 0 Initial Buildup NONE	% Slope	1.2
N-Perv 0.05 Dstore-Imperv 0.05 Dstore-Perv 0.10 %Zero-Imperv 25 Subarea Routing OUTLET Percent Routed 100 Infiltration GREEN_AMPT Groundwater NO Snow Pack ID Controls LID Controls 1 Land Uses 0 Initial Buildup NONE	% Imperv	0
Dstore-Imperv 0.05 Dstore-Perv 0.10 %Zero-Imperv 25 Subarea Routing OUTLET Percent Routed 100 Infiltration GREEN_AMPT Groundwater NO Snow Pack LID Controls 1 Land Uses 0 Initial Buildup NONE	N-Imperv	0.012
Dstore-Perv 0.10 %Zero-Imperv 25 Subarea Routing OUTLET Percent Routed 100 Infiltration GREEN_AMPT Groundwater NO Snow Pack LID Controls LID Controls 1 Land Uses 0 Initial Buildup NONE	N-Perv	0.05
%Zero-Imperv 25 Subarea Routing OUTLET Percent Routed 100 Infiltration GREEN_AMPT Groundwater NO Snow Pack LID Controls LID Controls 1 Land Uses 0 Initial Buildup NONE	Dstore-Imperv	0.05
Subarea Routing OUTLET Percent Routed 100 Infiltration GREEN_AMPT Groundwater NO Snow Pack LID Controls 1 Land Uses 0 Initial Buildup NONE	Dstore-Perv	0.10
Percent Routed 100 Infiltration GREEN_AMPT Groundwater NO Snow Pack ID Controls LID Controls 1 Land Uses 0 Initial Buildup NONE	%Zero-Imperv	25
Infiltration GREEN_AMPT Groundwater NO Snow Pack LID Controls 1 Land Uses 0 Initial Buildup NONE	Subarea Routing	OUTLET
Groundwater NO Snow Pack ID Controls LID Controls 1 Land Uses 0 Initial Buildup NONE	Percent Routed	100
Snow Pack LID Controls 1 Land Uses 0 Initial Buildup NONE	Infiltration	GREEN_AMPT
LID Controls 1 Land Uses 0 Initial Buildup NONE	Groundwater	NO
Land Uses 0 Initial Buildup NONE	Snow Pack	
Initial Buildup NONE	LID Controls	1
·	Land Uses	0
Curb Length 0	Initial Buildup	NONE
Construction of the constr	Curb Length	0

Infiltration Editor	X
Infiltration Method	GREEN_AMPT ▼
Property	Value
Suction Head	9.0
Conductivity	0.01875
Initial Deficit	0.33


Property	Value
Name	V1
X-Coordinate	2500.000
Y-Coordinate	6000.000
Description	
Tag	
Rain Gage	LAKE_WHOL
Outlet	POC-25
Area	0.13464
Width	10
% Slope	1.3
% Imperv	0
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	1
Land Uses	0
Initial Buildup	NONE
Curb Length	0

Property	Value
Name	V2
X-Coordinate	2000.000
Y-Coordinate	6000.000
Description	
Tag	
Rain Gage	LAKE_WHOL
Outlet	POC-25
Area	0.13407
Width	10
% Slope	1.4
% Imperv	0
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	1
Land Uses	0
Initial Buildup	NONE
Curb Length	0
Name of node or and	other subcatchment that

Infiltration Editor	X
Infiltration Method	GREEN_AMPT ▼
Property	Value
Suction Head	9.0
Conductivity	0.01875
Initial Deficit	0.33


Property	Value
Name	V3
X-Coordinate	3000.000
Y-Coordinate	6000.000
Description	
Tag	
Rain Gage	LAKE_WHOL
Outlet	POC-25
Area	0.04408
Width	10
% Slope	1.5
% Imperv	0
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	1
Land Uses	0
Initial Buildup	NONE
Curb Length	0
Name of node or ano receives runoff	ther subcatchment that

X-Coordinate Y-Coordinate Description Tag Rain Gage Outlet Area Width % Slope	V4 7000.000 5350.000 LAKE_WHOL POC-25 0.06474 10 1.5
Y-Coordinate Description Tag Rain Gage Outlet Area Width % Slope	5350.000 LAKE_WHOL POC-25 0.06474 10 1.5
Description Tag Rain Gage Outlet Area Width % Slope	LAKE_WHOL POC-25 0.06474 10 1.5
Outlet Area Width % Slope % Imperv	POC-25 0.06474 10 1.5
Rain Gage Outlet Area Width % Slope % Imperv	POC-25 0.06474 10 1.5
Outlet Area Width % Slope % Imperv	POC-25 0.06474 10 1.5
Area Width % Slope % Imperv	POC-25 0.06474 10 1.5 0
Width % Slope % Imperv	10 1.5 0
% Slope % Imperv	1.5
% Imperv	0
N-Imperv	
	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	1
Land Uses	0
Initial Buildup	NONE
Curb Length	0

Infiltration Editor	X
Infiltration Method	GREEN_AMPT ▼
Property	Value
Suction Head	6.0
Conductivity	0.075
Initial Deficit	0.32


Property	Value
Name	V5
X-Coordinate	4000.000
Y-Coordinate	6000.000
Description	
Tag	
Rain Gage	LAKE_WHOL
Outlet	POC-25
Area	0.10376
Width	10
% Slope	1.4
% Imperv	0
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	1
Land Uses	0
Initial Buildup	NONE
Curb Length	0
Name of node or another subcatchment that receives runoff	

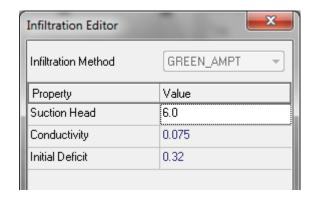
Property	Value
Name	V6
X-Coordinate	6500.000
Y-Coordinate	4000.000
Description	
Tag	
Rain Gage	LAKE_WHOL
Outlet	POC-25
Area	0.04258
Width	10
% Slope	1.3
% Imperv	0
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	1
Land Uses	0
Initial Buildup	NONE
Curb Length	0
	other subcatchment that

Infiltration Editor	X
Infiltration Method	GREEN_AMPT ▼
Property	Value
Suction Head	6.0
Conductivity	0.075
Initial Deficit	0.32

Subcatchment V7 Property	Value
Name	V7
X-Coordinate	5000.000
Y-Coordinate	6000.000
Description	0000.000
Tag	
Rain Gage	LAKE_WHOL
Outlet	POC-25
	0.11019
Area	
Width	10
% Slope	1.2
% Imperv	0
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	1
Land Uses	0
Initial Buildup	NONE
Curb Length	0
Name of node or ano receives runoff	ther subcatchment that

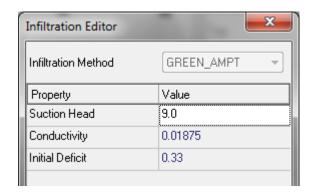
Property	Value
Name	V8
X-Coordinate	6000.000
Y-Coordinate	6000.000
Description	
Tag	
Rain Gage	LAKE_WHOL
Outlet	POC-25
Area	0.07117
Width	10
% Slope	1.5
% Imperv	0
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	1
Land Uses	0
Initial Buildup	NONE
Curb Length	0
	other subcatchment that

Infiltration Editor	X
Infiltration Method	GREEN_AMPT ▼
Property	Value
Suction Head	6.0
Conductivity	0.075
Initial Deficit	0.32


Subcatchment V9 Property	Value
Name	V9
X-Coordinate	2000.000
Y-Coordinate	5650.000
Description	0000.000
Tag	
Rain Gage	LAKE_WHOL
Outlet	POC-25
Area	0.11134
Width	10
% Slope	1.3
% Imperv	0
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	1
Land Uses	0
Initial Buildup	NONE
Curb Length	0
Name of node or ano receives runoff	ther subcatchment that

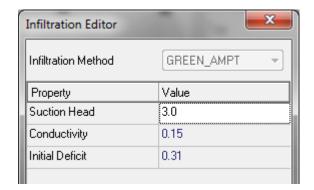
Property	Value
Name	V10
X-Coordinate	7000.000
Y-Coordinate	5000.000
Description	
Tag	
Rain Gage	LAKE_WHOL
Outlet	POC-25
Area	0.37821
Width	10
% Slope	1.2
% Imperv	0
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	1
Land Uses	0
Initial Buildup	NONE
Curb Length	0
Name of node or and	other subcatchment that

Infiltration Editor	X
Infiltration Method	GREEN_AMPT ▼
Property	Value
Suction Head	6.0
Conductivity	0.075
Initial Deficit	0.32


Subcatchment V11\	/R2 🚾
Property Name	V11VR2
X-Coordinate	7000.000
	1
Y-Coordinate	6000.000
Description	
Tag	
Rain Gage	LAKE_WHOL
Outlet	D11R2
Area	0.463728
Width	10
% Slope	1.5
% Imperv	0
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	1
Land Uses	0
Initial Buildup	NONE
Curb Length	0
Name of node or and receives runoff	ther subcatchment that

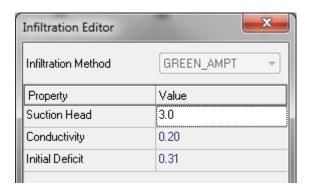
Property	Value
Name	V12VR1
X-Coordinate	7000.000
Y-Coordinate	4700.000
Description	
Tag	
Rain Gage	LAKE_WHOL
Outlet	POC-25
Area	0.16311
Width	10
% Slope	1.3
% Imperv	0
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	1
Land Uses	0
Initial Buildup	NONE
Curb Length	0

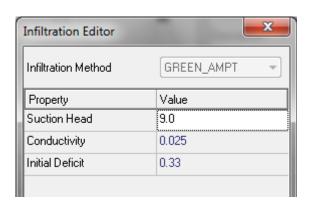
Infiltration Editor	×
Infiltration Method	GREEN_AMPT ▼
Property	Value
Suction Head	3.0
Conductivity	0.15
Initial Deficit	0.31


Property	Value
Name	V13
X-Coordinate	4500.000
Y-Coordinate	6000.000
Description	
Tag	
Rain Gage	LAKE_WHOL
Outlet	POC-25
Area	0.06761
Width	10
% Slope	1.2
% Imperv	0
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	1
Land Uses	0
Initial Buildup	NONE
Curb Length	0

Property	Value
Name	V14
X-Coordinate	7496.991
Y-Coordinate	3747.222
Description	
Tag	
Rain Gage	LAKE_WHOL
Outlet	D14
Area	0.180487
Width	10
% Slope	1.4
% Imperv	0
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	1
Land Uses	0
Initial Buildup	NONE
Curb Length	0
Name of node or and	other subcatchment that

Infiltration Editor	×
Infiltration Method	GREEN_AMPT ▼
Property	Value
Suction Head	3.0
Conductivity	0.15
Initial Deficit	0.31


Property	Value
Name	V15
X-Coordinate	6000.000
Y-Coordinate	4000.000
Description	
Tag	
Rain Gage	LAKE_WHOL
Outlet	POC-25
Area	0.28788
Width	10
% Slope	1.5
% Imperv	0
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	1
Land Uses	0
Initial Buildup	NONE
Curb Length	0


Property	Value
Name	V16
X-Coordinate	5500.000
Y-Coordinate	4000.000
Description	
Tag	
Rain Gage	LAKE_WHOL
Outlet	POC-25
Area	0.07576
Width	10
% Slope	1.4
% Imperv	0
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	1
Land Uses	0
Initial Buildup	NONE
Curb Length	0

Infiltration Editor	×
Infiltration Method	GREEN_AMPT ▼
Property	Value
Suction Head	3.0
Conductivity	0.15
Initial Deficit	0.31

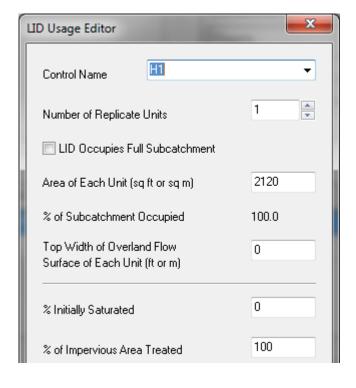
Property	Value
Name	OFF-1-B
X-Coordinate	5500.000
Y-Coordinate	6000.000
Description	
Tag	
Rain Gage	LAKE_WHOL
Outlet	P0C-25
Area	0.442
Width	10.3
% Slope	15
% Imperv	0
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	0
Land Uses	0
Initial Buildup	NONE
Curb Length	0

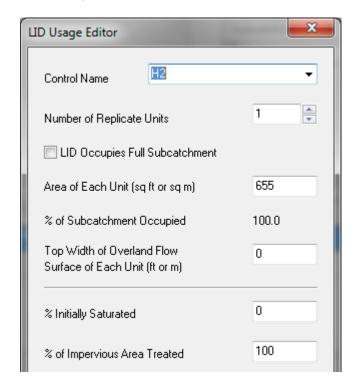
Subcatchment OFF- Property	-1-D Value
Name	OFF-1-D
X-Coordinate	3500.000
Y-Coordinate	6000.000
Description	
Tag	
Rain Gage	LAKE_WHOL
Outlet	POC-25
Area	245.952
Width	3373
% Slope	40
% Imperv	0
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	0
Land Uses	0
Initial Buildup	NONE
Curb Length	0
Name of node or and receives runoff	ther subcatchment that

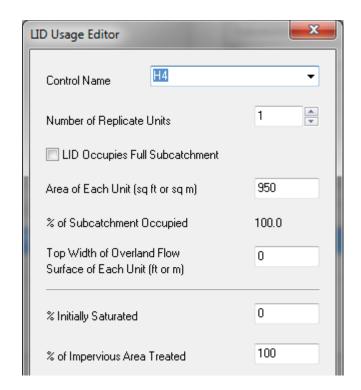
EXPLANATION OF SELECTED VARIABLES

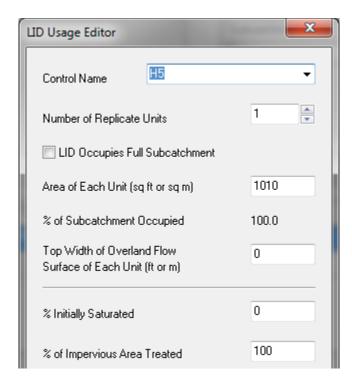
Sub-Catchment Areas:

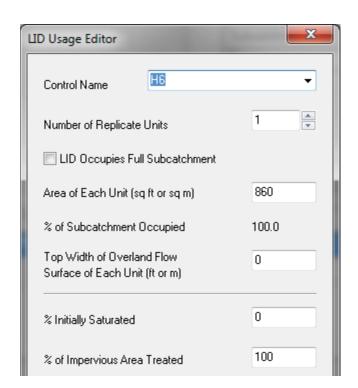
Please refer to the attached diagrams that indicate the DMA and Bio-Retention BMP (BMP) sub areas modeled within the project site at both the pre and post developed conditions draining to the POC.

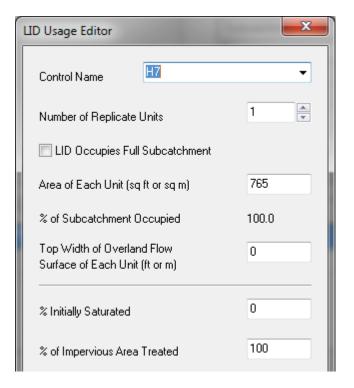

Parameters for the pre- and post-developed models include soils type B, C, and D as determined from the site specific Natural Resources Conservation Service (NRCS) (attached at the end of this appendix). Suction head, conductivity and initial deficit corresponds to average values expected for these soils types, according to sources consulted, professional experience, and approximate values obtained by the interim Orange County modeling approach.

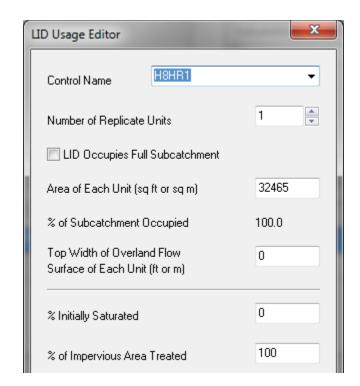

REC selected infiltration values, such that the percentage of total precipitation that becomes runoff is realistic for the soil types and slightly smaller than measured values for Southern California watersheds.

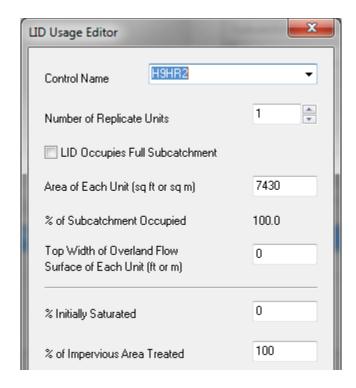

Selection of a Kinematic Approach: As the continuous model is based on hourly rainfall, and the time of concentration for the pre-development and post-development conditions is significantly smaller than 60 minutes, precise routing of the flows through the impervious surfaces, the underdrain pipe system, and the discharge pipe was considered unnecessary. The truncation error of the precipitation into hourly steps is much more significant than the precise routing in a system where the time of concentration is much smaller than 1 hour.

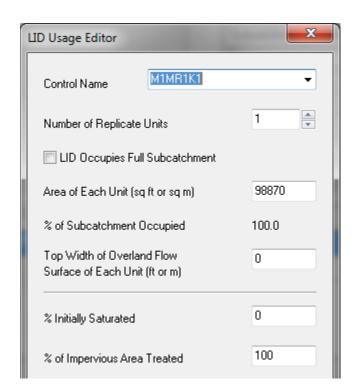

Sub-Catchment BMP:

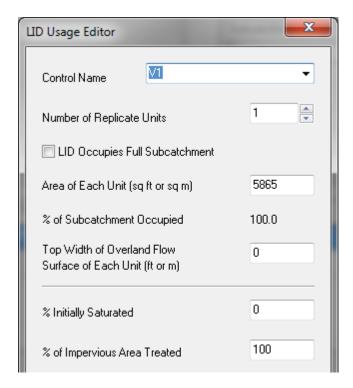

The area of bio-filtration must be equal to the area of the development tributary to the bioretention facility (area that drains into the biofiltration, equal external area plus bio-filtration itself). Five (5) decimal places were given regarding the areas of the bio-filtration to insure that the area used by the program for the LID subroutine corresponds exactly with this tributary.

