

May 1st, 2018

The Climate Registry (TCR) is pleased to present its default emission factors for reporting in 2018.

Each year, we update the default emission factors associated with our program because (1) the components of energy (electricity, fuel, etc.) change overtime, and (2) emission factor quantification methods are often refined. The 2018 default emission factors are incorporated into the <u>Climate Registry Information System (CRIS)</u> for use in emissions calculations to ensure that our members are measuring the most accurate greenhouse gas (GHG) data possible. We publish these default factors to our website to advance best practices in corporate GHG accounting, and to promote transparency and consistency in that accounting.

Our default emission factors are compiled from publicly available data sources, which are cited at the bottom of each table. TCR is not responsible for the underlying data or methodology used to calculate these default emission factors, or for communicating any changes to the data sources that occur between our annual updates.

As detailed in TCR's <u>General Reporting Protocol Version 2.1 (GRP v. 2.1)</u>, you should apply the most up-to-date emission factor available in CRIS (or otherwise) when calculating emissions. To calculate location-based or market-based Scope 2 emissions, you should apply the emission factor most appropriate to the emissions year being reported that does not post-date that emissions year.

TCR members are encouraged to contact <u>policy@theclimateregistry.org</u> with questions or feedback on these default emission factors or citation information.

Sincerely,

¹ All new inventories created in CRIS, regardless of emissions year, will rely on these emission factors.

List of Tables

GRP Ref.	Table No.	Table Name	Page
	12.1	U.S. Default Factors for Calculating CO ₂ Emissions from Combustion of Fossil Fuel and Biomass	1
ion	12.2	Canadian Default Factors for Calculating CO2 Emissions from Combustion of Natural Gas, Petroleum Products, and Biomass	7
bust	12.3	Canadian Default Factors for Calculating CO2 Emissions from Combustion of Coal	12
Chapter 12: Stationary Combustion	12.4	Canadian Default Factors for Calculating CH4 and N2O Emissions from Combustion of Natural Gas, Petroleum Products, Coal, and Biomass	15
ionar	12.5	Default Factors for Calculating CH4 and N2O Emissions by Technology Type for the Electricity Generation Sector	19
Stati	12.6	Default Factors for Calculating CH4 and N2O Emissions from Kilns, Ovens, and Dryers	21
r 12:	12.7	Default Factors for Calculating CH4 and N2O Emissions by Technology Type for the Industrial Sector	22
apte	12.8	Default Factors for Calculating CH4 and N2O Emissions by Technology Type for the Commercial Sector	24
ch	12.9.1	U.S. Default Factors for Calculating CH4 and N2O Emissions by Fuel Type for the Industrial and Energy Sectors	26
	12.9.2	Default Factors for Calculating CH4 and N2O Emissions by Fuel Type for the Residential and Commercial Sectors	28
	13.1	U.S. Default Factors for Calculating CO2 Emissions from Combustion of Transport Fuels	29
stion	13.2	Canadian Default Factors for Calculating CO2 Emission Factors from Combustion of Transport Fuels	31
mpn	13.3	Canadian Default Factors for Calculating CH4 and N2O Emissions from Mobile Combustion	32
3: Mobile Combustion	13.4	U.S. Default Factors for Calculating CH4 and N2O Emissions from Highway Vehicles by Technology Type	35
lobil	13.5	U.S. Default Factors for Calculating CH4 and N2O Emissions from Highway Vehicles by Model Year	37
13: N	13.6	U.S. Default Factors for Calculating CH4 and N2O Emissions from Alternative Fuel Vehicles	41
Chapter :	13.7	U.S. Default Factors for Calculating CH4 and N2O Emissions from Non-Highway Vehicles	42
Cha	13.8	Default Factors for Calculating LTO Emissions for Typical Aircraft	44
9	13.9	Factors for Estimating CH4 and N2O Emissions from Gasoline and Diesel Vehicles (SEM)	47

O	14.1	U.S. Default Factors for Calculating Emissions from Grid Electricity by eGRID Subregion	48
y Us	14.2	Canadian Default Factors for Calculating Emissions from Grid Electricity by Province	51
tricit	14.3	Mexican Default Factors for Calculating Emissions from Grid Electricity	53
Chapter 14: Electricity Use	14.4	Non-North America Default Factors for Calculating Emissions from Electricity Generation	54
14:	14.5	Average Cost per Kilowatt Hour by U.S. State	62
oter	14.6	Canadian Energy Intensity by Building Activity	65
Shaj	14.7	U.S. Electricity Intensity by Building Activity	66
	14.8	U.S. Utility-Specific CO ₂ Emission Factors for Purchased Electricity	68
Chp. 16: Fugitive	16.2	Default Factors for Calculating Emissions from Refrigeration/ Air Conditioning Equipment	73
Chp Fug		U.S. Default Factors for Calculating CO ₂ Emissions from Geothermal Energy Production	75
ix B	B.1.	Default Global Warming Potential Factors for Required Greenhouse Gases	76
Appendix B	B.2.	Default Global Warming Potential Factors for Refrigerant Blends	79
Арр	B.3.	Default Composition of Refrigerant Blends that Contain HFCs and PFCs	84

Table 12.1 U.S. Default Factors for Calculating CO₂ Emissions from Combustion of Fossil Fuel and Biomass

Fuel Type	Heat Content	Carbon Content (Per Unit Energy)	Fraction Oxidized	CO ₂ Emission Factor (Per Unit Energy)	CO ₂ Emission Factor (Per Unit Mass or Volume)
Coal and Coke	MMBtu / short ton	kg C / MMBtu		kg CO ₂ / MMBtu	kg CO ₂ / short ton
Anthracite	25.09	28.28	1	103.69	2601.58
Bituminous	24.93	25.44	1	93.28	2325.47
Subbituminous	17.25	26.50	1	97.17	1676.18
Lignite	14.21	26.65	1	97.72	1388.60
Coal Coke	24.80	31.00	1	113.67	2819.02
Mixed Electric Utility/Electric Power	19.73	26.05	1	95.52	1884.61
Unspecified Residential/Com*	20.08	25.71	1	94.27	1892.75
Mixed Commercial Sector	21.39	25.71	1	94.27	2016.44
Mixed Industrial Coking	26.28	25.61	1	93.90	2467.69
Mixed Industrial Sector	22.35	25.82	1	94.67	2115.87
Natural Gas	Btu / scf	kg C / MMBtu		kg CO ₂ / MMBtu	kg CO ₂ / scf
US Weighted Average	1026.00	14.47	1	53.06	0.05
Greater than 1,000 Btu*	>1000	14.47	1	53.06	varies
975 to 1,000 Btu*	975 – 1,000	14.73	1	54.01	varies

