Mitigation for inconsistencies with the RAQS would be as follows:

M-AQ-1 The County shall provide a revised housing forecast to SANDAG to ensure that any revisions to the population and employment projections used by the SDAPCD in updating the RAQS and SIP will accurately reflect anticipated growth due to the Proposed Project.

4.1.4 Conclusions

The Proposed Project would not conform with the RAQS and SIP and would result in a significant and unavoidable impact. These significant impacts will be reduced to less than significant when the RAQs are updated. M-AQ-1 requires that the County provide a revised housing forecast to SANDAG to ensure that any revisions to the population and employment projects are considered. The provision of housing information would assist SANDAG in revising the housing forecast; however, until the anticipated growth is included in the emission estimates of the RAQS and the SIP, the direct and cumulative impacts would remain significant and unavoidable.

4.2 Conformance to Federal and State Ambient Air Quality Standards

4.2.1 Construction Impacts

4.2.1.1 Guidelines for the Determination of Significance

Would the project construction result in emissions that would violate any air quality standard or contribute substantially to an existing or projected air quality violation?

To determine whether a project would result in emissions that would violate any air quality standard or contribute substantially to an existing or projected air quality violation, project emissions may be evaluated based on the quantitative emission thresholds established by the SDAPCD (as shown in Table 1). These limits are as follows:

Ozone Precursors

Would the project result in emissions that exceed 250 pounds per day of NO_X , or 75 pounds per day of VOCs?

Carbon Monoxide

Would the project result in emissions that exceed 550 pounds per day of CO, and when totaled with the ambient concentrations exceed a 1-hour concentration of 20 ppm or an 8-hour average of 9 ppm?

Particulate Matter

Would the project result in emissions of $PM_{2.5}$ that exceed 55 pounds per day?

Would the project result in emissions of PM_{10} that exceed 100 pounds per day and increase the ambient PM_{10} concentration by 5.0 μ g/m³ or greater at any sensitive receptor locations (or maximum exposed individual (MEI), a term commonly used by CARB for sensitive receptors)?

4.2.1.2 Significance of Impacts Prior to Mitigation

The construction activities associated with the Project would create diesel emissions, and would generate emissions from dust. In general, emissions from diesel-powered equipment contain more NO_X , SO_X , and particulate matter than gasoline-powered engines. However, diesel-powered engines generally produce less CO and less reactive organic gases than do gasoline-powered engines.

Emissions related to the construction of the Project would be temporary. Table 9, *Estimated Construction Emissions*, provides a summary of the daily construction emission estimates by construction activity. As noted above, it was assumed that dust control measures (watering a minimum of two times daily) would be employed to reduce emissions of fugitive dust during site grading. Where construction activities were assumed to occur simultaneously, the resultant emissions from each activity were summed and compared to the daily emission thresholds to determine significance.

Table 9 ESTIMATED CONSTRUCTION EMISSIONS						
Construction Activity	VOC	NO_X	CO	SO ₂	PM_{10}	$PM_{2.5}$
Construction Activity	lbs/day					
Site Preparation and Blasting	5	71	125	3	52	11
Backbone Infrastructure	3	29	19	< 0.5	2	1
Road Construction	6	72	49	< 0.5	13	5
Grading	5	54	41	< 0.5	7	4
Bridge Construction	4	35	40	< 0.5	5	2
Building Construction	4	26	35	< 0.5	4	2
Parking Lot Paving	1	13	15	< 0.5	1	1
Architectural Coating	50	2	4	< 0.5	1	< 0.5
Maximum Daily Emissions	54	100	125	3	52	11
Screening-Level Thresholds	75	250	550	250	100	55
Exceedance?	No	No	No	No	No	No

Notes:

- 1. Fugitive dust measures (watering twice daily) were applied to control PM₁₀ and PM_{2.5} dust emissions.
- 2. Includes use of low-volatile organic compound (VOC) coatings.
- 3. Maximum daily VOC emissions occur from May 2021 through September 2021 when Building Construction, Paving, and Architectural Coatings overlap.
- 4. Maximum daily NO_X emissions occur from October 2018 through March 2019 when Backbone Infrastructure and Road Construction overlap.
- Maximum daily CO, SO₂, PM₁₀, and PM_{2.5} emissions occur from July 2018 through September 2018 during Site Preparation and Blasting.

As shown in Table 9, with implementation of construction BMPs and Project design features, emissions of all criteria pollutants, including PM_{10} and $PM_{2.5}$, would be below the daily thresholds during construction. Construction of the Project would, therefore, not conflict with the NAAQS or CAAQS, and would have less than significant impacts.

4.2.1.3 *Mitigation Measures and Design Considerations*

As discussed in Section 1.3, the Project would incorporate construction BMPs and Project design features in an effort to reduce Project-related emissions. With implementation of those measures, the Project would not exceed the significance thresholds established by the County; therefore, impacts would be less than significant and no mitigation is required.

4.2.1.4 Conclusions

With implementation of the design considerations noted above, the Proposed Project would result in construction-related emissions below the level of significance. Therefore, Project criteria pollutants emissions during construction would constitute a less than significant impact on the ambient air quality.

4.2.2 Operational Impacts

4.2.2.1 Guidelines for the Determination of Significance

Based on the County Guidelines (2007), operational impacts would be potentially significant if they exceed the quantitative screening-level thresholds for criteria pollutants as listed under Section 4.2.1.1.

4.2.2.2 Significance of Impacts Prior to Mitigation

The main operational emissions sources associated with the Project are associated with traffic; emissions associated with area sources such as energy use, landscaping, and the use of fireplaces at the residences also would be generated.

Project-generated traffic was addressed in the TIA (LLG 2017). Based on the TIA, at full buildout the Project would generate approximately 4,500 ADT. To estimate emissions associated with Project-generated traffic, the CalEEMod model was used. Motor vehicle emission rates are, therefore, based on CARB's EMFAC state-wide emission factors for the San Diego County region. Emission factors representing the vehicle mix for emission analysis year 2021 were used to estimate emissions. Default vehicle speeds, trip purpose, and trip type percentages for single-family homes were used. Trip lengths were obtained from the Traffic Study – Average Trip Length memorandum (LLG 2016).

Generator emissions were estimated using CalEEMod. Emissions were calculated based on the annual testing frequency and duration and the power output of the engines.

Area source emissions, including emissions from energy use, natural gas fireplaces, landscaping, and maintenance use of architectural coatings were calculated using the CalEEMod model. Operational emission calculations and model outputs are provided in Appendix A.

Table 10, *Operational Emissions*, presents the summary of operational emissions for the Project, which include operational emissions from off-road equipment (i.e., generators associated with the WTWRF). As shown in Table 10, project emissions of all criteria pollutants during operation would be below the daily thresholds. Therefore, operation of the Project would not be considered a significant impact on air quality. Impacts would be less than significant.

Table 10 OPERATIONAL EMISSIONS						
Catacasa	VOC	NO _X	CO	SO ₂	PM_{10}	PM _{2.5}
Category lbs/day						
Area	18	< 0.5	38	< 0.5	1	1
Energy	< 0.5	1	1	< 0.5	< 0.5	< 0.5
Mobile	13	24	124	< 0.5	24	7
WTWRF Generators	1	7	7	< 0.5	< 0.5	< 0.5
TOTAL 32 32 169 <0.5 25 8						8
Screening-Level Thresholds	75	250	550	250	100	55
Exceedance?	No	No	No	No	No	No

Concurrent Construction and Operations

Due to the anticipated phasing, it is possible that occupation of up to half of the dwelling units may occur concurrently with the later construction phases of the remaining units. Table 11, *Concurrent Operational and Construction Emissions*, shows the worst-case daily emissions from this potential overlap.

Table 11 CONCURRENT OPERATIONAL AND CONSTRUCTION EMISSIONS						
Cotogowi	VOC	NO _X	CO	SO ₂	PM ₁₀	PM _{2.5}
Category	lbs/day					
Construction ^a	54	36	51	< 0.5	5	3
Operation ^b	16	16	85	< 0.5	13	4
TOTAL ^c	TOTAL ^c 71 52 135 <0.5 18 6					6
Screening-Level Thresholds	75	250	550	250	100	55
Exceedance?	No	No	No	No	No	No

^a Maximum daily construction emissions that may overlap with operations occur from May through September 2021 when Building Construction, Paving, and Architectural Coating phases overlap.

The combined construction and operational emissions would be below the significance threshold for all criteria pollutants. The CalEEMod model outputs are presented in Appendix A. As shown in Tables 10 and 11, emissions of criteria pollutants during operation of the Project whether or not there is an overlap with construction would not exceed the daily thresholds for any of the criteria pollutants. Therefore, no significant air quality impact is anticipated and mitigation measures are not required.

b Total for Peak Daily Operational Emissions assumes half of the Project is built and is therefore half of the results reported in Table 10.

^c Totals may not add due to rounding.

Wastewater Treatment and Water Reclamation Facility

As described previously in Section 1.2, Project Location and Description, the Project design includes an on-site WTWRF.

Criteria pollutant and TAC emissions would be generated during treatment of the influent at the WTWRF. Most air pollutant emissions would be produced during degradation or reaction while in the treatment system. Organic compounds would volatilize from the liquid surface of the reactors during the biological treatment of influent.

Emission factors and speciation for volatile compounds from influent treatment were obtained from the San Joaquin Valley Air Pollution Control District (SJVAPCD) (1993), as the SDAPCD does not have this information readily available. These are general emission factors expressed in terms of pounds of pollutant emissions per million gallons per day (mgd) of influent. These factors were used to estimate daily emissions of various TACs typically contained in influent waste streams. Emissions of TACs from treatment were estimated for full buildout influent throughput of 0.18 mgd.

A screening-level health risk assessment was performed using the USEPA SCREEN3 model. SCREEN3 uses worst-case meteorological conditions to conservatively estimate ground-level pollutant concentrations downwind of the source. The SCREEN3 results were combined with unit risk factors and reference exposure levels obtained from the OEHHA to evaluate cancer, chronic non-cancer, and acute health risk (OEHHA 2003). The modeled cancer, chronic non-cancer, and acute non-cancer risks were modeled for each individual compound and the results added to produce a conservative estimate of risk from all compounds. Table 12, *Parameters Used in SCREEN3 Dispersion Modeling*, summarizes the parameters used in the SCREEN3 modeling.

Table 12 PARAMETERS USED IN SCREEN3 DISPERSION MODELING			
Modeling Parameter	Values Used in Model		
Emission rate	1 gram per second		
1-hour average to annual average persistence factor	0.1		
Stack height	12.8 meters (42 feet)		
Stack diameter	0.91 meter (3 feet)		
Stack exit velocity	3.66 meters per second (10 feet per second)		
Stack gas exit temperature	294.3 Kelvin		
Land use	Rural		

Aqueous hypochlorite would be stored on site and used for the chlorination process. There would be potential for accidental release of such a substance. However, the facility staff would follow the administrative and engineering requirements of the California Accidental Release Prevention Program. The California Accidental Release Prevention Program's main objective is to prevent accidental releases of regulated substances determined to potentially pose the greatest risk of immediate harm to the public and the environment. The planning activities required by the

program are intended to minimize the possibility of an accidental release by encouraging engineering and administrative controls (USEPA 2014). It is further intended to mitigate the effects of an accidental release, by requiring owners or operators of facilities to develop and implement an accident prevention program. Any accidental release of this substance would be contained on site with no offsite runoff, and handlers would be trained in spill reaction. As such, there would be no impact resulting from the storage of this compound at the facility.

TAC emissions from the WTWRF would be produced during reaction or degradation while in the treatment system. Compounds would volatilize from the liquid surface of the reactors during the biological treatment of influent. Total TAC emissions are summarized in Table 13, *Estimated TAC Emissions from WTWRF*.

Table 13 ESTIMATED TAC EMISSIONS FROM WTWRF				
Compound	Peak Daily Emissions (lbs/day)			
Ammonia	4.498E-05			
Benzene	8.712E-08			
Chloroform	1.217E-06			
Ethyl Benzene	3.379E-07			
Hydrogen Sulfide	2.929E-06			
1,1,1-TCA	3.980E-07			
Methylene Chlorine	1.172E-06			
1,4-Dichlorobenzene	6.984E-07			
Phenol	1.472E-06			
Styrene	7.510E-07			
Toluene	7.360E-07			
TCE	3.905E-07			
Xylene	8.802E-07			
TOTAL VOC EMISSION	5.605E-05 (or 0.00005605)			
Screening-Level Thresholds	75			
Exceedance?	No			

Specific information about emission controls as part of the facility's design is not currently known. Therefore, the results of the analysis presented above represent uncontrolled emissions. However, it is likely that common control technologies would be implemented to substantially reduce emissions. Tightly covered, well-maintained collection systems can suppress emissions by 95 to 99 measures (USEPA 1998). The types of control technology generally used in reducing TAC emissions from wastewater include steam or air stripping, carbon adsorption, chemical oxidation, membrane separation, liquid-liquid extraction, and biotreatment (aerobic or anaerobic) (USEPA 1998). As shown in Table 13, the total uncontrolled TAC emissions from operation of the WTWRF are below the SDAPCD thresholds of significance, resulting in a less than significant impact. The mass emissions, when combined with other operational emissions, would also be below the County's screening level thresholds.

Traffic Related CO Concentrations (CO Hot Spot Analysis)

Vehicle exhaust is the primary source of CO. In an urban setting the highest CO concentrations are generally found within close proximity to congested intersections. Under typical meteorological conditions, CO concentrations tend to decrease as distance from the emissions source (i.e., congested intersection) increase. Project-generated traffic has the potential of contributing to localized hot spots of CO off-site. A CO hot spot is a localized concentration of CO that is above the state or national 1-hour or 8-hour CO ambient air standards.

To verify that the Project would not cause or contribute to a violation of the 1-hour and 8-hour CO standards either on a project or cumulative level, an evaluation of the potential for CO hot spots at nearby intersections was conducted. The TIA (LLG 2017) evaluated whether or not there would be a decrease in the LOS at the intersections affected by the Proposed Project. The County guidelines call for a CO hotspot analysis if the Project would:

- place sensitive receptors within 500 feet of a signalized intersection with a level of service (LOS) of E or F, with peak-hour trips exceeding 3,000 vehicles; or
- cause intersections to operate at LOS E or F, with peak-hour trips exceeding 3,000 vehicles.

According to the TIA (LLG 2017), three intersections under the Existing Plus Project Plus Cumulative Projects would operate at LOS E or F and experience an increase in delay from the Project:

- 1. Valley Parkway / I-15 Northbound Ramps
- 2. Country Club Drive / Harmony Grove Road
- 3. Harmony Grove Road / Kauana Loa Drive

The Transportation Project-Level Carbon Monoxide Protocol (Caltrans 1998) requires the modeler to model the intersections that have worst LOS and the highest traffic volumes. If the selected intersections do not show an exceedance of the NAAQS, none of the other intersections will. Some intersections may fall into both the highest traffic volumes and worst LOS categories. As recommended in the Protocol, receptors were located at locations that were approximately 3 meters (10 feet) from the mixing zone, and at a height of 1.8 meters (6 feet). Emission factors from the EMFAC2011 model for the year 2020 at a temperature of 60 degrees Fahrenheit and 50 percent humidity were used in the CALINE4 model.

In accordance with the Protocol, it is also necessary to estimate future background CO concentrations in the Project vicinity to determine the potential impact plus background and evaluate the potential for CO hot spots due to the Project. The existing maximum 1-hour and 8-hour background concentrations of CO of 4.4 and 3.70 ppm were used to represent future maximum background 1-hour and 8-hour CO concentrations, as presented earlier in Table 3. CO concentrations in the future may be lower as inspection and maintenance programs and more stringent emission controls are placed on vehicles.

Modeled 1-hour CO concentrations were scaled to evaluate maximum predicted 8-hour CO concentrations using the recommended persistence scaling factor of 0.7 for urban locations. The CALINE4 model outputs are provided at the end of Appendix A of this report. Table 14, *CO Hot Spots Modeling Results*, presents a summary of the predicted CO concentrations (impact plus background) for the intersections evaluated for the Existing plus Project plus Cumulative Projects traffic for the affected intersections. As shown in Table 14, the predicted CO concentrations would be substantially below the 1-hour and 8-hour NAAQS and CAAQS for CO. Therefore, no exceedances of the CO standard are predicted, and the Project would not cause or contribute to a violation of the air quality standard. The Project would not result in a significant cumulative impact for CO.

Table 14 CO HOT SPOTS MODELING RESULTS					
Intersection	Peak Period	Maximum 1-hour with Project Concentration	Maximum 8-hour with Project Concentration		
Valley Parkway at I-15 Northbound Ramps	AM	5.9	4.75		
valley Farkway at 1-13 Northboulld Ramps	PM	5.9	4.75		
Country Club Drive at Harmony Grove Road	AM	4.9	4.05		
Country Club Drive at Harmony Grove Road	PM	5.0	4.12		
Hamana Caran Band at Various Las Daire	AM	5.0	4.12		
Harmony Grove Road at Kauana Loa Drive	PM	5.1	4.19		
Ambient Air Quality Standard		20	9.0		
Significant Impact?		No	No		

Notes:

CALINE4 dispersion model output sheets and EMFAC2011 emission factors are provided at the end of Appendix A. ppm = parts per million

Peak hour traffic volumes are based on the TIA prepared for the Project by LLG Engineers (2017).

Highest 3 years SDAPCD (2011-2013) 1-hour ambient background concentration (4.4 ppm) + 2020 modeled CO 1-hour contribution.

Highest 3 years SDAPCD 8-hour ambient background concentration (3.70 ppm) multiply by 1-hour/8-hour conversion factor of 0.7 and then add the 2020 modeled CO 8-hour contribution.

4.2.2.3 *Mitigation Measures and Design Considerations*

As listed in Section 1.3, a wide range of current regulatory codes, Project design features, and other measures would be incorporated into the Proposed Project. The Project would incorporate energy-efficiency features that would meet the 2016 California Title 24 Energy Efficiency Standards. The installation of natural gas fireplaces would prevent residences from using wood as fuel for fire and minimize the generation of particulate emissions in the area. Given the result of a less than significant impact, no additional mitigation measures would be required.

4.2.2.4 Conclusions

Operation emissions of criteria pollutants for the full Project buildout, and combined construction and operational emissions would be below the significance thresholds and, therefore, would be less than significant under CEQA.

4.3 Cumulatively Considerable Net Increase of Criteria Pollutants

4.3.1 Construction Impacts

Based on the County Guidelines (2007), a project would result in a cumulatively significant impact if the project results in a significant contribution to the cumulative increase in pollutants for which the SDAB is listed as nonattainment for the CAAQS and NAAQS. As discussed in Section 2.0, the SDAB is designated as a nonattainment area for the NAAQS for ozone and the CAAQS for ozone, PM₁₀, and PM_{2.5}.

Cumulatively considerable net increases during the construction phase would typically happen if two or more projects near each other are simultaneously constructing projects. A project that has a significant direct impact on air quality with regard to emissions of PM₁₀, PM_{2.5}, NO_x, or VOCs during construction would also have a significant cumulatively considerable net increase. In the event direct impacts from a proposed project are less than significant, a project may still have a cumulatively considerable impact on air quality if the emissions of concern from the proposed project, in combination with the emissions of concern from other proposed or reasonably foreseeable future projects within a proximity relevant to the pollutants of concern, are in excess of the guidelines identified in Section 3.0.

4.3.1.1 Guidelines for the Determination of Significance

The following thresholds are used for the assessment of cumulative construction impacts:

Would the project result in emissions that exceed 250 pounds per day of NO_X or 75 pounds per day of VOCs?

Would the project result in emissions of $PM_{2.5}$ that exceed 55 pounds per day?

Would the project result in emissions of PM_{10} that exceed 100 pounds per day and increase the ambient PM_{10} concentration by 5 micrograms per cubic meter (5.0 μ g/m³) or greater at the maximum exposed individual?


4.3.1.2 Significance of Impacts Prior to Mitigation

There is a cumulative exceedance related to regional emissions of VOC, NO_X, PM₁₀, and PM_{2.5}. The question therefore arises regarding whether the Project could result in a considerable contribution to this regional effect.

As discussed in *Section 4.2.1.4*, Project emissions of VOC, NO_X, PM₁₀, and PM_{2.5} during construction would be below the screening-level thresholds and would result in a less than significant air quality impact. The locations of cumulative projects in relation to the HGV South development are presented in Figure 6, *Cumulative Projects*.

With regard to past and present projects, the background ambient air quality, as measured at the monitoring stations maintained and operated by the SDAPCD, measures the concentrations of pollutants from existing sources. Past and present project impacts are therefore included in the background ambient air quality data.

Cumulative Projects

Short-term emissions associated with construction generally result in near-field impacts. In particular, with respect to local impacts, the consideration of cumulative construction particulate (PM₁₀ and PM_{2.5}) impacts is limited to cases when projects constructed simultaneously are within a few hundred yards of each other because of (1) the combination of the short range (distance) of particulate dispersion (especially when compared to gaseous pollutants); and (2) the SDAPCD's required dust-control measures, which further limit particulate dispersion from a project site. Based on the cumulative projects identified in Figure 6, there are no known projects within 1,500 feet of the proposed Project where major construction would occur concurrently with the project. As mentioned previously, the HGV Project is currently under construction. It is anticipated that all major grading activities would be completed prior to the commencement of HGV South construction. Therefore there would be no cumulative construction particulate impacts. Further, any cumulative projects would also need to comply with SDAPCD Rules for dust control and construction equipment, which would further reduce the likelihood of a cumulatively considerable construction air quality impact. Therefore, Project construction is not anticipated to result in a cumulatively significant impact on air quality.

Section 4.2 concludes that the Project would not result in a direct impact to air quality during construction; and as discussed in Section 4.4 below, the Project would not have significant impacts to sensitive receptors.

In consideration of all these factors, construction of the Project would not result in a cumulatively considerable contribution to a significant air quality impact pertaining to NO_X , VOCs, PM_{10} , and $PM_{2.5}$.