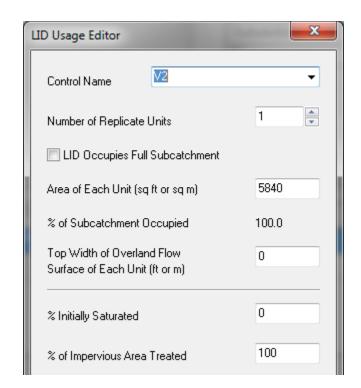


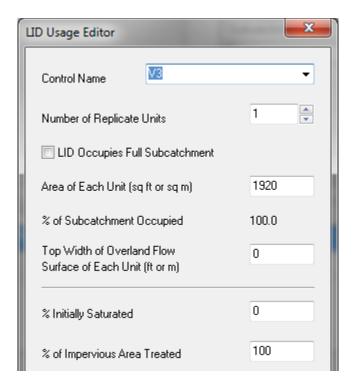


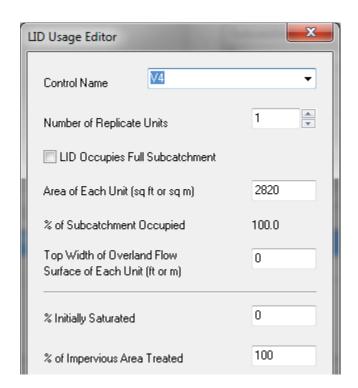


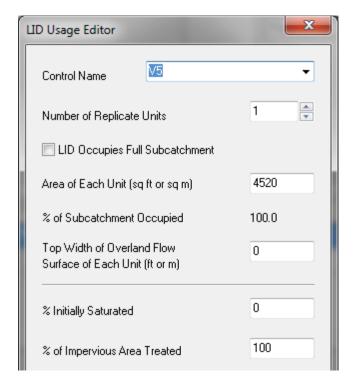


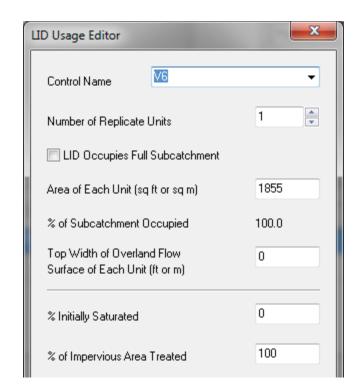


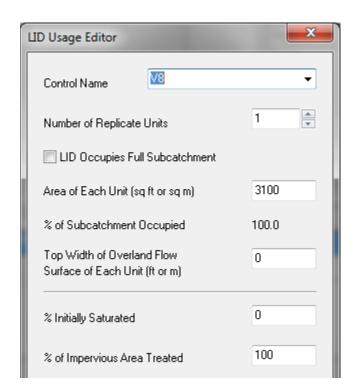


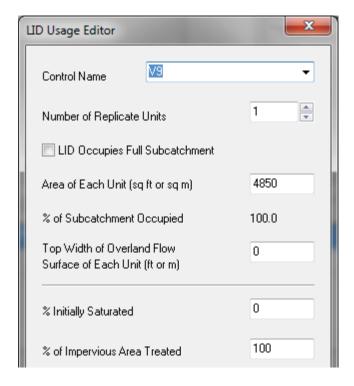


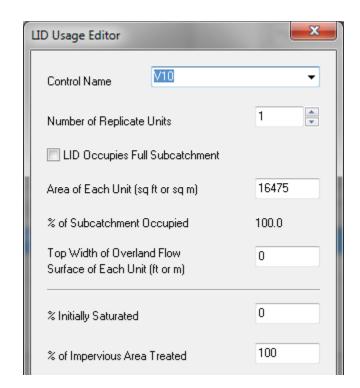


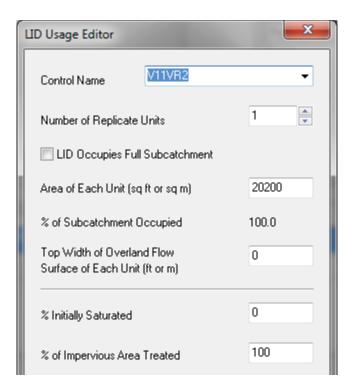


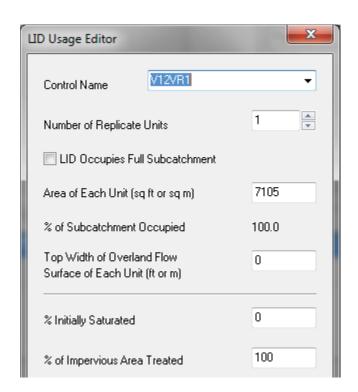


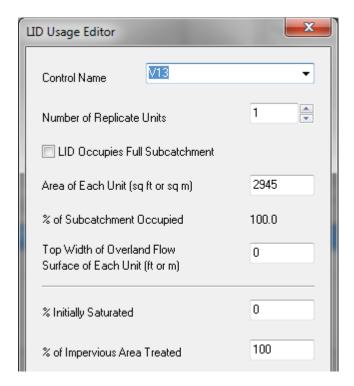


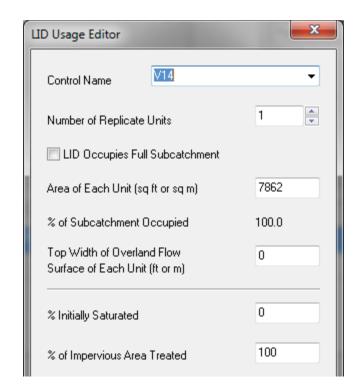


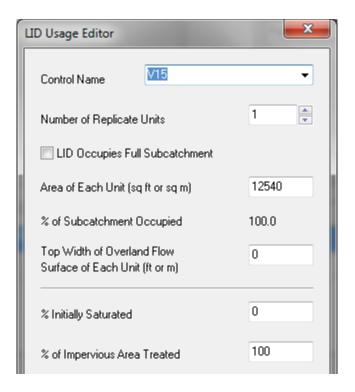


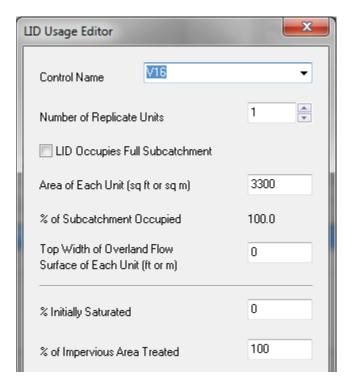


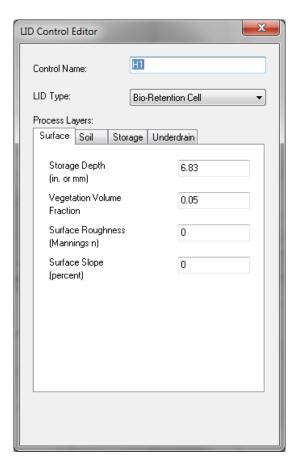


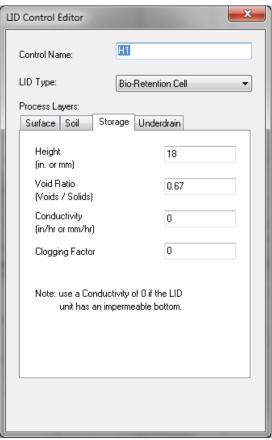


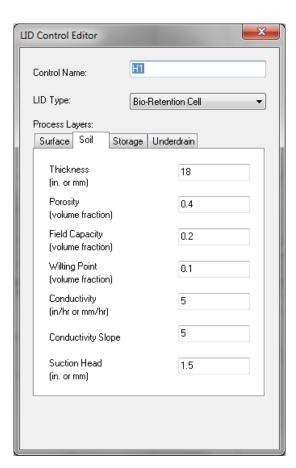


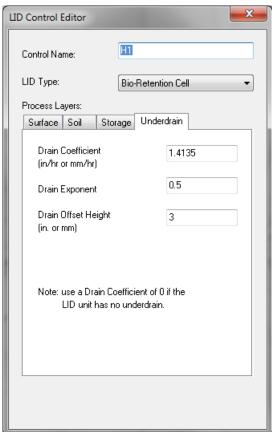


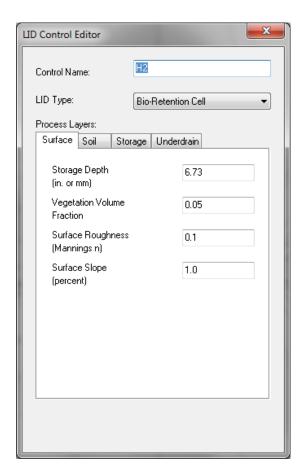


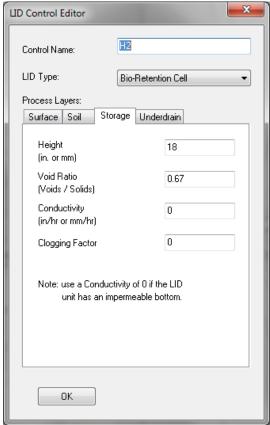


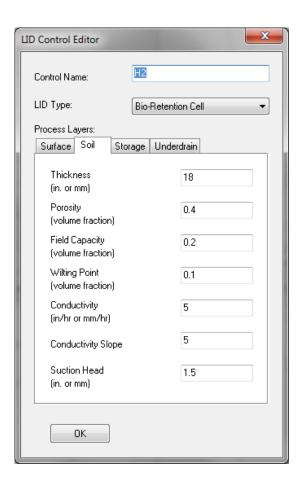


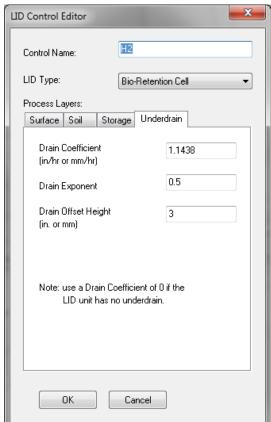


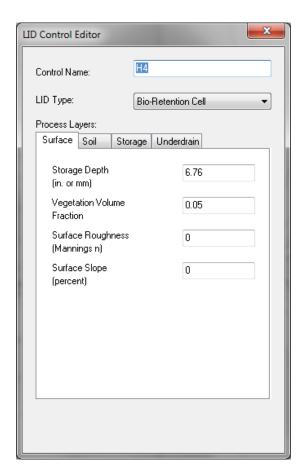

Determination of surface Depth for SWMM Model

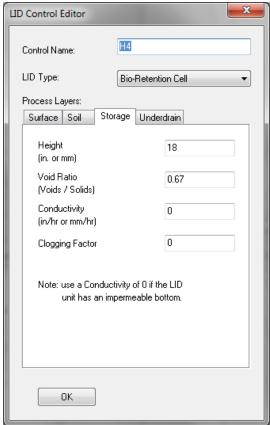

	Bottom area = BMP	Area at lowest surface	Elev. @ A ₂ (h,	Elev. In SWMM (h _{eq} , in)
ВМР	area, A _{BMP} (ft ²)	inlet elevation (A ₂ , ft ²)	ft)	$[h_{eq}=6\cdot(1+A_2/A_{BMP})\cdot h]$
H1	2,120	2,703	0.50	6.83
H2	655	815	0.50	6.73
H4	950	1,190	0.50	6.76
H5	1,010	1,220	0.50	6.62
Н6	860	1,055	0.50	6.68
H7	765	965	0.50	6.78
H8HR1	32,465	33,595	0.50	6.10
H9HR2	7,430	8,000	0.50	6.23
M1MR1K1	94,224	107,009	2.00	25.63
V1	5,865	6,525	0.50	6.34
V2	5,840	6,395	0.50	6.29
V3	1,920	2,325	0.50	6.63
V4	2,820	3,265	0.50	6.47
V5	4,520	5,190	0.50	6.44
V6	1,855	2,220	0.50	6.59
V7	4,800	5,575	0.50	6.48
V8	3,100	3,550	0.50	6.44
V9	4,850	5,300	0.50	6.28
V10	16,475	17,480	0.50	6.18
V11VR2	20,200	21,405	1.00	12.36
V12VR1	7,105	8,230	0.50	6.48
V13	2,945	3,270	0.50	6.33
V14	7,862	9,847	2.00	27.03
V15	12,540	13,895	0.50	6.32
V16	3,300	3,665	0.50	6.33