1,000 to 1,025 Btu*	1,000 – 1,025	14.43	1	52.91	varies
1,025 to 1,035 Btu*	1025 – 1035	14.45	1	52.98	varies
1,025 to 1,050 Btu*	1,025 – 1,050	14.47	1	53.06	varies
1,050 to 1,075 Btu*	1,050 – 1,075	14.58	1	53.46	varies
1,075 to 1,100 Btu*	1,075 – 1,100	14.65	1	53.72	varies
Greater than 1,100 Btu*	>1,100	14.92	1	54.71	varies
(EPA 2010) Full Sample*		14.48	1	53.09	n/a
(EPA 2010) <1.0% CO ₂ *		14.43	1	52.91	n/a
(EPA 2010) <1.5% CO ₂ *		14.47	1	53.06	n/a
(EPA 2010) <1.0% CO ₂ and <1,050 Btu/scf*	<1,050	14.42	1	52.87	n/a
(EPA 2010) <1.5% CO ₂ and <1,050 Btu/scf*	<1,050	14.47	1	53.06	n/a
(EPA 2010) Flare Gas*	>1,100	15.31	1	56.14	n/a
Petroleum Products	MMBtu / gallon	kg C / MMBtu		kg CO ₂ / MMBtu	kg CO ₂ / gallon
Distillate Fuel Oil No. 1	0.14	19.98	1	73.25	10.26
Distillate Fuel Oil No. 2	0.14	20.17	1	73.96	10.35
Distillate Fuel Oil No. 4	0.15	20.47	1	75.04	11.26
Residual Fuel Oil No. 5	0.14	19.89	1	72.93	10.21
Residual Fuel Oil No. 6	0.15	20.48	1	75.10	11.27
Still Gas*	0.14	18.20	1	66.73	9.34
Used Oil	0.14	20.18	1	74.00	10.36

Kerosene	0.14	20.51	1	75.20	10.53
LPG	9.20E-02	16.83	1	61.71	5.68
Propane (Liquid)	9.10E-02	17.15	1	62.87	5.72
Propylene	9.10E-02	18.48	1	67.77	6.17
Ethane	6.80E-02	16.25	1	59.60	4.05
Ethylene	5.80E-02	17.99	1	65.96	3.83
Isobutane	0.10	17.71	1	64.94	6.49
Isobutylene	0.10	18.78	1	68.86	6.89
Butane	0.10	17.66	1	64.77	6.48
Butylene	0.11	18.74	1	68.72	7.56
Naptha (<401 deg F)	0.13	18.55	1	68.02	8.84
Natural Gasoline	0.11	18.24	1	66.88	7.36
Other Oil (>401 deg F)	0.14	20.79	1	76.22	10.67
Pentanes Plus	0.11	19.10	1	70.02	7.70
Petrochemical Feedstocks	0.13	19.37	1	71.02	9.23
Petroleum Coke (Liquid)	0.14	27.93	1	102.41	14.34
Special Naptha	0.13	19.73	1	72.34	9.40
Unfinished Oils	0.14	20.33	1	74.54	10.44
Heavy Gas Oils	0.15	20.43	1	74.92	11.24
Lubricants	0.14	20.26	1	74.27	10.40
	•			-	•

Motor Gasoline	0.13	19.15	1	70.22	9.13
Aviation Gasoline	0.12	18.89	1	69.25	8.31
Kerosene Type Jet Fuel	0.14	19.70	1	72.22	10.11
Asphalt and Road Oil	0.16	20.55	1	75.36	12.06
Crude Oil	0.14	20.33	1	74.54	10.44
Petroleum Waxes*	0.13	19.80	1	72.60	9.44
Fossil Fuel-derived Fuels (gaseous)	MMBtu / scf	kg C / MMBtu		kg CO ₂ / MMBtu	kg CO ₂ / scf
Acetylene**	1.47E-03	19.53	1	71.61	0.11
Blast Furnace Gas	9.20E-05	74.81	1	274.32	0.03
Coke Oven Gas	5.99E-04	12.78	1	46.85	0.03
Propane (Gas)	2.52E-03	16.76	1	61.46	0.15
Fuel Gas	1.39E-03	16.09	1	59.00	0.08
Fossil Fuel-derived Fuels (solid)	MMBtu / short ton	kg C / MMBtu		kg CO ₂ / MMBtu	kg CO ₂ / short ton
Municipal Solid Waste	9.95	24.74	1	90.70	902.47
Tires	28.00	23.45	1	85.97	2407.16
Plastics	38.00	20.45	1	75.00	2850.00
Petroleum Coke (Solid)	30.00	27.93	1	102.41	3072.30
Biomass Fuels-Solid	MMBtu / short ton	kg C / MMBtu		kg CO ₂ / MMBtu	kg CO ₂ / short ton
Wood and Wood Residuals (12% moisture content)	17.48	25.58	1	93.80	1639.62
Agricultural Byproducts	8.25	32.23	1	118.17	974.90

Peat	8.00	30.50	1	111.84	894.72
Solid Byproducts	10.39	28.78	1	105.51	1096.25
Kraft Black Liquor (NA hardwood)		25.55	1	93.70	n/a
Kraft Black Liquor (NA softwood)		25.75	1	94.40	n/a
Kraft Black Liquor (Bagasse)		26.05	1	95.50	n/a
Kraft Black Liquor (Bamboo)		25.55	1	93.70	n/a
Kraft Black Liquor (Straw)		25.94	1	95.10	n/a
Municipal Solid Waste (Biomass)	9.95	24.74	1	90.70	902.47
Biomass Fuels-Gaseous	MMBtu / scf	kg C / MMBtu		kg CO ₂ / MMBtu	kg CO ₂ / scf
Biogas (Captured Methane)	6.55E-04	14.20	1	52.07	0.03
Landfill Gas (50% CH ₄ /50%CO ₂)	4.85E-04	14.20	1	52.07	0.03
Wastewater Treatment Biogas***	Varies				
	Valles	14.20	1	52.07	varies
Biomass Fuels - Liquid	MMBtu / gallon	kg C / MMBtu	1	52.07 kg CO ₂ / MMBtu	varies kg CO ₂ / gallon
Biomass Fuels - Liquid Ethanol (100%)			1	kg CO ₂ /	kg CO ₂ /
	MMBtu / gallon	kg C / MMBtu		kg CO ₂ / MMBtu	kg CO ₂ / gallon
Ethanol (100%)	MMBtu / gallon 8.40E-02	kg C / MMBtu 18.67	1	kg CO ₂ / MMBtu 68.44	kg CO ₂ / gallon 5.75
Ethanol (100%) Biodiesel (100%)	MMBtu / gallon 8.40E-02 0.13	kg C / MMBtu 18.67 20.14	1	kg CO ₂ / MMBtu 68.44 73.84	kg CO ₂ / gallon 5.75