4.3.1.3 *Mitigation Measures and Design Considerations*

Control measures for construction are discussed in Section 4.2.1.3. As discussed in that section, implementation of standard construction mitigation measures controlling fugitive dust emissions would minimize the Project's contribution to cumulative air quality impacts from construction activities. Cumulative projects would also need to comply with SDAPCD Rules for dust control and construction equipment. No other mitigation measures would be required.

4.3.1.4 Conclusions

Cumulative impacts associated with Project construction would be less than cumulatively considerable and therefore less than significant.

4.3.2 Operational Impacts

As discussed above, based on the County Guidelines (2007), a project would result in a cumulatively significant impact if the project results in a significant contribution to the cumulative increase in NO_X , VOCs, PM_{10} , and $PM_{2.5}$. In accordance with the guidelines, a project that does not conform to the RAQS and/or has a significant direct impact on air quality with regard to operational emissions of nonattainment pollutants would also have a cumulatively considerable net increase. Also, projects that cause road intersections to operate at or below a LOS E and create a CO hot spot create a cumulatively considerable net increase of CO.

4.3.2.1 Guidelines for the Determination of Significance

The following thresholds are used for the assessment of cumulatively considerable net increases in air pollutants during the operational phase:

Would the project not conform to the RAQS and/or have a significant direct impact on air quality with regard to operational emissions of PM_{10} , $PM_{2.5}$, NO_X , and/or VOCs, which would also have a significant cumulatively considerable net increase in these emissions?

Would the project cause road intersections or roadway segments to operate at or below LOS E and create a CO hotspot that would result in a cumulatively considerable net increase of CO?

4.3.2.2 Significance of Impacts Prior to Mitigation

As described in Sections 4.1 and 4.2, the proposed Project would not be consistent with the RAQS, but would not exceed the County's screening-level thresholds. As discussed in Section 4.2.2.2, the Project would not create a CO hotspot that would result in a cumulatively considerable net increase of CO. Therefore, the Project would not create a cumulatively considerable net increase in criteria pollutants associated with operation and impacts would be less than significant relative to criteria pollutant emissions.

4.3.2.3 Mitigation Measures and Design Considerations

As discussed in Section 4.1.3, the Project addresses the General Plan goals that are relevant to the Project site. With implementation of those measures, the Project would not exceed the significance thresholds established by the County; therefore, impacts would be less than significant and no mitigation is required.

4.3.2.4 Conclusions

Cumulative impacts associated with Project operation would be less than significant.

4.4 <u>Impacts to Sensitive Receptors</u>

4.4.1 Guidelines for the Determination of Significance

Would the project expose sensitive receptors to substantial pollutant concentrations?

The guidelines of significance listed below are used by the County to address the above question:

- Would the project place sensitive receptors near CO "hot spots" or creates CO "hot spots" near sensitive receptors?
- Would project implementation result in exposure to TACs resulting in a maximum incremental cancer risk greater than 1 in 1 million without application of Toxics-Best Available Control Technology or a health hazard index (HI) greater than 1, and thus be deemed as having a potentially significant impact?

4.4.2 Significance of Impacts Prior to Mitigation

CO Concentrations (CO Hot Spot Analysis)

The discussions and results of the CO hot spot analysis were previously mentioned in Section 4.2.2.2. As previously presented in Table 14, all CO impacts, when added to background CO concentrations, would be below the CAAQS for both the 1-hour and 8-hour averaging periods; therefore, the Project would not result in a significant impact for CO.

Construction-related Diesel Health Risk

DPM emissions would be released from the on-site construction equipment and from haul trucks associated with the Project. The CARB has declared that DPM from diesel engine exhaust is a TAC. Additionally, the OEHHA has determined that chronic exposure to DPM can cause carcinogenic and non-carcinogenic health effects.

The EPA SCREEN3 model, the screening air dispersion modeling method approved by the CARB for such assessments was used to estimate concentrations of DPM from the construction of the Project. The on-site DPM construction equipment emissions were estimated from emission calculation and amount to a maximum of 6.61 pounds per day of DPM (as PM₁₀ exhaust) from when the backbone infrastructure and road construction activities overlap. The emissions were represented in the model as an area source equal to the size of the Project's construction area. An emission release height of 10 feet (3 meters) was also assumed. Receptor locations where construction impacts were calculated focused on the residential receptors located west of the Project site because they would be closest to Project-generated emissions.

Cancer Health Risk Assessment Methodology

The cancer risk is calculated by multiplying the annual average concentrations calculated using the SCREEN3 model and an inhalation exposure factor as in Equation 1 below (Office of Environmental Health Hazard Assessment 2003).

Cancer Risk = Inhalation cancer potency factor (CPF) x Dose-inhalation

Where:

Cancer Risk = Total individual lifetime excess cancer risk defined as the cancer risk a hypothetical individual faces if exposed to carcinogenic emissions from a particular facility; this risk is defined as an excess risk because it is above and beyond the background cancer risk to the population contributed by emission sources not related to the Project; cancer risk is expressed in terms of risk per million exposed individuals.

Dose-inhalation = $(Cair \times DBR \times A \times EF \times ED) / AT$

Where:

Cair = annual average concentration

DBR = daily breathing rate,

A = inhalation absorption factor

EF = exposure frequency

ED = exposure duration

AT = average time period over which the exposure is averaged.

Cair is the annual average concentration at the closest receptor calculated from SCREEN3 in $\mu g/m^3$. With the worst-case meteorological condition under SCREEN3, the location of the highest 1-hour DPM concentration value was modeled to be 0.25 miles from the Project boundary. At this location, the 1-hour DPM concentration value was calculated to be 0.02485 $\mu g/m^3$. The SCREEN3 model outputs and screening health risk calculations are provided in Appendix B of this report. The other values listed in equations above are shown in Table 15, Inhalation Exposure Factor Values for Sensitive/Residential Receptors.

1		Table 15 POSURE FACTOI RESIDENTIAL RI		R	
December CPF DBR EF ED A					AT
Receptor	(mg/kg-day)-1	(liters/kg-day)	(days/year)	(years)	(days)
Construction (DPM)	1.1	302	260	4.0	25,550

Source: Bay Area Air Quality Management District, 2012.

CPF = cancer potency factor (from Office of Environmental Health Hazard Assessment 2012)

DPM = diesel particulate matter, DBR = daily breathing rate, EF = exposure frequency

ED = exposure duration (for construction, this represents the construction period of 4 years)

AT = average time period over which the exposure is averaged.

Applying Equations 1 and 2 with the values for the various factors shown in Table 16, the Cancer Risk is calculated as follows:

Construction Cancer Risk DPM = CDPM (average DPM concentration from SCREEN3 in $\mu g/m^3$) x 1.4 (risk per million for sensitive/residential receptors)

Non-Cancer Health Risk Characterization

Chronic Non-Cancer Impacts

Exposures to TACs such as DPM can also cause chronic (long-term) and acute (short-term) related non-cancer illnesses such as reproductive effects, respiratory effects, eye sensitivity, immune effects, kidney effects, blood effects, central nervous system, birth defects, or other adverse environmental effects. Risk characterization for non-cancer health risks is expressed as an HI. The HI is a ratio of the predicted concentration of a project's emissions to a concentration considered acceptable to public health professionals, termed the REL. When evaluating chronic non-cancer effects due to TAC exposures, a hazard quotient (HQ) is established for each individual TAC as follows and for each target organ affected by the individual TAC:

HI= Cair/REL

Where:

HI = chronic hazard index

Cair = Annual average concentration ($\mu g/m^3$)

REL = Chronic Reference Exposure Level (µg/m³)

To evaluate the potential for adverse non-cancer health effects from simultaneous exposure to multiple TACs, the HQs for all TACs that affect the same target organ are summed yielding a hazard index (HI) as follows:

HIto = Σ 10 HQtac

Where:

HIto = sum of the hazard quotients for all TACs affecting the same target organ HQtac = hazard quotient for TAC and target organ.

OEHHA has assigned a chronic non-cancer REL of 5 μ g/m³ for DPM (OEHHA 2012). DPM has effects on the respiratory system, which accounts for essentially all of the potential chronic non-cancer hazards from DPM. Therefore, the only HI calculated was for the respiratory system.

Table 16, Construction Health Risk Assessment Results, provides the results of the construction health risk assessment for project construction along with the County's Guidelines for Determining Significance health risk thresholds. As shown in the table, the construction emissions would not exceed the County's Guidelines for Determining Significance health risk thresholds for cancer risk and chronic non-cancer hazard.

CONSTRUC	Table 16 CTION HEALTH RISK A	ASSESSMENT RESULTS	
Metric	Dispersion Model Estimate	District's Significance Threshold	Exceeds Threshold?
Cancer Risk ¹	0.03 in 1 million	1 in 1 million	No
Chronic Non-Cancer Hazard Index from DPM ²	0.0005	1.0	No

Source: Appendix B

Diesel exhaust particulate matter is known in the state of California to contain carcinogenic compounds. The risks associated with carcinogenic effects are typically evaluated based on a lifetime of chronic exposure (i.e., 24 hours per day, seven days per week, 365 days per year for 70 years). Because the Project-related construction emissions of diesel exhaust would occur for less than four years, the Proposed Project would not result in long-term chronic lifetime exposure to diesel exhaust from heavy-duty diesel equipment. Therefore, air quality impacts related to

Assumes an exposure frequency of 260 days, exposure duration of 4.0 years, and an age sensitivity factor of 1 (Bay Area Air Quality Management District 2012)

² Assumes a chronic DPM reference exposure level of 5 μg/m³ (Office of Environmental Health Hazard Assessment 2012)

exposure of sensitive receptors to substantial pollutant concentrations would be less than significant.

Operation-related Health Risk

Residential development projects do not typically generate any TAC emissions. Therefore, the operational impacts of the land use in relation to generation of TACs would be less than significant.

WTWRF treatment of influent would produce emissions of TACs during reaction or degradation. As previously mentioned in Section 4.2.2.2, the emission data for the WTWRF was obtained from the San Joaquin Valley APCD's *Fugitive Air Emission Factors and Concentration Values for Wastewater Treatment Plants* (SJVAPCD 1993). Emissions are determined by the multiplications of the wastewater flow and the concentration of the pollutant. The peak daily wastewater flow was assumed to be 0.18 mgd. The following formula was used to calculate the WTWRF emissions:

Daily Emissions (lbs/day) = peak daily influent flow (gal/day) x liquid conversion factor (3.785 L/gal) x toxic influent concentration (μ g/L) x unit conversion factor (10^{-6} g/ μ g) x lbs/453.6 g.

The annual emissions of TACs from WTWRF are summarized in Table 17, WTWRF Health Risk Assessment Results. A screening health risk assessment was prepared to analyze cancer, chronic non-cancer, and acute non-cancer health risks from the facility. The cancer risk is calculated by multiplying the annual average concentrations calculated using the SCREEN3 model and the inhalation cancer unit risk and cancer potency factors for the five identified TAC compounds (i.e., benzene, chloroform, ethyl benzene, methylene chlorine, 1,4-dichlorobenzene, and TCE) through OEHHA's Technical Support Document updated in 2011. The non-cancer chronic and acute risks are calculated by dividing the REL values to the 24-hour average concentrations for each TAC compound. The screening health risk calculations for the WTWRF are provided in Appendix B of this report. The location of maximum impact (MEI) was modeled at 728 feet from the property boundary of the WTWRF study area. At this location, the modeled cancer risk is 0.007 in 1 million, the chronic non-cancer inhalation hazard index is less than one, and the acute non-cancer inhalation hazard index is less than 1. These results are less than the SDAPCD standards discussed previously. Therefore, the increased health risks from the proposed facility would be less than significant.

Table 17					
WTWRF HEALT	H RISK ASSESSMENT	RESULTS			

Compound	Annual Average Emissions (lbs/year)	Annual Ambient Conc. (µg/m³)	Cancer Risk	Chronic Non-cancer Risk	24-hour (Acute) Non-cancer Risk
Ammonia	6.57E-03	1.41E-08	-	7.06E-11	1.76E-11
Benzene	1.27E-05	2.73E-11	8.25E-10	9.11E-12	4.05E-12
Chloroform	1.78E-04	3.82E-10	2.19E-09	1.27E-12	1.02E-11
Ethyl Benzene	4.93E-05	1.06E-10	2.79E-10	5.30E-14	-
Hydrogen Sulfide	4.28E-04	9.19E-10	-	9.19E-11	8.75E-11
1,1,1-TCA	5.81E-05	1.25E-10	-	1.25E-13	7.35E-15
Methylene Chlorine	1.71E-04	3.68E-10	3.89E-10	9.19E-13	1.05E-13
1,4-Dichlorobenzene	1.02E-04	2.19E-10	2.65E-09	2.74E-13	-
Phenol	2.15E-04	4.62E-10	-	2.31E-12	3.19E-13
Styrene	1.10E-04	2.36E-10	-	2.62E-13	4.49E-14
Toluene	1.07E-04	2.31E-10	-	7.70E-13	2.50E-14
TCE	5.70E-05	1.23E-10	2.59E-10	2.04E-13	-
Xylene	1.29E-04	2.76E-10	-	3.95E-13	5.02E-14
TOTAL	8.18E-03	-	6.59E-09	<1	<1

Sources: Emission factors from SJVAPCD's Fugitive Air Emission Factors and Concentration Values for Wastewater Treatment Plants (POTWS) November 1993.

OEHHA Revised Air Toxics Hot Spots Program Technical Support Document for Unit Risk and Cancer Potency Values

Updated 2011. http://www.oehha.ca.gov/air/hot_spots/2009/AppendixA.pdf

OEHHA Acute and Chronic Reference Exposure Levels (RELs) as of August 2013.

http://oehha.ca.gov/air/allrel/html.

Notes:

Assumed hydrogen sulfide would be controlled to 90% efficiency with scrubbers or biofilters that are part of the odor control system.

Cancer risk less than 10 in a million is considered less than significant.

Chronic and acute non-cancer risks less than 1 are considered less than significant.

4.4.3 Mitigation Measures and Design Considerations

Impacts are less than significant, therefore, no mitigation measures are required.

4.4.4 Conclusions

Impacts to sensitive receptors would be less than significant.

4.5 Odor Impacts

4.5.1 Guidelines for the Determination of Significance

Based on the County Guidelines (2007), a project would have a significant impact if it would generate objectionable odors or place sensitive receptors next to existing objectionable odors that would affect a considerable number of persons or the public.

SDAPCD Rule 51 (Public Nuisance) and California Health & Safety Code, Division 26, Part 4, Chapter 3, Section 541700, prohibit the emission of any material that causes nuisance to a

considerable number of persons or endangers the comfort, health, or safety of the public. Projects required to obtain permits from SDAPCD, typically industrial and some commercial projects, are evaluated by SDAPCD staff for potential odor nuisance and conditions may be applied (or control equipment required), where necessary, to prevent occurrence of public nuisance.

4.5.2 Significance of Impacts Prior to Mitigation

4.5.2.1 Construction

Project construction could result in minor amounts of odor compounds associated with diesel heavy equipment exhaust. Diesel exhaust and VOCs would be emitted during construction of the Project, which are objectionable to some; however, emissions would disperse rapidly from the Project site and therefore should not be at a level to affect a substantial number of people. Because the construction equipment would be operating at various locations throughout the construction site, and because any operation that would occur in the vicinity of existing receptors would be temporary, impacts associated with odors during construction are not considered significant.

4.5.2.2 Residential and Commercial Uses

The Project's commercial uses would be required to comply with the County's Zoning Ordinance, Section 6318, preventing the release of unpleasant odors which are perceptible by the average person. The residential development itself would not be a source of odor impacts. According to the SCAQMD *CEQA Air Quality Handbook*, land uses associated with odor complaints include agricultural uses, wastewater treatment plants, food-processing plants, chemical plants, composting activities, refineries, landfills, dairies, and fiberglass molding operations. Therefore, impacts associated with odor sources are considered less than significant.

4.5.2.3 WTWRF

Operation of the WTWRF has the potential to result in odor impacts because of the nature of the activities at the proposed facility. However, the frequency with which the facility would expose the public to objectionable odors would be minimal based on the control measures planned in the design. All WTWRF facilities would be covered to avoid uncontrolled odor release. Section 6318 of the San Diego County Zoning Ordinance states that "All commercial and industrial uses shall be so operated as not to emit matter causing unpleasant odors which are perceptible by the average person at or beyond any lot line of the lot containing said uses." Additionally, Section 6318 requires that odors be diluted by "a ratio of one volume of odorous air to eight or more volumes of clean air." Active odor control units would be located to manage gases from the wet and solids stream treatment processes. All processes and equipment would be housed (or otherwise contained) and ventilation controlled such that no objectionable odors would be discernible at the Project site boundaries.

Odors are typically associated with particular steps in the wastewater treatment process. Initially, raw wastewater is transferred to the primary clarifiers where most solids are separated from the liquid portion of wastewater in the treatment process. A ferrous chloride solution is added to the raw wastewater before it enters the primary clarifiers to reduce odors at that treatment stage.

Ferrous chloride molecules capture hydrogen sulfide molecules, forming insoluble compounds that precipitate out of the waste stream.

Wastewater undergoing aerobic digestion (decomposition with free oxygen) in the aeration basins emits a characteristically musty odor due to the particular type of biogases released in the process. A misting system with odor neutralizing liquids breaks down the foul smelling chemical compounds in the biogases. Chlorine gas is used to disinfect the non-potable water, which is used daily to wash down all areas of the plant. Bio filters remove odor by capturing the odor causing compounds in a media bed where they are oxidized by naturally occurring micro-organisms.

Facilities that cause nuisance odors are subject to enforcement action by the SDAPCD. The SDAPCD responds to odor complaints by investigating the complaint determining whether the odor violated SDAPCD Rule 51. The inspector will take enforcement action if the source is not in compliance with SDAPCD rules and regulations and will inform the complainant of investigation results. In the event of enforcement action, odor-causing impacts must be mitigated by appropriate means to reduce the impacts to sensitive receptors. Such means include shutdown of odor sources or requirements to control odors using add-on equipment.

The odor control design for the facility would be such that no objectionable odors would be detected by nearby residences or other sensitive receptors. Additionally, disposal of biosolids at landfill sites could also contribute to odors and increase air emissions at these end-use facilities. However, the County would only allow facilities that have addressed all site-specific impacts. Therefore, this impact would be less than significant.

4.5.3 Mitigation Measures and Design Considerations

Odor control measures for the WTWRF are discussed in Sections 1.3 and 4.5.2. As discussed in those sections, implementation of standard odor control measures would minimize the Project's contribution to objectionable odors. The Project would comply with SDAPCD Rule 51 and would not place sensitive receptors near existing odor sources that would affect a considerable number of persons or the public; therefore, no mitigation measures or additional design considerations are required.

4.5.4 Conclusion

Due to the nature of the development, there are no significant odorous air emissions anticipated from normal operations at the HGV South development. Impacts associated with operation of the WTWRF would be less than significant.

5.0 SUMMARY OF RECOMMENDED PROJECT DESIGN FEATURES, IMPACTS, AND MITIGATION

5.1 **Project Design Features**

As described in Section 1.3, the Project would incorporate measures to minimize fugitive dust control emissions, including watering twice per day during grading and stabilization of storage piles. The Project would comply with Rule 55, which requires that no visible dust is emitted beyond the property line for a period or periods aggregating more than 3 minutes in any 60-minute period, and would incorporate measures to minimize the track-out/carry-out of visible roadway dust.

A wide range of current regulatory codes, Project design features, and other measures would be incorporated into the Proposed Project. The Project would incorporate energy-efficiency features that would meet 2016 California Title 24 Energy Efficiency Standards. The Project would include features such as a variety of energy-efficient building materials, 100 percent of the Project energy needs provided through renewable sources, solar ready roofs for the remainder of structures, and energy star appliances. Low volatile organic compound (VOC) coatings will be used during construction and maintenance in accordance with SDAPCD Rule 67 requirements. Only natural gas fireplaces would be installed in the residential dwelling units.

5.2 **Project Impacts**

The control measures listed above constitute BMPs for dust control. With the implementation of the fugitive dust control measures as the Project design features, the phased construction impacts would be less than significant.

Operational emissions would be associated with vehicle trips generated by the HGV South development, along with area sources such as energy use and landscaping. Based on the evaluation of air emissions, the Project emissions would be below the screening-level thresholds for VOCs, CO, PM_{10} , and $PM_{2.5}$ and would be less than significant for air quality. Similarly, the Project would not result in any cumulatively considerable emissions of nonattainment air pollutants that would exceed the screening level thresholds.

Based on the analysis presented in Section 4.1, the Project would be inconsistent with the RAQS and SIP, which is considered a temporary significant impact. As a result, the cumulative considerable contribution to the regional air quality impact also is considered significant. These significant impacts will be addressed when the RAQS are updated, as indicated below.

Impacts associated with exposure of sensitive receptors to substantial pollutant concentrations would be less than significant.

An evaluation of odors from general Project construction and operation of the Project area indicated that odor impacts would be less than significant.

5.3 **Project Mitigation**

The Project would result in significant Project-level and cumulatively considerable impacts associated with non-conformance to the regional air quality plan because the Project would be inconsistent with the RAQS and SIP.M-AQ-1 in Section 4.1.3, above, requires provision of a revised housing forecast to SANDAG to ensure that any revisions to the population and employment projections used by the SDAPCD in updating the RAQS and SIP will accurately reflect anticipated growth due to the Proposed Project. As noted in the conclusion for that discussion, those significant impacts will be reduced to less than significant when the RAQs are updated.

The provision of housing information would assist SANDAG in revising the housing forecast. Until the anticipated growth is included in the emission estimates of the RAQS and the SIP, however, the direct and cumulative impacts would remain significant and unavoidable.