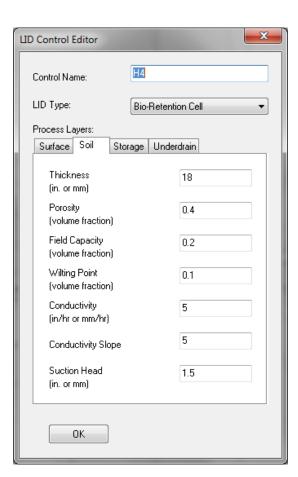


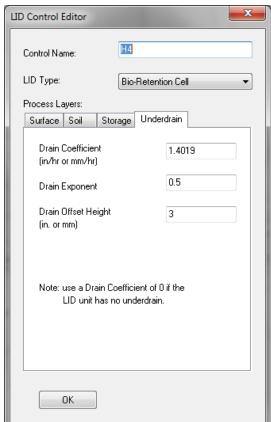


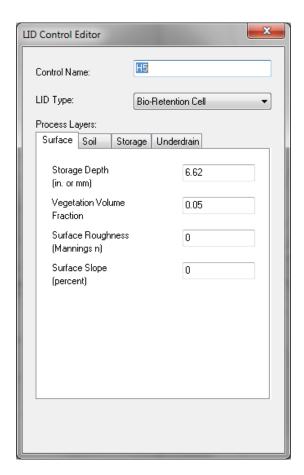


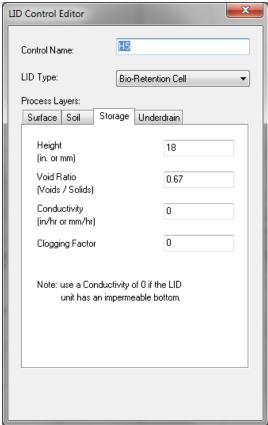


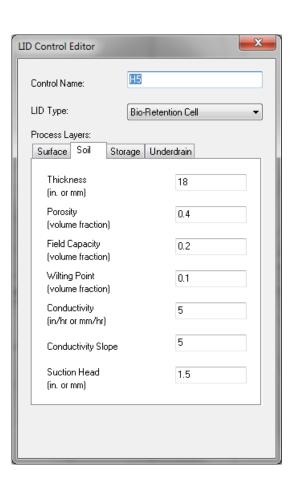


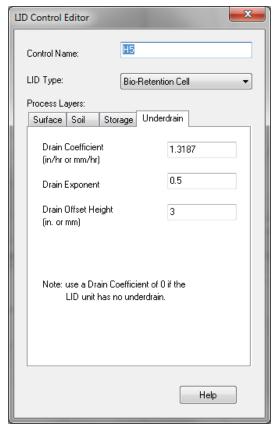


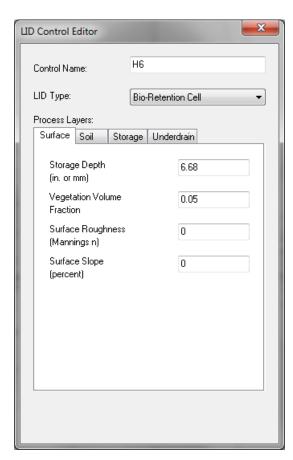


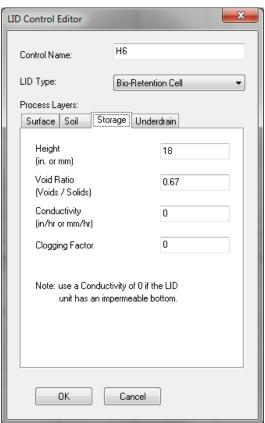


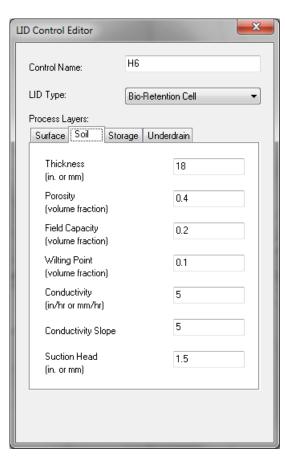


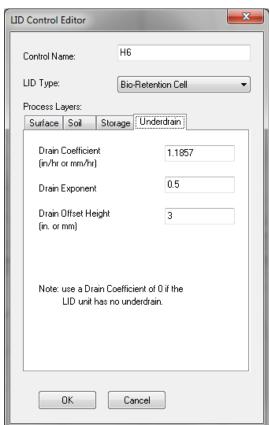


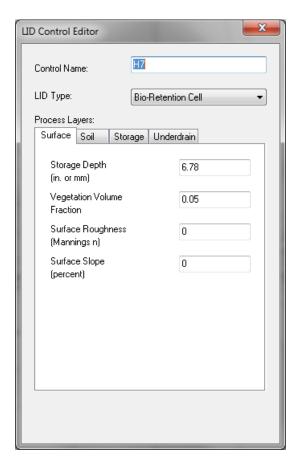


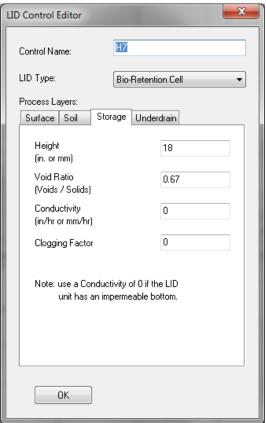


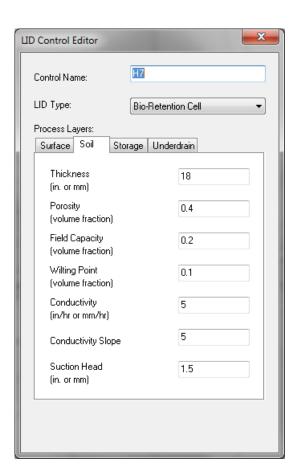


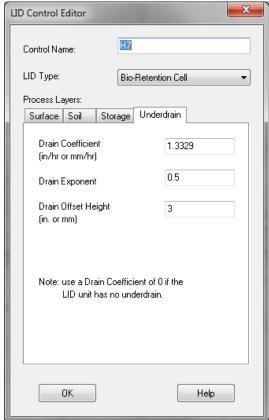


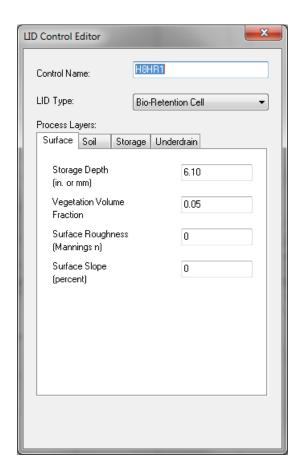


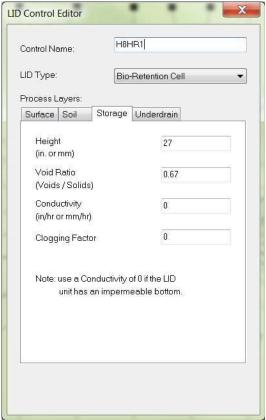


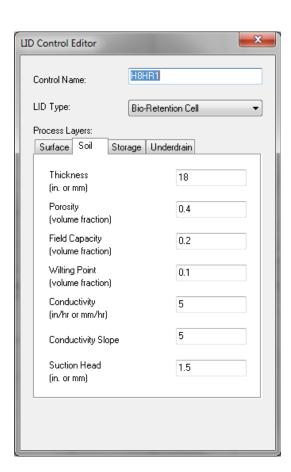


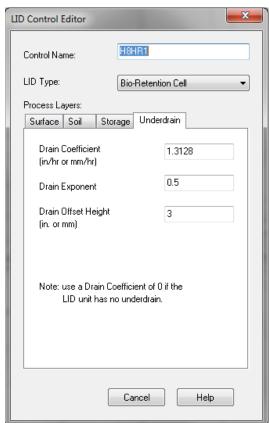


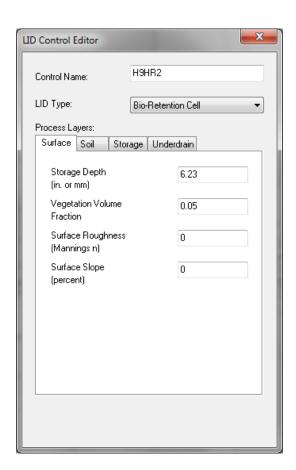


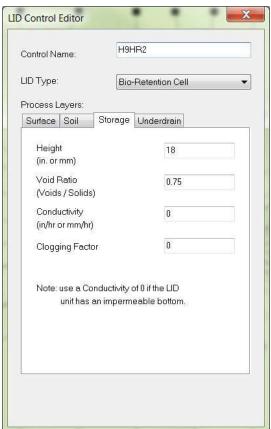


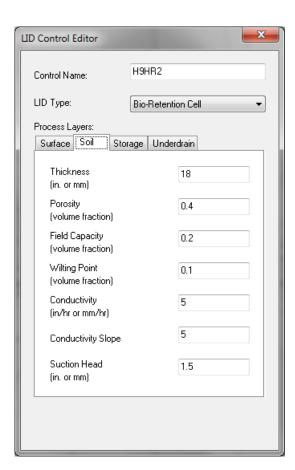


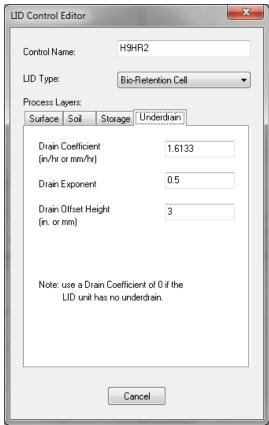


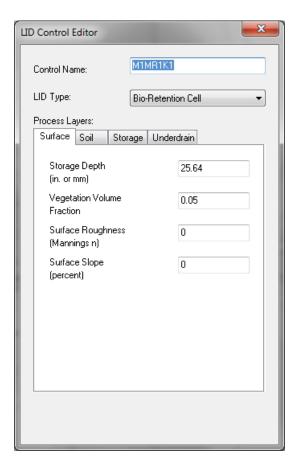


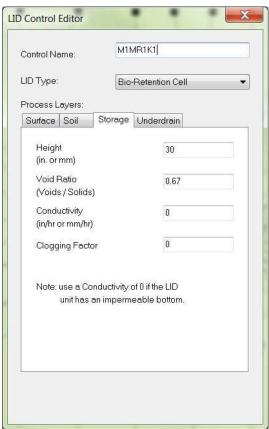


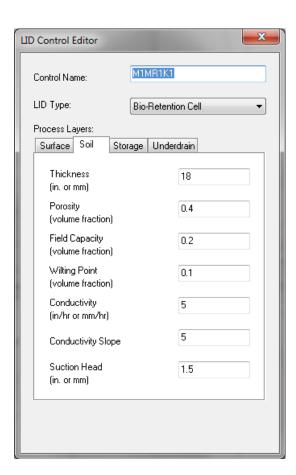


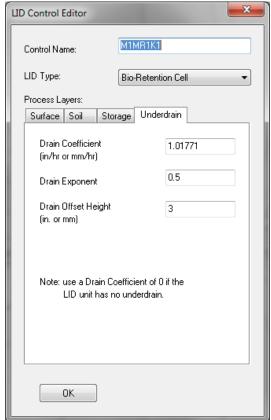


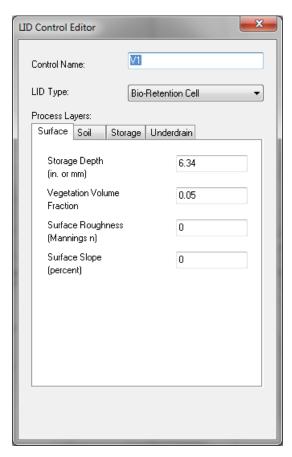


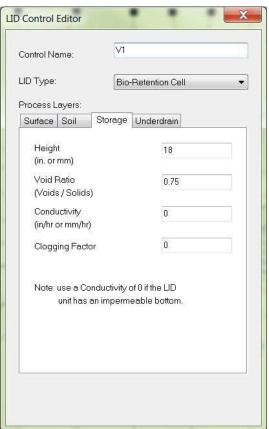


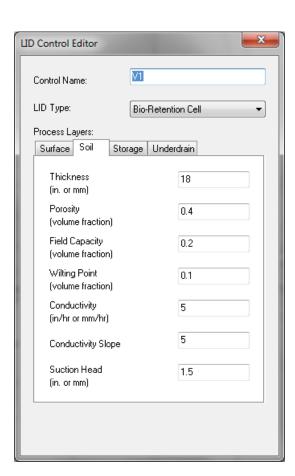


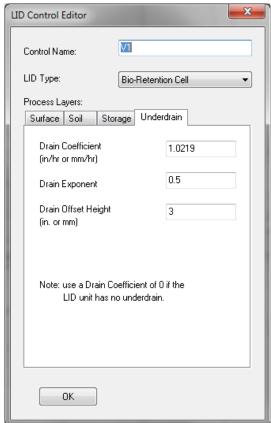


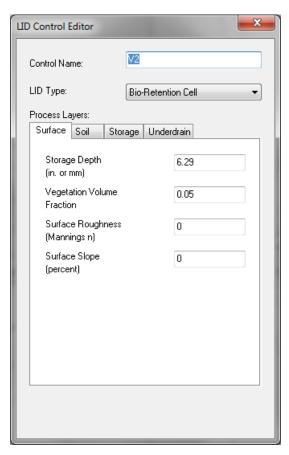


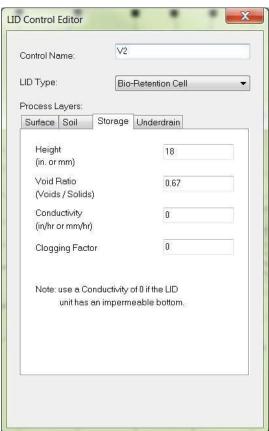


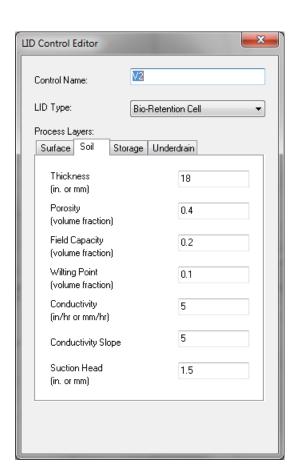


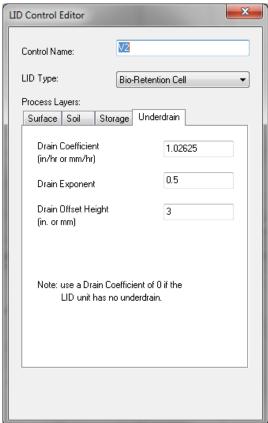


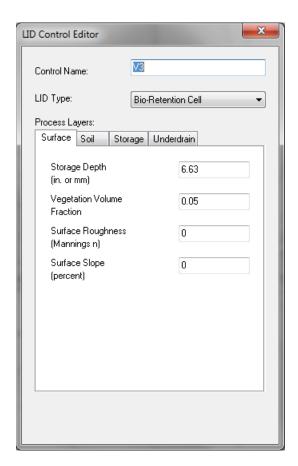


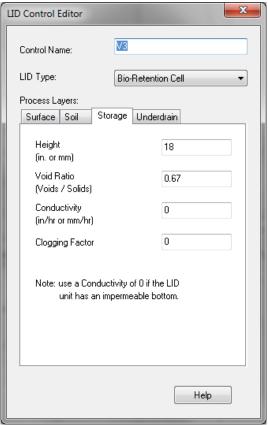


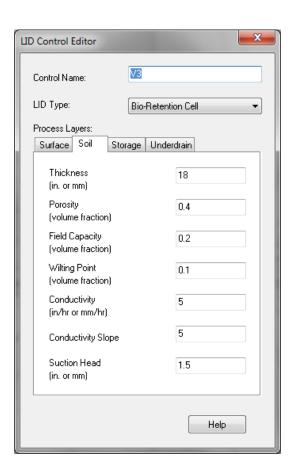


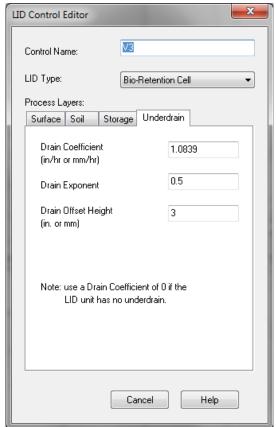


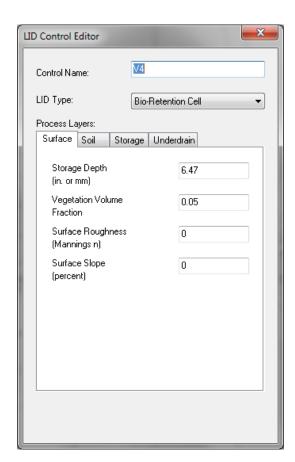


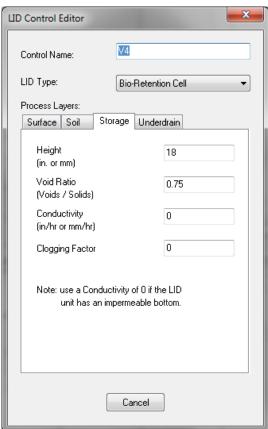


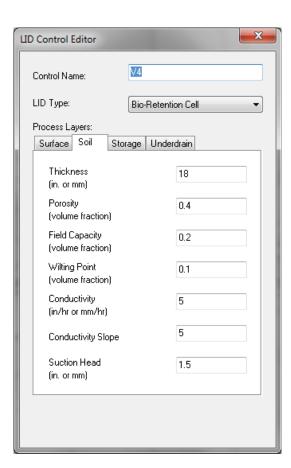


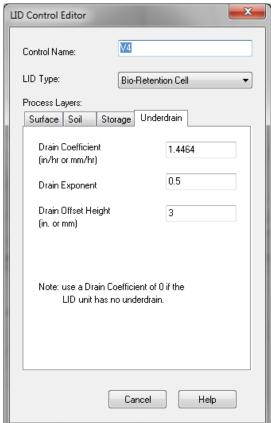


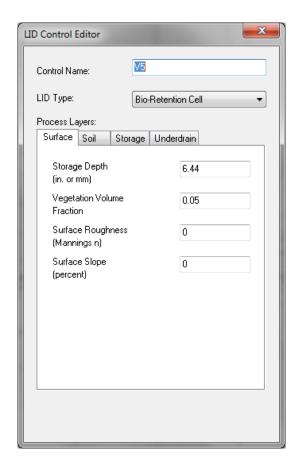


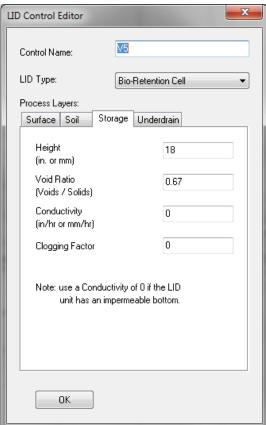


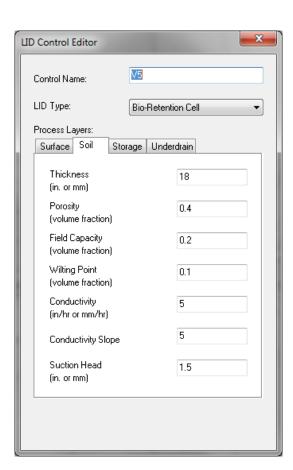


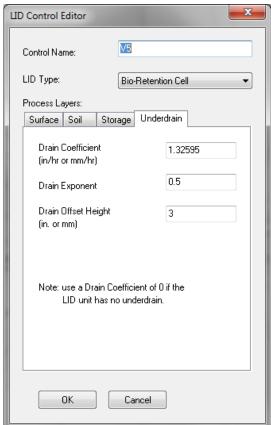


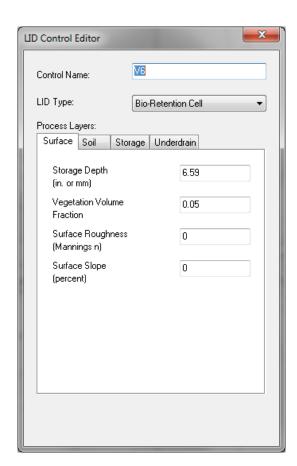


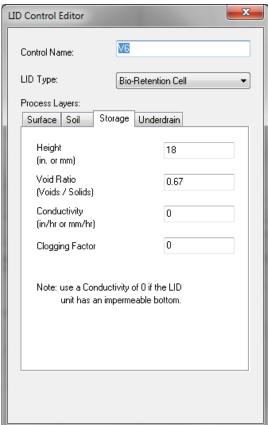


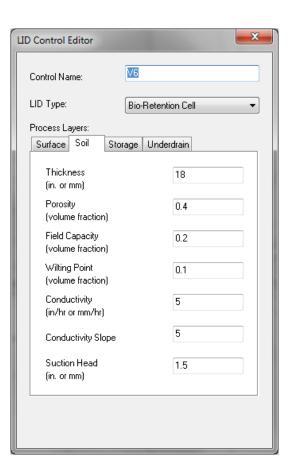


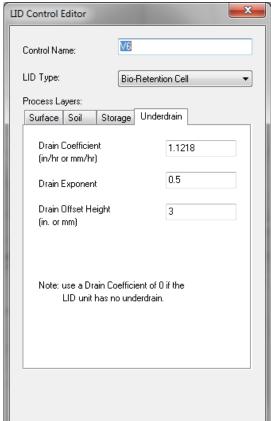


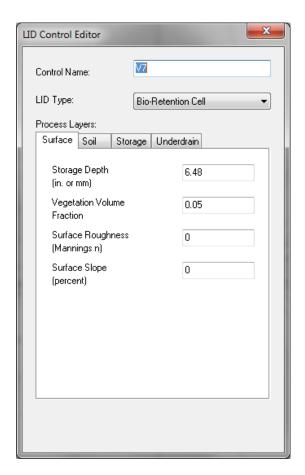


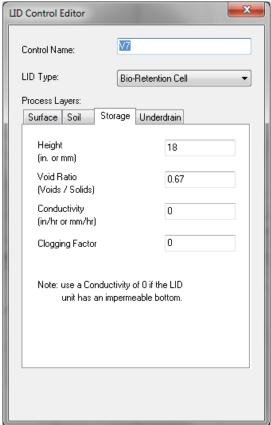


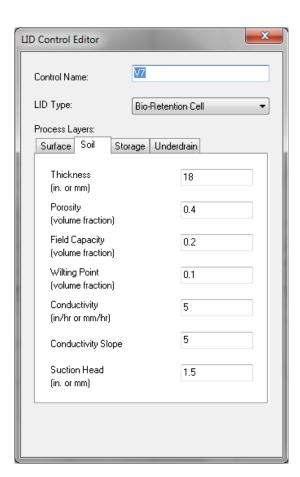


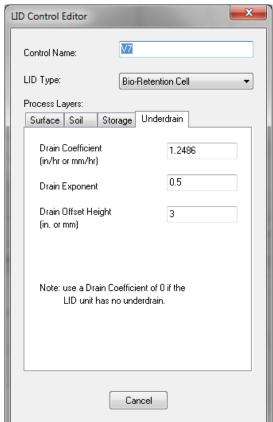


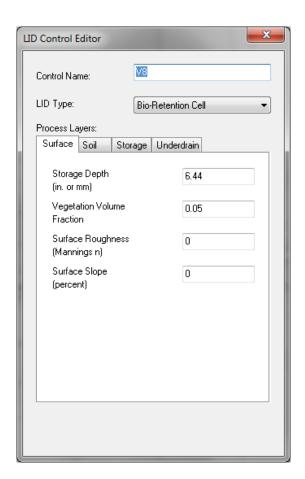


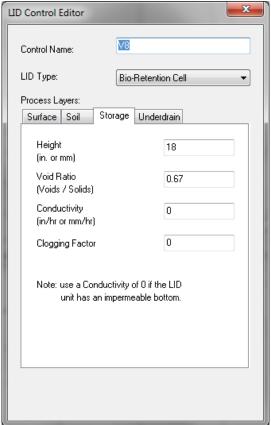


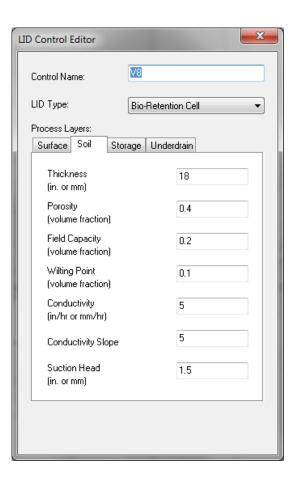


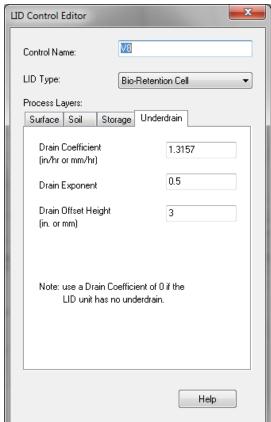


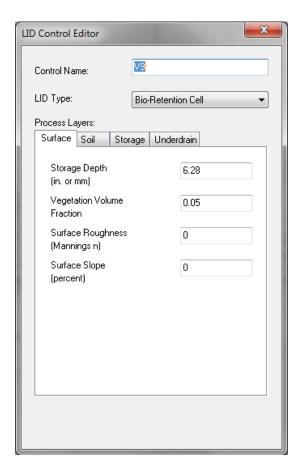


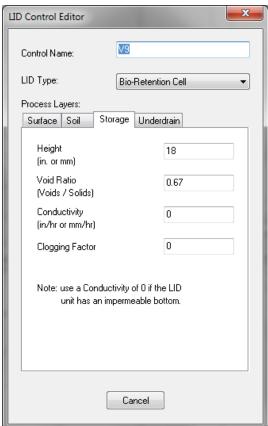


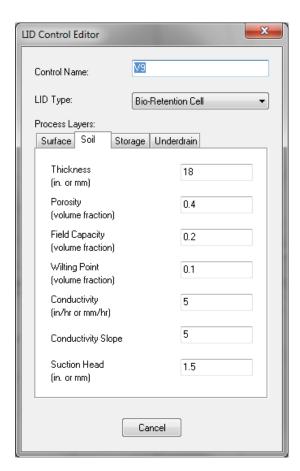


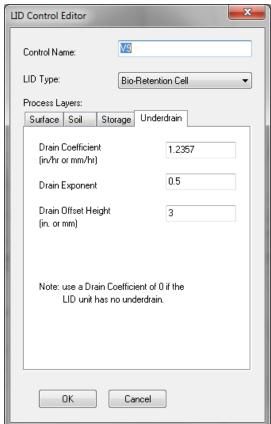


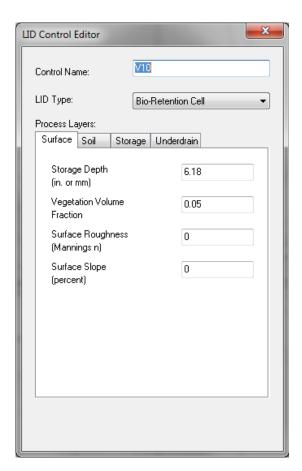


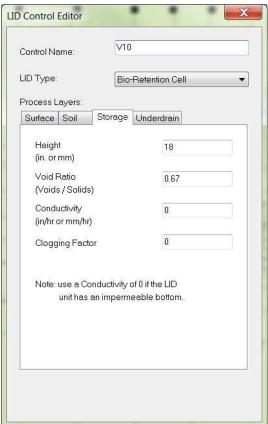


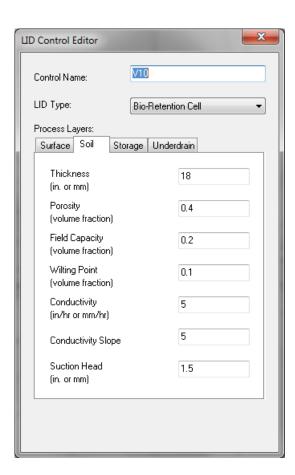


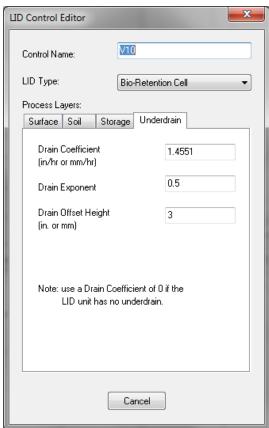


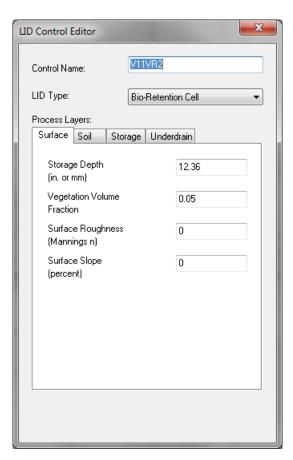


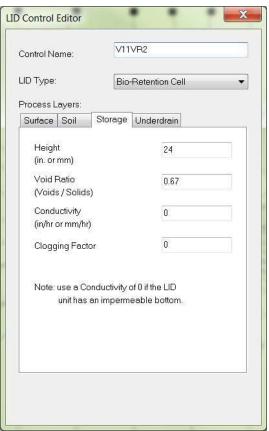


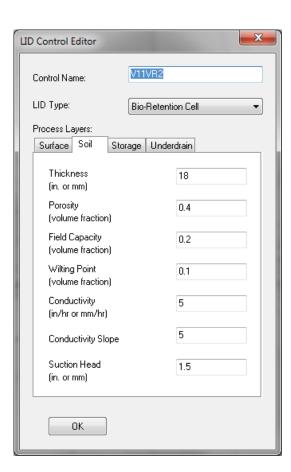


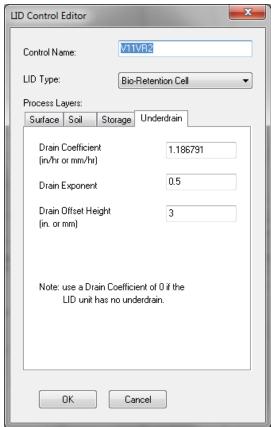


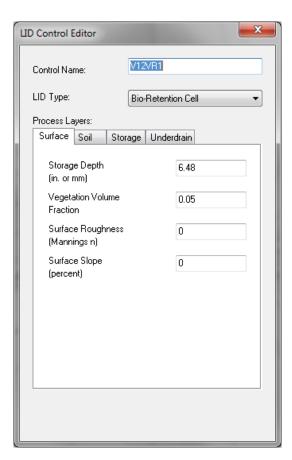


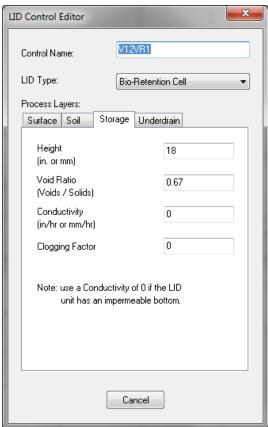


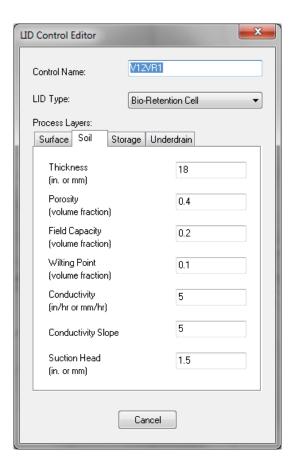


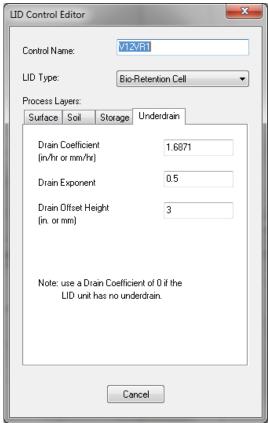


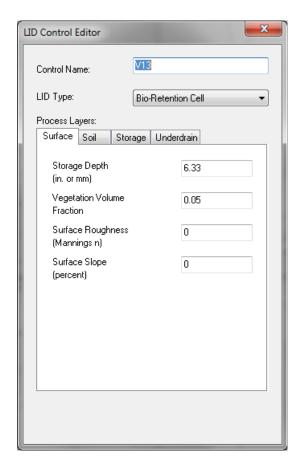


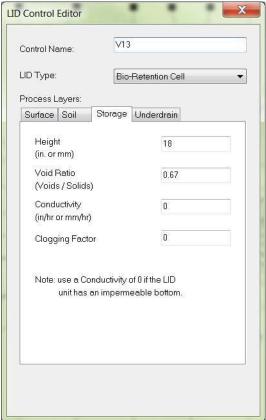


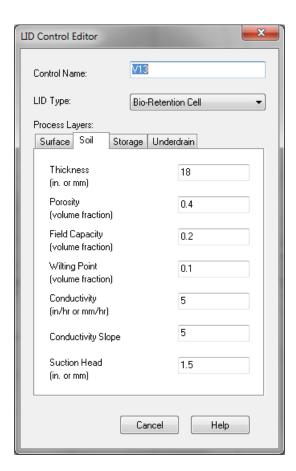


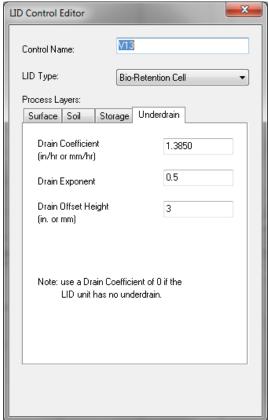


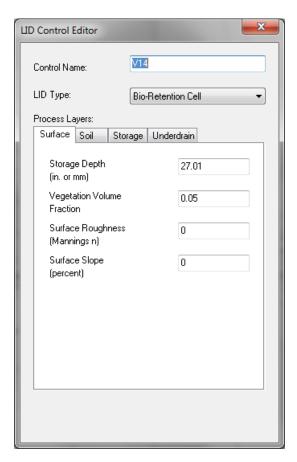


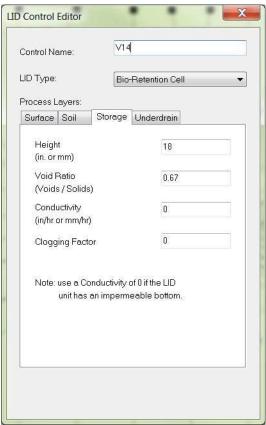


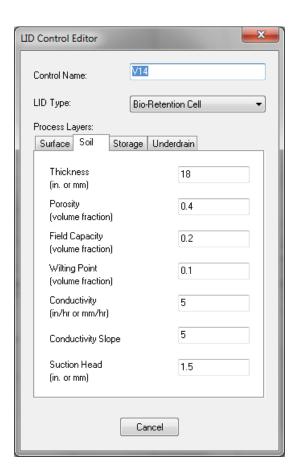


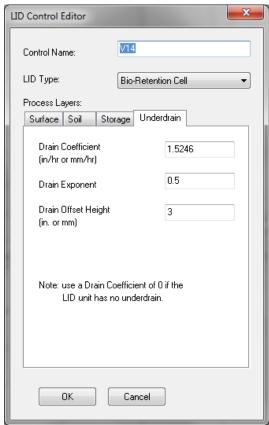


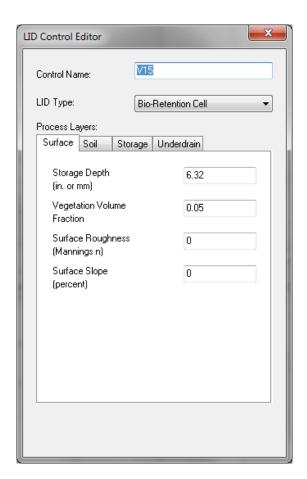


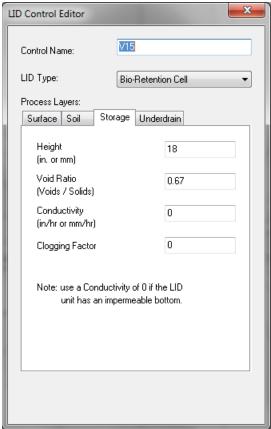


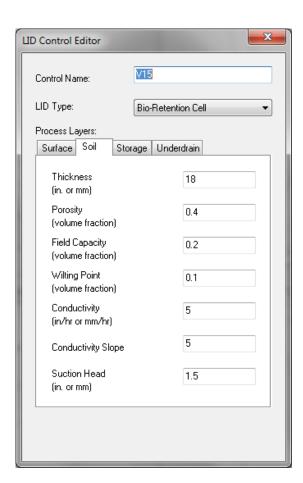


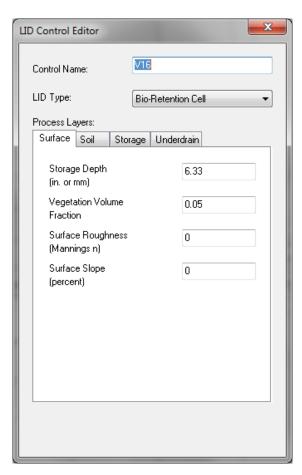