Source: Heat Content and CO_2 emission factors per unit energy are from EPA Final Mandatory Reporting of Greenhouse Gases Rule Tables C-1 and AA-1. Carbon Content is derived using the heat content and/or default emission factor. Except those marked with * are from US Inventory of Greenhouse Gas Emissions and Sinks 1990-2016 (April 2018) Annex 2, Tables A-40, A-41, A-44, A-47, A-49, and A-60 (heat content factor for Unspecified Residential/Com from U.S. Energy Information Administration, Monthly Energy Review (January 2018), Table A-5, and ** derived from the API Compendium of Greenhouse Gas Emissions Methodologies for the Oil and Gas Industry (August 2009), Section 3.6.3, Table 3-8. A fraction oxidized value of 1.00 is from the Intergovernmental Panel on Climate Change (IPCC), Guidelines for National Greenhouse Gas Inventories (2006) and *** EPA Climate Leaders Technical Guidance (2008) Table B-2. n/a= data not available.

NOTÉ: Where not provided from the EPA Final Mandatory Reporting of Greenhouse Gases Rule, default CO_2 emission factors (per unit energy) are calculated as: Carbon Content × Fraction Oxidized × 44/12. Default CO_2 emission factors (per unit mass or volume) are calculated using the equation: Heat Content × Carbon Content × Fraction Oxidized × 44/12 × Conversion Factor (if applicable).

Table 12.2 Canadian Default Factors for Calculating CO₂ Emissions from Combustion of Natural Gas, Petroleum Products, and Biomass

Fuel Type	Carbon Content (Per Unit Energy)	Heat Content	Fraction Oxidized	CO ₂ Emission Factor (Per Unit Mass or Volume)			
Natural Gas	kg C / GJ	GJ / megalitre		g CO ₂ / m ³			
Electric Utilities, Industry, Commercial, Pipelines, Agriculture, Residential*	n/a	39.00	1	1900			
Producer Consumption*	n/a	39.00	1	2401			
Newfoundland and Labrador							
Marketable	n/a	39.24	1	1901			
NonMarketable	n/a	39.24	1	2494			
Nova Scotia							
Marketable	n/a	39.24	1	1901			
NonMarketable	n/a	39.24	1	2494			
New Brunswick							
Marketable	n/a	39.24	1	1901			
NonMarketable	n/a	39.24	1	n/o			
Quebec							

Marketable	n/a	39.24	1	1887			
NonMarketable	n/a	39.24	1	n/o			
Ontario							
Marketable	n/a	39.24	1	1888			
NonMarketable	n/a	39.24	1	n/o			
Manitoba							
Marketable	n/a	39.24	1	1886			
NonMarketable	n/a	39.24	1	n/o			
Saskatchewan							
Marketable	n/a	39.24	1	1829			
NonMarketable	n/a	39.24	1	2441			
Alberta							
Marketable	n/a	39.24	1	1928			
NonMarketable	n/a	39.24	1	2392			
British Columbia							
Marketable	n/a	39.24	1	1926			
NonMarketable	n/a	39.24	1	2162			
Yukon	II						

n/a	39.24	1	1901
n/a	39.24	1	2401
n/a	39.24	1	2466
n/a	39.24	1	2466
kg C / GJ	GJ / Kilolitre		g CO ₂ / L
n/a	25.31	1	1515
n/a	25.31	1	1515
n/a	17.22	1	986
n/a	28.44	1	1747
n/a	n/a	1	1629
kg C / GJ	GJ / Kilolitre		g CO ₂ / L
n/a	38.80	1	2753
n/a	38.80	1	2753
n/a	38.80	1	2670
	n/a n/a n/a kg C / GJ n/a n/a n/a n/a n/a n/a n/a n/	n/a 39.24 n/a 39.24 n/a 39.24 kg C / GJ GJ / Kilolitre n/a 25.31 n/a 25.31 n/a 17.22 n/a 28.44 n/a n/a kg C / GJ GJ / Kilolitre n/a 38.80 n/a 38.80	n/a 39.24 1 n/a 39.24 1 n/a 39.24 1 kg C / GJ GJ / Kilolitre n/a 25.31 1 n/a 25.31 1 n/a 17.22 1 n/a 28.44 1 kg C / GJ GJ / Kilolitre n/a 38.80 1 n/a 38.80 1

Light Fuel Oil Residential	n/a	38.80	1	2753
Light Fuel Oil Forestry, Construction, Public Administration, Commercial/Institutional	n/a	38.80	1	2753
Heavy Fuel Oil (Electric Utility, Industrial, Forestry, Construction, Public Administration, Commercial/Institutional)	n/a	42.50	1	3156
Heavy Fuel Oil (Residential)	n/a	42.50	1	3156
Heavy Fuel Oil (Producer Consumption)	n/a	42.50	1	3190
Kerosene (Electric Utility, Industrial, Producer Consumption, Residential, Forestry, Construction, Public Administration, Commercial/Institutional)	n/a	37.68	1	2560
Diesel	n/a	38.30	1	2690
Petroleum Coke from Upgrading Facilities	n/a	40.57	1	3494
Petroleum Coke from Refineries & Others	n/a	46.35	1	3826
Still gas(Upgrading Facilities)	n/a	43.24	1	2140
Still gas(Refineries & Others)	n/a	36.08	1	2123
Biomass	kg C / GJ	GJ/t		g CO ₂ / kg
		_		
Wood Fuel/Wood Waste	n/a	18.00	1	840
Spent Pulping Liquor	n/a	14.00	1	891
Landfill Gas	n/a	n/a	1	2752

Source: Default CO₂ emission factors: Environment Canada, National Inventory Report, 1990-2015: Greenhouse Gas Sources and Sinks in Canada (April 2017), Annex 6: Emission Factors, Tables A6-1, A6-3, A6-4, A6-5, A6-32 and A6-33. The CO₂ emission factor for refinery LPGs is from: Environment Canada, National Inventory Report, 1990-2012: Greenhouse Gas Sources and Sinks in Canada (2015), Annex 8: Emission Factors, Table A8-5. Except those marked with * are from Environment Canada, National Inventory Report, 1990-2006: Greenhouse Gas Sources and Sinks in Canada (2008), Annex 12: Emission Factors, Table A12-1; Default Heat Content: Statistics Canada, Report on Energy Supply and Demand in Canada, 2015-Revision (March 2018), Energy conversion factors, p. 130; Default Carbon Content: Canada-specific carbon content coefficients are not available. If you cannot obtain measured carbon content values specific to your fuels, you should use the default emission factor; Default Fraction Oxidized: Intergovernmental Panel on Climate Change (IPCC), Guidelines for National Greenhouse Gas Inventories (2006).