6.0 REFERENCES

- California Air Resources Board (CARB). 2016a. Top 4 Measurements and Days Above the Standard. Available at: http://www.arb.ca.gov/adam/welcome.html. Accessed June 2016.
 - 2016b Federal Standard Area Designations. Available at: http://www.arb.ca.gov/desig/feddesig.htm. Accessed June 2016.
 - 2013 Ambient Air Quality Standards. Available at: http://www.arb.ca.gov/research/aaqs/aaqs2.pdf. June.
 - 2012 Mobile Source Emissions Inventory Model (EMFAC2011). Available at: http://www.arb.ca.gov/msei/modeling.htm
 - 2011 OFFROAD2011 Emission Factors.
 - 2009 ARB Fact Sheet: Air Pollution and Health. December 2. http://www.arb.ca.gov/research/health/fs/fs1/fs1.htm
 - 2005 Air Quality and Land Use Handbook: A Community Health Perspective. April.
- California Department of Transportation (Caltrans). 1998. Caltrans ITS Transportation Project-Level Carbon Monoxide Protocol.
- Linscott, Law & Greenspan (LLG) Engineers. 2017. Traffic Impact Analysis Harmony Grove Parcel. February.
 - 2016 Harmony Grove Village South Traffic Study Average Trip Length memorandum. June.
- Office of Environmental Health Hazard Assessment (OEHHA). 2012. OEHHA Acute, 8-hour and Chronic Reference Exposure Level (REL). February. http://oehha.ca.gov/air/allrels.html.
 - 2011 Revised Air Toxics Program Technical Support Document for Unit Risks and Cancer Potency Factors. Appendices A, B and C Updated.
 - 2003 Air Toxics Hot Spots Program Risk Assessment Guidelines, CalEPA. August 2003.
- Sacramento Metropolitan Air Quality Management District (SMAQMD). 2013. Roadway Construction Emissions Model Version 7.1.5.1. Re-released December 2013.

- San Diego, County of. 2011. General Plan. Land Use and Environmental Group, Department of Planning and Land Use, Department of Public Works. August. http://www.sdcounty.ca.gov/pds/gpupdate/overview.html.
 - 2007 Guidelines for Determining Significance and Report Format and Content Requirements Air Quality. Land Use and Environmental Group, Department of Planning and Land Use, Department of Public Works. March 19.
 - 1979 San Diego County General Plan. Adopted January 3.
- San Diego County Air Pollution Control District (SDAPCD). 2016. 2016 Revisions to the Regional Air Quality Strategy for San Diego County. December.

 http://www.sdapcd.org/content/dam/sdc/apcd/PDF/Air%20Quality%20Planning/2016%20RAQS.pdf
 - 2010 Fact Sheet: Attainment Status. http://www.sdapcd.org/info/facts/attain.pdf. January.
- San Joaquin Valley Air Pollution Control District (SJVAPCD). 1993. Fugitive Emission Factors and Concentration Values for Wastewater Treatment Plants. 1993
- South Coast Air Quality Management District (SCAQMD). 2013. California Emission Estimator Model (CalEEMod) Version 2013.2.2. Re-released September 2013.
- United States Environmental Protection Agency (USEPA). 2016. Monitor Values Report. http://www.epa.gov/airdata/ad_rep_mon.html. Accessed June 2016.
 - 2014 Guidance for Facilities on Risk Management Programs (RMP). Available: http://www2.epa.gov/rmp/guidance-facilities-risk-management-programs-rmp. Last updated October 23.
 - 2013 Final Area Designations and Classification.
 - 2007 The Effects of Air Pollutants Health Effects. Available at: http://www.epa.gov/region7/air/quality/health.htm.
 - 1998 Compilation of Air Pollutant Emission Factors (AP-42), Section 4.3, Waste Water Collection, Treatment and Storage. February.
 - 1996 Compilation of Air Pollutant Emission Factors (AP-42), Section 3.1, Gasoline and Diesel Industrial Engines. October.
- Western Regional Climate Center, Western U.S. Climate Summaries, California, San Diego County (049378), 2014.

7.0 LIST OF PREPARERS AND PERSONS AND ORGANIZATIONS CONTACTED

Preparers:

Victor Ortiz, Air Quality Specialist Amy Mila de la Roca, Air Quality Analyst Joanne M. Dramko, AICP, County-approved Air Quality Specialist

HELIX Environmental Planning, Inc. 7578 El Cajon Boulevard La Mesa, CA 91942

Contacts:

County of San Diego Planning & Development Services 5510 Overland Avenue, Suite 310 San Diego, CA 92123

Appendix A

CONSTRUCTION AND OPERATION CRITERIA POLLUTANT MODELING

CalEEMod Version: CalEEMod.2013.2.2 Page 1 of 39 Date: 3/27/2017 9:20 AM

Harmony Grove Village South

San Diego County, Winter

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Parking Lot	46.00	Space	0.41	18,400.00	0
City Park	1.50	Acre	1.50	65,340.00	0
Condo/Townhouse	260.00	Dwelling Unit	16.25	260,000.00	744
Single Family Housing	193.00	Dwelling Unit	62.66	347,400.00	552
Strip Mall	5.00	1000sqft	0.11	5,000.00	0

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.6	Precipitation Freq (Days)	40
Climate Zone	13			Operational Year	2021

Utility Company San Diego Gas & Electric

 CO2 Intensity
 720.49
 CH4 Intensity
 0.029
 N20 Intensity
 0.006

 (lb/MWhr)
 (lb/MWhr)
 (lb/MWhr)
 (lb/MWhr)

1.3 User Entered Comments & Non-Default Data

Project Characteristics -

Land Use -

Construction Phase - Based on input from Kovach (dated 02-27-2017)

Off-road Equipment -

Off-road Equipment - typical equipment used for the backbone infrastructure phase

Off-road Equipment - Based on input from Moffatt & Nichol

Off-road Equipment -

Off-road Equipment -

Off-road Equipment -

Off-road Equipment - Crusher added to process Blasing debris

Trips and VMT -

Grading -

Architectural Coating - Low-VOC coatings per design feature

Vehicle Trips - Trip generation based on LLG2014; trip length based on LLG2016.

Construction Off-road Equipment Mitigation -

Area Mitigation - Natural Gas hearths and low-VOC coatings per design features

Energy Mitigation - CalEEMod default is 2008 T24. 2013 is 25% improved over 2008. 2016 is 28% improved over 2013. (1-.25)*(1-.28)=54% - 46% improvement

Water Mitigation -

Waste Mitigation -

Operational Off-Road Equipment - WTWRF generator sets

Vechicle Emission Factors -

Vechicle Emission Factors -

Vechicle Emission Factors -

Table Name	Column Name	Default Value	New Value
tblArchitecturalCoating	EF_Nonresidential_Exterior	250.00	100.00
tblArchitecturalCoating	EF_Nonresidential_Interior	250.00	100.00
tblArchitecturalCoating	EF_Residential_Exterior	250.00	100.00

Date: 3/27/2017 9:20 AM

tblArchitecturalCoating	EF_Residential_Interior	250.00	50.00
tblAreaMitigation	UseLowVOCPaintNonresidentialExteriorV alue	250	100
tblAreaMitigation	UseLowVOCPaintNonresidentialInteriorV alue	250	100
tblAreaMitigation	UseLowVOCPaintResidentialExteriorValu e	250	100
tblAreaMitigation	UseLowVOCPaintResidentialInteriorValu e	250	50
tblConstructionPhase	NumDays	110.00	109.00
tblConstructionPhase	NumDays	1,550.00	262.00
tblConstructionPhase	NumDays	1,550.00	589.00
tblConstructionPhase	NumDays	155.00	65.00
tblConstructionPhase	NumDays	110.00	109.00
tblConstructionPhase	NumDays	60.00	65.00
tblConstructionPhase	PhaseEndDate	3/2/2022	9/30/2021
tblConstructionPhase	PhaseEndDate	6/30/2020	3/31/2020
tblConstructionPhase	PhaseEndDate	7/4/2022	9/30/2021
tblConstructionPhase	PhaseEndDate	6/28/2019	6/30/2019
tblConstructionPhase	PhaseEndDate	3/2/2022	9/30/2021
tblConstructionPhase	PhaseEndDate	9/28/2018	9/30/2018
tblConstructionPhase	PhaseEndDate	3/29/2019	3/31/2019
tblConstructionPhase	PhaseStartDate	10/1/2021	5/1/2021
tblConstructionPhase	PhaseStartDate	7/1/2019	4/1/2019
tblConstructionPhase	PhaseStartDate	4/1/2020	7/1/2019
tblConstructionPhase	PhaseStartDate	10/1/2021	5/1/2021
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	2.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	3.00	1.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	2.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOperationalOffRoadEquipment	OperOffRoadEquipmentNumber	0.00	2.00

Date: 3/27/2017 9:20 AM

tblProjectCharacteristics	OperationalYear	2014	2021
tblVehicleTrips	CW_TL	9.50	7.88
tblVehicleTrips	CW_TL	9.50	7.88
tblVehicleTrips	CW_TL	9.50	7.88
tblVehicleTrips	HW_TL	10.80	7.88
tblVehicleTrips	HW_TL	10.80	7.88
tblVehicleTrips	ST_TR	1.59	0.00
tblVehicleTrips	ST_TR	7.16	9.93
tblVehicleTrips	ST_TR	10.08	9.93
tblVehicleTrips	ST_TR	42.04	0.00
tblVehicleTrips	SU_TR	1.59	0.00
tblVehicleTrips	SU_TR	6.07	9.93
tblVehicleTrips	SU_TR	8.77	9.93
tblVehicleTrips	SU_TR	20.43	0.00
tblVehicleTrips	WD_TR	1.59	0.00
tblVehicleTrips	WD_TR	6.59	9.93
tblVehicleTrips	WD_TR	9.57	9.93
tblVehicleTrips	WD_TR	44.32	0.00

2.0 Emissions Summary

CalEEMod Version: CalEEMod.2013.2.2 Page 5 of 39 Date: 3/27/2017 9:20 AM

2.1 Overall Construction (Maximum Daily Emission)

Unmitigated Construction

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e	
Year					lb/d	day					lb/day						
2018	5.0314	50.2233	41.3413	0.0481	18.2306	2.6987	20.9292	9.9743	2.5094	12.4836	0.0000	4,755.242 4	4,755.242 4	1.2948	0.0000	4,782.433 2	
2019	9.3770	89.0302	81.0180	0.1530	11.6626	4.2373	15.8999	4.3978	3.9536	8.3513	0.0000	13,610.03 66	13,610.03 66	2.7879	0.0000	13,668.58 31	
2020	7.5187	55.2022	72.3509	0.1529	5.6500	2.6958	8.3457	1.5154	2.5510	4.0663	0.0000	13,164.32 79	13,164.32 79	1.5567	0.0000	13,197.01 95	
2021	54.4411	35.7984	50.8559	0.1028	3.4329	1.7910	5.2239	0.9189	1.6747	2.5937	0.0000	8,885.274 9	8,885.274 9	1.4593	0.0000	8,915.920 4	
Total	76.3682	230.2541	245.5661	0.4568	38.9760	11.4227	50.3987	16.8063	10.6886	27.4949	0.0000	40,414.88 18	40,414.88 18	7.0988	0.0000	40,563.95 63	

CalEEMod Version: CalEEMod.2013.2.2 Page 6 of 39 Date: 3/27/2017 9:20 AM

2.1 Overall Construction (Maximum Daily Emission)

Mitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/	'day					lb/day					
2018	5.0314	50.2233	41.3413	0.0481	8.2941	2.6987	10.9928	4.5124	2.5094	7.0217	0.0000	4,755.242 4	4,755.242 4	1.2948	0.0000	4,782.433 2
2019	9.3770	89.0302	81.0180	0.1530	6.8923	4.2373	11.1296	2.4197	3.9536	6.3733	0.0000	13,610.03 66	13,610.03 66	2.7879	0.0000	13,668.58 31
2020	7.5187	55.2022	72.3509	0.1529	5.6500	2.6958	8.3457	1.5154	2.5510	4.0663	0.0000	13,164.32 79	13,164.32 79	1.5567	0.0000	13,197.01 95
2021	54.4411	35.7984	50.8559	0.1028	3.4329	1.7910	5.2239	0.9189	1.6747	2.5937	0.0000	8,885.274 9	8,885.274 9	1.4593	0.0000	8,915.920 4
Total	76.3682	230.2541	245.5661	0.4568	24.2693	11.4227	35.6919	9.3664	10.6886	20.0550	0.0000	40,414.88 18	40,414.88 18	7.0988	0.0000	40,563.95 62
	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	37.73	0.00	29.18	44.27	0.00	27.06	0.00	0.00	0.00	0.00	0.00	0.00

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Area	714.9581	9.8382	891.4925	0.3356		120.1929	120.1929		120.1894	120.1894	12,580.59 40	5,343.423 3	17,924.01 74	11.6750	0.9896	18,475.95 65
Energy	0.2640	2.2559	0.9613	0.0144		0.1824	0.1824		0.1824	0.1824		2,879.692 7	2,879.692 7	0.0552	0.0528	2,897.218 0
Mobile	13.0771	23.8596	123.6794	0.3321	23.4405	0.3773	23.8179	6.2570	0.3483	6.6053		25,072.55 92	25,072.55 92	0.9588		25,092.69 39
Offroad	0.7148	6.3323	7.3694	0.0132		0.3355	0.3355		0.3355	0.3355		1,246.069 1	1,246.069 1	0.0636		1,247.404 5
Total	729.0140	42.2860	1,023.502 5	0.6952	23.4405	121.0881	144.5286	6.2570	121.0555	127.3125	12,580.59 40	34,541.74 43	47,122.33 84	12.7526	1.0424	47,713.27 28

CalEEMod Version: CalEEMod.2013.2.2 Page 8 of 39 Date: 3/27/2017 9:20 AM

2.2 Overall Operational

Mitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category		lb/day											day			
Area	18.3058	0.4324	37.5028	1.9700e- 003		0.7533	0.7533		0.7475	0.7475	0.0000	8,700.952 8	8,700.952 8	0.2307	0.1583	8,754.865 8
Energy	0.1685	1.4400	0.6137	9.1900e- 003	 	0.1164	0.1164	 	0.1164	0.1164		1,838.065 7	1,838.065 7	0.0352	0.0337	1,849.251 8
Mobile	13.0771	23.8596	123.6794	0.3321	23.4405	0.3773	23.8179	6.2570	0.3483	6.6053		25,072.55 92	25,072.55 92	0.9588		25,092.69 39
Offroad	0.7148	6.3323	7.3694	0.0132		0.3355	0.3355		0.3355	0.3355		1,246.069 1	1,246.069 1	0.0636		1,247.404 5
Total	32.2662	32.0643	169.1653	0.3564	23.4405	1.5825	25.0230	6.2570	1.5477	7.8047	0.0000	36,857.64 67	36,857.64 67	1.2883	0.1920	36,944.21 60

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	95.67	39.15	84.19	50.63	0.00	98.97	82.92	0.00	99.00	94.13	100.00	-3.10	24.43	90.40	81.58	25.18

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Site Preparation	Site Preparation	7/1/2018	9/30/2018	5	65	
2	Backbone Infrastructure	Trenching	10/1/2018	3/31/2019	5	130	
3	Grading	Grading	4/1/2019	6/30/2019	5	65	
4	Bridge Construction	Building Construction	4/1/2019	3/31/2020	5	262	
5	Building Construction	Building Construction	7/1/2019	9/30/2021	5	589	
6	Paving	Paving	5/1/2021	9/30/2021	5	109	
7	Architectural Coating	Architectural Coating	5/1/2021	9/30/2021	5	109	

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 162.5

Acres of Paving: 0

Residential Indoor: 1,229,985; Residential Outdoor: 409,995; Non-Residential Indoor: 106,338; Non-Residential Outdoor: 35,446 (Architectural Coating – sqft)

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Site Preparation	Crushing/Proc. Equipment	1	8.00	85	0.78
Site Preparation	Rubber Tired Dozers	3	8.00	255	0.40
Site Preparation	Tractors/Loaders/Backhoes	4	8.00	97	0.37
Backbone Infrastructure	Forklifts	1	8.00	89	0.20
Backbone Infrastructure	Off-Highway Trucks	2	8.00	400	0.38
Backbone Infrastructure	Other Material Handling Equipment	1	8.00	167	0.40
Backbone Infrastructure	Tractors/Loaders/Backhoes	1	7.00	97	0.37
Backbone Infrastructure	Trenchers	1	8.00	80	0.50
Grading	Excavators	2	8.00	162	0.38
Grading	Graders	1	8.00	174	0.41

Date: 3/27/2017 9:20 AM

Grading	Rubber Tired Dozers	1	8.00	255	0.40
Grading	Scrapers	2	8.00	361	0.48
Grading	Tractors/Loaders/Backhoes	2	8.00	97	0.37
Bridge Construction	Cranes	2	7.00	226	0.29
Bridge Construction	Forklifts	1	8.00	89	0.20
Bridge Construction	Generator Sets	2	8.00	84	0.74
Bridge Construction	Pumps	1	8.00	84	0.74
Bridge Construction	Tractors/Loaders/Backhoes	3	7.00	97	0.37
Bridge Construction	Welders	0	8.00	46	0.45
Building Construction	Cranes	1	7.00	226	0.29
Building Construction	Forklifts	3	8.00	89	0.20
Building Construction	Generator Sets	1	8.00	84	0.74
Building Construction	Tractors/Loaders/Backhoes	3	7.00	97	0.37
Building Construction	Welders	1	8.00	46	0.45
Paving	Pavers	2	8.00	125	0.42
Paving	Paving Equipment	2	8.00	130	0.36
Paving	Rollers	2	8.00	80	0.38
Architectural Coating	Air Compressors	1	6.00	78	0.48

Trips and VMT

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Site Preparation	8	20.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Backbone Infrastructure	6	15.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Grading	8	20.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Bridge Construction	9	293.00	63.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Building Construction	9	293.00	63.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Paving	6	15.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Architectural Coating	1	59.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

Water Exposed Area

Reduce Vehicle Speed on Unpaved Roads

3.2 Site Preparation - 2018

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Fugitive Dust	! !				18.0663	0.0000	18.0663	9.9307	0.0000	9.9307		i i	0.0000			0.0000
Off-Road	4.9704	50.1470	40.6348	0.0461		2.6975	2.6975		2.5083	2.5083		4,604.303 3	4,604.303 3	1.2873		4,631.336 8
Total	4.9704	50.1470	40.6348	0.0461	18.0663	2.6975	20.7638	9.9307	2.5083	12.4389		4,604.303 3	4,604.303 3	1.2873		4,631.336 8

3.2 Site Preparation - 2018

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0610	0.0763	0.7065	1.9500e- 003	0.1643	1.1700e- 003	0.1655	0.0436	1.0800e- 003	0.0447		150.9392	150.9392	7.4900e- 003		151.0965
Total	0.0610	0.0763	0.7065	1.9500e- 003	0.1643	1.1700e- 003	0.1655	0.0436	1.0800e- 003	0.0447		150.9392	150.9392	7.4900e- 003		151.0965

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	day		
Fugitive Dust	: :				8.1298	0.0000	8.1298	4.4688	0.0000	4.4688			0.0000			0.0000
Off-Road	4.9704	50.1470	40.6348	0.0461		2.6975	2.6975		2.5083	2.5083	0.0000	4,604.303 3	4,604.303 3	1.2873	i i	4,631.336 8
Total	4.9704	50.1470	40.6348	0.0461	8.1298	2.6975	10.8273	4.4688	2.5083	6.9771	0.0000	4,604.303 3	4,604.303 3	1.2873		4,631.336 8

CalEEMod Version: CalEEMod.2013.2.2 Page 13 of 39 Date: 3/27/2017 9:20 AM

3.2 Site Preparation - 2018

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0610	0.0763	0.7065	1.9500e- 003	0.1643	1.1700e- 003	0.1655	0.0436	1.0800e- 003	0.0447		150.9392	150.9392	7.4900e- 003		151.0965
Total	0.0610	0.0763	0.7065	1.9500e- 003	0.1643	1.1700e- 003	0.1655	0.0436	1.0800e- 003	0.0447		150.9392	150.9392	7.4900e- 003		151.0965

3.3 Backbone Infrastructure - 2018

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Off-Road	2.7988	28.5418	18.1282	0.0398		1.4141	1.4141		1.3009	1.3009		3,999.755 4	3,999.755 4	1.2452		4,025.904 1
Total	2.7988	28.5418	18.1282	0.0398		1.4141	1.4141		1.3009	1.3009		3,999.755 4	3,999.755 4	1.2452		4,025.904 1

CalEEMod Version: CalEEMod.2013.2.2 Page 14 of 39 Date: 3/27/2017 9:20 AM

3.3 Backbone Infrastructure - 2018

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	 	0.0000
Worker	0.0458	0.0573	0.5299	1.4600e- 003	0.1232	8.8000e- 004	0.1241	0.0327	8.1000e- 004	0.0335		113.2044	113.2044	5.6200e- 003	 	113.3224
Total	0.0458	0.0573	0.5299	1.4600e- 003	0.1232	8.8000e- 004	0.1241	0.0327	8.1000e- 004	0.0335		113.2044	113.2044	5.6200e- 003		113.3224

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	day		
Off-Road	2.7988	28.5418	18.1282	0.0398		1.4141	1.4141	 	1.3009	1.3009	0.0000	3,999.755 4	3,999.755 4	1.2452		4,025.904 1
Total	2.7988	28.5418	18.1282	0.0398		1.4141	1.4141		1.3009	1.3009	0.0000	3,999.755 4	3,999.755 4	1.2452		4,025.904 1

CalEEMod Version: CalEEMod.2013.2.2 Page 15 of 39 Date: 3/27/2017 9:20 AM

3.3 Backbone Infrastructure - 2018

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0458	0.0573	0.5299	1.4600e- 003	0.1232	8.8000e- 004	0.1241	0.0327	8.1000e- 004	0.0335		113.2044	113.2044	5.6200e- 003		113.3224
Total	0.0458	0.0573	0.5299	1.4600e- 003	0.1232	8.8000e- 004	0.1241	0.0327	8.1000e- 004	0.0335		113.2044	113.2044	5.6200e- 003		113.3224