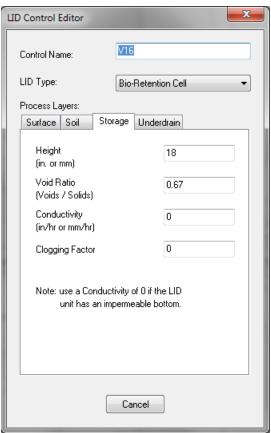


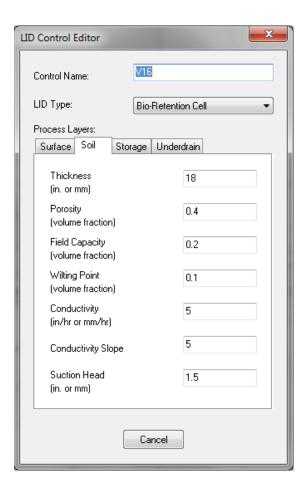


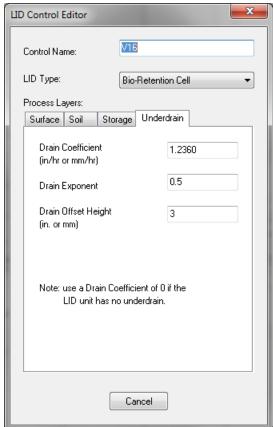












LID Control Editor: Explanation of Significant Variables

Storage Depth:

The storage depth variable within the SWMM model is representative of the storage volume provided beneath the first surface riser outlet and the engineered soil and mulch components of the bioretention facility.

In those cases where the surface storage has a variable area that is also different to the area of the gravel and amended soil, the SWMM model needs to be calibrated as the LID module will use the storage depth multiplied by the BMP area as the amount of volume stored at the surface.

Let A_{BMP} be the area of the BMP (area of amended soil and area of gravel). The proper value of the storage depth S_D to be included in the LID module can be calculated by using geometric properties of the surface volume. Let A_0 be the surface area at the bottom of the surface pond, and let A_i be the surface area at the elevation of the invert of the first row of orifices (or at the invert of the riser if not surface orifices are included). Finally, let h_i be the difference in elevation between A_0 and A_i . By volumetric definition:

$$A_{BMP} \cdot S_D = \frac{(A_0 + A_i)}{2} h_i \tag{1}$$

Equation (1) allows the determination of S_D to be included as Storage Depth in the LID module.

<u>Porosity</u>: A porosity value of 0.4 has been selected for the model. The amended soil is to be highly sandy in content in order to have a saturated hydraulic conductivity of approximately 5 in/hr.

REC considers such a value to be slightly high; however, in order to comply with the HMP Permit, the value recommended by the Copermittees for the porosity of amended soil is 0.4, per Appendix A of the Final Hydromodification Management Plan by Brown & Caldwell, dated March 2011. Such porosity is equal to the porosity of the gravel per the same document.

<u>Void Ratio</u>: The ratio of the void volume divided by the soil volume is directly related to porosity as n/(1-n). As the underdrain layer is composed of gravel, a porosity value of 0.4 has been selected (also per Appendix A of the Final HMP document), which results in a void ratio of 0.4/(1-0.4) = 0.67 for the gravel detention layer.

<u>Conductivity:</u> BMPs H8HR1, H9HR2, M1MR1K1, V1, V2, V10, V11VR2, V13, and V14 will be unlined to allow for infiltration into the underlying soil. Table-3 on this report shows the conductivity values used to model the infiltration of these basins. The remaining BMPs will be lined to prevent any infiltration into the underlying soil and therefore will have a conductivity of 0.00 in/hr.

<u>Cloqqinq factor</u>: A clogging factor was not used (0 indicates that there is no clogging assumed within the model). The reason for this is related to the fairness of a comparison with the SDHM model and the HMP sizing tables: a clogging factor was not considered, and instead, a conservative value of infiltration was recommended.

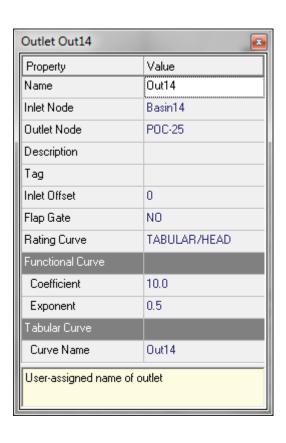
<u>Drain (Flow) coefficient</u>: The flow coefficient C in the SWMM Model is the coefficient needed to transform the orifice equation into a general power law equation of the form:

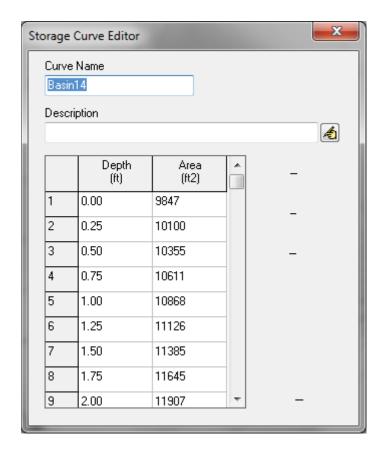
$$q = C(H - H_D)^n \tag{2}$$

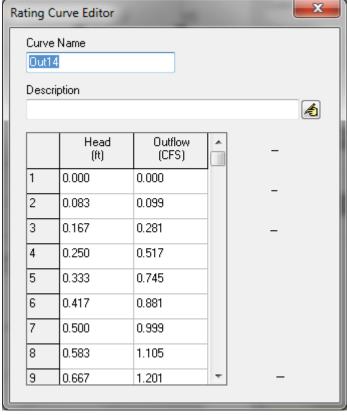
where q is the peak flow in in/hr, n is the exponent (typically 0.5 for orifice equation), H_D is the elevation of the centroid of the orifice in inches (assumed equal to the invert of the orifice for small orifices and in our design equal to 0) and H is the depth of the water in inches.