Table 12.3 Canadian Default Factors for Calculating CO₂ Emissions from Combustion of Coal

Province and Coal Type	Carbon Content	Heat Content	Fraction Oxidized	CO ₂ Emission Factor
Newfoundland and Labrador	kg C / GJ	GJ/t		g CO ₂ / kg
Canadian Bituminous	n/a	28.96	1	2233
Foreign Bituminous	n/a	29.82	1	2596
Prince Edward Island	kg C / GJ	GJ/t		g CO ₂ / kg
Canadian Bituminous	n/a	28.96	1	2233
Foreign Bituminous	n/a	29.82	1	2596
Nova Scotia	kg C / GJ	GJ/t		g CO ₂ / kg
Canadian Bituminous	n/a	28.96	1	2233
Foreign Bituminous	n/a	29.82	1	2596
New Brunswick	kg C / GJ	GJ/t		g CO ₂ / kg
Canadian Bituminous	n/a	26.80	1	2356
Foreign Bituminous	n/a	29.82	1	2596

Quebec	kg C / GJ	GJ/t		g CO ₂ / kg
Canadian Bituminous	n/a	28.96	1	2233
Foreign Bituminous	n/a	29.82	1	2721
Ontario	kg C / GJ	GJ/t		g CO ₂ / kg
Canadian Bituminous	n/a	25.43	1	2233
Foreign Bituminous	n/a	29.82	1	2721
Foreign Sub-Bituminous	n/a	19.15	1	1434
Manitoba	kg C / GJ	GJ/t		g CO ₂ / kg
Foreign Sub-Bituminous	n/a	19.15	1	1434
Saskatchewan	kg C / GJ	GJ/t		g CO ₂ / kg
Canadian Bituminous	n/a	25.43	1	2233
Canadian Sub-Bituminous	n/a	19.15	1	1781
Lignite	n/a	15.00	1	1465
Alberta	kg C / GJ	GJ/t		g CO ₂ / kg
Canadian Bituminous	n/a	25.43	1	2233
Canadian Sub-Bituminous	n/a	19.15	1	1781

British Columbia	kg C / GJ	GJ/t		g CO ₂ / kg
Canadian Bituminous	n/a	26.02	1	2233
Canadian Sub-Bituminous	n/a	19.15	1	1781
All Provinces and Territories	kg C / GJ	GJ/t		g CO ₂ / kg
Coke	n/a	28.83	1	3173
Anthracite	n/a	27.70	1	2434
Coke Oven Gas	n/a	19.14	1	687

Source: Default CO₂ Emission Factors: Environment Canada, National Inventory Report, 1990-2015: Greenhouse Gas Sources and Sinks in Canada (April 2017), Annex 6: Emission Factors, Tables A6-8 and A6-9; Default Heat Content: Statistics Canada, Report on Energy Supply and Demand in Canada, 2015-Revision (2018), Energy conversion factors, p. 130 (value for Foreign Bituminous uses heat content of "Imported bituminous" value, for Foreign Sub-Bituminous uses heat content of "Sub-bituminous"); Default Carbon Content: Canada-specific carbon content coefficients are not available. If you cannot obtain measured carbon content values specific to your fuels, you should use the default emission factor; Default Fraction Oxidized: Intergovernmental Panel on Climate Change (IPCC), Guidelines for National Greenhouse Gas Inventories (2006) and Environment Canada, National Inventory Report, 1990-2015: Greenhouse Gas Sources and Sinks in Canada (April 2017), Annex 4: Reference Approach Energy Conversion and Emission Factors for Canada. n/a-data not available.

Note: CO₂ emission factors from Environment Canada originally included fraction oxidized factors of less than 100% for Solid - Primary Fuels. Values were converted to include a 100% oxidation rate using 98.8% for Anthracite, 98.8% for Bituminous, 99.4% for Subbituminous, and 99.5% for Lignite based on the rates used to calculate the original factors.

Table 12.4 Canadian Default Factors for Calculating CH₄ and N₂O Emissions from Combustion of Natural Gas, Petroleum Products, Coal, and Biomass

Fuel Type	CH ₄ Emission Factor (Per Unit Mass or Volume)	N ₂ O Emission Factor (Per Unit Mass or Volume)
Natural Gas	g CH ₄ / m ³	g N ₂ O / m ³
Electric Utilities	0.490	0.049
Industrial	0.037	0.033
Producer Consumption (NonMarketable)	6.400	0.060
Pipelines	1.900	0.050
Cement	0.037	0.034
Manufacturing Industries	0.037	0.033
Residential, Construction, Commercial/Institutional, Agriculture	0.037	0.035
Natural Gas Liquids	g CH ₄ / L	g N ₂ O / L
Propane (Residential)	0.027	0.108
Propane (All Other Uses)	0.024	0.108
Ethane	0.024	0.108

Butane	0.024	0.108
Refinery LPGs	0.024	0.108
Refined Petroleum Products	g CH ₄ / L	g N ₂ O / L
Light Fuel Oil (Electric Utilities)	0.180	0.031
Light Fuel Oil (Industrial and Producer Consumption)	0.006	0.031
Light Fuel Oil (Residential)	0.026	0.006
Light Fuel Oil (Forestry, Construction, Public Administration, and Commercial/Institutional)	0.026	0.031
Heavy Fuel Oil (Electric Utilities)	0.034	0.064
Heavy Fuel Oil (Industrial and Producer Consumption)	0.120	0.064
Heavy Fuel Oil (Residential, Forestry, Construction, Public Administration, and Commercial/Institutional)	0.057	0.064
Kerosene (Electric Utilities, Industrial, and Producer Consumption)	0.006	0.031
Kerosene (Residential)	0.026	0.006
Kerosene (Forestry, Construction, Public Administration, and Commercial/Institutional)	0.026	0.031
Diesel (Refineries and Others)	0.133	0.400
Diesel (Upgraders)	0.147	1.100
Still Gas (Refineries and Others)	0.031	2E-05