3.3 Backbone Infrastructure - 2019

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Off-Road	2.5513	25.0667	17.6222	0.0397		1.2348	1.2348		1.1360	1.1360		3,933.992 8	3,933.992 8	1.2447		3,960.130 9
Total	2.5513	25.0667	17.6222	0.0397		1.2348	1.2348		1.1360	1.1360		3,933.992 8	3,933.992 8	1.2447		3,960.130 9

CalEEMod Version: CalEEMod.2013.2.2 Page 16 of 39 Date: 3/27/2017 9:20 AM

3.3 Backbone Infrastructure - 2019

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0425	0.0529	0.4869	1.4600e- 003	0.1232	8.7000e- 004	0.1241	0.0327	8.1000e- 004	0.0335		109.1082	109.1082	5.2800e- 003		109.2192
Total	0.0425	0.0529	0.4869	1.4600e- 003	0.1232	8.7000e- 004	0.1241	0.0327	8.1000e- 004	0.0335		109.1082	109.1082	5.2800e- 003		109.2192

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	day		
Off-Road	2.5513	25.0667	17.6222	0.0397		1.2348	1.2348	 	1.1360	1.1360	0.0000	3,933.992 8	3,933.992 8	1.2447		3,960.130 9
Total	2.5513	25.0667	17.6222	0.0397		1.2348	1.2348		1.1360	1.1360	0.0000	3,933.992 8	3,933.992 8	1.2447		3,960.130 9

CalEEMod Version: CalEEMod.2013.2.2 Page 17 of 39 Date: 3/27/2017 9:20 AM

3.3 Backbone Infrastructure - 2019

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0425	0.0529	0.4869	1.4600e- 003	0.1232	8.7000e- 004	0.1241	0.0327	8.1000e- 004	0.0335		109.1082	109.1082	5.2800e- 003		109.2192
Total	0.0425	0.0529	0.4869	1.4600e- 003	0.1232	8.7000e- 004	0.1241	0.0327	8.1000e- 004	0.0335		109.1082	109.1082	5.2800e- 003		109.2192

3.4 Grading - 2019

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Fugitive Dust					8.6733	0.0000	8.6733	3.5965	0.0000	3.5965			0.0000			0.0000
Off-Road	4.8912	54.1978	40.2888	0.0617		2.5049	2.5049		2.3045	2.3045		6,111.312 1	6,111.312 1	1.9336	 	6,151.916 7
Total	4.8912	54.1978	40.2888	0.0617	8.6733	2.5049	11.1783	3.5965	2.3045	5.9010		6,111.312 1	6,111.312 1	1.9336		6,151.916 7

CalEEMod Version: CalEEMod.2013.2.2 Page 18 of 39 Date: 3/27/2017 9:20 AM

3.4 Grading - 2019

<u>Unmitigated Construction Off-Site</u>

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day						lb/d	day			
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0566	0.0705	0.6492	1.9500e- 003	0.1643	1.1600e- 003	0.1655	0.0436	1.0800e- 003	0.0447		145.4776	145.4776	7.0400e- 003		145.6256
Total	0.0566	0.0705	0.6492	1.9500e- 003	0.1643	1.1600e- 003	0.1655	0.0436	1.0800e- 003	0.0447		145.4776	145.4776	7.0400e- 003		145.6256

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Fugitive Dust					3.9030	0.0000	3.9030	1.6184	0.0000	1.6184			0.0000		i !	0.0000
Off-Road	4.8912	54.1978	40.2888	0.0617		2.5049	2.5049	1 1 1	2.3045	2.3045	0.0000	6,111.312 1	6,111.312 1	1.9336	i i	6,151.916 7
Total	4.8912	54.1978	40.2888	0.0617	3.9030	2.5049	6.4079	1.6184	2.3045	3.9230	0.0000	6,111.312 1	6,111.312 1	1.9336		6,151.916 7

CalEEMod Version: CalEEMod.2013.2.2 Page 19 of 39 Date: 3/27/2017 9:20 AM

3.4 Grading - 2019

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	 	0.0000
Worker	0.0566	0.0705	0.6492	1.9500e- 003	0.1643	1.1600e- 003	0.1655	0.0436	1.0800e- 003	0.0447		145.4776	145.4776	7.0400e- 003	 	145.6256
Total	0.0566	0.0705	0.6492	1.9500e- 003	0.1643	1.1600e- 003	0.1655	0.0436	1.0800e- 003	0.0447		145.4776	145.4776	7.0400e- 003		145.6256

3.5 Bridge Construction - 2019

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Off-Road	2.9924	29.2382	22.3921	0.0393		1.6458	1.6458		1.5693	1.5693		3,805.703 3	3,805.703 3	0.7333		3,821.102 9
Total	2.9924	29.2382	22.3921	0.0393		1.6458	1.6458		1.5693	1.5693		3,805.703 3	3,805.703 3	0.7333		3,821.102 9

3.5 Bridge Construction - 2019

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.6073	4.4902	8.1778	0.0148	0.4181	0.0683	0.4864	0.1193	0.0629	0.1821		1,416.296 6	1,416.296 6	0.0108		1,416.523 5
Worker	0.8296	1.0335	9.5101	0.0286	2.4069	0.0171	2.4240	0.6384	0.0158	0.6542		2,131.247 0	2,131.247 0	0.1032		2,133.414 4
Total	1.4369	5.5237	17.6879	0.0434	2.8250	0.0854	2.9104	0.7577	0.0787	0.8363		3,547.543 6	3,547.543 6	0.1140		3,549.937 9

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Off-Road	2.9924	29.2382	22.3921	0.0393		1.6458	1.6458		1.5693	1.5693	0.0000	3,805.703 2	3,805.703 2	0.7333		3,821.102 8
Total	2.9924	29.2382	22.3921	0.0393		1.6458	1.6458		1.5693	1.5693	0.0000	3,805.703 2	3,805.703 2	0.7333		3,821.102 8

CalEEMod Version: CalEEMod.2013.2.2 Page 21 of 39 Date: 3/27/2017 9:20 AM

3.5 Bridge Construction - 2019

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.6073	4.4902	8.1778	0.0148	0.4181	0.0683	0.4864	0.1193	0.0629	0.1821		1,416.296 6	1,416.296 6	0.0108	, ! ! !	1,416.523 5
Worker	0.8296	1.0335	9.5101	0.0286	2.4069	0.0171	2.4240	0.6384	0.0158	0.6542		2,131.247 0	2,131.247 0	0.1032	, 	2,133.414 4
Total	1.4369	5.5237	17.6879	0.0434	2.8250	0.0854	2.9104	0.7577	0.0787	0.8363		3,547.543 6	3,547.543 6	0.1140		3,549.937 9

3.5 Bridge Construction - 2020

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	lay		
Off-Road	2.6915	26.5407	21.9599	0.0393		1.4263	1.4263		1.3602	1.3602		3,763.367 5	3,763.367 5	0.7201		3,778.489 2
Total	2.6915	26.5407	21.9599	0.0393		1.4263	1.4263		1.3602	1.3602		3,763.367 5	3,763.367 5	0.7201	·	3,778.489 2

3.5 Bridge Construction - 2020

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.5735	3.8233	7.9083	0.0148	0.4181	0.0612	0.4793	0.1193	0.0563	0.1756		1,383.889 8	1,383.889 8	0.0105		1,384.109 7
Worker	0.7845	0.9655	8.8829	0.0286	2.4069	0.0171	2.4240	0.6384	0.0158	0.6543		2,045.350 5	2,045.350 5	0.0981		2,047.411 5
Total	1.3580	4.7888	16.7913	0.0434	2.8250	0.0783	2.9033	0.7577	0.0722	0.8298		3,429.240 3	3,429.240 3	0.1086		3,431.521 2

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Off-Road	2.6915	26.5407	21.9599	0.0393		1.4263	1.4263		1.3602	1.3602	0.0000	3,763.367 5	3,763.367 5	0.7201		3,778.489 2
Total	2.6915	26.5407	21.9599	0.0393		1.4263	1.4263		1.3602	1.3602	0.0000	3,763.367 5	3,763.367 5	0.7201		3,778.489

CalEEMod Version: CalEEMod.2013.2.2 Page 23 of 39 Date: 3/27/2017 9:20 AM

3.5 Bridge Construction - 2020

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.5735	3.8233	7.9083	0.0148	0.4181	0.0612	0.4793	0.1193	0.0563	0.1756		1,383.889 8	1,383.889 8	0.0105		1,384.109 7
Worker	0.7845	0.9655	8.8829	0.0286	2.4069	0.0171	2.4240	0.6384	0.0158	0.6543		2,045.350 5	2,045.350 5	0.0981		2,047.411 5
Total	1.3580	4.7888	16.7913	0.0434	2.8250	0.0783	2.9033	0.7577	0.0722	0.8298		3,429.240 3	3,429.240	0.1086		3,431.521 2

3.6 Building Construction - 2019

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	lay		
Off-Road	2.3516	20.9650	17.1204	0.0268		1.2850	1.2850		1.2083	1.2083		2,580.761 8	2,580.761 8	0.6279		2,593.947 9
Total	2.3516	20.9650	17.1204	0.0268		1.2850	1.2850		1.2083	1.2083		2,580.761 8	2,580.761 8	0.6279		2,593.947 9

3.6 Building Construction - 2019 <u>Unmitigated Construction Off-Site</u>

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.6073	4.4902	8.1778	0.0148	0.4181	0.0683	0.4864	0.1193	0.0629	0.1821		1,416.296 6	1,416.296 6	0.0108		1,416.523 5
Worker	0.8296	1.0335	9.5101	0.0286	2.4069	0.0171	2.4240	0.6384	0.0158	0.6542		2,131.247 0	2,131.247 0	0.1032		2,133.414 4
Total	1.4369	5.5237	17.6879	0.0434	2.8250	0.0854	2.9104	0.7577	0.0787	0.8363		3,547.543 6	3,547.543 6	0.1140		3,549.937 9

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Off-Road	2.3516	20.9650	17.1204	0.0268		1.2850	1.2850	 	1.2083	1.2083	0.0000	2,580.761 8	2,580.761 8	0.6279		2,593.947 9
Total	2.3516	20.9650	17.1204	0.0268		1.2850	1.2850		1.2083	1.2083	0.0000	2,580.761 8	2,580.761 8	0.6279		2,593.947 9

CalEEMod Version: CalEEMod.2013.2.2 Page 25 of 39 Date: 3/27/2017 9:20 AM

3.6 Building Construction - 2019

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.6073	4.4902	8.1778	0.0148	0.4181	0.0683	0.4864	0.1193	0.0629	0.1821		1,416.296 6	1,416.296 6	0.0108		1,416.523 5
Worker	0.8296	1.0335	9.5101	0.0286	2.4069	0.0171	2.4240	0.6384	0.0158	0.6542		2,131.247 0	2,131.247 0	0.1032		2,133.414 4
Total	1.4369	5.5237	17.6879	0.0434	2.8250	0.0854	2.9104	0.7577	0.0787	0.8363		3,547.543 6	3,547.543 6	0.1140		3,549.937 9

3.6 Building Construction - 2020

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Off-Road	2.1113	19.0839	16.8084	0.0268		1.1128	1.1128		1.0465	1.0465		2,542.479 9	2,542.479 9	0.6194		2,555.488 0
Total	2.1113	19.0839	16.8084	0.0268		1.1128	1.1128		1.0465	1.0465		2,542.479 9	2,542.479 9	0.6194		2,555.488 0

3.6 Building Construction - 2020 Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.5735	3.8233	7.9083	0.0148	0.4181	0.0612	0.4793	0.1193	0.0563	0.1756		1,383.889 8	1,383.889 8	0.0105		1,384.109 7
Worker	0.7845	0.9655	8.8829	0.0286	2.4069	0.0171	2.4240	0.6384	0.0158	0.6543		2,045.350 5	2,045.350 5	0.0981		2,047.411 5
Total	1.3580	4.7888	16.7913	0.0434	2.8250	0.0783	2.9033	0.7577	0.0722	0.8298		3,429.240 3	3,429.240 3	0.1086		3,431.521 2

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Off-Road	2.1113	19.0839	16.8084	0.0268		1.1128	1.1128		1.0465	1.0465	0.0000	2,542.479 9	2,542.479 9	0.6194		2,555.488 0
Total	2.1113	19.0839	16.8084	0.0268		1.1128	1.1128		1.0465	1.0465	0.0000	2,542.479 9	2,542.479 9	0.6194		2,555.488 0

CalEEMod Version: CalEEMod.2013.2.2 Page 27 of 39 Date: 3/27/2017 9:20 AM

3.6 Building Construction - 2020

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.5735	3.8233	7.9083	0.0148	0.4181	0.0612	0.4793	0.1193	0.0563	0.1756		1,383.889 8	1,383.889 8	0.0105	, 	1,384.109 7
Worker	0.7845	0.9655	8.8829	0.0286	2.4069	0.0171	2.4240	0.6384	0.0158	0.6543		2,045.350 5	2,045.350 5	0.0981		2,047.411 5
Total	1.3580	4.7888	16.7913	0.0434	2.8250	0.0783	2.9033	0.7577	0.0722	0.8298		3,429.240 3	3,429.240 3	0.1086		3,431.521 2

3.6 Building Construction - 2021

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	lay		
	1.8931	17.3403	16.5376	0.0268		0.9549	0.9549		0.8979	0.8979		2,542.781 7	2,542.781 7	0.6126		2,555.646 2
Total	1.8931	17.3403	16.5376	0.0268		0.9549	0.9549		0.8979	0.8979		2,542.781 7	2,542.781 7	0.6126		2,555.646 2

3.6 Building Construction - 2021 Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.5386	3.1355	7.6076	0.0148	0.4181	0.0551	0.4732	0.1193	0.0507	0.1699		1,381.670 5	1,381.670 5	0.0104	 	1,381.889 8
Worker	0.7467	0.9063	8.4151	0.0287	2.4069	0.0173	2.4243	0.6384	0.0161	0.6545		2,011.178 8	2,011.178 8	0.0944	 	2,013.162 1
Total	1.2853	4.0417	16.0227	0.0434	2.8250	0.0724	2.8974	0.7577	0.0668	0.8245		3,392.849 3	3,392.849	0.1049		3,395.051 9

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	lay		
Off-Road	1.8931	17.3403	16.5376	0.0268		0.9549	0.9549		0.8979	0.8979	0.0000	2,542.781 7	2,542.781 7	0.6126		2,555.646 2
Total	1.8931	17.3403	16.5376	0.0268		0.9549	0.9549		0.8979	0.8979	0.0000	2,542.781 7	2,542.781 7	0.6126		2,555.646 2

CalEEMod Version: CalEEMod.2013.2.2 Page 29 of 39 Date: 3/27/2017 9:20 AM

3.6 Building Construction - 2021

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.5386	3.1355	7.6076	0.0148	0.4181	0.0551	0.4732	0.1193	0.0507	0.1699		1,381.670 5	1,381.670 5	0.0104		1,381.889 8
Worker	0.7467	0.9063	8.4151	0.0287	2.4069	0.0173	2.4243	0.6384	0.0161	0.6545		2,011.178 8	2,011.178 8	0.0944		2,013.162 1
Total	1.2853	4.0417	16.0227	0.0434	2.8250	0.0724	2.8974	0.7577	0.0668	0.8245		3,392.849 3	3,392.849 3	0.1049		3,395.051 9

3.7 Paving - 2021

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	day		
Off-Road	1.2308	12.6607	14.3528	0.0223		0.6652	0.6652		0.6120	0.6120		2,160.253 0	2,160.253 0	0.6987		2,174.925 0
	9.8600e- 003	 				0.0000	0.0000		0.0000	0.0000		 	0.0000		 	0.0000
Total	1.2407	12.6607	14.3528	0.0223		0.6652	0.6652		0.6120	0.6120		2,160.253 0	2,160.253 0	0.6987		2,174.925 0

CalEEMod Version: CalEEMod.2013.2.2 Page 30 of 39 Date: 3/27/2017 9:20 AM

3.7 Paving - 2021

<u>Unmitigated Construction Off-Site</u>

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0382	0.0464	0.4308	1.4700e- 003	0.1232	8.9000e- 004	0.1241	0.0327	8.2000e- 004	0.0335		102.9614	102.9614	4.8300e- 003	 	103.0629
Total	0.0382	0.0464	0.4308	1.4700e- 003	0.1232	8.9000e- 004	0.1241	0.0327	8.2000e- 004	0.0335		102.9614	102.9614	4.8300e- 003		103.0629

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Off-Road	1.2308	12.6607	14.3528	0.0223		0.6652	0.6652		0.6120	0.6120	0.0000	2,160.253 0	2,160.253 0	0.6987		2,174.925 0
Paving	9.8600e- 003					0.0000	0.0000		0.0000	0.0000		i i	0.0000		 	0.0000
Total	1.2407	12.6607	14.3528	0.0223		0.6652	0.6652		0.6120	0.6120	0.0000	2,160.253 0	2,160.253 0	0.6987		2,174.925 0

CalEEMod Version: CalEEMod.2013.2.2 Page 31 of 39 Date: 3/27/2017 9:20 AM

3.7 Paving - 2021

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0382	0.0464	0.4308	1.4700e- 003	0.1232	8.9000e- 004	0.1241	0.0327	8.2000e- 004	0.0335		102.9614	102.9614	4.8300e- 003		103.0629
Total	0.0382	0.0464	0.4308	1.4700e- 003	0.1232	8.9000e- 004	0.1241	0.0327	8.2000e- 004	0.0335		102.9614	102.9614	4.8300e- 003		103.0629

3.8 Architectural Coating - 2021 Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	day		
Archit. Coating	49.6146					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Off-Road	0.2189	1.5268	1.8176	2.9700e- 003		0.0941	0.0941		0.0941	0.0941		281.4481	281.4481	0.0193		281.8537
Total	49.8335	1.5268	1.8176	2.9700e- 003		0.0941	0.0941		0.0941	0.0941		281.4481	281.4481	0.0193		281.8537

CalEEMod Version: CalEEMod.2013.2.2 Page 32 of 39 Date: 3/27/2017 9:20 AM

3.8 Architectural Coating - 2021 Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.1504	0.1825	1.6945	5.7700e- 003	0.4847	3.4900e- 003	0.4882	0.1286	3.2400e- 003	0.1318		404.9814	404.9814	0.0190		405.3808
Total	0.1504	0.1825	1.6945	5.7700e- 003	0.4847	3.4900e- 003	0.4882	0.1286	3.2400e- 003	0.1318		404.9814	404.9814	0.0190		405.3808

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	day		
Archit. Coating	49.6146					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Off-Road	0.2189	1.5268	1.8176	2.9700e- 003	 	0.0941	0.0941		0.0941	0.0941	0.0000	281.4481	281.4481	0.0193		281.8537
Total	49.8335	1.5268	1.8176	2.9700e- 003		0.0941	0.0941		0.0941	0.0941	0.0000	281.4481	281.4481	0.0193		281.8537

CalEEMod Version: CalEEMod.2013.2.2 Page 33 of 39 Date: 3/27/2017 9:20 AM

3.8 Architectural Coating - 2021 Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.1504	0.1825	1.6945	5.7700e- 003	0.4847	3.4900e- 003	0.4882	0.1286	3.2400e- 003	0.1318		404.9814	404.9814	0.0190		405.3808
Total	0.1504	0.1825	1.6945	5.7700e- 003	0.4847	3.4900e- 003	0.4882	0.1286	3.2400e- 003	0.1318		404.9814	404.9814	0.0190		405.3808

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Mitigated	13.0771	23.8596	123.6794	0.3321	23.4405	0.3773	23.8179	6.2570	0.3483	6.6053		25,072.55 92	25,072.55 92	0.9588		25,092.69 39
Unmitigated	13.0771	23.8596	123.6794	0.3321	23.4405	0.3773	23.8179	6.2570	0.3483	6.6053		25,072.55 92	25,072.55 92	0.9588		25,092.69 39

CalEEMod Version: CalEEMod.2013.2.2 Page 34 of 39 Date: 3/27/2017 9:20 AM

4.2 Trip Summary Information

	Ave	rage Daily Trip Ra	ate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
City Park	0.00	0.00	0.00		
Condo/Townhouse	2,581.80	2,581.80	2581.80	6,358,684	6,358,684
Parking Lot	0.00	0.00	0.00		
Single Family Housing	1,916.49	1,916.49	1916.49	4,720,100	4,720,100
Strip Mall	0.00	0.00	0.00		
Total	4,498.29	4,498.29	4,498.29	11,078,785	11,078,785

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
City Park	7.88	7.30	7.30	33.00	48.00	19.00	66	28	6
Condo/Townhouse	7.88	7.30	7.50	41.60	18.80	39.60	86	11	3
Parking Lot	7.88	7.30	7.30	0.00	0.00	0.00	0	0	0
Single Family Housing	7.88	7.30	7.50	41.60	18.80	39.60	86	11	3
Strip Mall	7.88	7.30	7.30	16.60	64.40	19.00	45	40	15

LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
0.512811	0.073496	0.191363	0.130940	0.036084	0.005147	0.012550	0.023118	0.001871	0.002053	0.006546	0.000576	0.003444

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

Exceed Title 24

Percent of Electricity Use Generated with Renewable Energy

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	lay		
	0.1685	1.4400	0.6137	9.1900e- 003		0.1164	0.1164		0.1164	0.1164		1,838.065 7	1,838.065 7	0.0352	0.0337	1,849.251 8
	0.2640	2.2559	0.9613	0.0144		0.1824	0.1824		0.1824	0.1824		2,879.692 7	2,879.692 7	0.0552	0.0528	2,897.218 0