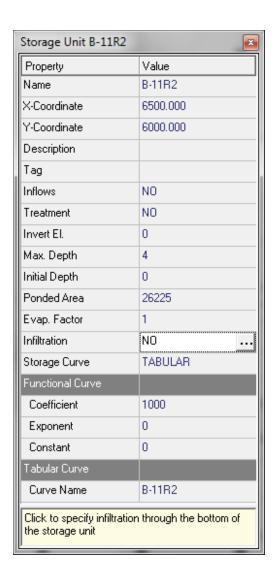
The general orifice equation can be expressed as:

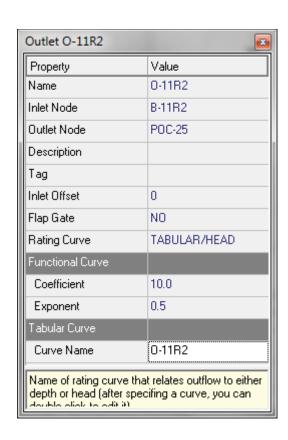
$$Q = \frac{\pi}{4} c_g \frac{D^2}{144} \sqrt{2g \frac{(H - H_D)}{12}} \tag{3}$$

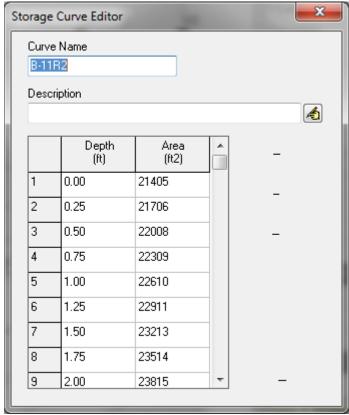

where Q is the peak flow in cfs, D is the diameter in inches, c_g is the typical discharge coefficient for orifices (0.61-0.63 for thin walls and around 0.75-0.8 for thick walls), g is the acceleration of gravity in ft/s², and H and H_D are defined above and are also used in inches in Equation (3).

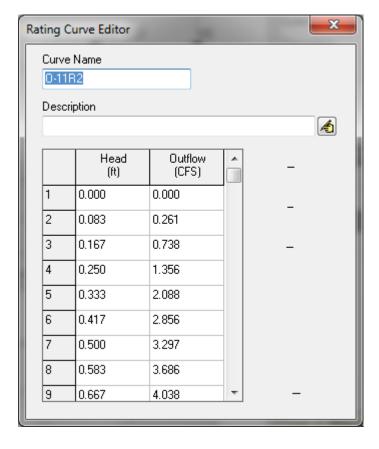

It is clear that:

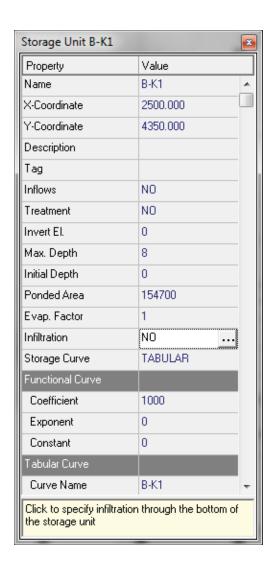

$$q\left(\frac{in}{hr}\right)X\frac{A_{BMP}}{12X3600} = Q\left(cfs\right) \tag{4}$$

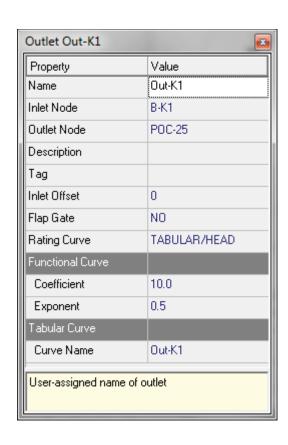

Surface Storage and Rating curves

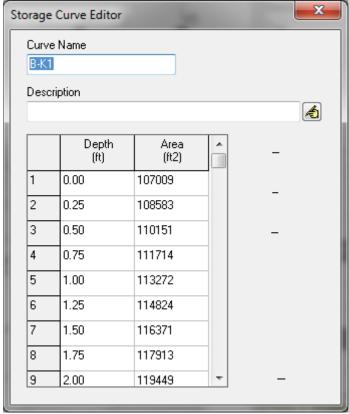

Property	Value				
Name	Basin14				
X-Coordinate	7000.000				
Y-Coordinate	4000.000				
Description					
Tag					
Inflows	NO				
Treatment	NO				
Invert El.	0				
Max. Depth	8				
Initial Depth	0				
Ponded Area	19705				
Evap. Factor	1				
Infiltration	NO				
Storage Curve	TABULAR				
Functional Curve					
Coefficient	1000				
Exponent	0				
Constant	0				
Tabular Curve					
Curve Name	Basin14				
User-assigned name of storage unit					

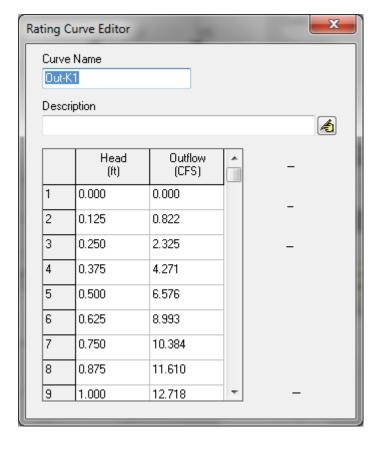












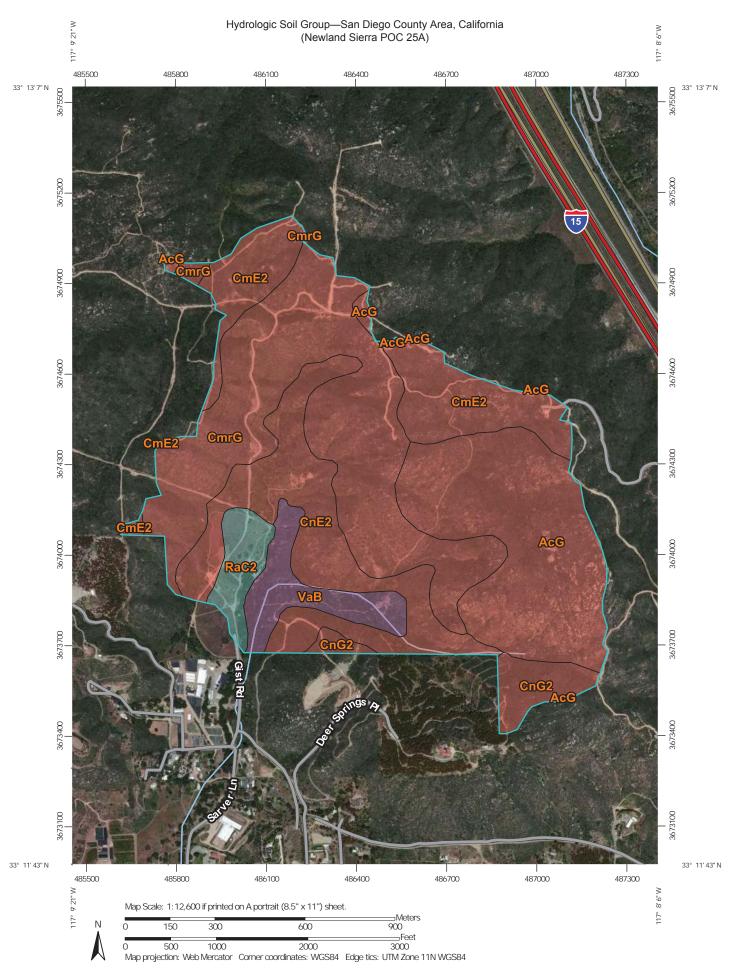
Overland Flow Manning's Coefficient per TRWE (Reference [6])

appeal of a de facto value, we anticipate that jurisdictions will not be inclined to approve land surfaces other than short prairie grass. Therefore, in order to provide SWMM users with a wider range of land surfaces suitable for local application and to provide Copermittees with confidence in the design parameters, we recommend using the values published by Yen and Chow in Table 3-5 of the EPA SWMM Reference Manual Volume I – Hydrology.

SWMM-Endorsed Values Will Improve Model Quality

In January 2016, the EPA released the SWMM Reference Manual Volume I – Hydrology (SWMM Hydrology Reference Manual). The SWMM Hydrology Reference Manual complements the SWMM 5 User's Manual and SWMM 5 Applications Manual by providing an in-depth description of the program's hydrologic components (EPA 2016). Table 3-5 of the SWMM Hydrology Reference Manual expounds upon SWMM 5 User's Manual Table A.6 by providing Manning's *n* values for additional overland flow surfaces³. The values are provided in Table 1:

Table 1: Manning's n Values for Overland Flow (EPA, 2016; Yen 2001; Yen and Chow, 1983).


Overland Surface	Light Rain (< 0.8 in/hr)	Moderate Rain (0.8-1.2 in/hr)	Heavy Rain (> 1.2 in/hr)			
Smooth asphalt pavement	0.010	0.012	0.015			
Smooth impervious surface	0.011	0.013	0.015			
Tar and sand pavement	0.012	0.014	0.016			
Concrete pavement	0.014	0.017	0.020			
Rough impervious surface	0.015	0.019	0.023			
Smooth bare packed soil	0.017	0.021	0.025			
Moderate bare packed soil	0.025	0.030	0.035			
Rough bare packed soil	0.032	0.038	0.045			
Gravel soil	0.025	0.032	0.045			
Mowed poor grass	0.030	0.038	0.045			
Average grass, closely clipped sod	0.040	0.050	0.060			
Pasture	0.040	0.055	0.070			
Timberland	0.060	0.090	0.120			
Dense grass	0.060	0.090	0.120			
Shrubs and bushes	0.080	0.120	0.180			
Land Use						
Business	0.014	0.022	0.035			
Semibusiness	0.022	0.035	0.050			
Industrial	0.020	0.035	0.050			
Dense residential	0.025	0.040	0.060			
Suburban residential	0.030	0.055	0.080			
Parks and lawns	0.040	0.075	0.120			

For purposes of local hydromodification management BMP design, these Manning's n values are an improvement upon the values presented by Engman (1986) in SWMM 5 User's Manual Table A.6. Values from SWMM 5 User's Manual Table A.6, while completely suitable for the intended application to certain agricultural land covers, comes with the disclaimer that the provided Manning's n values are valid for shallow-depth overland flow that match the conditions in the experimental plots (Engman,

³ Further discussion is provided on page 6 under "Discussion of Differences Between Manning's *n* Values"

ATTACHMENT 8

Soils Maps

MAP LEGEND MAP INFORMATION The soil surveys that comprise your AOI were mapped at 1:24,000. Area of Interest (AOI) С Area of Interest (AOI) C/D Warning: Soil Map may not be valid at this scale. Soils D Enlargement of maps beyond the scale of mapping can cause Soil Rating Polygons misunderstanding of the detail of mapping and accuracy of soil line Not rated or not available Α placement. The maps do not show the small areas of contrasting **Water Features** soils that could have been shown at a more detailed scale. A/D Streams and Canals В Please rely on the bar scale on each map sheet for map Transportation measurements. B/D ---Rails Source of Map: Natural Resources Conservation Service Interstate Highways Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov C/D **US Routes** Coordinate System: Web Mercator (EPSG:3857) D Major Roads Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts Not rated or not available Local Roads distance and area. A projection that preserves area, such as the Soil Rating Lines Albers equal-area conic projection, should be used if more accurate Background calculations of distance or area are required. Aerial Photography A/D This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. Soil Survey Area: San Diego County Area, California Survey Area Data: Version 9, Sep 17, 2015 Soil map units are labeled (as space allows) for map scales 1:50,000 C/D or larger. Date(s) aerial images were photographed: Data not available. Not rated or not available The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background Soil Rating Points imagery displayed on these maps. As a result, some minor shifting Α of map unit boundaries may be evident. A/D B/D

Hydrologic Soil Group

Hydrologic Soil Group— Summary by Map Unit — San Diego County Area, California (CA638)								
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI				
AcG	Acid igneous rock land	D	91.9	23.9%				
CmE2	Cieneba rocky coarse sandy loam, 9 to 30 percent slopes, eroded	D	49.3	12.8%				
CmrG	Cieneba very rocky coarse sandy loam, 30 to 75 percent slopes	D	127.8	33.2%				
CnE2	Cieneba-Fallbrook rocky sandy loams, 9 to 30 percent sl opes, eroded	D	66.3	17.2%				
CnG2	Cieneba-Fallbrook rocky sandy loams, 30 to 65 percent s lopes, eroded	D	14.8	3.9%				
RaC2	Ramona sandy loam, 5 to 9 percent slopes, eroded	С	13.2	3.4%				
VaB	Visalia sandy loam, 2 to 5 percent slopes	A	21.6	5.6%				
Totals for Area of Inte	rest		385.0	100.0%				

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified

Tie-break Rule: Higher

ATTACHMENT 9

Summary Files from the SWMM Model

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.0 (Build 5.0.022)

NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step. ***********

Analysis Options *****

Flow Units CFS

Process Models:

Rainfall/Runoff YES Snowmelt NO Groundwater NO Flow Routing NO Water Quality NO

Infiltration Method GREEN_AMPT

Starting Date MAY-24-1951 00:00:00 Ending Date MAY-23-2008 23:00:00

Antecedent Dry Days 0.0 Report Time Step 01:00:00
Wet Time Step 00:15:00

Dry Time Step 04:00:00

*******	Volume	Depth
Runoff Quantity Continuity	acre-feet	inches

Total Precipitation	31860.779	976.900
Evaporation Loss	1184.668	36.324
Infiltration Loss	24534.189	752.256
Surface Runoff	6665.067	204.361
Final Surface Storage	0.000	0.000
Continuity Error (%)	-1.642	

**************************************	Volume acre-feet	Volume 10^6 gal
Dry Weather Inflow Wet Weather Inflow Groundwater Inflow RDII Inflow	0.000 6665.067 0.000 0.000	0.000 2171.912 0.000 0.000
External Inflow External Outflow Internal Outflow	0.000 6665.067 0.000	0.000 2171.912 0.000
Storage Losses Initial Stored Volume Final Stored Volume Continuity Error (%)	0.000 0.000 0.000 0.000	0.000 0.000 0.000

******** Subcatchment Runoff Summary

Subcatchment	Total Precip in	Total Runon in	Total Evap in	Total Infil in	Total Runoff in	Total Runoff 10^6 gal	Peak Runoff CFS	Runoff Coeff
DMA-C	976.90	0.00	8.99	893.45	76.69	33.47	15.97	0.078
DMA-B	976.90	0.00	2.50	948.66	26.52	15.76	17.37	0.027
DMA-D	976.90	0.00	39.66	733.67	221.18	2122.52	412.17	0.226

Analysis begun on: Thu Nov 03 13:37:35 2016 Analysis ended on: Thu Nov 03 13:37:50 2016

Total elapsed time: 00:00:15

NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step.

***** Analysis Options

Flow Units CFS Process Models: Rainfall/Runoff YES Snowmelt NO

Groundwater NO Flow Routing YES Ponding Allowed NO Water Quality NO

Infiltration Method GREEN_AMPT Flow Routing Method KINWAVE

Starting Date MAY-24-1951 00:00:00 Ending Date MAY-23-2008 23:00:00

Antecedent Dry Days 0.0 Report Time Step 01:00:00 Wet Time Step 00:15:00 Dry Time Step 04:00:00 Routing Time Step 60.00 sec

WARNING 04: minimum elevation drop used for Conduit to-14

WARNING 04: minimum elevation drop used for Conduit By-14

WARNING 04: minimum elevation drop used for Conduit By-11R2

WARNING 04: minimum elevation drop used for Conduit to-11R2

WARNING 04: minimum elevation drop used for Conduit By-K1

WARNING 04: minimum elevation drop used for Conduit to-K1

Volume

0.000

Depth

Runoff Quantity Continuity	acre-feet	inches
Total Precipitation	32193.004	976.900
Evaporation Loss	2530.322	76.783
Infiltration Loss Surface Runoff	17354.736 12501.300	526.631 379.353
Final Surface Storage	0.000	0.000
Continuity Error (%)	-0.601	0.000
* * * * * * * * * * * * * * * * * * * *	Volume	Volume
Flow Routing Continuity	acre-feet	10^6 gal
* * * * * * * * * * * * * * * * * * * *		
Dry Weather Inflow	0.000	0.000
Wet Weather Inflow	12501.300	4073.735
Groundwater Inflow	0.000	0.000
RDII Inflow	0.000	0.000
External Inflow	0.000	0.000
External Outflow	12501.108	4073.673
Internal Outflow	0.000	0.000
Storage Losses	0.179	0.058
Initial Stored Volume	0.000	0.000
Final Stored Volume	0.000	0.000

****** Highest Flow Instability Indexes *******

Continuity Error (%)

All links are stable.