Still Gas (Upgraders)	0.039	2E-05
Petroleum Coke	g CH ₄ / L	g N ₂ O / L
Upgrading Facilities	0.12	0.02
Refineries & Others	0.12	0.03
Coal	g CH₄ / kg	g N ₂ O / kg
Coal (Electric Utilities)	0.02	0.03
Coal (Industry and Heat & Steam Plants)	0.03	0.02
Coal (Residential, Public Administration)	4.00	0.02
Coke	0.03	0.02
Coal(gas)	g CH ₄ / m ³	g N $_2$ O / m 3
Coke Oven Gas	0.04	0.04
Biomass	g CH ₄ / kg	g N ₂ O / kg
Wood Fuel/Wood Waste (Industrial Combustion)	0.09	0.06
Spent Pulping Liquor (Industrial Combustion)	0.02	0.02
Stoves and Fireplaces (Advance Technology or Catalytic Control)	5.9	0.12
Stoves and Fireplaces (Conventional, Inserts)	12.3	0.12

Stoves and Fireplaces (Other Wood-burning Equipment)	4.12	0.059
Landfill Gas	kg CH ₄ / t	kg N₂O / t
Landfill Gas (Industrial Combustion)	0.05	0.01

Source: Environment Canada, National Inventory Report, 1990-2015: Greenhouse Gas Sources and Sinks in Canada (April 2017), Annex 6: Emission Factors, Tables A6-2, A6-3, A6-4, A6-7, A6-10, A6-32, and A6-33. n/a=data not available.

Note: The CH₄ and the N₂O emission factors for refinery LPGs is from: Environment Canada, National Inventory Report, 1990-2012: Greenhouse Gas Sources and Sinks in Canada (2014), Annex 8: Emission Factors, Table A8-4.

Table 12.5 Default Factors for Calculating CH₄and N₂O Emissions from Combustion by Technology Type for the Electricity Generation Sector

The Climate Registry			
Fuel Type and Basic Technology	Configuration	CH ₄ (g / MMBtu)	N ₂ O(g / MMBtu)
Liquid Fuels			
Residual Fuel Oil/Shale Oil Boilers	Normal Firing	0.8	0.3
Residual Fuel Oil/Shale Oil Boilers	Tangential Firing	0.8	0.3
Gas/Diesel Oil Boilers	Normal Firing	0.9	0.4
Gas/Diesel Oil Boilers	Tangential Firing	0.9	0.4
Large Diesel Oil Engines >600hp (447kW)		4.0	n/a
Solid Fuels			
Pulverized Bituminous Combustion Boilers	Dry Bottom, wall fired	0.7	0.5
Pulverized Bituminous Combustion Boilers	Dry Bottom, tangentially fired	0.7	1.4
Pulverized Bituminous Combustion Boilers	Wet Bottom	0.9	1.4
Bituminous Spreader Stoker Boilers	With and without re-injection	1.0	0.7
Bituminous Fluidized Bed Combustor	Circulating Bed	1.0	61.1

Bituminous Fluidized Bed Combustor	Bubbling Bed	1.0	61.1
Bituminous Cyclone Furnace		0.2	1.6
Lignite Atmospheric Fluidized Bed		n/a	71.2
Natural Gas			
Boilers		0.9	0.9
Gas-Fired Gas Turbines >3MW		3.8	0.9
Large Dual-Fuel Engines		245.0	n/a
Combined Cycle		0.9	2.8
Peat			
Peat Fluidized Bed Combustor	Circulating Bed	3.0	7.0
Peat Fluidized Bed Combustor	Bubbling Bed	3.0	3.0
Biomass			
Wood/Wood Waste Boilers		9.3	5.9
Wood Recovery Boilers		0.8	0.8
	•		

Source: IPCC, Guidelines for National Greenhouse Gas Inventories (2006), Chapter 2: Stationary Combustion, Table 2.6. Values were converted back from LHV to HHV using IPCC's assumption that LHV are five percent lower than HHV for coal and oil, 10 percent lower for natural gas, and 20 percent lower for dry wood. (The IPCC converted the original factors from units of HHV to LHV, so the same conversion rates used by the IPCC were used here to obtain the original values in units of HHV.) Values were converted from kg/TJ to g/MMBtu using 1 kg = 1000 g and 1 MMBtu = 0.001055 TJ. n/a=data not available.

Table 12.6 Default Factors for Calculating ${\rm CH_4}$ and ${\rm N_2O}$ Emissions from Kilns, Ovens, and Dryers

The Climate Registry

Industry	Source	CH₄ (g / MMBtu)	N ₂ O (g / MMBtu)
Cement, Lime	Kilns - Natural Gas	1.04	n/a
Cement, Lime	Kilns – Oil	1.0	n/a
Cement, Lime	Kilns – Coal	1.0	n/a
Coking, Steel	Coke Oven	1.0	n/a
Chemical Processes, Wood, Asphalt, Copper, Phosphate	Dryer - Natural Gas	1.04	n/a
Chemical Processes, Wood, Asphalt, Copper, Phosphate	Dryer – Oil	1.0	n/a
Chemical Processes, Wood, Asphalt, Copper, Phosphate	Dryer – Coal	1.0	n/a

Source: IPCC, Guidelines for National Greenhouse Gas Inventories (2006), Chapter 2: Stationary Combustion, Table 2.8. Values were converted back from LHV to HHV using IPCC's assumption that LHV are five percent lower than HHV for coal and oil and 10 percent lower for natural gas. Values were converted from kg/TJ to g/MMBtu using 1 kg = 1000 g and 1 MMBtu = 0.001055 TJ. n/a=data not available.

Table 12.7 Default Factors for Calculating CH₄ and N₂O Emissions by Technology Type for the Industrial Sector

Fuel Type and Basic Technology	Configuration	CH ₄ (g / MMBtu)	N ₂ O (g / MMBtu)
Liquid Fuels			
Residual Fuel Oil Boilers		3.0	0.3
Gas/Diesel Oil Boilers		0.2	0.4
Large Stationary Diesel Oil Engines >600hp (447 kW)		4.0	n/a
Liquefied Petroleum Gases Boilers		0.9	4.0
Solid Fuels			
Other Bituminous/Sub-bit. Overfeed Stoker Boilers		1.0	0.7
Other Bituminous/Sub-bit. Underfeed Stoker Boilers		14.0	0.7
Other Bituminous/Sub-bituminous Pulverized	Dry Bottom, wall fired	0.7	0.5
Other Bituminous/Sub-bituminous Pulverized	Dry Bottom, tangentially fired	0.7	1.4
Other Bituminous/Sub-bituminous Pulverized	Wet Bottom	0.9	1.4
Other Bituminous Spreader Stokers		1.0	0.7
Other Bituminous/Sub-bit. Fluidized Bed Combustor	Circulating Bed	1.0	61.1
Other Bituminous/Sub-bit. Fluidized Bed Combustor	Bubbling Bed	1.0	61.1
Natural Gas			
Boilers		0.9	0.9