5.2 Energy by Land Use - NaturalGas

Unmitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/d	day							lb/c	lay		
Condo/Townhous e	9823.76	0.1059	0.9053	0.3853	5.7800e- 003		0.0732	0.0732		0.0732	0.0732		1,155.736 7	1,155.736 7	0.0222	0.0212	1,162.770 3
Parking Lot	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Single Family Housing	14622.3	0.1577	1.3475	0.5734	8.6000e- 003		0.1090	0.1090		0.1090	0.1090		1,720.265 5	1,720.265 5	0.0330	0.0315	1,730.734 7
Strip Mall	31.3699	3.4000e- 004	3.0800e- 003	2.5800e- 003	2.0000e- 005		2.3000e- 004	2.3000e- 004		2.3000e- 004	2.3000e- 004		3.6906	3.6906	7.0000e- 005	7.0000e- 005	3.7130
City Park	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.2640	2.2560	0.9613	0.0144		0.1824	0.1824		0.1824	0.1824		2,879.692 7	2,879.692 7	0.0552	0.0528	2,897.218 0

CalEEMod Version: CalEEMod.2013.2.2 Page 36 of 39 Date: 3/27/2017 9:20 AM

5.2 Energy by Land Use - NaturalGas Mitigated

	NaturalGa s Use	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/o	day							lb/d	lay		
Parking Lot	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Single Family Housing	9.31139	0.1004	0.8581	0.3652	5.4800e- 003		0.0694	0.0694		0.0694	0.0694		1,095.457 7	1,095.457 7	0.0210	0.0201	1,102.124 5
Strip Mall	0.0238082	2.6000e- 004	2.3300e- 003	1.9600e- 003	1.0000e- 005		1.8000e- 004	1.8000e- 004		1.8000e- 004	1.8000e- 004		2.8010	2.8010	5.0000e- 005	5.0000e- 005	2.8180
City Park	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Condo/Townhous e	6.28836	0.0678	0.5795	0.2466	3.7000e- 003		0.0469	0.0469		0.0469	0.0469		739.8070	739.8070	0.0142	0.0136	744.3093
Total		0.1685	1.4400	0.6137	9.1900e- 003		0.1164	0.1164		0.1164	0.1164		1,838.065 7	1,838.065 7	0.0352	0.0337	1,849.251 8

6.0 Area Detail

6.1 Mitigation Measures Area

Use Low VOC Paint - Residential Interior

Use Low VOC Paint - Residential Exterior

Use Low VOC Paint - Non-Residential Interior

Use Low VOC Paint - Non-Residential Exterior

Use only Natural Gas Hearths

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Mitigated	18.3058	0.4324	37.5028	1.9700e- 003		0.7533	0.7533		0.7475	0.7475	0.0000	8,700.952 8	8,700.952 8	0.2307	0.1583	8,754.865 8
Unmitigated	714.9581	9.8382	891.4925	0.3356		120.1929	120.1929		120.1894	120.1894	12,580.59 40	5,343.423 3	17,924.01 74	11.6750	0.9896	18,475.95 65

6.2 Area by SubCategory

Unmitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/d	day							lb/d	lay		
Architectural Coating	5.6565					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	14.8974			 		0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Hearth	693.2689	9.4058	854.0329	0.3336		119.9864	119.9864		119.9829	119.9829	12,580.59 40	5,276.117 7	17,856.71 17	11.6098	0.9896	18,407.28 07
Landscaping	1.1353	0.4324	37.4597	1.9700e- 003		0.2065	0.2065		0.2065	0.2065		67.3057	67.3057	0.0652		68.6758
Total	714.9581	9.8382	891.4925	0.3356		120.1929	120.1929		120.1894	120.1894	12,580.59 40	5,343.423 3	17,924.01 74	11.6750	0.9896	18,475.95 65

CalEEMod Version: CalEEMod.2013.2.2 Page 38 of 39 Date: 3/27/2017 9:20 AM

6.2 Area by SubCategory

Mitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/d	day							lb/d	day		
Architectural Coating	1.4816					0.0000	0.0000	 	0.0000	0.0000			0.0000		 	0.0000
Consumer Products	14.8974		i			0.0000	0.0000	 	0.0000	0.0000			0.0000		 	0.0000
Hearth	0.7914	4.0000e- 005	0.0432	0.0000		0.5468	0.5468	 	0.5410	0.5410	0.0000	8,633.647 1	8,633.647 1	0.1655	0.1583	8,686.190 0
Landscaping	1.1353	0.4324	37.4597	1.9700e- 003		0.2065	0.2065	 	0.2065	0.2065		67.3057	67.3057	0.0652	 	68.6758
Total	18.3058	0.4324	37.5028	1.9700e- 003		0.7533	0.7533		0.7475	0.7475	0.0000	8,700.952 8	8,700.952 8	0.2307	0.1583	8,754.865 8

7.0 Water Detail

7.1 Mitigation Measures Water

Use Reclaimed Water

Install Low Flow Bathroom Faucet

Install Low Flow Kitchen Faucet

Install Low Flow Toilet

Install Low Flow Shower

Use Water Efficient Irrigation System

8.0 Waste Detail

8.1 Mitigation Measures Waste

CalEEMod Version: CalEEMod.2013.2.2 Page 39 of 39 Date: 3/27/2017 9:20 AM

Institute Recycling and Composting Services

9.0 Operational Offroad

Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type
Generator Sets	2	8.00	260	84	0.74	Diesel

UnMitigated/Mitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Equipment Type					lb/d	day							lb/d	day		
Generator Sets	0.7148	6.3323	7.3694	0.0132		0.3355	0.3355		0.3355	0.3355		1,246.069 1	1,246.069 1	0.0636		1,247.404 5
Total	0.7148	6.3323	7.3694	0.0132		0.3355	0.3355		0.3355	0.3355		1,246.069 1	1,246.069 1	0.0636		1,247.404 5

10.0 Vegetation

Daily Emis	sion Estimates for -> H	GVS			Total	Exhaust	Fugitive Dust	Total	Exhaust	Fugitive Dust					
Project Phases (Pounds)		ROG (lbs/day)	CO (lbs/day)	NOx (lbs/day)	PM10 (lbs/day)	PM10 (lbs/day)	PM10 (lbs/day)	PM2.5 (lbs/day)	PM2.5 (lbs/day)	PM2.5 (lbs/day)	SOx (lbs/day)	CO2 (lbs/day)	CH4 (lbs/day)	N2O (lbs/day)	CO2e (lbs/day)
Grubbing/Land Clearing		1.22	8.27	13.22	10.57	0.57	10.00	2.59	0.51	2.08	0.02	1,929.94	0.44	0.02	1,947.53
Grading/Excavation		6.50	48.98	71.74	13.40	3.40	10.00	5.17	3.09	2.08	0.09	8,846.84	2.47	0.09	8,934.21
Drainage/Utilities/Sub-Grade		5.64	42.89	56.71	12.93	2.93	10.00	4.80	2.72	2.08	0.07	7,241.41	1.61	0.07	7,302.26
Paving		2.22	19.03	20.79	1.32	1.32	0.00	1.19	1.19	0.00	0.03	3,128.22	0.75	0.03	3,157.24
Maximum (pounds/day)		6.50	48.98	71.74	13.40	3.40	10.00	5.17	3.09	2.08	0.09	8,846.84	2.47	0.09	8,934.21
Total (tons/construction project)		0.33	2.53	3.50	0.74	0.17	0.56	0.28	0.16	0.12	0.00	444.54	0.11	0.00	448.66
Notes:	Project Start Year ->	2018													

Project Length (months) -> Total Project Area (acres) -> 13 Maximum Area Disturbed/Day (acres) -> Yes

Water Truck Used? ->

		mported/Exported e (yd³/day)		Daily VMT	(miles/day)	
Phase	Soil	Asphalt	Soil Hauling	Asphalt Hauling	Worker Commute	Water Truck
Grubbing/Land Clearing	0	0	0	0	320	40
Grading/Excavation	0	0	0	0	800	40
Drainage/Utilities/Sub-Grade	0	0	0	0	720	40
Paving	0	0	0	0	560	40
O and DM2 E actimates assume E00/ central of fraiting dust from restor	sing and accordate	d duct control magain	as if a minimum nu	mbar of water trucks	are enceified	

PM10 and PM2.5 estimates assume 50% control of fugitive dust from watering and associated dust control measures if a minimum number of water trucks are specified.

Total PM10 emissions shown in column F are the sum of exhaust and fugitive dust emissions shown in columns G and H. Total PM2.5 emissions shown in Column I are the sum of exhaust and fugitive dust emissions shown in columns J and K.

CO2e emissions are estimated by multiplying mass emissions for each GHG by its global warming potential (GWP), 1, 25 and 298 for CO2, CH4 and N2O, respectively. Total CO2e is then estimated by summing CO2e estimates over all GHGs.

Total Emission Estimates by Phase for	-> HGVS			Total	Exhaust	Fugitive Dust	Total	Exhaust	Fugitive Dust					
Project Phases (Tons for all except CO2e. Metric tonnes for CO2e)	ROG (tons/phase)	CO (tons/phase)	NOx (tons/phase)	PM10 (tons/phase)	PM10 (tons/phase)	PM10 (tons/phase)	PM2.5 (tons/phase)	PM2.5 (tons/phase)	PM2.5 (tons/phase)	SOx (tons/phase)	CO2 (tons/phase)	CH4 (tons/phase)	N2O (tons/phase)	CO2e (MT/phase)
Grubbing/Land Clearing	0.01	0.05	0.09	0.07	0.00	0.07	0.02	0.00	0.01	0.00	12.74	0.00	0.00	11.66
Grading/Excavation	0.17	1.29	1.89	0.35	0.09	0.26	0.14	0.08	0.05	0.00	233.56	0.07	0.00	213.97
Drainage/Utilities/Sub-Grade	0.13	0.99	1.31	0.30	0.07	0.23	0.11	0.06	0.05	0.00	167.28	0.04	0.00	153.03
Paving	0.02	0.19	0.21	0.01	0.01	0.00	0.01	0.01	0.00	0.00	30.97	0.01	0.00	28.36
Maximum (tons/phase)	0.17	1.29	1.89	0.35	0.09	0.26	0.14	0.08	0.05	0.00	233.56	0.07	0.00	213.97
Total (tons/construction project)	0.33	2.53	3.50	0.74	0.17	0.56	0.28	0.16	0.12	0.00	444.54	0.11	0.00	407.02

PM10 and PM2.5 estimates assume 50% control of fugitive dust from watering and associated dust control measures if a minimum number of water trucks are specified.

Total PM10 emissions shown in column F are the sum of exhaust and fugitive dust emissions shown in columns G and H. Total PM2.5 emissions shown in Column I are the sum of exhaust and fugitive dust emissions shown in columns J and K.

CO2e emissions are estimated by multiplying mass emissions for each GHG by its global warming potential (GWP), 1, 25 and 298 for CO2, CH4 and N2O, respectively. Total CO2e is then estimated by summing CO2e estimates over all GHGs.

The CO2e emissions are reported as metric tons per phase.

Road Construction Emissions Model Data Entry Worksheet		Version 8.1.0				
Note: Required data input sections have a yellow background.				To begin a new project, click the	his button to	METROPOLITAN
Optional data input sections have a blue background. Only areas with a	a			clear data previously entered.		
yellow or blue background can be modified. Program defaults have a wi	nite background.			will only work if you opted not to macros when loading this spre		
The user is required to enter information in cells D10 through D24, E28	through G35, and D38 through	D41 for all project types.		macros when loading this spre	AID C	UALITY
Please use "Clear Data Input & User Overrides" button first before char	iging the Project Type or begin a	new project.				IENT DISTRICT
Input Type					III/TIT/GEII	THE STOTE OF
Project Name	HGVS	1				
Construction Start Year	2018	Enter a Year between 2014 and 2025 (inclusive)				
Project Type	1	New Road Construction: Project to Road Widening: Project to add a r Bridge/Overpass Construction: P Other Linear Project Type: Non-roa	new lane to an existing roadway roject to build an elevated roadway,	which generally requires some different	ent equipment than a new roadway,	•
Project Construction Time	6.00	months				
Working Days per Month	22.00	days (assume 22 if unknown)				
Predominant Soil/Site Type: Enter 1, 2, or 3 (for project within "Sacramento County", follow soil type selection instructions in cells E18 to E20 otherwise see instructions provided in	1	Sand Gravel : Use for quaternary c Weathered Rock-Earth : Use for L		area) or the lone formation (Scott Ro	oad, Rancho Murieta)	Please note that the soil type instructions provided in cells E18 to E20 are specific to Sacramento County. Maps available from the California Geologic Survey (see weblink below) can be used to determine soil type outside
cells J18 to J22)		3) Blasted Rock : Use for Salt Spring:	s Slate or Copper Hill Volcanics (Fol	som South of Highway 50, Rancho !	Murieta)	Sacramento County.
Project Length	1.80	miles				Sacramento county.
Total Project Area	13.00	acres				
Maximum Area Disturbed/Day	1.00	acre				http://www.conservation.ca.gov/cgs/information/geologic_
Water Trucks Used?	1	1. Yes 2. No				mapping/Pages/googlemaps.aspx#regionalseries
Material Hauling Quantity Input						
Material Type	Phase	Haul Truck Capacity (yd ³) (assume 20 if unknown)	Import Volume (yd3/day)	Export Volume (yd3/day)		
i	Grubbing/Land Clearing					
	Grading/Excavation					
Soil	Drainage/Utilities/Sub-Grade					
	Paving					
	Grubbing/Land Clearing					
	Grading/Excavation					
Asphalt	Drainage/Utilities/Sub-Grade					
	Paving					
Mitigation Options						
On-road Fleet Emissions Mitigation						ject will be limited to vehicles of model year 2010 or newer
Off-road Equipment Emissions Mitigation			Calculator can be used to confirm of	t PM reduction" option if the project compliance with this mitigation measi some or all off-road equipment used	ure (http://www.airquality.org/ceqa/	
	,					

The remaining sections of this sheet contain areas that can be modified by the user, although those modifications are optional.

Note: The program's estimates of construction period phase length can be overridden in cells D50 through D53, and F50 through F53.

		Program		Program
	User Override of	Calculated	User Override of	Default
Construction Periods	Construction Months	Months	Phase Starting Date	Phase Starting Date
Grubbing/Land Clearing		0.60		1/1/2018
Grading/Excavation		2.40		1/20/2018
Drainage/Utilities/Sub-Grade		2.10		4/3/2018
Paving		0.90		6/6/2018
Totals (Months)		6		

Note: Soil Hauling emission default values can be overridden in cells D61 through D64, and F61 through F64.

Soil Hauling Emissions	User Override of	Program Estimate of	User Override of Truck	Default Values	Calculated					
User Input	Miles/Round Trip	Miles/Round Trip	Round Trips/Day	Round Trips/Day	Daily VMT					
Miles/round trip: Grubbing/Land Clearing	mileoritedia mp	30.00	rtodila riiporbay	0	0.00					
Miles/round trip: Grading/Excavation		30.00		0	0.00					ļ
Miles/round trip: Drainage/Utilities/Sub-Grade		30.00		0	0.00					ļ
Miles/round trip: Paving		30.00		0	0.00					
Emission Rates	ROG	со	NOx	PM10	PM2.5	SOx	CO2	CH4	N2O	CO2e
Grubbing/Land Clearing (grams/mile)	0.07	0.36	1.51	0.10		0.02	1,590.26	0.00	0.05	1,605.93
Grading/Excavation (grams/mile)	0.07	0.36	1.51	0.10	0.04	0.02	1,590.26	0.00	0.05	1,605.93
Draining/Utilities/Sub-Grade (grams/mile)	0.07	0.36	1.51	0.10	0.04	0.02	1,590.26	0.00	0.05	1,605.93
Paving (grams/mile)	0.07	0.36	1.51	0.10		0.02	1,590.26	0.00	0.05	1,605.93
Hauling Emissions	ROG	CO	NOx	PM10		SOx	CO2	CH4	N2O	CO2e
Pounds per day - Grubbing/Land Clearing	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00
Tons per const. Period - Grubbing/Land Clearing	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Pounds per day - Grading/Excavation	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Tons per const. Period - Grading/Excavation	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Pounds per day - Drainage/Utilities/Sub-Grade	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Tons per const. Period - Drainage/Utilities/Sub-Grade	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Pounds per day - Paving	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Tons per const. Period - Paving	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total tons per construction project	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Note: Asphalt Hauling emission default values can be overridden in cells D87 through D90, and F87 through F90.

Asphalt Hauling Emissions	User Override of	Program Estimate of	User Override of Truck	Default Values	Calculated					
User Input	Miles/Round Trip	Miles/Round Trip	Round Trips/Day	Round Trips/Day	Daily VMT					
Miles/round trip: Grubbing/Land Clearing		30.00		0	0.00					
Miles/round trip: Grading/Excavation		30.00		0	0.00					
Miles/round trip: Drainage/Utilities/Sub-Grade		30.00		0	0.00					
Miles/round trip: Paving		30.00		0	0.00					
Emission Rates	ROG	co	NOx	PM10	PM2.5	SOx	CO2	CH4	N2O	CO2e
Grubbing/Land Clearing (grams/mile)	0.07	0.36	1.51	0.10		0.02	1,590.26	0.00	0.05	1,605.93
Grading/Excavation (grams/mile)	0.07	0.36	1.51	0.10	0.04	0.02	1,590.26	0.00	0.05	1,605.93
Draining/Utilities/Sub-Grade (grams/mile)	0.07	0.36	1.51	0.10	0.04	0.02	1,590.26	0.00	0.05	1,605.93
Paving (grams/mile)	0.07	0.36	1.51	0.10	0.04	0.02	1,590.26	0.00	0.05	1,605.93
Emissions	ROG	CO	NOx	PM10	PM2.5	SOx	CO2	CH4	N2O	CO2e
Pounds per day - Grubbing/Land Clearing	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Tons per const. Period - Grubbing/Land Clearing	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Pounds per day - Grading/Excavation	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Tons per const. Period - Grading/Excavation	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Pounds per day - Drainage/Utilities/Sub-Grade	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Tons per const. Period - Drainage/Utilities/Sub-Grade	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Pounds per day - Paving	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Tons per const. Period - Paving	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total tons per construction project	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Note: Worker commute default values can be overridden in cells D113 through D118.

Worker Commute Emissions	User Override of Worker									
User Input	Commute Default Values	Default Values								
Miles/ one-way trip		20	Calculated	Calculated						
One-way trips/day		2	Daily Trips	Daily VMT						
No. of employees: Grubbing/Land Clearing		8	16	320.00						
No. of employees: Grading/Excavation		20	40	800.00						
No. of employees: Drainage/Utilities/Sub-Grade		18	36	720.00						
No. of employees: Paving		14	28	560.00						
Emission Rates	ROG	со	NOx	PM10	PM2.5	SOx	CO2	CH4	N2O	CO2e
Grubbing/Land Clearing (grams/mile)	0.03	1.33	0.15	0.05	0.02	0.00	393.83	0.01	0.01	395.91
Grading/Excavation (grams/mile)	0.03	1.33	0.15	0.05	0.02	0.00	393.83	0.01	0.01	395.91
Draining/Utilities/Sub-Grade (grams/mile)	0.03	1.33	0.15	0.05	0.02	0.00	393.83	0.01	0.01	395.91
Paving (grams/mile)	0.03	1.33	0.15	0.05	0.02	0.00	393.83	0.01	0.01	395.91
Grubbing/Land Clearing (grams/trip)	1.17	3.21	0.26	0.00	0.00	0.00	87.83	0.02	0.01	91.49
Grading/Excavation (grams/trip)	1.17	3.21	0.26	0.00	0.00	0.00	87.83	0.02	0.01	91.49
Draining/Utilities/Sub-Grade (grams/trip)	1.17	3.21	0.26	0.00	0.00	0.00	87.83	0.02	0.01	91.49
Paving (grams/trip)	1.17	3.21	0.26	0.00	0.00	0.00	87.83	0.02	0.01	91.49
Emissions	ROG	CO	NOx	PM10	PM2.5	SOx	CO2	CH4	N2O	CO2e
Pounds per day - Grubbing/Land Clearing	0.06	1.05	0.11	0.03	0.01	0.00	280.94	0.01	0.00	282.53
Tons per const. Period - Grubbing/Land Clearing	0.00	0.01	0.00	0.00		0.00	1.85	0.00	0.00	1.86
Pounds per day - Grading/Excavation	0.15	2.62	0.28	0.08		0.01	702.34	0.02	0.01	706.33
Tons per const. Period - Grading/Excavation	0.00	0.07	0.01	0.00	0.00	0.00	18.54	0.00	0.00	18.65
Pounds per day - Drainage/Utilities/Sub-Grade	0.14	2.36	0.25	0.07	0.03	0.01	632.11	0.02	0.01	635.69
Tons per const. Period - Drainage/Utilities/Sub-Grade	0.00	0.05	0.01	0.00		0.00	14.60	0.00	0.00	14.68
Pounds per day - Paving	0.11	1.84	0.20	0.06		0.00	491.64	0.01	0.01	494.43
Tons per const. Period - Paving	0.00	0.02	0.00	0.00		0.00	4.87	0.00	0.00	4.89
Total tons per construction project	0.01	0.15	0.02	0.00	0.00	0.00	39.86	0.00	0.00	40.09

Note: Water Truck default values can be overridden in cells D145 through D148, and F145 through F148.