POST_DEV

Minimum Time Step : 60.00 sec
Average Time Step : 60.00 sec
Maximum Time Step : 60.00 sec
Percent in Steady State : 0.00
Average Iterations per Step : 1.00

	Total	Total	Total	Total	Total	Total	Peak	Runoff
	Precip	Runon	Evap	Infil	Runoff	Runoff	Runoff	Coeff
Subcatchment	in	in	in	in	in	10^6 gal	CFS	
H1-D-S	976.90	0.00	98.06	214.80	676.86	27.99	1.99	0.693
H2-D-S	976.90	0.00	98.89	213.84	676.25	7.88	0.56	0.692
H4-D-S	976.90	0.00	100.13	215.42	671.88	12.13	0.87	0.688
H5-D-S	976.90	0.00	100.13	213.71	673.84	11.66	0.83	0.690
H6-D-S	976.90	0.00	99.65	215.47	672.76	11.23	0.80	0.689
H7-D-S	976.90	0.00	99.15	215.09	674.24	9.90	0.71	0.690
H8-D-S	976.90	0.00	104.91	233.52	643.84	317.10	23.51	0.659
HR1-D-S	976.90	0.00	132.71	65.56	784.32	88.87	5.51	0.803
H9-D-S	976.90	0.00	100.60	230.99	653.29	45.25	3.33	0.669
HR2-D-S	976.90	0.00	132.16	65.52	785.12	37.03	2.29	0.804
M1-D-S	976.90	0.00	107.61	235.11	638.51	681.53	50.35	0.654
K1-D-S MR1-D-S	976.90 976.90	0.00	107.73 155.02	164.95 67.04	715.17	85.41 96.69	5.77 5.47	0.732 0.775
V1-D-S	976.90	0.00	117.00	144.82	756.66 721.75	65.22	4.37	0.773
V2-B-S	976.90	0.00	102.54	230.14	652.24	33.15	2.35	0.739
V2-C-S	976.90	0.00	102.17	217.24	667.22	1.81	0.13	0.683
V2-D-S	976.90	0.00	112.44	114.19	764.53	28.11	1.78	0.783
V3-B-S	976.90	0.00	96.43	229.33	664.54	3.10	0.22	0.680
V3-D-S	976.90	0.00	111.42	139.50	737.27	18.24	1.20	0.755
V4-C-S	976.90	0.00	97.77	216.51	676.56	7.31	0.51	0.693
V4-D-S	976.90	0.00	108.54	163.59	715.14	24.62	1.66	0.732
V5-C-S	976.90	0.00	108.84	191.21	684.52	47.81	3.32	0.701
V6-C-S	976.90	0.00	109.11	191.17	684.12	19.56	1.36	0.700
V7-B-S	976.90	0.00	104.04	230.36	649.47	34.87	2.48	0.665
V7-C-S	976.90	0.00	95.78	216.17	679.81	0.46	0.03	0.696
V7-D-S	976.90	0.00	117.74	88.42	783.75	15.43	0.96	0.802
V8-C-S	976.90	0.00	73.49	423.75	486.95	31.97	3.01	0.498
V8-D-S	976.90	0.00	79.37	324.74	587.85	1.47	0.12	0.602
V9-B-S	976.90	0.00	96.09	229.28	665.09	5.94	0.41	0.681
V9-C-S	976.90	0.00	107.57	185.34	693.29	42.85	2.94	0.710
V9-D-S	976.90	0.00	102.40	162.08	728.96	2.79	0.18	0.746
V10-C-S	976.90	0.00	103.24	217.42	665.04	12.95	0.92	0.681
V10-D-S	976.90	0.00	122.40	144.91	714.14	171.85	11.59	0.731
V11-B-S V11-C-S	976.90 976.90	0.00	106.02 114.90	230.64 170.14	646.09	58.26 120.20	4.16 8.21	0.661 0.715
V11-C-S V11-D-S	976.90	0.00	103.38	162.28	698.00 726.97	2.53	0.17	0.715
VR2-B-S	976.90	0.00	129.69	92.03	760.44	32.40	2.04	0.744
VR2-C-S	976.90	0.00	116.41	86.52	788.55	0.71	0.04	0.807
V12-B-S	976.90	0.00	123.57	65.22	799.29	4.12	0.25	0.818
VR1-B-S	976.90	0.00	123.66	91.87	769.52	17.97	1.12	0.788
VR1-C-S	976.90	0.00	115.29	86.48	790.49	3.03	0.18	0.809
VR1-D-S	976.90	0.00	136.65	65.80	778.91	48.07	2.99	0.797
V13-B-S	976.90	0.00	105.73	230.60	646.58	33.13	2.36	0.662
V13-D-S	976.90	0.00	113.79	143.13	728.77	31.68	2.10	0.746
V14-B-S	976.90	0.00	111.16	179.38	693.83	46.33	3.12	0.710
V14-D-S	976.90	0.00	111.68	164.48	708.57	48.31	3.29	0.725
V15-B-S	976.90	0.00	113.29	180.42	689.38	74.58	5.06	0.706
V15-D-S	976.90	0.00	112.57	164.75	706.85	63.61	4.35	0.724
V16-B-S	976.90	0.00	71.92	445.28	466.03	26.75	2.48	0.477
V16-D-S	976.90	0.00	82.09	327.96	577.62	8.67	0.72	0.591
H1	976.90	21180.55	1286.25	0.00	21090.11	27.87	1.94	0.952
H2	976.90	19289.27	1271.04	0.00	19176.94	7.83	0.54	0.946
H4	976.90	20485.94	1275.58	0.00	20387.39	12.07	0.85	0.950
H5	976.90	18509.57	1261.55	0.00	18390.73	11.58	0.81	0.944
Н6	976.90	20959.77	1280.42	0.00	20868.86	11.19	0.78	0.951
Н7	976.90	20772.51	1280.64	0.00	20680.40	9.86	0.69	0.951

			POST_D	EV				
H8HR1	976.90	20060.61	1252.35	0.00	19945.11	403.63	28.06	0.948
H9HR2	976.90	17765.63	1256.58	0.00	17625.90	81.64	5.50	0.940
M1MR1K1	976.90	14012.78	1194.98	0.00	13880.65	855.48	35.94	0.926
V1	976.90	17839.96	1257.52	0.00	17698.75	64.71	4.18	0.941
V2	976.90	17325.86	1267.06	0.00	17173.93	62.52	4.07	0.938
V3	976.90	17830.16	1267.97	0.00	17689.70	21.17	1.36	0.941
V4	976.90	18166.09	1278.32	0.00	18020.09	31.68	2.12	0.941
V5	976.90	16967.90	1255.94	0.00	16818.76	47.39	3.22	0.937
V6	976.90	16918.29	1254.83	0.00	16770.57	19.39	1.31	0.937
V7	976.90	16963.67	1259.56	0.00	16810.22	50.30	3.34	0.937
V8	976.90	17303.87	1256.73	0.00	17158.95	33.16	3.03	0.939
V9	976.90	17060.62	1265.29	0.00	16905.84	51.11	3.42	0.937
V10	976.90	17994.16	1237.35	0.00	17861.30	183.43	12.13	0.942
V11VR2	976.90	17002.59	1249.09	0.00	16852.59	212.20	14.06	0.937
V12VR1	976.90	16526.02	1239.17	0.00	16374.27	72.52	4.44	0.936
V13	976.90	35303.31	1342.44	0.00	35302.85	64.81	4.38	0.973
V14	976.90	19310.84	1269.15	0.00	19174.21	93.97	3.82	0.945
V15	976.90	17677.53	1252.90	0.00	17531.79	137.04	8.97	0.940
V16	976.90	17220.38	1255.14	0.00	17075.93	35.13	3.07	0.938
OFF-1-B	976.90	0.00	2.52	949.24	25.88	0.31	0.34	0.026
OFF-1-D	976.90	0.00	29.97	729.58	220.33	1471.44	286.84	0.226

Subcatchment	LID Control	Total Inflow in	Evap Loss in	Infil Loss in	Surface Outflow in	Drain Outflow in	Init. Storage in	Final Storage in	Pcnt. Error
H1	Н1	22157.45	1286.34	0.00	1881.26	19210.27	0.00	0.00	-0.99
H2	Н2	20266.17	1271.36	0.00	1390.29	17791.51	0.00	0.00	-0.92
H4	H4	21462.84	1275.68	0.00	1715.18	18673.89	0.00	0.00	-0.94
Н5	Н5	19486.47	1261.79	0.00	1219.21	17175.04	0.00	0.00	-0.87
Н6	Н6	21936.67	1280.28	0.00	1858.21	19008.37	0.00	0.00	-0.96
Н7	н7	21749.41	1280.54	0.00	1785.09	18893.74	0.00	0.00	-0.97
H8HR1	H8HR1	21037.51	1252.39	0.00	1613.78	18331.96	0.00	0.00	-0.76
H9HR2	H9HR2	18742.53	1256.63	0.00	939.56	16687.05	0.00	0.00	-0.75
M1MR1K1	M1MR1K1	14989.68	1195.02	0.00	73.15	13807.99	0.00	0.00	-0.58
V1	V1	18816.86	1257.55	0.00	903.45	16795.70	0.00	0.00	-0.74
V2	V2	18302.76	1267.13	0.00	730.49	16444.33	0.00	0.00	-0.76
V3	V3	18807.06	1268.10	0.00	822.14	16869.36	0.00	0.00	-0.81
V4	V4	19142.99	1278.40	0.00	967.76	17053.46	0.00	0.00	-0.82
V5	V5	17944.80	1255.93	0.00	696.43	16122.15	0.00	0.00	-0.72
V6	V6	17895.19	1254.73	0.00	677.73	16091.51	0.00	0.00	-0.72
V7	V7	17940.57	1259.58	0.00	639.25	16171.16	0.00	0.00	-0.72
V8	V8	18280.77	1256.84	0.00	1341.66	15818.83	0.00	0.00	-0.75
V9	V9	18037.52	1265.32	0.00	708.56	16197.80	0.00	0.00	-0.74
V10	V10	18971.06	1237.38	0.00	925.18	16936.59	0.00	0.00	-0.68
V11VR2	V11VR2	17979.49	1249.13	0.00	353.20	16500.01	0.00	0.00	-0.68
V12VR1	V12VR1	17502.92	1239.22	0.00	480.90	15894.14	0.00	0.00	-0.64
V13	V13	36280.21	1342.54	0.00	6513.20	28792.05	0.00	0.00	-1.01
V14	V14	20287.74	1269.20	0.00	239.12	18935.83	0.00	0.00	-0.77
V15	V15	18654.43	1252.95	0.00	854.12	16678.38	0.00	0.00	-0.70
V16	V16	18197.28	1255.23	0.00	1144.37	15932.73	0.00	0.00	-0.74

Node	Type	Average Depth Feet	Maximum Depth Feet	Maximum HGL Feet		of Max rrence nr:min
POC-25	OUTFALL	0.00	0.00	0.00	0	00:00
D14	DIVIDER	0.00	0.00	0.00	0	00:00
D11R2	DIVIDER	0.00	0.00	0.00	0	00:00
D-K1	DIVIDER	0.00	0.00	0.00	0	00:00
Basin14	STORAGE	0.00	0.84	0.84	5674	10:20
B-11R2	STORAGE	0.00	0.74	0.74	15931	21:26
B-K1	STORAGE	0.00	0.77	0.77	5674	10:31

POST_DEV

7.234

Node	Туре	Maximum Lateral Inflow CFS	Maximum Total Inflow CFS	Time o Occur days h	rence	Lateral Inflow Volume 10^6 gal	Total Inflow Volume 10^6 gal
POC-25	OUTFALL	380.14	386.76	15229	17:00	2911.779	4073.370
D14	DIVIDER	3.82	3.82	15931	21:00	93.970	93.970
D11R2	DIVIDER	14.06	14.06	15229	17:15	212.204	212.204
D-K1	DIVIDER	35.94	35.94	15931	21:15	855.480	855.480
Basin14	STORAGE	0.00	2.85	15931	21:00	0.000	0.798
B-11R2	STORAGE	0.00	11.68	15229	17:15	0.000	2.902
B-K1	STORAGE	0.00	25.67	15931	21:15	0.000	3.386

****** Node Surcharge Summary

Surcharging occurs when water rises above the top of the highest conduit.

______ Max. Height Min. Depth Above Crown Below Rim Hours Surcharged Type Feet Feet DIVIDER 499679.02 0.000 0.000 D14 D11R2 DIVIDER 499679.02 0.000 0.000 0.000 DIVIDER 499679.02 0.000 D-K1 0.837 Basin14 STORAGE 499679.02 7.163 499679.02 3.260 B-11R2 STORAGE STORAGE 499679.02 0.766

******* Node Flooding Summary *****

B-K1

No nodes were flooded.

Storage Volume Summary ******

Storage Unit	Average Volume 1000 ft3	Avg Pcnt Full	E&I Pcnt Loss	Maximum Volume 1000 ft3	Max Pcnt Full	Time of Max Occurrence days hr:min	Maximum Outflow CFS
Basin14	0.001	0	1	8.597	8	5674 10:19	1.38
B-11R2 B-K1	0.003 0.010	0	1	16.169 83.770	17 8	15931 21:25 5674 10:31	4.32 10.54

***** Outfall Loading Summary ******

	Flow	Avg.	Max.	Total
	Freq.	Flow	Flow	Volume
Outfall Node	Pcnt.	CFS	CFS	10^6 gal
POC-25	3.99	7.59	386.76	4073.370
System	3.99	7.59	386.76	4073.370

Link Flow Summary *******

		Maximum	Time of Max	Maximum	Max/	Max/
		Flow	Occurrence	Veloc	Full	Full
Link	Type	CFS	days hr:min	ft/sec	Flow	Depth

POST_DEV

to-14	DUMMY	2.85	15931 21:00	
By-14	DUMMY	0.97	4280 14:23	
By-11R2	DUMMY	2.38	4280 07:12	
to-11R2	DUMMY	11.68	15229 17:15	
By-K1	DUMMY	10.27	5674 07:34	
to-K1	DUMMY	25.67	15931 21:15	
Out14	DUMMY	1.38	5674 10:20	
O-11R2	DUMMY	4.32	15931 21:26	
Out-K1	DUMMY	10.54	5674 10:31	

****** Conduit Surcharge Summary

				Hours	Hours
		Hours Full		Above Full	Capacity
Conduit	Both Ends	Upstream	Dnstream	Normal Flow	Limited
to-14	0.01	0.01	0.01	499679.02	0.01
By-14	0.01	0.01	0.01	499679.02	0.01
By-11R2	0.01	0.01	0.01	499679.02	0.01
to-11R2	0.01	0.01	0.01	499679.02	0.01
By-K1	0.01	0.01	0.01	499679.02	0.01
to-K1	0.01	0.01	0.01	499679.02	0.01

Analysis begun on: Thu Nov 03 12:52:10 2016 Analysis ended on: Thu Nov 03 12:53:33 2016 Total elapsed time: 00:01:23

Attachment 2b

Hydromodification Management Exhibit

See Attachment 1c

Attachment 2c

Management of Critical Course Sediment Yield Areas

TECHNICAL MEMORANDUM:

Analysis of PCCSYAs for Newland Sierra

Prepared For:

Fuscoe Engineering

August 19, 2016. Revised: 10/6/16, 11/3/16 & 12/15/16.

Prepared by:

Luis Parra, PhD, CPSWQ, ToR, D.WRE. R.C.E. 66377

REC Consultants 2442 Second Avenue San Diego, CA 92101 Telephone: (619) 232-9200

TECHNICAL MEMORANDUM: ANALYSIS OF PCCSYAs FOR NEWLAND SIERRA

1. SUMMARY

The purpose of this Technical Memo is to demonstrate that the Newland Sierra Project generates a No Net Impact in the Critical Coarse Sediment Yield (CCSY) for 10 unnamed tributaries and sub-tributaries emanating from the large contributing area of the project. The tributaries and their corresponding POCs and receiving creeks are as follows: (a) five tributaries with 6 POCs (10, 13A + 13B, 16, 19, and 20) draining towards the east to the South Fork of Moosa Canyon Creek; (b) four tributaries with 5 POCs (21, 25A + 25B, 26 and 27) draining to Twin Oaks Valley Creek, and (c) one tributary with 3 POCs (29A + 29B + 29C) draining to the South Fork of Gopher Canyon Creek. The methodology explained in Appendix H (reference [1]) of the County of San Diego BMP Design Manual (updated by the Critical Coarse Sediment Technical Advisory Committee on March 2016, from which the City of San Diego, The County of San Diego, Technical Experts and representatives of the Water Quality Control Board were present, see Appendix 1) will be used to conclude that the Potential Critical Coarse Sediment Yield Areas (PCCSYAs) within the Newland Sierra Project are not significant and can be removed from Critical Designation, and their removal will not impact negatively the three receiving streams.

2. METHODOLOGY TO IDENTIFY CCSYAS

2.1 Identification of CCSYAs

The Watershed Management Area Analysis (WMAA) PCCSYA Map prepared by the County of San Diego (commonly known as the Rash Map where PCCSYA are depicted in red) is used in the memo to identify PCCSYA in the project. Figure 1, prepared by Fuscoe Engineering, displays the WMAA areas identified for the project (in light purple). Further refinement options will be applied to determine if the PCCSYA identified areas become CCSYAs or Non-CCSYAs.

2.2 First Preliminary Analysis: Allowable 5% Encroachment into WMAA Areas

Table 1 displays the PCCSYAs draining to each of the 14 POCs to be analyzed in this report. From the review of Table 1, it is clear than the drainage areas of the following nine POCs are encroaching 5% or less into the WMAA Map: POCs 10, 13A, 16, 21, 25B, 27, 29A, 29B and 29C. Therefore, those POCs can be removed from further consideration, as *95% or more of the PCCSYAs contributing to these POCs are being preserved and/or by-passed downstream to the receiving POC*. The remaining five (5) POCs will require further analysis: POCs 13B, 19, 20, 25A and 26.

Table 1. Encroachment into WMAA Areas

Basin	Total Area (acre)	PCCSYA (acre)	Impacted area (acre)	Percentage (%)
10	439.82	162.42	8.10	5.0%
13A	35.99	12.72	0.50	3.9%
13B	82.26	40.45	11.99	29.6%
16	27.75	16.05	0.80	5.0%
19	70.63	20.48	15.66	76.5%
20	10.62	0.01	0.01	100.0%
21	29.74	3.67	0.13	3.5%
25A	391.37	142.14	23.18	16.3%
25B	170.53	62.38	0.86	1.4%
26	142.12	11.59	6.49	56.0%
27	45.16	11.00	0.53	4.8%
29A	54.63	7.88	0.16	2.0%
29B	16.30	8.37	0.32	3.8%
29C	40.28	25.72	1.29	5.0%

2.3 Second Preliminary Analysis: De Minimis PCCSYAs

In accordance to Section H.3.3 of the BMP Manual, all areas that (a) are not significant contributors of bed sediment yield due to their small size and (b) are considered as not practicable to by-pass to the downstream water of the state, can be excluded from the analysis as those areas are below the minimum significant threshold of applicability of protection (i.e. are De Minimis PCCSYAs).

The PCCSYA from POC-20 is only 0.01 acre (25 times smaller than the De Minimis Area) and it appears to be a legacy area from a GIS Methodology applied at a macro-scale to determine PCCSYAs in the WMAA Map for the entire County of San Diego. Consequently, POC-20 is excluded from further analysis. The remaining 4 POCs will be analyzed in this report: POCs 13B, 19, 25A and 26.

2.4 Refinement Options

2.4.1 Depositional Analysis

If it can be demonstrated that the potential source of coarse sediment is deposited into the existing system prior to reaching the first downstream unlined water of the state, then PCCSYA can be removed from further considerations. Depositional systems may include natural sinks, existing structural BMPs, existing hardened MS4 systems or other existing similar features that produce a peak velocity from the

discrete 2-year, 24 hour runoff event of less than 3 ft/s in the system being analyzed. It is clear for the location of the remaining PCCSYAs that a deposition of coarse sediments before reaching the first erodible upstream tributaries is not feasible, as the PCCSYA drain directly into the creek. Therefore, this refinement option is considered unnecessary for this project.