Gas-Fired Gas Turbines >3MW		3.8	0.9
Natural Gas-fired Reciprocating Engines	2-Stroke Lean Burn	658.0	n/a
Natural Gas-fired Reciprocating Engines	4-Stroke Lean Burn	566.9	n/a
Natural Gas-fired Reciprocating Engines	4-Stroke Rich Burn	104.4	n/a
Biomass			
Wood/Wood Waste Boilers		9.3	5.9

Source: IPCC, Guidelines for National Greenhouse Gas Inventories (2006), Chapter 2: Stationary Combustion, Table 2.7. Values were converted from LHV to HHV assuming that LHV are five percent lower than HHV for coal and oil, 10 percent lower for natural gas, and 20 percent lower for dry wood. (The IPCC converted the original factors from units of HHV to LHV, so the same conversion rates used by the IPCC were used here to obtain the original values in units of HHV.) Values were converted from kg/TJ to g/MMBtu using 1 kg = 1000 g and 1 MMBtu = 0.001055 TJ. n/a=data not available.

Table 12.8 Default Factors for Calculating CH₄ and N₂O Emissions by Technology Type for the Commercial Sector

Fuel Type and Basic Technology	Configuration	CH ₄ (g / MMBtu)	N ₂ O (g / MMBtu)
Liquid Fuels			
Residual Fuel Oil Boilers		1.4	0.3
Gas/Diesel Oil Boilers		0.7	0.4
Liquefied Petroleum Gases Boilers		0.9	4.0
Solid Fuels			
Other Bituminous/Sub-bit. Overfeed Stoker Boilers		1.0	0.7
Other Bituminous/Sub-bit. Underfeed Stoker Boilers		14.0	0.7
Other Bituminous/Sub-bit. Hand-fed Units		87.2	0.7
Other Bituminous/Sub-bituminous Pulverized Boilers	Dry Bottom, wall fired	0.7	0.5
Other Bituminous/Sub-bituminous Pulverized Boilers	Dry Bottom, tangentially fired	0.7	1.4
Other Bituminous/Sub-bituminous Pulverized Boilers	Wet Bottom	0.9	1.4
Other Bituminous Spreader Stokers		1.0	0.7
Other Bituminous/Sub-bit. Fluidized Bed Combustor	Circulating Bed	1.0	61.1
Other Bituminous/Sub-bit. Fluidized Bed Combustor	Bubbling Bed	1.0	61.1
Natural Gas			
Boilers		0.9	0.9

Gas-Fired Gas Turbines >3MWa	3.8	1.3
Biomass		
Wood/Wood Waste Boilers	9.3	5.9

Source: IPCC, Guidelines for National Greenhouse Gas Inventories (2006), Chapter 2: Stationary Combustion, Table 2.10. Values were converted from LHV to HHV assuming that LHV are five percent lower than HHV for coal and oil, 10 percent lower for natural gas, and 20 percent lower for dry wood. (The IPCC converted the original factors from units of HHV to LHV, so the same conversion rates used by the IPCC were used here to obtain the original values in units of HHV.) Values were converted from kg/TJ to g/MMBtu using 1 kg = 1000 g and 1 MMBtu = 0.001055 TJ.

Table 12.9.1 Default Factors for Calculating CH₄ and N₂O Emissions by Fuel Type for the Industrial and Energy Sectors

Fuel Type / End-Use Sector	CH ₄ (kg / MMBtu)	N ₂ O (kg / MMBtu)
Coal		
Industrial	0.01	1.6E-3
Energy Industry	0.01	1.6E-3
Coke		
Industrial	0.01	1.6E-3
Energy Industry	0.01	1.6E-3
Petroleum Products		
Industrial	3.0E-3	6.0E-4
Energy Industry	3.0E-3	6.0E-4
Natural Gas		
Industrial	1.0E-3	1.0E-4
Energy Industry	1.0E-3	1.0E-4
Municipal Solid Waste		
Industrial	0.03	4.2E-3
Energy Industry	0.03	4.2E-3
Tires		
Industrial	0.03	4.2E-3
Energy Industry	0.03	4.2E-3
Blast Furnace Gas		
Industrial	2.2E-5	1.0E-4
Energy Industry	2.2E-5	1.0E-4

Coke Oven Gas					
Industrial	4.8E-4	1.0E-4			
Energy Industry	4.8E-4	1.0E-4			
Biomass Fuels Solid					
Industrial	0.03	4.2E-3			
Energy Industry	0.03	4.2E-3			
Biogas					
Industrial	3.2E-3	6.3E-4			
Energy Industry	3.2E-3	6.3E-4			
Biomass Fuels Liquid					
Industrial	1.1E-3	1.1E-4			
Energy Industry	1.1E-3	1.1E-4			
Pulping Liquors					
Industrial*	1.9E-3	4.2E-4			

Source: CH_4 and N_2O emission factors per unit energy are from EPA Final Mandatory Reporting of Greenhouse Gases Rule Table C-2. Except those marked with * are from Table AA-1.

Table 12.9.2 Default Factors for Calculating ${\rm CH_4}$ and ${\rm N_2O}$ Emissions by Fuel Type for the Residential and Commercial Sectors

The Climate Registry

Fuel Type / End-Use Sector	CH ₄ (g / MMBtu)	N₂O (g / MMBtu)
Coal		
Residential	300.7	1.5
Commercial	10.0	1.5
Petroleum Products		
Residential	10.0	0.6
Commercial	10.0	0.6
Natural Gas		
Residential	4.7	0.1
Commercial	4.7	0.1
Wood		
Residential	253.2	3.4
Commercial	253.2	3.4

Source: IPCC, Guidelines for National Greenhouse Gas Inventories (2006), Chapter 2: Stationary Combustion, Tables 2.4 and 2.5. Values were converted from LHV to HHV assuming that LHV are five percent lower than HHV for coal and oil, 10 percent lower for natural gas, and 20 percent lower for dry wood. (The IPCC converted the original factors from units of HHV to LHV, so the same conversion rates used by the IPCC were used here to obtain the original values in units of HHV.) Values were converted from kg/TJ to g/MMBtu using 1 kg = 1000 g and 1 MMBtu = 0.001055 TJ.