Water Truck Emissions	User Override of	Program Estimate of	User Override of Truck	Default Values	Calculated					
User Input	Default # Water Trucks	Number of Water Trucks	Miles Traveled/Vehicle/Day	Miles Traveled/Vehicle/Day	Daily VMT					
Grubbing/Land Clearing - Exhaust		1	,	40.00	40.00					
Grading/Excavation - Exhaust		1		40.00	40.00					
Drainage/Utilities/Subgrade		1		40.00	40.00					
Paving		1		40.00	40.00					
Emission Rates	ROG	со	NOx	PM10	PM2.5	SOx	CO2	CH4	N2O	CO2e
Grubbing/Land Clearing (grams/mile)	0.07	0.36	1.51	0.10	0.04	0.02	1,590.26	0.00	0.05	1,605.93
Grading/Excavation (grams/mile)	0.07	0.36	1.51	0.10	0.04	0.02	1,590.26	0.00	0.05	1,605.93
Draining/Utilities/Sub-Grade (grams/mile)	0.07	0.36	1.51	0.10	0.04	0.02	1,590.26	0.00	0.05	1,605.93
Paving (grams/mile)	0.07	0.36	1.51	0.10	0.04	0.02	1,590.26	0.00	0.05	1,605.93
Emissions	ROG	CO	NOx	PM10	PM2.5	SOx	CO2	CH4	N2O	CO2e
Pounds per day - Grubbing/Land Clearing	0.01	0.03	0.13	0.01	0.00	0.00	140.24	0.00	0.00	141.62
Tons per const. Period - Grubbing/Land Clearing	0.00	0.00	0.00	0.00	0.00	0.00	0.93	0.00	0.00	0.93
Pounds per day - Grading/Excavation	0.01	0.03	0.13	0.01	0.00	0.00	140.24	0.00	0.00	141.62
Tons per const. Period - Grading/Excavation	0.00	0.00	0.00	0.00	0.00	0.00	3.70	0.00	0.00	3.74
Pounds per day - Drainage/Utilities/Sub-Grade	0.01	0.03	0.13	0.01	0.00	0.00	140.24	0.00	0.00	141.62
Tons per const. Period - Drainage/Utilities/Sub-Grade	0.00	0.00	0.00	0.00	0.00	0.00	3.24	0.00	0.00	3.27
Pounds per day - Paving	0.01	0.03	0.13	0.01	0.00	0.00	140.24	0.00	0.00	141.62
Tons per const. Period - Paving	0.00	0.00	0.00	0.00	0.00	0.00	1.39	0.00	0.00	1.40
Total tons per construction project	0.00	0.00	0.01	0.00	0.00	0.00	9.26	0.00	0.00	9.35

Note: Fugitive dust default values can be overridden in cells D171 through D173.

Fugitive Dust	User Override of Max	Default	PM10	PM10	PM2.5	PM2.5
i ugitive bust	Acreage Disturbed/Day	Maximum Acreage/Day	pounds/day	tons/per period	pounds/day	tons/per period
Fugitive Dust - Grubbing/Land Clearing		1.00	10.00	0.07	2.08	0.01
Fugitive Dust - Grading/Excavation		1.00	10.00	0.26	2.08	0.05
Fugitive Dust - Drainage/Utilities/Subgrade		1.00	10.00	0.23	2.08	0.05

Off-Road Equipment Emissions														
	Default	Mitigation C	Option											
Grubbing/Land Clearing	Number of Vehicles	Override of	Default		ROG	co	NOx	PM10	PM2.5	SOx	CO2	CH4	N2O	CO2
or abbing Early Glothing	Transor or verious	Default Equipment Tier (applicable	Boldan		1100	00	110%		1 1112.0	00%	002	0111	1420	00.
		only when "Tier 4 Mitigation" Option												
Override of Default Number of Vehicles	Program-estimate	Selected)	Equipment Tier	Type	pounds/day	noundo/dou	pounds/day	pounds/d						
Override of Default Number of Verlicles	riogram-estimate	Gelected)	Model Default Tier	Aerial Lifts	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
			Model Default Tier	Air Compressors	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
			Model Default Tier		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
				Bore/Drill Rigs										
			Model Default Tier	Cement and Mortar Mixers	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.
			Model Default Tier	Concrete/Industrial Saws	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.
			Model Default Tier	Cranes	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.
	1		Model Default Tier	Crawler Tractors	0.63	2.61	8.34	0.32	0.29	0.01	775.49	0.24	0.01	783.
			Model Default Tier	Crushing/Proc. Equipment	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
	1		Model Default Tier	Excavators	0.30	3.38	3.19	0.15	0.14	0.01	536.03	0.17	0.00	541.5
			Model Default Tier	Forklifts	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
			Model Default Tier	Generator Sets	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
			Model Default Tier	Graders	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
			Model Default Tier	Off-Highway Tractors	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
			Model Default Tier	Off-Highway Trucks	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
			Model Default Tier	Other Construction Equipment	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
			Model Default Tier	Other General Industrial Equipment	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
			Model Default Tier	Other Material Handling Equipment	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
			Model Default Tier	Pavers	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
			Model Default Tier	Paving Equipment	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
			Model Default Tier	Plate Compactors	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
			Model Default Tier	Pressure Washers	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
			Model Default Tier	Pumps	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
			Model Default Tier	Rollers	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
			Model Default Tier		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
				Rough Terrain Forklifts										
			Model Default Tier	Rubber Tired Dozers	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
			Model Default Tier	Rubber Tired Loaders	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
			Model Default Tier	Scrapers	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
	4		Model Default Tier	Signal Boards	0.23	1.20	1.44	0.06	0.06	0.00	197.25	0.02	0.00	198.2
			Model Default Tier	Skid Steer Loaders	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
			Model Default Tier	Surfacing Equipment	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
			Model Default Tier	Sweepers/Scrubbers	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
			Model Default Tier	Tractors/Loaders/Backhoes	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
			Model Default Tier	Trenchers	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
			Model Default Tier	Welders	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
													_	
Jser-Defined Off-road Equipment	If non-default vehicles are us	ed, please provide information in 'Non-defai	ult Off-road Equipment' tab		ROG	co	NOx	PM10	PM2.5	SOx	CO2	CH4	N2O	CO2
Number of Vehicles		Equipment		Type	pounds/day	pounds/da								
0.00		N/A		0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
0.00		N/A		0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
0.00		N/A		0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
0.00	0.00 N/A				0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
0.00	N/A			-	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
0.00		N/A		⊣ ,	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.
0.00		N/A		⊣ ,	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
0.00	ı	I N/A			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
	Grubbing/Land Classin -			nounds per day	1.10	740	12.98	0.50	0.49	0.00	1,508.77	0.40	0.04	1,523.3
	Grubbing/Land Clearing			pounds per day	1.16	7.19	0.09	0.53		0.02		0.43	0.01 0.00	1,523.
	Grubbing/Land Clearing			tons per phase	0.01	0.05	0.09	0.00	0.00	0.00	9.96	0.00		10.0

Contract Official Number of Visions Deliver of Section Deliver of		Default	B. dialoguei	0-4											
Department Dep	Condition (Francisco)					DOC	00	NO.	DMAO	DMO 5	20	000	CUA	NOO	000-
Operator Default Number of Verbicos Program-estimate Default Number of Verbicos Default Numbe	Grading/Excavation	Number of vehicles		Default		RUG	CO	NOX	PM10	PM2.5	SOX	CO2	CH4	N2O	CO2e
Counted Orbinal Number of Visions Selection Sele															
	Ourside of Default Number of Mahiston	December antiquets		Facilities and Time	T										
Mode Centar Tem	Overnde of Default Number of Venicles	Program-estimate	Selected)												
Mode Defaul Tile															
O															
1 Mode Default Ter Creeker Tractors 6.83 2.81 8.34 0.32 0.28 0.01 77.54 0.24 0.01 73.54 0.34 0.01 73.54 0.34 0.01 73.54 0.34 0.01 73.54 0.34 0.01 0.05 0.		0													0.00
Model Default Text		1													
Mode Default Text		·													0.00
Model Default Ter		3													
Mode Default Ter Considers Sees 0.00		Ü													0.00
1															0.00
Mode Default Ter Off-Highway Tractss 0.00 0		1													
Model Definal Tier Other Construction Equipment 0.00		·													0.00
Motel Definal Tier Other Construction Equipment 0.00															0.00
Mode Defaul Ter Other General Robativis Equipment 0.00 0.															0.00
Model Default Tier Peres Oil Model Default Tier Peres Oil				Model Default Tier											0.00
Model Default Tier															0.00
Model Default Tier Parting Enginement Dougle Doug															0.00
Model Default Tier Prisser Warbers 0.00 0.0															0.00
Model Default Tier				Model Default Tier											0.00
Mode Default Tier Pumps 0.00															0.00
2 Model Default Tier Rollers Cough Terral Forkitts Co.00 C				Model Default Tier	Pumps	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Model Default Fire Rough Terrain Forkiffs 0.00 0.0		2		Model Default Tier	Rollers	0.52	3.92	5.05	0.35	0.32	0.01	534.41	0.17	0.00	539.95
1				Model Default Tier	Rough Terrain Forklifts	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2 Model Default Tier Scripers 2.26 17.33 28.00 1.10 1.01 1.03 3,008.05 0.94 0.03 3,039.25 4 Model Default Tier Skid Steer Loaders 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Model Default Tier Skid Steer Loaders 0.00 0.				Model Default Tier	Rubber Tired Dozers	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4 Model Default Tier Signal Boards 0.23 1.20 1.44 0.06 0.06 0.00 197.25 0.02 0.00 198.25 0.00		1		Model Default Tier	Rubber Tired Loaders	0.42	1.71	5.25	0.18	0.16	0.01	619.57	0.19	0.01	626.01
Model Default Tier Skid Sker Loaders 0.00 0		2		Model Default Tier	Scrapers	2.26	17.33	28.00	1.10	1.01	0.03	3,008.05	0.94	0.03	3,039.27
Model Default Tier Skid Steer Leaders 0.00		4		Model Default Tier	Signal Boards	0.23	1.20	1.44	0.06	0.06	0.00	197.25	0.02	0.00	198.26
Sweepers Scrubbers 0.00				Model Default Tier	Skid Steer Loaders	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2				Model Default Tier	Surfacing Equipment	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Seer-Defined Off-road Equipment If non-default Vehicles are used, please provide information in Non-default Off-road Equipment tab Type pounds/day poun		İ		Model Default Tier	Sweepers/Scrubbers	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
User-Defined Off-road Equipment If non-default vehicles are used, please provide information in Non-default Off-road Equipment Tier Type pounds/day pou		2		Model Default Tier	Tractors/Loaders/Backhoes	0.54	4.72	5.31	0.38	0.35	0.01	632.00	0.20	0.01	638.55
User-Defined Off-road Equipment If non-default vehicles are used, please provide information in 'Non-default Off-road Equipment' tab ROG CO NOx PM10 PM2.5 SOx CO2 CH4 N2O CO2 CM4 N2O CO2 CM4 N2O CM2 CM4 CM4 N2O CM2 CM4				Model Default Tier	Trenchers	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Number of Vehicles Equipment Tier Type pounds/day pounds/day				Model Default Tier	Welders	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Number of Vehicles Equipment Tier Type pounds/day pounds/day															
0.00	User-Defined Off-road Equipment	If non-default vehicles are use	d, please provide information in 'Non-defa	ult Off-road Equipment' tab		ROG	co	NOx	PM10	PM2.5	SOx	CO2	CH4	N2O	CO2e
0.00 N/A 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Number of Vehicles		Equipmen	t Tier	Type	pounds/day									
0.00			N/A		0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00 N/A 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00		N/A		0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00 N/A 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00					0		0.00		0.00		0.00	0.00			0.00
0.00 N/A 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00					0										0.00
0.00 N/A 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00					0		0.00				0.00	0.00			0.00
Grading/Excavation pounds per day 6.34 46.33 71.33 3.31 3.05 0.08 8,004.27 2.45 0.07 8,086.25					0										0.00
	0.00		N/A		0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Grading/Excavation tons per phase 0.17 1.22 1.88 0.09 0.08 0.00 211.31 0.06 0.00 213.4					pounds per day										8,086.26
		Grading/Excavation			tons per phase	0.17	1.22	1.88	0.09	0.08	0.00	211.31	0.06	0.00	213.48

	Default	Mitigation												
Drainage/Utilities/Subgrade	Number of Vehicles	Override of	Default		ROG	CO	NOx	PM10	PM2.5	SOx	CO2	CH4	N2O	CO2e
		Default Equipment Tier (applicable												
0 11 /0 / 11 / 12 / 12 / 1		only when "Tier 4 Mitigation" Option Selected)												
Override of Default Number of Vehicles	Program-estimate	Selected)	Equipment Tier Model Default Tier	Aerial Lifts	pounds/day 0.00	pounds/day 0.00	0.00	pounds/day 0.00	pounds/day 0.00	pounds/day 0.00	0.00	pounds/day 0.00	pounds/day 0.00	pounds/day 0.00
	1		Model Default Tier	Air Compressors	0.00	2.47	2.67	0.00	0.00	0.00	375.27	0.00	0.00	377.00
			Model Default Tier	Bore/Drill Rigs	0.40	0.00	0.00	0.20	0.20	0.00	0.00	0.04	0.00	0.00
			Model Default Tier	Cement and Mortar Mixers	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
			Model Default Tier	Concrete/Industrial Saws	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
			Model Default Tier	Cranes	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
			Model Default Tier	Crawler Tractors	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
			Model Default Tier	Crushing/Proc. Equipment	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
			Model Default Tier	Excavators	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
			Model Default Tier	Forklifts	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	1		Model Default Tier	Generator Sets	0.51	3.75	4.11	0.26	0.26	0.01	623.04	0.04	0.00	625.56
	1		Model Default Tier	Graders	0.84	4.69	8.36	0.47	0.43	0.01	629.41	0.20	0.01	635.92
			Model Default Tier	Off-Highway Tractors	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
			Model Default Tier	Off-Highway Trucks	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
			Model Default Tier	Other Construction Equipment	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
			Model Default Tier	Other General Industrial Equipment	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
			Model Default Tier	Other Material Handling Equipment	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
			Model Default Tier	Pavers	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
			Model Default Tier	Paving Equipment	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	1		Model Default Tier	Plate Compactors	0.04	0.21	0.25	0.01	0.01	0.00	34.48	0.00	0.00	34.65
			Model Default Tier	Pressure Washers	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	1		Model Default Tier	Pumps	0.53	3.81	4.17	0.28	0.28	0.01	623.04	0.05	0.00	625.61
			Model Default Tier	Rollers	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	1		Model Default Tier	Rough Terrain Forklifts	0.16	2.31	2.01	0.10	0.09	0.00	346.54	0.11	0.00	350.13
			Model Default Tier	Rubber Tired Dozers	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
			Model Default Tier	Rubber Tired Loaders	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2		Model Default Tier	Scrapers	2.26	17.33	28.00	1.10	1.01	0.03	3,008.05	0.94	0.03	3,039.27
	4		Model Default Tier	Signal Boards	0.23	1.20	1.44	0.06	0.06	0.00	197.25	0.02	0.00	198.26
			Model Default Tier	Skid Steer Loaders	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
			Model Default Tier	Surfacing Equipment	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
			Model Default Tier	Sweepers/Scrubbers	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2		Model Default Tier	Tractors/Loaders/Backhoes	0.54	4.72	5.31	0.38	0.35	0.01	632.00	0.20	0.01	638.55
			Model Default Tier	Trenchers	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
			Model Default Tier	Welders	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
User-Defined Off-road Equipment	If non-default vehicles are use	d, please provide information in 'Non-defa			ROG	co	NOx	PM10	PM2.5	SOx	CO2	CH4	N2O	CO2e
Number of Vehicles		Equipmer		Туре	pounds/day	pounds/day		pounds/day	pounds/day		pounds/day	pounds/day	pounds/day	pounds/day
0.00		N/A		0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00		N/A		- 0 -	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00		N/A		-l 0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00		N/A		-1 0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00		N/A		4 0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00		N/A		0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00		N/A		. 0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Desired Militaine (Code Code				F F0	40.50	EC 00	0.05	0.00	0.07	0.400.07	4.50	0.05	0.501.05
	Drainage/Utilities/Sub-Grade			pounds per day	5.50	40.50	56.33	2.85	2.69 0.06	0.07	6,469.07	1.59	0.05	6,524.95 150.73
	Drainage/Utilities/Sub-Grade			tons per phase	0.13	0.94	1.30	0.07	0.06	0.00	149.44	0.04	0.00	150.73

		Default	Mitigation (Option		-							-		
Paving		Number of Vehicles	Override of	Default		ROG	co	NOx	PM10	PM2.5	SOx	CO2	CH4	N2O	CO2e
			Default Equipment Tier (applicable												
			only when "Tier 4 Mitigation" Option												
Override of Default Number of Vehi	nicles	Program-estimate	Selected)	Equipment Tier	Type	pounds/day									
				Model Default Tier	Aerial Lifts	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
				Model Default Tier	Air Compressors	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
				Model Default Tier	Bore/Drill Rigs	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
				Model Default Tier	Cement and Mortar Mixers	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
				Model Default Tier	Concrete/Industrial Saws	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
				Model Default Tier	Cranes	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
				Model Default Tier	Crawler Tractors	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
				Model Default Tier	Crushing/Proc. Equipment	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
				Model Default Tier	Excavators	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
				Model Default Tier	Forklifts	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
				Model Default Tier	Generator Sets	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
				Model Default Tier	Graders	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
				Model Default Tier	Off-Highway Tractors	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
				Model Default Tier	Off-Highway Trucks	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
				Model Default Tier	Other Construction Equipment	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
				Model Default Tier	Other General Industrial Equipment	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
				Model Default Tier	Other Material Handling Equipment	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		1		Model Default Tier	Pavers	0.32	2.84	3.50	0.17	0.16	0.00	458.58	0.14	0.00	463.33
		1		Model Default Tier	Paving Equipment	0.24	2.52	2.64	0.13	0.12	0.00	406.90	0.13	0.00	411.13
				Model Default Tier	Plate Compactors	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
				Model Default Tier	Pressure Washers	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
				Model Default Tier	Pumps	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		3		Model Default Tier	Rollers	0.78	5.88	7.57	0.52	0.48	0.01	801.62	0.25	0.01	809.93
				Model Default Tier	Rough Terrain Forklifts	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
				Model Default Tier	Rubber Tired Dozers	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
				Model Default Tier	Rubber Tired Loaders	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
				Model Default Tier	Scrapers	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		4		Model Default Tier	Signal Boards	0.23	1.20	1.44	0.06	0.06	0.00	197.25	0.02	0.00	198.26
				Model Default Tier	Skid Steer Loaders	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
				Model Default Tier	Surfacing Equipment	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
				Model Default Tier	Sweepers/Scrubbers	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		2		Model Default Tier	Tractors/Loaders/Backhoes	0.54	4.72	5.31	0.38	0.35	0.01	632.00	0.20	0.01	638.55
				Model Default Tier	Trenchers	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
				Model Default Tier	Welders	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
						ROG	co	NOx	PM10	PM2.5	SOx	CO2	CH4	N2O	CO2e
User-Defined Off-road Equipment		if non-default vehicles are used	, please provide information in 'Non-defa		T										
	of Vehicles 0.00		Equipmen N/A	t Her	Type	pounds/day 0.00									
	0.00		N/A N/A		-	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00		N/A N/A		- 0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00		N/A N/A		- 0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00		N/A N/A		- 0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00		N/A		-	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00		N/A		- 0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.	J.00		I N/A		1 0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	l,	Paving			pounds per day	2.10	17.16	20.46	1.25	1.16	0.03	2,496.35	0.74	0.02	2,521.19
		Paving			tons per phase	0.02	0.17	0.20	0.01	0.01	0.03	2,496.35	0.74	0.02	2,521.19
	Ľ	I avilly			toria per pridate	0.02	0.17	0.20	0.01	0.01	0.00	24.71	0.01	0.00	24.90
Total Emissions all Phases (tons per construction	tion period) =>					0.32	2.38	3.47	0.17	0.16	0.00	395.42	0.11	0.00	399.22
Total Elinosiono an i nases (tons per construction	1011 pariouj =>					0.02	2.30	3.41	0.17	0.10	0.00	333.42	0.11	0.00	333.22

Road Construction Emissions Model, Version 8.1.0

Equipment default values for horsepower and hours/day can be overridden in cells D391 through D424 and F391 through F424.

	User Override of	Default Values	User Override of	Default Values
Equipment	Horsepower	Horsepower	Hours/day	Hours/day
Aerial Lifts		63		8
Air Compressors		78		8
Bore/Drill Rigs		206		8
Cement and Mortar Mixers		9		8
Concrete/Industrial Saws		81		8
Cranes		226		8
Crawler Tractors		208		8
Crushing/Proc. Equipment		85		8
Excavators		163		8
Forklifts		89		8
Generator Sets		84		8
Graders		175		8
Off-Highway Tractors		123		8
Off-Highway Trucks		400		8
Other Construction Equipment		172		8
Other General Industrial Equipment		88		8
Other Material Handling Equipment		167		8
Pavers		126		8
Paving Equipment		131		8
Plate Compactors		8		8
Pressure Washers		13		8
Pumps		84		8
Rollers		81		8
Rough Terrain Forklifts		100		8
Rubber Tired Dozers		255		8
Rubber Tired Loaders		200		8
Scrapers		362		8
Signal Boards		6		8
Skid Steer Loaders		65		8
Surfacing Equipment		254		8
Sweepers/Scrubbers		64		8
Tractors/Loaders/Backhoes		98		8
Trenchers		81		8
Welders		46		8

END OF DATA ENTRY SHEET

Drilling and Blasting

						Tons
					blasts/	ANFO/
ID	Source	holes/blast	blasts/day	blasts/month	year	Blast
B-1	Blasting Activity	100	1	12	36	1.25

Notes

400 sf area of drilling

1,200 lbs (0.6 tons) rock material

Dust - PM10

			PM10 EF	PM2.5 EF	Drilling	PM10 EF	PM2.5 EF	PM10 Emissions		F	PM2.5 Emission	S	Source Type	
			Drilling	Drilling	Control	Blasting	Blasting							
ID	Source	Area (ft2)	(lb/hole)	(lb/hole)	Efficiency	(lb/blast)	(lb/blast)	lb/hr	lb/day	TPY	lb/hr	lb/day	TPY	
B-1	Blasting	22,500	-	-	-	24.57	1.4175	24.57	24.57	0.44226	1.4175	1.4175	0.025515	Area
D-1	Drilling	22,500	0.65	0.12	75%	-	-	0.1625	16.25	0.2925	0.03	3	0.054	Area
							Total	24.73	40.82	0.73	1.45	4.42	0.08	

Notes:

- 1. Emissions Factor Source: AP-42 5th Edition, Section 11.9, Table 11.9-4, October 1998. Assumes PM10 = TSP/2 = 1.3 lbs/hole / 2 = 0.65 lb/hole.
- 2. Emissions factor for PM2.5 is calculated based on a similar mechanical process for aggreagte roock crushing. The emission factors for tertiary rock crushing will be used, based on AP-42 11.19.2, Table 11.19.2-2, Final Section, updated August 2004. The tertiary crushing emission factor for PM10 is 0.00054 lb/ton and the emissions factor for PM2.5 us 0.00010 lb/ton. The ratio of PM2.5 to PM10 is 0.00010/0.00054 = 0.185. Since the PM10 emission factor is estimated to be 0.65 lb/hole (see note 1), the emission factor for PM2.5 is estimated to be 0.65 lb/hole x 0.185 = 0.12 lb/hole.
- 3. Control Efficiency estimated to be between 63% and 88%, based on drill rotoclone or similar dust shroud device. Assumed midpoint of range reported.
- 4. AP-42 5th Edition, Section 11.9, Table 11.9-1. Also referenced Appendix E.2 of Background document to AP-42 5th Edition, Section 11.9.