An additional consideration can be made in regards to POCs 13B and 19: there is sufficient slope to ensure transport of critical coarse sediment adjacent to the pipe discharge (on each branch upstream of POC 13B, and at the discharge of the pipe upstream of POC-19), but downstream of both POCs (and after the flow is piped underneath HWY 15) the potential for coarse sediment transport is reduced downstream. The reson for this is that] once the water reaches the South Fork Moosa Canyon Creek (alongside HWY 15) this creek eventually confluences with Moosa Canyon Creek (coming from Old Castle Road) to increase the contributing area of Moosa Canyon Creek, which then discharges into an artificial lake with recreational uses at the All Seasons R.V. Park, just north of the confluence of Gopher Canyon Road and Old Hwy 395, between Old Hwy 395 and HWY 15. This lake is approximately 800 ft long by 200 ft wide, and reduction of coarse sediment is beneficial for its recreational uses, as (a) removal of sediments extends the useful life of the lake and (b) coarse sediment cannot escape downstream as the coarse sediment will quickly settle in the lake. Therefore, any protection of the coarse sediment yield is irrelevant for the portion of the Moosa Canyon Creek downstream of the dam impounding the lake all the way to San Luis Rey River.

The argument related to the depositional analysis of the runoff from POCs 13B and 19 (and in extension to the runoff from POCs 10, 13A, and 20) will not be used by the project to re-assess PCCSYAs, because it could be argued that the little portion of the overall coarse sediment removed from those points could be necessary in the stream network from the tail of the lake upstream to the respective discharge points. However, this discussion is included in this study to add perspective of the relatively minor relevance of this coarse sediment geomorphic utility downstream, which in turn suggest (a) a less stringent view for the remaining POCs draining to Moosa Canyon Creek (13B and 19) and (b) another aspect to reduce even more the importance of the 0.01 acre of PCCSYAs draining to POC-20. In other words, from the remaining POCs to analyze, the relative importance of POCs 25A + 26 is higher than that of POCs 13B + 19, as the runoff from the former is not impounded about three miles downstream as the runoff from the later. Nevertheless, depositional analysis will not be used to exclude POCs 13B and 19 from further considerations.

2.4.2 Threshold Channel Analysis

A threshold channel is a stream channel in which channel boundary material has no significant movement during the design flow. If there is no movement of bed load in the stream channel, then it is not anticipated that reductions in sediment supply will be detrimental to stream stability because the channel bed consists of the parent material and not coarse sediment supplied from upstream. In such a situation, changes in sediment supply are not considered a geomorphic condition of concern.

An approximate threshold channel analysis was performed for the remaining POCs: 13B, 19, 25A and 26. The following are the assumptions and results:

- Upstream and Downstream analyses extend identically as the downstream and upstream
 analyses prepared by Chang in two different reports (Hydromodification Screening for Newland
 Sierra, January 14, 2015 (reference [2]) which analyzed 6 POCs, and Hydromodification
 Screening for Newland Sierra, July 8, 2016 (reference [3]) which analyzed other 4 POCs; see
 maps in Appendix 2). Therefore, measurements, results, and/or assumptions made in both of
 Chang's studies will be useful for analyses in this report.
- For calculations of Specific Stream Power Q₁₀, slope S and channel width w are needed. S and w will be obtained from [2], [3], while Q₁₀ will be obtained following the methodology of the updated Appendix H (see Appendix 1 of this study).
- For Q₁₀ calculations, the post-development percentage of impervious area draining to the channel is needed to determine the Adjustment Factor AF from Figure H.7-2 (See Appendix 1). The following conservatively large and realistic values of impervious percentage are used per BMP: POC-13B: 30%; POC-19: 60%; POC-25A: 30% (later reviewed in the SWMM model to be 26.5%), and POC-26: 60%. Those values determine conservative values of AF per POC: POC-13B: AF=1.23; POC-19: AF=1.31; POC-25A: AF=1.23; POC-26: AF=1.31. Those AF values are used to ensure that the conclusions of the Threshold Channel Analysis are valid regardless of the impervious percentage (see Table 2).
- As a susceptibility analysis of the results as a function of AF, additional calculations where made
 with the largest possible value of AF per POC (see Table 2). Notice that AF changes little with
 high changes of AF, and therefore, the results remain the same even with 90% value of
 imperviousness on the portion developed on each POC (which determines 60%, 33%, 88%, 82%
 and 60% of imperviousness on POCs 13B reach 2, 13B reach 3, 19, 26 and 25A respectively).
- For the calculation of an overall d_{50} value, the values obtained in 2015 Chang's study will be applied here for POC 25-A (see reference [2] and Table 2 for results).
- The different values of d_{50} will be used in the equation of Figure H.7-1 to determine if the channel is a threshold channel or an alluvial channel, as the 10-year Specific Stream Power ω will be known at each POC. In other words, if $\omega > 16.7 \cdot d_{50}^{0.75}$ then the channel is a threshold channel and PCCSYAs become CCSYAs.
- For those instances where d_{50} cannot be determined (POCs 13B, 19 and 26), a theoretical d_{50} that satisfies the braided equilibrium condition will be obtained. The value of d_{50} will be calculated according to $d_{50} = (\omega/16.7)^{4/3}$. This value will be compared to the corresponding equivalent value estimated indirectly by the author based on a Geotechnical Letter prepared by Leighton and Associates, Inc. (Appendix 2) dated 6/10/16, revised 10/5/16, where it is explained that the permissible shear stress will be in excess of 10 pounds, and therefore the equivalent d_{50} should be at least 24" according to Fischenich.

Table 2 shows the results of the Threshold Channel Calculation based on information collected in [2] and [3], and methodology detailed in final version of Appendix H (see Appendix 1). From the result of the calculations, it is clear that POCs 13B, 19 and 26 drain to Threshold Channels (as the minimum d_{50} required is much less than 610 mm) while POC 25A is located in an Alluvial Channel. Also, it is clear that the results show little sensitivity to AF.

Table 2. Threshold Channel Calculations: Results with average AF and Maximum AF.

POC	Reach	Slope, S	Width, W (m)	Area, A (mi²)	P, (in)	AF ⁽¹⁾	Q ₁₀ (cfs) ⁽²⁾	Q ₁₀ (m ³ /s)	SSP (W/m ²) ⁽³⁾	d ₅₀ (mm) ⁽⁶⁾	ω-BE (W/m²) ⁽⁴⁾	ω-BE > SSP ⁽⁵⁾ ?
13B	2	0.1250	1.5	0.0446	14.6	1.23	11.8	0.33	272.9	41.5	272.9	YES
13B	3	0.3604	3.0	0.0213	14.6	1.23	6.2	0.18	206.8	28.7	206.8	YES
19	1	0.1047	1.2	0.1187	14.6	1.31	29.4	0.83	713.1	149.2	713.1	YES
26	4	0.0584	2.4	0.2376	14.6	1.31	53.8	1.52	363.7	60.8	363.7	YES
25A	3	0.0202	6.1	0.7626	14.6	1.23	139.4	3.95	128.2	11.0	100.9	NO
POC	Reach	Slope, S	Width, W (m)	Area, A (mi ²)	P, (in)	AF ⁽¹⁾	Q ₁₀ (cfs) ⁽²⁾	Q ₁₀ (m ³ /s)	SSP (W/m ²) ⁽³⁾	d ₅₀ (mm) ⁽⁶⁾	ω-BE (W/m²) ⁽⁴⁾	ω-BE > SSP ⁽⁵⁾ ?
13B	2	0.1250	1.5	0.0446	14.6	1.31	12.6	0.36	290.6	45.1	290.6	YES
13B	3	0.3604	3.0	0.0213	14.6	1.24	6.2	0.18	208.5	29.0	208.5	YES
19	1	0.1047	1.2	0.1187	14.6	1.36	30.5	0.86	740.3	156.9	740.3	YES
26	4	0.0584	2.4	0.2376	14.6	1.35	55.5	1.57	374.9	63.3	374.9	YES
25A	3	0.0202	6.1	0.7626	14.6	1.21	148.4	4.20	136.5	11.0	100.9	NO

^{(1):} Adjustment Factor (AF) taken from Figure H.7-2 (See Appendix 1) with a conservative imperviousness approach for development conditions.

2.4.2.1 Considerations about Threshold Channel, Geology and Shear Stress

POC 13B, 19 and 26 provide a difficult challenge because a simple threshold channel method cannot be used as a d₅₀ representative of the channel conditions cannot be measured (the channels are not granular: they are a mix of outcrops of hard rock, boulders and entrenched vegetation). As a consequence, the author decided to refer to Appendix H definition: "The key factor for determining whether a channel is a threshold channel is the composition of its bed material. Larger bed sediment consisting primarily of cobbles and boulders are typically immobile, unless the channel is a large river with sufficient discharge to regularly transport such grain sizes as bed load. As a rule-of-thumb, channels with bed material that can withstand a 10-year peak discharge without incipient motion are considered threshold channels and not live-bed alluvial channels. Threshold channel beds typically consist of cobbles, boulders, bedrock, or very dense vegetation (e.g., a thicket)".

^{(2):} Q (cfs) obtained with equation H.7-4 : $\mathbf{Q}_{10} = \mathbf{AF} \cdot \mathbf{18.2} \cdot \mathbf{A}^{0.87} \cdot \mathbf{P}^{0.77}$

^{(3):} SSP (Specific Stream Power, Watt/m²): Obtained with equation H.7-1: **SSP = Y·Q**₁₀·**S/W** (International Units)

^{(4):} ω -BE (Braided equilibrium Specific Power, Watt/m²): Obtained with equation in Figure H.7-1: ω -BE = 16.7·d₅₀ ^{0.75} (d₅₀ = mm)

^{(5):} If ω-BE > SSP then (d₅₀, SSP) plots below the braided equilibrium line in Figure H.7-1, and therefore the channel is a threshold channel (see **Appendix 1**).

^{(6):} Bold diameters are theoretical, and represent minimum diameter required to satisfy braided equilibrium. Equivalent diameter = 610 mm.

It is clear from the December 2016 Leighton and Associated, Inc. letter included in the appendices that the typical structure of a threshold channel is satisfied by the observations in the field as the channels are composed of thick vegetation, boulders and bedrock.

Also, in the same Threshold Channel section Appendix H states:

"For a project to be exempt from coarse sediment supply requirements, the applicant must submit the following for approval by the County:

- \bullet Photographic documentation and grain size analysis used to determine the d_{50} of the bed material; and
- Calculations that show that the receiving water of concern meets the specific stream power criteria defined below **or a finding from a geomorphologist** that the stream channel has existing grade control structures that protect the stream channel from hydromodification impacts".

The first requirement is satisfied by (a) aerial photographic evidence now included in Appendix 2, (b) photographic records of a site visit performed on December 2016 also included, with the corresponding Exhibit indicating the location were the photos were taken and (c) determination of an equivalent d_{50} as explained in section 2.4.2.2. The determination of d_{50} on the opinion of the author of this study is irrelevant as the findings from a geomorphologist supersede a precise determination of d_{50} , because there is no explanation in Appendix H of how to relate d_{50} with the findings from a geomorphologist (in other words, d_{50} is only useful for the stream power criteria of the second bullet point above, but the existence of grade controls that protect the stream channel from hydromodification impacts as determined by a geomorphologist is unrelated with an specific value of d_{50}). Consequently, the discussion of d_{50} will only serve to complete the submittal requirements as shown in page H-37 of Appendix H. It should be pointed out that the opinion of Leighton and Associates (also in the December 2016 Geology Letter located in Appendix 2) satisfies the requirement of "findings from a geomorphologist".

2.4.2.2 d_{50} Equivalent and Jet Testing Discussion

According to the geology letter included in Appendix 2, the channel system for POC 13B, 19 and 26 is mainly composed of granite bedrock exposed, outcrops of very hard igneous rocks, and dense canopies of native brush, and there is a lack of observable sediment within the subject drainages that make impossible the determination of a d_{50} , simply because the channels are non-granular.

For non-granular channels, it has been clearly understood in the Technical literature that critical shear stress (the initial value of shear stress that starts erosion) is unrelated to the size of the soil particles. For example, in cohesive materials (channels in clayed soils) cohesion forces of electric nature are more important than gravitational forces associated with particle size. In vegetated channels, the root system of the plants keeps the soil in place and provides a resistance to erosion much larger than the equivalent resistance of the naked soil without vegetation. In channels excavated on rock, very high velocities are required to generate sufficient shear stress to break the rock surface in contact with the water and

generate erosion. Appendix H recognizes this issue (page H-50) and the use of in-situ jet test, reference tables, or empirical relationships is suggested, without specifying what references can be valid and what references are not. However, 2 references are cited as valid: ASCE No. 77 (1992) and Fischenich (2001).

A brief discussion and criticism of in-situ jet test is included in this paragraph, as a response to a County comment: in-situ jet test is a test that requires heavy machinery, pumps, significant amount of water and calibrated instrumentation to be performed. Such equipment is unpractical in the field, especially to transport to channels were access on foot is extremely difficult and were water is not present to do the test. A cistern truck delivering water would be necessary in Southern California Climate, and such water delivery would cause additional problems and would be considered an illegal discharge (or would require a special permit). For this reason, the author of this study believes that in-situ jet test is a completely unpractical technicality impossible in Southern California except in very large creeks (see, among others, https://naldc.nal.usda.gov/download/10012/PDF).

Continuing with the non-granular channel discussion, from previous experience of the author of this study, and based upon studies approved in the region (even studies directly approved by the SDRWQCB, such as the River District in the City of San Marcos) the Fischenich Table has been used as a linkage between vegetated channels and a d_{50} equivalent: the procedure consist on determine the critical shear stress for a given vegetation characteristics and knowing this value, calculate an equivalent d_{50} which means the determination of what would be the d_{50} size that will have the same shear stress resistance than a specified vegetated channel.

In regards to the vegetation encountered on the site visit, it was dense, stable and in many cases impassable, so a conservative value of the permissible shear stress should be between 1.7 to 2.5 lb/ft² (good quality long native grass to food quality hardwood tree planting), and an average value of 2.0 lb/ft² is assumed. Noticing that the relationship between d_{50} (inches) and the critical shear stress τ_c (lb/ft²) in the Fischenich table is $\tau_c = 0.422 \cdot d_{50}$ (or $d_{50} = 2.38 \cdot \tau_c$) we can conclude that $d_{50} \approx 4.8$ " for the vegetation portion. In regards to the hard rock portion, Fischenich Table does not display values of velocities or permissible shear stress for rock lined channels. The only reference the author is aware of is Table 8-4, Reference [6] (National Engineering Handbook, USDA 2007, Chapter 8, Threshold Channel Design) were velocities of 20 ft/s are suggested as maximum velocities for good rocks (igneous and hard metamorphic, as present on the field). This velocity will translate into a shear stress of about 12.5 lb/ft², which in turn would correspond to an approximate $d_{50} = 30$ " using the linear relationship described. Such large value of d_{50} is not surprising, considering that the type of rock existing on site is the rock material used in quarry operations to produce rocks for rip-rap.

As summary $d_{50} = 4.8$ " (vegetation portion of the channels) and $d_{50} = 30$ " (hard rock portion of the channels). Those values denote the significant erosion resistance that the materials in the field have, and give additional credibility to the expert opinion of the Leighton letter in Appendix 2.

2.4.2.3 Specific Stream Power (SSP) Criteria

As a consequence of the updated sections 2.4.2.1 and 2.4.2.2, this section is no longer needed. However, calculations in Table 3 are included in light gray to avoid breaking the continuity of the table enumeration and avoid changing reference to comments. Please be aware that results displayed in Table 3 are irrelevant now to define channels as Threshold Channels.

Table 3. Detail Depth, Shear Stress, and SSP Calculations

Large "i	n" scena	rio															
POC	Reach	Slope	W (ft)	z:1	Q _{10,max}	h (ft)	n	Q _M (cfs)	R _H (ft)	τ (lb/ft²)	v (ft/s)	A (sq-ft)	P (ft)	F	$\tau_B (lb/ft^2)$	v _B (ft/s)	SSP
13B	2	0.1250	4.921	2	12.55	0.545	0.080	12.55	0.445	3.47	3.8	3.28	7.36	0.99	4.3	4.7	290.5
13B	3	0.3604	9.843	2	6.25	0.178	0.080	6.25	0.171	3.85	3.4	1.82	10.64	1.46	4.0	3.6	208.4
19	1	0.1047	3.937	1.5	30.54	0.883	0.055	30.54	0.652	4.26	6.6	4.64	7.12	1.38	5.8	8.8	740.0
26	4	0.0584	7.874	2	55.46	0.999	0.055	55.46	0.799	2.91	5.6	9.86	12.34	1.09	3.6	7.0	374.7
Small "r	n" scena	rio															
POC	Reach	Slope	W (ft)	z:1	Q _{10,max}	h (ft)	n	Q _M (cfs)	R _H (ft)	τ (lb/ft²)	v (ft/s)	A (sq-ft)	P (ft)	F	$\tau_B (lb/ft^2)$	v _B (ft/s)	SSP
13B	2	0.1250	4.921	2	12.555	0.416	0.050	12.55	0.353	2.75	5.2	2.39	6.78	1.53	3.2	6.1	290.5
13B	3	0.3604	9.843	2	6.248	0.135	0.050	6.25	0.130	2.93	4.6	1.36	10.44	2.23	3.0	4.7	208.4
19	1	0.1047	3.937	1.5	30.545	0.684	0.035	30.54	0.530	3.46	9.0	3.39	6.40	2.11	4.5	11.3	740.0
26	4	0.0584	7.874	2	55.455	0.772	0.035	55.45	0.642	2.34	7.6	7.27	11.32	1.65	2.8	9.1	374.7
Critical	Critical Flow Scenario (F = 1)																
POC	Reach	Slope	W (ft)	z:1	Q _{10,max}	h (ft)	T (ft)	Q ² /g-A ³ /T	R _H (ft)	τ (lb/ft²)	v (ft/s)	A (sq-ft)	P (ft)	F	$\tau_B (lb/ft^2)$	v _B (ft/s)	SSP
13B	2	0.1250	4.921	2	12.55	0.543	7.09	0.00	0.444	3.46	3.8	3.26	7.35	1.000	4.2	4.7	290.5
13B	3	0.3604	9.843	2	6.25	0.228	10.76	0.00	0.217	4.87	2.7	2.35	10.86	1.000	5.1	2.8	208.4
19	1	0.1047	3.937	1.5	30.54	1.068	7.14	0.00	0.760	4.96	5.2	5.91	7.79	1.000	7.0	7.3	740.0
26	4	0.0584	7.874	2	55.46	1.051	12.08	0.00	0.834	3.04	5.3	10.49	12.58	1.000	3.8	6.7	374.7

2.4.2.4 <u>Conclusions of Threshold Channel Analysis</u>

As a conclusion of this section, the reaches on POC 13B, 19 and 26 are Threshold Channels, under different approaches analyzed. Threshold channel analysis eliminates the contributing area of 3 POCs as PCCSYAs and transforms those areas in Non-CCSYAs: 13B, 19 and 26. Only the contributing area of POC 25A is not eliminated from further analysis.