Table 13.1 US Default ${\rm CO_2}$ Emission Factors for Transport Fuels

Fuel Type	Carbon Content (Per Unit Energy)	Heat Content	Fraction Oxidized	CO ₂ Emission Factor (Per Unit Volume)
Fuels Measured in Gallons	kg C / MMBtu	MMBtu / barrel		kg CO ₂ / gallon
Gasoline	19.2	5.25	1	8.78
Diesel Fuel	20.2	5.80	1	10.21
Aviation Gasoline	18.9	5.04	1	8.31
Jet Fuel (Jet A or A-1)	19.7	5.67	1	9.75
Kerosene	20.5	5.67	1	10.15
Residual Fuel Oil No. 5	19.9	5.88	1	10.21
Residual Fuel Oil No. 6	20.5	6.30	1	11.27
Crude Oil	20.3	5.80	1	10.29
Biodiesel (B100)	20.1	5.38	1	9.45
Ethanol (E100)	18.7	3.53	1	5.75
Methanol*	n/a	n/a	1	4.10
Liquefied Natural Gas (LNG)*	n/a	n/a	1	4.46
Liquefied Petroleum Gas (LPG)	17.2	3.86	1	5.68
Propane (Liquid)	16.8	3.82	1	5.72
Ethane	17.1	2.86	1	4.11
Isobutane	17.7	4.16	1	6.30
Butane	17.8	4.33	1	6.54
Renewable Diesel (R100)**	20.2	5.80	1	10.21
Fuels Measured in Standard Cubic Feet	kg C / MMBtu	Btu / Standard cubic foot		kg CO ₂ / Standard cubic foot

Compressed Natural Gas (CNG)*	14.5	1027.00	1	0.05444
Propane (Gas)	16.8	2516.00	1	0.15
Renewable Natural Gas (RNG)***	14.5	1027.00	1	0.05444

Source: Heat content and default emission factors are from EPA Final Mandatory Reporting of Greenhouse Gases Rule Table C-1. Carbon content derived using the heat content and default emission factor. A fraction oxidized of 1.00 is from the IPCC, Guidelines for National Greenhouse Gas Inventories (2006). Except * Methanol emission factor is calculated from the properties of the pure compounds. LNG emission factor is from GREETTM Software, GREET1_2013 Model, Argonne National Laboratory. The GREET model provides carbon content and fuel density, which are used to develop the CO₂ emission factor. ** Renewable Diesel (R100) emission factor assumes that chemical properties of renewable diesel are indistinguishable from petroleum based diesel according to CalEPA Fuels Guidance Document, Version 2.0, September 2015. *** Renewable Natural Gas (RNG) emission factor assumes that RNG is chemically identical to fossil natural gas according to U.S. Department of Energy Office of Energy Efficiency and Renewable Energy's Alternative Fuels Data Center information on Natural Gas Vehicle Emissions.

Note: Carbon contents are calculated using the following equation: (Emission Factor / (44/12) / Heat Content x Conversion Factor. Heat content factors are based on higher heating values (HHV).

Table 13.2 Canadian Default Factors for Calculating CO₂ Emissions from Combustion of Transport Fuels

The Climate Registry

Fuel Type	Carbon Content (kg C / GJ)	Heat Content	Fraction Oxidized	CO ₂ Emission Factors
		GJ / kiloliter		g CO ₂ / L
Motor Gasoline	n/a	35.00	1	2316
Diesel	n/a	38.30	1	2690
Light Fuel Oil	n/a	38.80	1	2753
Heavy Fuel Oil	n/a	42.50	1	3156
Aviation Gasoline	n/a	33.52	1	2365
Aviation Turbo Fuel	n/a	37.40	1	2560
Propane	n/a	25.31	1	1515
Ethanol	n/a	n/a	1	1509
Biodiesel	n/a	n/a	1	2474
		GJ / megaliter		g CO ₂ / L
Natural Gas	n/a	39.24	1	1.9

Source: Default CO₂ Emission Factors: Environment Canada, National Inventory Report, 1990-2015: Greenhouse Gas Sources and Sinks in Canada (April 2017) Annex 6: Emission Factors, Table A6-12; Default Heat Content: Statistics Canada, Report on Energy Supply and Demand in Canada, 2015-Revision (2018), Energy conversion factors, p. 130; Default Carbon Content: Not available for Canada. If you cannot obtain measured carbon content values specific to your fuels, you should use the default emission factor. Default Fraction Oxidized: A value of 1.00 is used following the Intergovernmental Panel on Climate Change (IPCC), Guidelines for National Greenhouse Gas Inventories (2006).

Table 13.3 Canadian Default Factors for Calculating CH₄ and N₂O Emissions from Mobile Combustion

The Climate Registry					
Vehicle Type	CH ₄ Emission Factor (g CH ₄ /L)	N ₂ O Emission Factor (g N ₂ O/L)			
Light-Duty Gasoline Vehicles (LDGVs)					
Tier 2	0.14	0.022			
Tier 1	0.23	0.47			
Tier 0	0.32	0.66			
Oxidation Catalyst	0.52	0.2			
Non-Catalytic Controlled	0.46	0.028			
Light-Duty Gasoline Trucks (LDGTs)					
Tier 2	0.14	0.022			
Tier 1	0.24	0.58			
Tier 0	0.21	0.66			
Oxidation Catalyst	0.43	0.2			
Non-Catalytic Controlled	0.56	0.028			
Heavy-Duty Gasoline Vehicles (HDGVs)					
Three-Way Catalyst	0.068	0.2			
Non-Catalytic Controlled	0.29	0.047			
Uncontrolled	0.49	0.084			
Gasoline Motorcycles					
Non-Catalytic Controlled	0.77	0.041			
Uncontrolled	2.3	0.048			
Light-Duty Diesel Vehicles (LDDVs)					
Advance Control*	0.051	0.22			

<u></u>	ı	
Moderate Control	0.068	0.21
Uncontrolled	0.10	0.16
Light-Duty Diesel Trucks (LDDTs)		
Advance Control*	0.068	0.22
Moderate Control	0.068	0.21
Uncontrolled	0.085	0.16
Heavy-Duty Diesel Vehicles (HDDVs)		
Advance Control	0.11	0.151
Moderate Control	0.14	0.082
Uncontrolled	0.15	0.075
Gas Fueled Vehicles		
Natural Gas Vehicles	0.009	6E-05
Propane Vehicles	0.64	0.028
Off-Road Vehicles		
Off-Road Gasoline	2.7	0.05
Off-Road Diesel	0.15	1
Railways		
Diesel Train	0.15	1
Marine		
Gasoline Boats	0.23	0.067
Diesel Ships	0.25	0.073
Light Fuel Oil Ships	0.25	0.073
Heavy Fuel Oil Ships	0.28	0.08
Aviation		
Aviation Gasoline	2.2	0.23
Aviation Turbo Fuel	0.029	0.071

Renewable Fuels			
Biodiesel	**	**	
Ethanol	***	***	

Source: Environment Canada, National Inventory Report, 1990-2015: Greenhouse Gas Sources and Sinks in Canada (April 2017) Annex 6: Emission Factors, Table A6-12. *Advanced control diesel emission factors should be used for Tier 2 diesel vehicles. **Diesel CH₄ and N₂O emission factors (by mode and technology) shall be used to calculate biodiesel emissions. ***Gasoline CH₄ and N₂O emission factors (by mode and technology) shall be used to calculate ethanol emissions.