PM10 EF = $0.000014(A)^{1.5}(0.52)$, where A = horizontal area in ft2 with a scaling factor for \leq 10um of 0.52

PM2.5 EF = $0.000014(A)^{1.5}(0.03)$, where A = horizontal area in ft2 with a scaling factor for \leq 2.5um of 0.03 Drill goes up to 20 feet deep for 12 holes. Up to 240 ft/day drilling.

Blasting Gases - ANFO Emission Factors

			NOX EF		CO2 EF	CH4 EF	
ID	Source	CO EF lb/ton	lb/ton	SOx EF lb/ton	lb/ton	lb/ton	N2O EF lb/ton
B-1	Blasting Activity	67	17	2	566	0.02	0.005

Blasting Gases - ANFO Emission Rates Criteria Pollutants

		CO	CO	СО	NOx	NOx	NOx	SOx	SOx	SOx	
ID	Emissions	(lb/hr)	(lb/day)	(TPY)	(lb/hr)	(lb/day)	(TPY)	(lb/hr)	(lb/day)	(TPY)	Source Type
B-1	Blasting Activity	83.75	83.75	1.51	21.25	21.25	0.38	2.50	2.50	0.05	Area

Notes:

1. Emission Factor Source: AP-42 5th Edition, Section 13.3, Table 13.3-1, February 1980, ND = no data.

JUNE 1989 VERSION

PAGE 1

JOB: VALLEY PKWY AND I15 NB RAMPS AMWP
RUN: Hour 1 (WORST CASE ANGLE)

POLLUTANT: Carbon Monoxide

I. SITE VARIABLES

U=	.5	M/S	Z0=	100.	CM		ALT=	0.	(M)
BRG=	WORST	CASE	VD=	.0	CM/S				
CLAS=	7	(G)	VS=	.0	CM/S				
MIXH=	1000.	M	AMB=	.0	PPM				
SIGTH=	5.	DEGREES	TEMP=	15.6	DEGREE	(C)			

II. LINK VARIABLES

	LINK	*	LINK	COORDI	NATES	(M)	*			EF	Н	W
	DESCRIPTION	*	Х1	Y1	Х2			TYPE	VPH	(G/MI)	(M)	(M)
A.	 NF	- ^ - *	2			-150		AG	321	1.5	.0	10.5
В.	NA	*	2	-150	2	0	*	AG	250	2.7	.0	9.9
C.	ND	*	2	0	2	150	*	AG	461	2.1	.0	9.9
D.	NE	*	2	150	2	450	*	AG	461	1.5	.0	10.5
Ε.	SF	*	-2	450	-2	150	*	AG	1125	1.5	.0	10.5
F.	SA	*	-2	150	-2	0	*	AG	772	3.1	.0	9.9
G.	SD	*	-2	0	-2	-150	*	AG	413	1.9	.0	9.9
Н.	SE	*	-2	-150	-2	-450	*	AG	413	1.5	.0	10.5
I.	WF	*	450	2	150	2	*	AG	1428	1.5	.0	10.5
J.	WA	*	150	2	0	2	*	AG	1228	3.0	.0	9.9
K.	WD	*	0	2	-150	2	*	AG	1681	2.1	.0	9.9
L.	WE	*	-150	2	-450	2	*	AG	1681	1.5	.0	10.5
Μ.	EF	*	-450	-2	-150	-2	*	AG	1097	1.5	.0	10.5
Ν.	EA	*	-150	-2	0	-2	*	AG	986	3.0	.0	9.9
Ο.	ED	*	0	-2	150	-2	*	AG	1416	2.1	.0	9.9
P.	EE	*	150	-2	450	-2	*	AG	1416	1.5	.0	10.5
Q.	NL	*	0	0	2	-150	*	AG	71	2.7	.0	9.9
R.	SL	*	0	0	-2	150	*	AG	353	2.9	.0	9.9
S.	WL	*	0	0	150	2	*	AG	200	2.1	.0	9.9
т.	EL	*	0	0	-150	-2	*	AG	111	2.1	.0	9.9

III. RECEPTOR LOCATIONS

		*	COORDI	NATES	(M)
	RECEPTOR	*	X	Y	Z
		_*			
1.	NE3	*	8	8	1.8
2.	SE3	*	8	-8	1.8
3.	SW3	*	-8	-8	1.8
4.	NW3	*	-8	8	1.8

	*		*	PRED	*				CONC/	LINK				
	*	BRG	*	CONC	*				(PF	M)				
RECEPTOR	*	(DEG)	*	(PPM)	*	A	В	С	D	E	F	G	Н	
	*-		_*_		*									
1. NE3	*	265.	*	1.4	*	.0	.0	.0	.0	.0	.1	.0	.0	
2. SE3	*	275.	*	1.2	*	.0	.0	.0	.0	.0	.0	.0	.0	
3. SW3	*	85.	*	1.2	*	.0	.0	.0	.0	.0	.0	.0	.0	
4. NW3	*	95.	*	1.5	*	.0	.0	.0	.0	.0	.2	.0	.0	
	*						C	ONC/I	JINK					
	*							(PPM	1)					
RECEPTOR	*	I	J	K		L	M	N	0	P	Q	R	S	
	*-													
1. NE3	*	.0		0 .6		.0	.0	.3	.0	.0	.0	.0	.0	
2. SE3	*	.0		0 .3		.0	.0	.6	.0	.0	.0	.0	.0	
3. SW3	*	.0		3 .0		.0	.0	.0	.5	.0	.0	.0	.0	
4. NW3	*	. 0		7 .0		. 0	. 0	. 0	. 3	. 0	. 0	. 0	. 0	

JUNE 1989 VERSION

PAGE 1

JOB: VALLEY PKWY AND I15 NB RAMPS PMWP RUN: Hour 1 (WORST CASE ANGLE)

POLLUTANT: Carbon Monoxide

I. SITE VARIABLES

U=	.5	M/S	Z0=	100.	CM		ALT=	0.	(M)
BRG=	WORST	CASE	VD=	.0	CM/S				
CLAS=	7	(G)	VS=	.0	CM/S				
MIXH=	1000.	M	AMB=	.0	PPM				
SIGTH=	5.	DEGREES	TEMP=	15.6	DEGREE	(C)			

II. LINK VARIABLES

	LINK	*	LINK	COORDI	NATES	(M)	*			EF	Н	W
	DESCRIPTION	*	X1	Y1	X2	Y2		TYPE	VPH	(G/MI)	(M)	(M)
A.	 NF	-*- *	2	-450		-150		AG	489	1.5	.0	10.5
	NA	*	2	-150	2	0	*	AG	400	3.1	.0	9.9
C.	ND	*	2	0	2	150	*	AG	582	3.0	.0	9.9
D.	NE	*	2	150	2	450	*	AG	582	1.5	.0	10.5
Ε.	SF	*	-2	450	-2	150	*	AG	837	1.5	.0	10.5
F.	SA	*	-2	150	-2	0	*	AG	576	3.1	.0	9.9
G.	SD	*	-2	0	-2	-150	*	AG	541	2.7	.0	9.9
Н.	SE	*	-2	-150	-2	-450	*	AG	541	1.5	.0	10.5
I.	WF	*	450	2	150	2	*	AG	1523	1.5	.0	10.5
J.	WA	*	150	2	0	2	*	AG	1253	2.8	.0	9.9
K.	WD	*	0	2	-150	2	*	AG	1358	1.8	.0	9.9
L.	WE	*	-150	2	-450	2	*	AG	1358	1.5	.0	10.5
Μ.	EF	*	-450	-2	-150	-2	*	AG	1828	1.5	.0	10.5
Ν.	EA	*	-150	-2	0	-2	*	AG	1726	2.8	.0	9.9
Ο.	ED	*	0	-2	150	-2	*	AG	2196	1.8	.0	9.9
P.	EE	*	150	-2	450	-2	*	AG	2196	1.5	.0	10.5
Q.	NL	*	0	0	2	-150	*	AG	89	2.8	.0	9.9
R.	SL	*	0	0	-2	150	*	AG	261	2.9	.0	9.9
S.	WL	*	0	0	150	2	*	AG	270	2.1	.0	9.9
т.	EL	*	0	0	-150	-2	*	AG	102	2.0	.0	9.9

III. RECEPTOR LOCATIONS

		*	COORDI	NATES	(M)
	RECEPTOR	*	X	Y	Z
		_*			
1.	NE3	*	8	8	1.8
2.	SE3	*	8	-8	1.8
3.	SW3	*	-8	-8	1.8
4.	NW3	*	-8	8	1.8

	*		*	PRED	*				CONC/	LINK				
	*	BRG	*	CONC	*				(PF	M)				
RECEPTOR	*	(DEG)	*	(PPM)	*	A	В	С	D	E	F	G	Н	
	*-		_*_		*-									
1. NE3	*	265.	*	1.4	*	.0	.0	.1	.0	.0	.0	.0	.0	
2. SE3	*	275.	*	1.5	*	.0	.0	.0	.0	.0	.0	.0	.0	
3. SW3	*	85.	*	1.5	*	.0	.0	.0	.0	.0	.0	.1	.0	
4. NW3	*	95.	*	1.5	*	.0	.0	.0	.0	.0	.1	.0	.0	
	*						С	ONC/I	LINK					
	*							(PPN	1)					
RECEPTOR	*	I	J	K		L	M	N	0	P	Q	R	S	
	*-													
1. NE3	*	.0		0 .5)	.0	.0	. 4	.0	.0	.0	.0	.0	
2. SE3	*	.0		0 .2)	.0	.0	.8	.1	.0	.0	.0	.0	
3. SW3	*	.0		3 .0)	.0	.0	.1	.7	.0	.0	.0	.0	
4. NW3	*	. 0		7 .0)	. 0	. 0	. 0	.3	. 0	. 0	. 0	. 0	

JUNE 1989 VERSION

PAGE 1

JOB: COUNTRY CLUB DR AND HARMONY GROVE AMWP

RUN: Hour 1 (WORST CASE ANGLE)

POLLUTANT: Carbon Monoxide

I. SITE VARIABLES

U=	.5	M/S	Z0=	100.	CM		ALT=	0.	(M)
BRG=	WORST	CASE	VD=	.0	CM/S				
CLAS=	7	(G)	VS=	.0	CM/S				
MIXH=	1000.	M	AMB=	.0	PPM				
SIGTH=	5.	DEGREES	TEMP=	15.6	DEGREE	(C)			

II. LINK VARIABLES

	LINK	*	LINK	COORDI	NATES	(M)	*			EF	Н	W
	DESCRIPTION	*	X1	Y1	X2	Y2	*	TYPE	VPH	(G/MI)	(M)	(M)
Α.	NF	-*- *	2	 -450		-150	- * · *	AG	302	1.5	.0	10.5
	NA	*	2	-150	2	0	*	AG	271	2.7	.0	9.9
C.	ND	*	2	0	2	150	*	AG	190	1.8	.0	9.9
D.	NE	*	2	150	2	450	*	AG	190	1.5	.0	10.5
Ε.	SF	*	-2	450	-2	150	*	AG	240	1.5	.0	10.5
F.	SA	*	-2	150	-2	0	*	AG	235	2.6	.0	9.9
G.	SD	*	-2	0	-2	-150	*	AG	138	1.8	.0	9.9
Н.	SE	*	-2	-150	-2	-450	*	AG	138	1.5	.0	10.5
I.	WF	*	450	2	150	2	*	AG	521	1.5	.0	10.5
J.	WA	*	150	2	0	2	*	AG	436	2.2	.0	9.9
Κ.	WD	*	0	2	-150	2	*	AG	663	1.7	.0	9.9
L.	WE	*	-150	2	-450	2	*	AG	663	1.5	.0	10.5
Μ.	EF	*	-450	-2	-150	-2	*	AG	394	1.5	.0	10.5
Ν.	EA	*	-150	-2	0	-2	*	AG	279	2.2	.0	9.9
Ο.	ED	*	0	-2	150	-2	*	AG	466	1.7	.0	9.9
P.	EE	*	150	-2	450	-2	*	AG	466	1.5	.0	10.5
Q.	NL	*	0	0	2	-150	*	AG	31	2.6	.0	9.9
R.	SL	*	0	0	-2	150	*	AG	5	2.6	.0	9.9
S.	WL	*	0	0	150	2	*	AG	85	2.1	.0	9.9
т.	EL	*	0	0	-150	-2	*	AG	115	2.1	.0	9.9

III. RECEPTOR LOCATIONS

		*	COORDI	NATES	(M)
	RECEPTOR	*	X	Y	Z
		_*			
1.	NE3	*	8	8	1.8
2.	SE3	*	8	-8	1.8
3.	SW3	*	-8	-8	1.8
4.	NW3	*	-8	8	1.8

RECEPTOR	* *	BRG (DEG)		PRED CONC (PPM)	* * *	А	В	С	CONC/ (PF D		F	G	Н	
1. NE3 2. SE3 3. SW3 4. NW3	* * *	266. 274. 86. 94.		• •	* * * *	.0	.0	.0	.0	.0	.0	.0	.0	
RECEPTOR	* * *	I	J	T K		L	С М	ONC/I (PPN N		P	Q	R	S	Т
1. NE3 2. SE3 3. SW3 4. NW3	* * *	.0		0 .2 0 .0 0 .0 2 .0))	.0	.0	.0	.0	.0	.0	.0	.0	.0

JUNE 1989 VERSION

PAGE 1

JOB: COUNTRY CLUB DR AND HARMONY GROVE PMWP RUN: Hour 1 (WORST CASE ANGLE)

POLLUTANT: Carbon Monoxide

I. SITE VARIABLES

U=	.5	M/S	Z0=	100.	CM		ALT=	0.	(M)
BRG=	WORST	CASE	VD=	.0	CM/S				
CLAS=	7	(G)	VS=	.0	CM/S				
MIXH=	1000.	M	AMB=	.0	PPM				
SIGTH=	5.	DEGREES	TEMP=	15.6	DEGREE	(C)			

II. LINK VARIABLES

	LINK	*	LINK	COORDI	NATES	(M)	*			EF	Н	W
	DESCRIPTION	*	X1	Y1	X2	Y2	*	TYPE	VPH	(G/MI)	(M)	(M)
7	NF	-*- *	2	-450	2	-150	- * - *	AG	170	1.5	.0	10.5
	NA	*	2	-150	2	0	*	AG	154	2.9	.0	9.9
	ND	*	2	0	2	150	*	AG	234	1.9	.0	9.9
	NE	*	2	150	2	450	*	AG	234	1.5	.0	10.5
Ε.	SF	*	-2	450	-2	150	*	AG	276	1.5	.0	10.5
F.	SA	*	-2	150	-2	0	*	AG	266	3.0	.0	9.9
G.	SD	*	-2	0	-2	-150	*	AG	370	2.5	.0	9.9
Н.	SE	*	-2	-150	-2	-450	*	AG	370	1.5	.0	10.5
I.	WF	*	450	2	150	2	*	AG	546	1.5	.0	10.5
J.	WA	*	150	2	0	2	*	AG	300	2.1	.0	9.9
Κ.	WD	*	0	2	-150	2	*	AG	483	1.7	.0	9.9
L.	WE	*	-150	2	-450	2	*	AG	483	1.5	.0	10.5
Μ.	EF	*	-450	-2	-150	-2	*	AG	789	1.5	.0	10.5
Ν.	EA	*	-150	-2	0	-2	*	AG	605	2.2	.0	9.9
Ο.	ED	*	0	-2	150	-2	*	AG	694	1.7	.0	9.9
P.	EE	*	150	-2	450	-2	*	AG	694	1.5	.0	10.5
Q.	NL	*	0	0	2	-150	*	AG	16	2.9	.0	9.9
R.	SL	*	0	0	-2	150	*	AG	10	2.9	.0	9.9
S.	WL	*	0	0	150	2		AG	246	2.0	.0	9.9
Т.	EL	*	0	0	-150	-2	*	AG	184	2.0	.0	9.9

III. RECEPTOR LOCATIONS

		*	COORDI	NATES	(M)
	RECEPTOR	*	X	Y	Z
		_*			
1.	NE3	*	8	8	1.8
2.	SE3	*	8	-8	1.8
3.	SW3	*	-8	-8	1.8
4.	NW3	*	-8	8	1.8

RECEPTOR	* * *	BRG (DEG)	* C	RED * ONC * PPM) *		В	С	CONC/ (PE D		F	G	Н	
1. NE3 2. SE3 3. SW3 4. NW3	* * *	265. 274. 86. 94.	* * * *	.5 * .6 * .6 *	.0	.0	.0	.0	.0	.0	.0	.0	
RECEPTOR	* * *	I	J	K	L	М	CONC/I (PPI N		P	Q	R	S	T
1. NE3 2. SE3 3. SW3 4. NW3	* * *	.0	.0 .0 .0	.2 .0 .0	.0	.0	.1 .3 .0	.0 .0 .2	.0	.0	.0	.0	.0

JUNE 1989 VERSION

PAGE 1

JOB: HARMONY GROVE RD AND KAUANA LOA AMWP
RUN: Hour 1 (WORST CASE ANGLE)

POLLUTANT: Carbon Monoxide

I. SITE VARIABLES

U=	.5	M/S	Z0=	100.	CM		ALT=	0.	(M)
BRG=	WORST	CASE	VD=	.0	CM/S				
CLAS=	7	(G)	VS=	.0	CM/S				
MIXH=	1000.	M	AMB=	.0	PPM				
SIGTH=	5.	DEGREES	TEMP=	15.6	DEGREE	(C)			

II. LINK VARIABLES

	LINK	*	LINK	COORDI	NATES	(M)	*			EF	Н	W
	DESCRIPTION	*	X1	Y1	X2	Y2		TYPE	VPH	(G/MI)	(M)	(M)
A.	NF	-*- *	2	 -450		-150		AG	405	1.5	.0	10.5
	NA	*	2	-150	2	0	*	AG	368	2.9	.0	9.9
C.	ND	*	2	0	2	150	*	AG	0	1.8	.0	9.9
D.	NE	*	2	150	2	450	*	AG	0	1.5	.0	10.5
Ε.	SF	*	-2	450	-2	150	*	AG	0	1.5	.0	10.5
F.	SA	*	-2	150	-2	0	*	AG	0	2.7	.0	9.9
G.	SD	*	-2	0	-2	-150	*	AG	552	2.6	.0	9.9
Н.	SE	*	-2	-150	-2	-450	*	AG	552	1.5	.0	10.5
I.	WF	*	450	2	150	2	*	AG	623	1.5	.0	10.5
J.	WA	*	150	2	0	2	*	AG	94	2.1	.0	9.9
K.	WD	*	0	2	-150	2	*	AG	131	1.6	.0	9.9
L.	WE	*	-150	2	-450	2	*	AG	131	1.5	.0	10.5
Μ.	EF	*	-450	-2	-150	-2	*	AG	158	1.5	.0	10.5
Ν.	EA	*	-150	-2	0	-2	*	AG	158	2.1	.0	9.9
Ο.	ED	*	0	-2	150	-2	*	AG	503	1.7	.0	9.9
P.	EE	*	150	-2	450	-2	*	AG	503	1.5	.0	10.5
Q.	NL	*	0	0	2	-150	*	AG	37	2.7	.0	9.9
R.	SL	*	0	0	-2	150	*	AG	0	2.7	.0	9.9
S.	WL	*	0	0	150	2	*	AG	529	2.2	.0	9.9
т.	EL	*	0	0	-150	-2	*	AG	0	2.1	.0	9.9

III. RECEPTOR LOCATIONS

		*	COORDI	NATES	(M)
	RECEPTOR	*	X	Y	Z
		_*			
1.	NE3	*	8	8	1.8
2.	SE3	*	8	-8	1.8
3.	SW3	*	-8	-8	1.8
4.	NW3	*	-8	8	1.8

RECEPTOR	* * *	BRG (DEG)	* CC	ED * NC * PM) *	А	В	С	CONC/ (PF D		F	G	Н		
1. NE3 2. SE3 3. SW3 4. NW3	* * * *	185. 185. 85. 176.	* * * *	.6 * .5 * .6 *	.0	.2 .3 .0	.0	.0	.0	.0	.1 .1 .1	.0		
RECEPTOR	* * *	I	CONC/LINK (PPM)											
1. NE3 2. SE3 3. SW3 4. NW3	* * *	.0	.0	.0	.0	.0	.0	.0 .0 .2	.0	.0	.0	.0	.0	