2.4.3 Coarse Sediment Source Area Verification

A sieve analysis has not been performed for the remaining area POC-25A. Therefore, this optional analysis is not included. In other words, potential exclusion of POC-25A contingent upon the results of the Sieve Analysis is not considered necessary as simple inspection of the soils in the area denote a relatively significant presence of coarse sediments.

2.4.4 Verification of Geomorphic Landscape Units (GLUs)

GLU analysis was performed for the contributing area of POC 25A and a verification of the slope, land use and geology of the area confirms that GLU analysis will not remove PCCSYA areas. Therefore, all PCCSYAs draining to POC 25-A are in fact CCSYAs, and a no net impact demonstration is needed for this portion of the project.

2.5. Conclusion of the Refinement Options

After a refinement analysis a PCCSYA has two options: it is either a Critical Coarse Sediment Yield Area (CCSYA) or it becomes a Non Critical Coarse Sediment Yield Area (Non-CCSYA). Only one of the refinement options needs to produce a positive result for PCCSYA to become a Non-CCSYA. If no positive result occurs, then PCCSYA becomes CCSYA. As at least one refinement option shown in Table 3 produces a positive result for all POCs except 25A, then all areas of Figure 1 are considered Non-CCSYA (except for POC-25A) and no protection of those Non-CCSYAs (avoidance or no net impact demonstration) is required. Further analysis is required only for CCSYAs draining to POC-25A.

Table 4. Refinement Options Results

Basin	Is PCCSYA a CCSYA or a Non-CCSYA?	Refinement Option used	Basin	Is PCCSYA a CCSYA or a Non-CCSYA?	Refinement Option used
10	Non-CCSYA	<5% encroachment	25A	CCSYA	None. No Net Impact needed.
13A	Non-CCSYA	<5% encroachment	25B	Non-CCSYA	<5% encroachment
13B	Non-CCSYA	Threshold channel	26	Non-CCSYA	Threshold channel
16	Non-CCSYA	<5% encroachment	27	Non-CCSYA	<5% encroachment
19	Non-CCSYA	Threshold channel	29A	Non-CCSYA	<5% encroachment
20	Non-CCSYA	De Minimis	29B	Non-CCSYA	<5% encroachment
21	Non-CCSYA	<5% encroachment	29C	Non-CCSYA	<5% encroachment

Note: All basins encroaching < 5% do contain CCSYAs that are effectively identified, avoided and by-passed if they are upstream, or simply identified and avoided if they are downstream of the proposed development.

3. AVOIDANCE AND BYPASS

The project cannot avoid the totality of the CCSYAs included within the boundary of POC-25A as many of those areas are located in places planned for development. Therefore, Avoidance and By-Pass will be used to the maximum extent practicable to protect as many as possible CCSYAs draining to POC-25A: as a matter of fact, all undisturbed natural areas (including CCSYAs embedded into them) will by-pass downstream basins, per section H.3.11 of the BMP Manual. As by-pass by itself is insufficient, please refer to the No Net Impact Section where it is demonstrated that enough protection/flow control is achieved to conclude that No Net Impact occurs at POC-25A. Finally, it must be noticed that avoidance and by-pass is also included in POCs where PCCSYAs < 5%: 13A, 16, 21, 25B, 27, 29A, 29B and 29C. Basically the remaining 95%+ of PCCSYAs are downstream and protected or in few cases, a portion of the PCCSYAs is upstream and by-passed to the POC.

3.1 General Hydraulic Considerations of By-Pass Velocities

Let the San Diego Standard Type A drainage ditch be used to by-pass natural flows. This is a concrete triangular channel, with lateral slope 1.25:1, n = 0.013, and geometry defined according to the following equations: flow area $A = 1.25 \cdot h^2$, wetted perimeter $P = 3.2016 \cdot h$ and hydraulic radius $R = 0.3904 \cdot h$, with h being the depth of the flow. Let a velocity v of 3 ft/s be defined as the minimum acceptable velocity for a 2 year peak flow Q_2 . The use of the Manning's equation establishes:

$$v = \frac{1.486}{n} \sqrt{s} \cdot R^{2/3}$$
; hence $3 = \frac{1.486}{0.013} \sqrt{s} (0.3904 \cdot h)^{2/3}$ equivalent to : $h = \frac{0.01089}{s^{3/4}}$

Similarly, using Manning's equation for peak flow Q₂:

$$Q_2 = \frac{1.486\sqrt{s} \cdot 0.3904^{2/3} \cdot 1.25 \cdot h^{8/3}}{n} \; ; then \; Q_2 = \frac{1.486\sqrt{s} \cdot 0.3904^{2/3} \cdot 1.25 \cdot 0.01089^{8/3}}{0.013 \cdot s^2} \; which \; is \; s = \frac{0.00583}{{O_2}^{2/3}} \; declared by the content of the con$$

The design equation to guarantee a minimum of 3 ft/s velocity, under Type A concrete brow-ditch is:

$$s \ge \frac{0.00583}{Q_2^{2/3}}$$
 for Q₂ > 0.15 cfs, and s ≥ 2% for Q₂ < 0.15 cfs (3.1)

At this point the precise peak flows draining to the ditches have not being established because the precise design of the ditches will occur in final engineering. The project will guarantee compliance with equation (3.1) or compliance with Table in section H.3.1 for those cases where an 18" pipe is used as a by-pass conveyance system.

4. DEMONSTRATE NO NET IMPACT

The purpose of Chapter 4 of this study is to demonstrate that the portion of the Newland Sierra Project draining to POC-25A will generate No Net Impact in the Critical Sediment Yield to the aforementioned POC. No net impact will be achieved by equilibrating two different components: (a) the discharges of the sediment producing areas will be diverted as recommended in this analysis to adjust the Sediment Production S_P as close as possible to the original conditions and (b) the discharges of the developed areas will be adjusted by designing BMPs such that the work exercised by the discharged flows (the Erosion Potential E_P) is as close as possible to the pre-development work. By working simultaneously on those to factors (S_P and S_P), the project will achieve compliance as any reduction in the dimensionless Sediment Production Coefficient S_P will be compensated by similar reduction in the Erosion Potential Coefficient S_P so that no overall net impact downstream is achieved ($S_P/E_P < 1.1$).

4.1 Verification of Geomorphic Landscape Units (GLUs)

As an initial step, GLU areas will be mapped to determine the original critical coarse sediment yield of the CCSYAs draining to POC-25A. Appendix 3 shows the GIS results of the property combined with a Geology Map. It is clear from this analysis that (a) there are 2 geologic types occurring in the analyzed Area per the simplified classification of Section H.6.1 of Appendix H (Coarse Bedrock CB and Coarse Sedimentary Permeable CPS) of which CB is the dominant geology; (b) the land use of the analyzed area (associated mainly with existing vegetation) can be of 3 types: Scrubs and Shrubs, Forest and Agricultural + grasses, per order of importance; and (c) the influence of the slope is different depending on the geology and land use. Therefore, a slope analysis is needed to determine the amount of area of those categories.

A slope analysis is also included in Appendix 3 (for both pre-development and post-development conditions). The result of the slope analysis combined with the geology and the land use, determines 10 types of area producing Critical Coarse Sediment in Pre-development conditions, and only 4 types of area producing Critical Coarse Sediment (as the other 6 types are covered by developed lands). Area Types and magnitude can be seen in Table 4.

Cut and fill sloped areas are also analyzed (see corresponding graphic in Appendix 3), as those are the only developed areas allowed to be included in sediment production calculations of post-development conditions as long as they do not drain to any BMPs and do not include impervious areas. There will be 4 types of slope areas considered: cut and fill slopes in CB geology, and cut and fill slopes in CSP geology. Land-use of the cut and fill slopes is assumed to be a combination of grasses-forest land-use as a landscape land use is not included in section H.6.1 of Appendix H. It should be pointed out that the land use of the slopes cannot be considered developed, as per the Regional WMAA Attachment provided by the County of San Diego (and included in Appendix 1) developed land use is assumed a sediment production of 0 (which defeats the purpose of including slopes in the analysis of sediment-producing

areas in post-development condition). Consequently an average land use of grass-forest was considered as representative of the potential sediment production of the landscape that will be occurring in many of the cut and fill slopes.

Table 5. GLU Units, Pre and Post-Development (with Corresponding Areas)

GLU: Pre-Development	Area (ac)	GLU: Post-Dev., Preserved	Area (ac)
CB-Agri/Grass-3	0.11	CB-Agri/Grass-3	0.11
CB-Agri/Grass-4	0.13	CB-Agri/Grass-4	0.13
CB-Forest-2	3.08	CB-Forest-2	0.73
CB-Forest-3	0.04	CB-Scrub/Shrub-4	142.87
CB-Forest-4	0.18	GLU: Post-Dev., Slopes	Area (ac)
CB-Scrub/Shrub-4	184.87	CB- Cut slope (P=0.5)	22.70
CSP-Agri/Grass-4	0.01	CB- Fill slope (P=0.25)	13.47
CSP-Forest-3	0.04	CSP- Cut slope (P=0.5)	0.00
CSP-Forest-4	0.24	CSP- Fill slope (P=0.25)	0.67
CSP-Scrub/Shrub-4	0.47		·

4.2 S_P Calculation

For the determination of S_P (Sediment Supply Potential) the sediment yield in pre and post-development conditions is needed. The following procedure was followed (please see S_P detailed calculations in Appendix 4):

- In both pre and post-development conditions, the areas at each slope range (determined with the slope analysis) were obtained. This area was multiplied by the sediment yield depending on the slope, according to the information provided by the County included in Appendix 3 (Table A.4.2 from the Regional WMAA Analysis, reference [4])
- Only sediment yield from critical areas was considered (those areas classified in Table 4). Therefore, the total area considered is smaller than the total area contributing to POC-25A.
- The sediment yield from natural areas has been reduced from 1852 ton/yr to 1410 ton/yr.
- In post-development conditions, additional coarse sediment producing areas were considered from the slopes of the development. Sediment yield factors were corrected from Table A.4.2 to account for a change in P factor (P is a support practice factor, assumed 0.5 for fill slopes and 0.25 for cut slopes, per Appendix H; it can also be seen as a safety factor).
- The sediment yield of the post-development slopes is 201 ton/yr; therefore, the total post-development sediment yield based on RUSLE is 1611 ton/yr. As a consequence, SY_{RUSLE} can be determined as SY_{RUSLE} = 1611/1852 = 0.826.
- Sediment yield also must include channel analysis. Per the NHDPlus Channel Map included in Appendix 3, it has been estimated that approximately 6,800 ft of NHDPlus channels exists in pre-

- development conditions, and those will become only about 1,400 ft of NHDPlus channels in post-development conditions. Consequently, $SY_{NHD} = 0.206$.
- Following the recommendations of Appendix H, a weighed factor of 0.3 is applied to waters that are part of the NHDPlus data set and 0.7 for the RUSLE data. Consequently, the following equation is used: $S_P = 0.7 \cdot SY_{RUSLE} + 0.3 \cdot SY_{NHD}$.
- Finally, the overall S_P is 0.671 (See Appendix 4).

4.3 E_P and E_P/S_P Calculation

To calculate E_P , REC follows the procedure explained in Appendix H, Section H.8.1.2, Standard E_P Method. The following is the procedure used here:

- Scaling factors are not necessary in this study, as the area of the watershed and the area of the portion of the project being analyzed are the same (in other words, 100% of the area draining to POC-25A is included as part of the project area).
- Hydraulic analysis follows a combination of Manning's equation and shear stress calculation, starting with the given peak flow Q, and the geometry of the channel per Chang's study (bottom width 3 ft, lateral slope z is 2.125:1, slope S is 0.0202, and Manning's coefficient assumed as 0.035)
- The sequence of the hydraulic calculation is as follows: a given Q (cfs) and a given geometry determine a given depth of flow h (Ft) per Manning's equation (1); the geometry of the channel determines an area A (ft²) per (2), a hydraulic radius R (ft) per (3), an average velocity V (ft/s) per (4), a shear stress τ (lb/ft²) per (5) and a dimensionless work W per (6). Results are displayed in Appendix 5.

$$Q = \frac{1.486\sqrt{s}}{n} \frac{(B \cdot h + z \cdot h^2)^{5/3}}{\left(B + 2h\sqrt{1 + z^2}\right)^{2/3}}$$
(1)

$$A = B \cdot h + z \cdot h^2 \tag{2}$$

$$R = \frac{A}{B + 2h\sqrt{1 + z^2}}\tag{3}$$

$$V = \frac{Q}{A} \tag{4}$$

$$\tau = \gamma \cdot R \cdot S \tag{5}$$

$$W = V \cdot \sqrt{(\tau - \tau_c)^3} \tag{6}$$

- The results of a continuous simulation model prepared for POC-25A using SWMM (see reference [5], prepared by REC) are used here in the calculations displayed in Appendix 5: the 2-year peak flow Q₂ (obtained with SWMM) is used to define the lower threshold as 50% of Q₂ because the receiving channel has low susceptibility per Chang's study.
- All flows larger than 50% of Q₂ in the continuous simulation (with one-hour duration) are gathered from the continuous simulation results both in pre-development and post-

development conditions. This option was preferred over working with bins because the amount of peaks was not very large and the precision of doing the calculations with the exact values instead of using the average values for each bin is worth the extra effort. There are 243 peaks to be analyzed in pre-development conditions and 199 in post-development conditions, which correspond with almost the same amount of calculations than if 100 bins per the SWMM results are used (see Appendix 5).

- According to the results of Appendix 5, the summation of the dimensionless work factors (that defines the total dimensionless work variables ΣW_{PRE} and ΣW_{POST} in pre-development and post-development conditions is used to obtain $E_P = \Sigma W_{POST} / \Sigma W_{PRE} = 183.82/268.23 = 0.685$.
- From the previous section, $S_p = 0.671$. Therefore, $E_p/S_p = 1.022 < 1.1$
- No net impact is achieved by proving that $E_P/S_P < 1.1$, according to Appendix H. Notice that the results of reference [5] demonstrate flow control beyond the minimum necessary by hydromodification considerations alone (demonstrated by the separation of the pre and post development Flow Duration Curves FDCs) so that E_P could be reduced to levels compatible with No Net Impact conditions.

4.3.1 Calculation of Critical Shear Stress (τ_C for Q = 50% of Q_2)

As an example of shear stress calculation, the critical shear stress is calculated as follows:

- 50% of Q_2 is assigned as the flow that produces critical shear stress. Therefore, $Q = 0.5 \cdot 162.84 = 81.42$ cfs
- From Chang (2015), bottom width W = 3 ft, lateral slope assuming symmetrical trapezoidal section is z = 2.125, longitudinal channel slope is 0.0202, and Manning's coefficient is assumed equal to 0.035. The application of the Manning's equation determines a depth of 1.841 ft.
- The hydraulic radius R is determined with the area and wetted perimeter per equations (2), (3), and (4). R = 1.092 ft (at the flow that produces critical depth)
- The critical shear stress results from equation (5) as $\tau_c = 1.377 \text{ lb/ft}^2$.

A similar procedure is used for all flows to determine the shear stress τ as a function of the peak flow Q, so that the work W can be calculated for each flow using equation (6).

4.4 Conclusion of Section 4.

This study has demonstrated that the proposed HMP BMPs provided for the portion of Newland Sierra draining to POC-25A in addition to the protection of the remaining natural area and the diversion of the runoff from the slope areas shown in Appendix 3 are sufficient to meet the No Net Impact Criteria defined as $E_P/S_P \leq 1.1$.

5 CONCLUSIONS OF THE STUDY

The Newland Sierra project avoids any impact into CCSYAs with the following measures: (a) by encroaching into less than 5% of the WMAA Areas draining into 9 POCs (POCs 10, 13A, 16, 21, 26, 27, 29A, 29B, 29C) and by-passing and protecting the remaining WMAA areas in those POCs; (b) by removing a PCCSYA 25 times smaller than the De Minimis Area (POC-20), (c) by proving that the sediment would be discharging into Threshold Channels that do not need such sediment (POCs 13B, 19 and 25B); and (d) by demonstrating No Net Impact via Continuous Simulation and E_P/S_P analysis in the remaining POC (POC-25A).

6 LIST OF APPENDICES

Appendix 1:

- Relevant Information from Appendix H
- Relevant Information from Regional WMAA CCSYA Quantitative Analysis

Appendix 2:

- Relevant Maps of Hydromodification Screening Reports (References [2] and [3])
- General Satellite Exhibit with Location of Site-Visit Photos of Contributing Areas to POCs 13B, 19 and 26; Dec. 2016)
- Photographic Records of December 2016 Site Visit
- Aerial Photography of the Location of POC-19, POC-13B and POC-26
- New Updated Letter by Geologist (Leighton and Associates Inc. Dated 12/15/16 that Supersedes previous Geology Letter Dated 6/10/16 and Revised 10/5/16)

Appendix 3:

- Pre and Post-Development Slope Analysis Maps (Fuscoe, August 2016)
- Pre and Post-Development GLU Areas (Fuscoe, October 2016)
- Fill and Cut Slope Map (Fuscoe, October 2016)
- NHD-Plus Channel Map (Fuscoe, October 2016)
- New Avoidance/Bypass Exhibits, (Fuscoe, December 2016)

Appendix 4: S_P Calculations.

Appendix 5: E_P Calculations. Summary of Results.

Appendix 6:

- Response to Comments, First Round
- Response of Comments Identified on 10/21/2016, Second Round

7 REFERENCES

- [1] County of San Diego BMP Design Manual. Appendices. February 2016 Appendix H.
- [2] Chang Consultants: "Hydromodification Screening for Newland Sierra", January 14, 2015
- [3] Chang Consultants: "Hydromodification Screening for Newland Sierra", July 8, 2016
- [4] Regional WMAA Excerpt of CCSYA Quantitative Analysis. Provided by San Diego County.
- [5] REC Consultants: "Technical Memorandum: SWMM Modeling for Hydromodification Compliance of Newland Sierra", August 18, 2016
- [6] Part 654 Stream Restoration Design, National Engineering Handbook (USDA 2007). Chapter 8, Threshold Channel Design.