JUNE 1989 VERSION

PAGE 1

JOB: HARMONY GROVE RD AND KAUANA LOA PMWP RUN: Hour 1 (WORST CASE ANGLE)

POLLUTANT: Carbon Monoxide

I. SITE VARIABLES

U=	.5	M/S	Z0=	100.	CM		ALT=	0.	(M)
BRG=	WORST	CASE	VD=	.0	CM/S				
CLAS=	7	(G)	VS=	.0	CM/S				
MIXH=	1000.	M	AMB=	.0	PPM				
SIGTH=	5.	DEGREES	TEMP=	15.6	DEGREE	(C)			

II. LINK VARIABLES

	LINK	*	LINK	COORDI	NATES	(M)	*			EF	Н	W
	DESCRIPTION	*	X1	Y1		Y2				(G/MI)	(M)	(M)
A.	 NF	- ^ - *	2					AG	680	1.5	.0	10.5
в.	NA	*	2	-150	2	0	*	AG	647	2.8	.0	9.9
C.	ND	*	2	0	2	150	*	AG	0	1.7	.0	9.9
D.	NE	*	2	150	2	450	*	AG	0	1.5	.0	10.5
Ε.	SF	*	-2	450	-2	150	*	AG	0	1.5	.0	10.5
F.	SA	*	-2	150	-2	0	*	AG	0	2.4	.0	9.9
G.	SD	*	-2	0	-2	-150	*	AG	490	1.8	.0	9.9
Η.	SE	*	-2	-150	-2	-450	*	AG	490	1.5	.0	10.5
I.	WF	*	450	2	150	2	*	AG	592	1.5	.0	10.5
J.	WA	*	150	2	0	2	*	AG	152	2.4	.0	9.9
К.	WD	*	0	2	-150	2	*	AG	185	1.7	.0	9.9
L.	WE	*	-150	2	-450	2	*	AG	185	1.5	.0	10.5
Μ.	EF	*	-450	-2	-150	-2	*	AG	129	1.5	.0	10.5
Ν.	EA	*	-150	-2	0	-2	*	AG	129	2.4	.0	9.9
Ο.	ED	*	0	-2	150	-2	*	AG	726	1.9	.0	9.9
Р.	EE	*	150	-2	450	-2	*	AG	726	1.5	.0	10.5
Q.	NL	*	0	0	2	-150	*	AG	33	2.4	.0	9.9
R.	SL	*	0	0	-2	150	*	AG	0	2.4	.0	9.9
S.	WL	*	0	0	150	2	*	AG	440	2.5	.0	9.9
Τ.	EL	*	0	0	-150	-2	*	AG	0	2.4	.0	9.9

III. RECEPTOR LOCATIONS

		*	COORDI	NATES	(M)
	RECEPTOR	*	X	Y	Z
		_*			
1.	NE3	*	8	8	1.8
2.	SE3	*	8	-8	1.8
3.	SW3	*	-8	-8	1.8
4.	NW3	*	-8	8	1.8

	*		* F	PRED *				CONC/	LINK				
	*	BRG	* (CONC *				(PF	M)				
RECEPTOR	*	(DEG)	* ((PPM) *	A	В	С	Ď	Ē	F	G	Н	
	-		_	*									
1. NE3	*	184.	*	.7 *	.0	. 4	.0	.0	.0	.0	.0	.0	
2. SE3	*	85.	*	.6 *	.0	.0	.0	.0	.0	.0	.0	.0	
3. SW3	*	85.	*	.7 *	.0	.0	.0	.0	.0	.0	.0	.0	
4. NW3	*	175.	*	.5 *	.0	.2	.0	.0	.0	.0	.2	.0	
	*					C	CONC/I	INK					
	*						(PPM	1)					
RECEPTOR	*	I	J	K	L	M	N	0	P	Q	R	S	
	*-												-
1. NE3	*	.0	. 0	.0	.0	.0	.0	.0	.0	.0	.0	.0	
2. SE3	*	.0	. 0	.0	.0	.0	.0	.3	.0	.0	.0	.1	
3. SW3	*	.0	. 0	.0	.0	.0	.0	.3	.0	.0	.0	.2	
4. NW3	*	.0	. 0	.0	.0	.0	.0	.0	.0	.0	.0	.0	

Appendix B HEALTH RISK ASSESSMENT

Screening HRA Heath Risk Inputs and Calculations for Project-related Construction DPM

1 24 hrs/24 hrs

*assume all PM10 exhaust is DPM

*assumption is that emissions are constant over the acres disturbed

Emission Calcs

6.61 Highest Unmitgated On-Site Exhaust PM10 emissions in Lbs/day

453.6 grams/pound

3600 seconds/hour

24 hours/day

100% percent of day

365.25 days/yr

9.50103E-05 grams/second

Area Calcs

75.67 Max area disturbed (acres)

4046.825 meters2/acre

306223.2478 meters2

553.3744191 meters x meters

Screen 3 assumptions

1.5 m receptor height

3.0 m stack height

use discrete distances as well as array from 0 to 5,000 \mbox{m}

rural setting

SCREEN3 Emission Rate

3.10265E-10 grams/second*meter2

0.0000000031 value inserted in SCREEN3 model

0.3048 conversion factor from ft to m

	ft	m	SCREEN3 Distances	_
	10.00	3.05	receptor 1	* project boundary
	328.08	100.00	receptor 2	* 100 meter (328 ft) from project boundary
	984.25	300.00	receptor 3	* 300 meter (984 ft) from project boundary
2	1,312.34	400.00	receptor 4	* 400 meter (1,312 ft) from project boundary
2	1,640.42	500.00	receptor 5	* 500 meter (1,640 ft) from project boundary
2	1,968.50	600.00	receptor 6	* 600 meter (1,968ft) from project boundary
:	1,315.62	401.00	highest concentration	* highest receptor location

0.3048 conversion factor from ft to m

History Constraint (404 m)									
Highest Concentration (401 m)									
HRA Calcs									
0.02485 SCREEN3 1-hour concentration (micrograms/meter3)		Value obtained from SCREEN3 output file							
0.1 1-hour> annual conversion	From June 2007 E	From June 2007 BAAQMD PERMIT MODELING GUIDANCE, pg. 4							
2.49E-03 SCREEN3 annual concentration (micrograms/meter3)									
3.05E-08 Calculated dose (mg/kg-day)									
0.034 Cancer risk (per million)									
0.00050 Hazard Index									
5 Chronic inhallation REL (micrograms/meter3)									
365 days of construction									
100% (% of day)									
260 Exposure frequency (EF)	days/year	# of construction days							
4 Exposure duration (ED)	Years	# of days/365							
25550 Averaging time (AT)	days								
302 Daily breathing rate (DBR)	L/kg body weight								
1 Inhalation absorption factor (A)	None								
1.00E-03 Micrograms to milligrams conversion	1 microgram								
1.00E-03 liters to cubic meters conversion	liters								
1.1 Cancer potency factor	mg/kg-day								
1.00E+06 risk per million people	None								

Value obtained from SCREEN3 output file

Value obtained from SCREEN3 output file
7

004 (
984 feet (300m)	
HRA Calcs	Web and the form CODEFNIA and a 10 ft.
0.02328 SCREEN3 1-hour concentration (micrograms/meter3)	Value obtained from SCREEN3 output file
0.1 1-hour> 24-hr conversion	
2.33E-03 SCREEN3 24-hour concentration (micrograms/meter3)	
2.86E-08 Calculated dose (mg/kg-day)	
0.031 Cancer risk (per million)	
0.00047 Hazard Index	
1,312 feet (400m)	
HRA Calcs	
0.02484 SCREEN3 1-hour concentration (micrograms/meter3)	Value obtained from SCREEN3 output file
0.1 1-hour> 24-hr conversion	'
2.48E-03 SCREEN3 24-hour concentration (micrograms/meter3)	
3.05E-08 Calculated dose (mg/kg-day)	
0.034 Cancer risk (per million)	
0.00050 Hazard Index	
1,640 feet (500m)	
HRA Calcs	
0.02187 SCREEN3 1-hour concentration (micrograms/meter3)	Value obtained from SCREEN3 output file
0.1 1-hour> 24-hr conversion	
2.19E-03 SCREEN3 24-hour concentration (micrograms/meter3)	
2.69E-08 Calculated dose (mg/kg-day)	
0.030 Cancer risk (per million)	
0.00044 Hazard Index	
0.00044 Hazara macx	
1,968 feet (600m)	
HRA Calcs	
0.01888 SCREEN3 1-hour concentration (micrograms/meter3)	Value obtained from SCREEN3 output file
0.1 1-hour> 24-hr conversion	·
1.89E-03 SCREEN3 24-hour concentration (micrograms/meter3)	
2.32E-08 Calculated dose (mg/kg-day)	
0.026 Cancer risk (per million)	
0.00038 Hazard Index	
0.00030 Huzura macx	

02/05/15

08:00:54

*** SCREEN3 MODEL RUN ***

*** VERSION DATED 96043 ***

HGVS Construction HRA.scr

SIMPLE TERRAIN INPUTS:

SOURCE TYPE = AREA

EMISSION RATE (G/(S-M**2)) = 0.310265E-09

SOURCE HEIGHT (M) = 3.0000

LENGTH OF LARGER SIDE (M) = 533.0000

LENGTH OF SMALLER SIDE (M) = 533.0000

RECEPTOR HEIGHT (M) = 1.5000

URBAN/RURAL OPTION = RURAL

THE REGULATORY (DEFAULT) MIXING HEIGHT OPTION WAS SELECTED. THE REGULATORY (DEFAULT) ANEMOMETER HEIGHT OF 10.0 METERS WAS ENTERED.

MODEL ESTIMATES DIRECTION TO MAX CONCENTRATION

BUOY. FLUX = 0.000 M**4/S**3; MOM. FLUX = 0.000 M**4/S**2.

*** FULL METEOROLOGY ***

*** TERRAIN HEIGHT OF 0. M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES ***

DIST (M)	CONC (UG/M**3)	STAB	U10M (M/S)	USTK (M/S)	MIX HT (M)	PLUME HT (M)	MAX DIR (DEG)
100. 200. 300. 400. 500. 600. 700. 800. 900. 1000. 1200.	0.1800E-01 0.2081E-01 0.2328E-01 0.2484E-01 0.2187E-01 0.1888E-01 0.1660E-01 0.1486E-01 0.1352E-01 0.1246E-01 0.1160E-01 0.1087E-01	6666666666666	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	10000.0 10000.0 10000.0 10000.0 10000.0 10000.0 10000.0 10000.0 10000.0 10000.0	3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00	44. 45. 45. 45. 45. 45. 45. 45. 45.
1300.	0.10236-01	6	1.0	1.0	10000.0	3.00	45.

1400. 0.9710E-02 6 1.0 1.0 10000.0 3.00 45. 1500. 0.9230E-02 6 1.0 1.0 10000.0 3.00 45. MAXIMUM 1-HR CONCENTRATION AT OR BEYOND 100. M: 401. 0.2485E-01 6 1.0 1.0 10000.0 3.00 45. ********* *** SCREEN DISCRETE DISTANCES *** ********* *** TERRAIN HEIGHT OF 0. M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES *** DIST CONC U10M USTK MIX HT PLUME MAX DIR (M) (UG/M**3) STAB (M/S) (M/S) (M) HT (M) (DEG) 1.0 1.0 10000.0 3. 0.1507E-01 6 3.00 45. ********** *** SUMMARY OF SCREEN MODEL RESULTS *** ********** MAX CONC DIST TO TERRAIN CALCULATION (UG/M**3) MAX (M) HT (M)PROCEDURE _____ _____ SIMPLE TERRAIN 0.2485E-01 401. ** REMEMBER TO INCLUDE BACKGROUND CONCENTRATIONS **

 Peak Daily Influent Flow (gal/day)
 180,000

 Average Influent Flow (gal/day)
 72,000

 Conversion Factor from μg/L and MGD to lb/yr

 Annual x/Q from SCREEN3 modeling (1-hour x/Q x 0.1)
 27.11

 Max 24-hr x/Q (1-hr x/Q * 0.4)
 108.44

						Annual Average Ambient Concs. 2		24-Hr Average Ambient Concs.		Carcinogenic Risk		Non-Cancer		er Risk	
						SCREEN3		SCREEN3							24-hr
				Annual		Dispersion		Dispersion	24-hr						(Acute)
		Toxic Influent	Peak Daily	Average		factor	Annual	factor	Ambient	Cancer		Chronic		Acute	Non-
	Risk Assessment	Concentration	Emissions	Emissions	Emission Rate	(ug/m3) /	Ambient	(ug/m3) /	Conc.	Potency		Inhalation	Chronic Non-	Inhalation	Cancer
Compound	Averaging Period	(μg/L)	(lbs/day)	(lbs/year)	(g/s)	(g/s)	Conc. (µg/m3)	(g/s)	(µg/m3)	Factor	Cancer Risk	REL	Cancer Risk	REL	Risk
Ammonia	Annual, 24-hr	299.5	4.498E-05	0.00656773	5.20653E-10	2.71E+01	1.41E-08	1.08E+02	5.65E-08			200	7.06E-11	3200	1.76E-11
Benzene	Annual, 24-hr	0.58	8.712E-08	1.2719E-05	1.00828E-12	2.71E+01	2.73E-11	1.08E+02	1.09E-10	1.00E-01	8.25E-10	3	9.11E-12	27	4.05E-12
Chloroform	Annual, 24-hr	8.1	1.217E-06	0.00017762	1.40811E-11	2.71E+01	3.82E-10	1.08E+02	1.53E-09	1.90E-02	2.19E-09	300	1.27E-12	150	1.02E-11
Ethyl Benzene	Annual	2.25	3.379E-07	4.934E-05	3.91142E-12	2.71E+01	1.06E-10	1.08E+02	4.24E-10	8.70E-03	2.79E-10	2000	5.30E-14		
Hydrogen Sulfide	Annual, 24-hr	19.5	2.929E-06	0.00042761	3.38989E-11	2.71E+01	9.19E-10	1.08E+02	3.68E-09			10	9.19E-11	42	8.75E-11
1,1,1-TCA	Annual	2.65	3.980E-07	5.8112E-05	4.60678E-12	2.71E+01	1.25E-10	1.08E+02	5.00E-10			1000	1.25E-13	68000	7.35E-15
Methylene Chlorine	Annual, 24-hr	7.8	1.172E-06	0.00017105	1.35596E-11	2.71E+01	3.68E-10	1.08E+02	1.47E-09	3.50E-03	3.89E-10	400	9.19E-13	14000	1.05E-13
1,4-Dichlorobenzene	Annual	4.65	6.984E-07	0.00010197	8.0836E-12	2.71E+01	2.19E-10	1.08E+02	8.77E-10	4.00E-02	2.65E-09	800	2.74E-13		
Phenol	Annual, 24-hr	9.8	1.472E-06	0.0002149	1.70364E-11	2.71E+01	4.62E-10	1.08E+02	1.85E-09			200	2.31E-12	5800	3.19E-13
Styrene	Annual, 24-hr	5	7.510E-07	0.00010964	8.69204E-12	2.71E+01	2.36E-10	1.08E+02	9.43E-10			900	2.62E-13	21000	4.49E-14
Toluene	Annual, 24-hr	4.9	7.360E-07	0.00010745	8.5182E-12	2.71E+01	2.31E-10	1.08E+02	9.24E-10			300	7.70E-13	37000	2.50E-14
TCE	Annual	2.6	3.905E-07	5.7015E-05	4.51986E-12	2.71E+01	1.23E-10	1.08E+02	4.90E-10	7.00E-03	2.59E-10	600	2.04E-13		
Xylene	Annual, 24-hr	5.86	8.802E-07	0.0001285	1.01871E-11	2.71E+01	2.76E-10	1.08E+02	1.10E-09			700	3.95E-13	22000	5.02E-14
	•		5.605E-05	0.00818367		•	•				6.5894E-09		1.7817E-10		1.2E-10

Daily Emissions (Ib/day) = peak daily influent flow (gal/day) x liquid conversion factor (3.785 L/gal) x toxic influent concentration (µg/L) x unit conversion factor (10-6 g/µg) x Ib/453.6 g

Sources: Emission factors from SJVAPCD's Fugitive Air Emission Factors and and (ug/L) Concentration Values for Wastewater Treatment Plants (POTWS) November 1993.

OEHHA Revised Air Toxics Hot Spots Program Technical Support Document for Unit Risk and Cancer Potency Values Updated 2011. http://www.oehha.ca.gov/air/hot_spots/2009/AppendixA.pdf

OEHHA Acute and Chronic Reference Exposure Levels (RELs) as of August 2013. http://oehha.ca.gov/air/allrel/html

Notes: Emission factors from SJVAPCD's Fugitive Air Emission Factors and and (ug/L) Concentration Values for Wastewater Treatment Plants (POTWS) November 1993.

Assumed hydrogen sulfide would be controlled to 90% efficiency with scrubbers or biofilters that are part of the odor control system.

Cancer risk less than 10 in a million is considered less than significant.

Chronic and acute non-cancer risks less than 1 are considered less than significant.

	Calculated dose
Compounds	(mg/kg-day)
Ammonia	
Benzene	8.25498E-15
Chloroform	1.15285E-13
Ethyl Benzene	3.20236E-14
Hydrogen Sulfide	
1,1,1-TCA	
Methylene Chlorine	1.11015E-13
1,4-Dichlorobenzene	6.61822E-14
Phenol	
Styrene	
Toluene	
TCE	3.70051E-14
Xylene	

Values	Variables
365	Exposure Frequency (EF)
70	Exposure Duration (ED)
25550	Averaging Time (AT)
302	Daily Breathing Rate (DBR)
1	Inhalation Absorption Factor (A)
1.00E-03	Micrograms to milligrams conversion
1.00E-03	liters to cubic meters conversion
3.02E-04	Calculated exposure duration period
1.00E+06	risk per million people

```
*** SCREEN3 MODEL RUN ***
 *** VERSION DATED 96043 ***
F:\Work\KOV 01 - Harmony Grove Village\Analysis\WTWRF\HGVS WTWRF.scr
SIMPLE TERRAIN INPUTS:
   SOURCE TYPE
                                     POINT
                          =
   EMISSION RATE (G/S)
                                    1.00000
                                  12.8000
   STACK HEIGHT (M)
                                   0.9100
   STK INSIDE DIAM (M)
                           =
   STK EXIT VELOCITY (M/S)=
                                     3.6600
   STK GAS EXIT TEMP (K) =
                                   294.3000
                                  293.0000
   AMBIENT AIR TEMP (K) =
                                   1.7000
   RECEPTOR HEIGHT (M)
                            =
   URBAN/RURAL OPTION
                           =
                                      RURAL
   BUILDING HEIGHT (M)
                                     0.0000
   MIN HORIZ BLDG DIM (M) =
                                    0.0000
                                   0.0000
   MAX HORIZ BLDG DIM (M) =
THE REGULATORY (DEFAULT) MIXING HEIGHT OPTION WAS SELECTED.
THE REGULATORY (DEFAULT) ANEMOMETER HEIGHT OF 10.0 METERS WAS ENTERED.
BUOY. FLUX =
              0.033 \text{ M}**4/S**3; \text{ MOM. FLUX} = 2.761 \text{ M}**4/S**2.
*** FULL METEOROLOGY ***
***********
*** SCREEN AUTOMATED DISTANCES ***
*** TERRAIN HEIGHT OF
                           0. M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES ***
                              U10M USTK MIX HT PLUME SIGMA SIGMA (M/S) (M/S) (M) HT (M) Y (M) Z (M)
 DIST
           CONC
(M) (UG/M**3) STAB (M/S) (M/S)
                                                                        Z (M) DWASH

    100.
    232.6
    1
    1.0
    1.0
    320.0
    22.62

    200.
    266.2
    3
    1.0
    1.0
    320.0
    22.55

    300.
    240.7
    3
    1.0
    1.0
    320.0
    22.55

    400.
    236.6
    4
    1.0
    1.0
    320.0
    22.43

    500.
    219.8
    4
    1.0
    1.0
    320.0
    22.43

  100. 232.6
200. 266.2
                                                               27.00
                                                                        14.23
                                                                                 NO
                                                                23.78
                                                                         14.30
                                                                                   NO
                                                                34.40
                                                                         20.52
                                                                                  NO
                                                                29.58
                                                                         15.52
                                                                36.25
                                                                        18.50
         206.7
199.4
207.1
209.5
206.8
                                      1.1 10000.0 22.05
1.1 10000.0 22.05
   600.
                       5 1.0
5 1.0
                                                                32.04
                                                                         14.93
                                                                                   NO
                      5 1.0
6 1.0
6 1.0
6 1.0
   700.
                                                                36.87
                                                                         16.72
                                                                                   NO
                                      1.1 10000.0 20.35
1.1 10000.0 20.35
1.1 10000.0 20.35
   800.
                                                                27.72
                                                                        12.17
                                                                                   NO
   900.
                                                                30.85
                                                                         13.16
                                                                                   NΟ
                                                              33.95
                                                                        14.12
  1000.
                                                                                   NO
MAXIMUM 1-HR CONCENTRATION AT OR BEYOND
                                              100. M:
                              1.0 1.0 320.0 22.55 26.26 15.75 NO
   222. 271.1
                        3
 DWASH= MEANS NO CALC MADE (CONC = 0.0)
 DWASH=NO MEANS NO BUILDING DOWNWASH USED
 DWASH=HS MEANS HUBER-SNYDER DOWNWASH USED
DWASH=SS MEANS SCHULMAN-SCIRE DOWNWASH USED
 DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB
     **********
     *** SUMMARY OF SCREEN MODEL RESULTS ***
     **********
                     MAX CONC DIST TO
 CALCULATION
                                             TERRAIN
                   (UG/M**3)
  PROCEDURE
                                  MAX (M)
                                              HT (M)
_____
                   _____
                                  -----
                    271.1
                                      222.
SIMPLE TERRAIN
** REMEMBER TO INCLUDE BACKGROUND CONCENTRATIONS **
```