Table 13.4 U.S. Default Factors for Calculating ${\rm CH_4}$ and ${\rm N_2O}$ Emissions from Highway Vehicles by Technology Type

CH ₄ (g / mi)	N ₂ O (g / mi)			
Gasoline Passenger Cars				
0.0173	0.0036			
0.0105	0.0150			
0.0271	0.0429			
0.0704	0.0647			
0.1355	0.0504			
0.1696	0.0197			
0.1780	0.0197			
Gasoline Light Trucks (Vans, Pickup Trucks, SUVs)				
0.0163	0.0066			
0.0148	0.0157			
0.0452	0.0871			
0.0776	0.1056			
0.1516	0.0639			
0.1908	0.0218			
0.2024	0.0220			
Gasoline Medium and Heavy-Duty Vehicles Trucks and Busses				
0.0333	0.0134			
0.0303	0.0320			
0.0655	0.1750			
0.2630	0.2135			
	0.0173 0.0105 0.0271 0.0704 0.1355 0.1696 0.1780 0.0163 0.0148 0.0452 0.0776 0.1516 0.1908 0.2024 ses 0.0333 0.0303 0.0655			

Oxidation Catalyst	0.2356	0.1317		
Non-Catalyst Control	0.4181	0.0473		
Uncontrolled	0.4604	0.0497		
Diesel Passenger Cars				
Advanced	0.0005	0.0010		
Moderate	0.0005	0.0010		
Uncontrolled	0.0006	0.0012		
Diesel Light Trucks				
Advanced	0.0010	0.0015		
Moderate	0.0009	0.0014		
Uncontrolled	0.0011	0.0017		
Diesel Medium and Heavy-Duty Vehicles (Trucks and Busses)				
Aftertreatment	0.0051	0.0048		
Advanced	0.0051	0.0048		
Moderate	0.0051	0.0048		
Uncontrolled	0.0051	0.0048		
MotorcyclesMotorcycles				
Non-Catalyst Control	0.0672	0.0069		
Uncontrolled	0.0899	0.0087		
Source: US Inventory of Greenhouse Gas Emissions a	and Sinks 1990-2016 (April 2018) Ar	nnex 3, Table A-107.		

Table 13.5 U.S. Default Factors for Calculating ${\rm CH_4}$ and ${\rm N_2O}$ Emissions from Highway Vehicles by Model Year

Vehicle Type and Year	CH ₄ (g / mi)	N ₂ O (g / mi)
Gasoline Passenger Cars		
Model Years 1984-1993	0.0704	0.0647
Model Year 1994	0.0531	0.0560
Model Year 1995	0.0358	0.0473
Model Year 1996	0.0272	0.0426
Model Year 1997	0.0268	0.0422
Model Year 1998	0.0249	0.0393
Model Year 1999	0.0216	0.0337
Model Year 2000	0.0178	0.0273
Model Year 2001	0.0110	0.0158
Model Year 2002	0.0107	0.0153
Model Year 2003	0.0114	0.0135
Model Year 2004	0.0145	0.0083
Model Year 2005	0.0147	0.0079
Model Year 2006	0.0161	0.0057
Model Year 2007	0.0170	0.0041
Model Year 2008	0.0172	0.0038
Model Year 2009	0.0173	0.0036
Model Year 2010	0.0173	0.0036
Model Year 2011	0.0173	0.0036
Model Year 2012	0.0173	0.0036

Gasoline Medium and Heavy-Duty Trucks and Busses		
Model Year 2014	0.0163	0.0066
Model Year 2013	0.0163	0.0066
Model Year 2012	0.0163	0.0066
Model Year 2011	0.0163	0.0066
Model Year 2010	0.0163	0.0066
Model Year 2009	0.0163	0.0066
Model Year 2008	0.0163	0.0066
Model Year 2007	0.0161	0.0079
Model Year 2006	0.0159	0.0089
Model Year 2005	0.0157	0.0101
Model Year 2004	0.0152	0.0132
Model Year 2003	0.0155	0.0114
Model Year 2002	0.0178	0.0228
Model Year 2001	0.0151	0.0164
Model Year 2000	0.0346	0.0621
Model Year 1999	0.0321	0.0564
Model Year 1998	0.0391	0.0728
Model Year 1997	0.0452	0.0871
Model Year 1996	0.0452	0.0871
Model Year 1995	0.0517	0.0908
Model Year 1994	0.0646	0.0982
Model Years 1987-1993	0.0813	0.1035
Gasoline Light Trucks (Vans, Pickup Trucks, SUVs)		
Model Year 2014	0.0173	0.0036
Model Year 2013	0.0173	0.0036

Model Years 1985-1986	0.4090	0.0515
Model Year 1987	0.3675	0.0849
Model Years 1988-1989	0.3492	0.0933
Model Years 1990-1995	0.3246	0.1142
Model Year 1996	0.1278	0.1680
Model Year 1997	0.0924	0.1726
Model Year 1998	0.0641	0.1693
Model Year 1999	0.0578	0.1435
Model Year 2000	0.0493	0.1092
Model Year 2001	0.0528	0.1235
Model Year 2002	0.0526	0.1307
Model Year 2003	0.0533	0.1240
Model Year 2004	0.0341	0.0285
Model Year 2005	0.0326	0.0177
Model Year 2006	0.0327	0.0171
Model Year 2007	0.0330	0.0153
Model Year 2008	0.0333	0.0134
Model Year 2009	0.0333	0.0134
Model Year 2010	0.0333	0.0134
Model Year 2011	0.0333	0.0134
Model Year 2012	0.0333	0.0134
Model Year 2013	0.0333	0.0134
Model Year 2014	0.0333	0.0134
Diesel Passenger Cars		
Model Years 1960-1982	0.0006	0.0012
Model Years 1983-2014	0.0005	0.0010

Diesel Light Duty Trucks				
Model Years 1960-1982	0.0011	0.0017		
Model Years 1983-1995	0.0009	0.0014		
Model Years 1996-2014	0.0010	0.0015		
Diesel Medium and Heavy-Duty Trucks and Busses				
All Model Years 1960-2014	0.0051	0.0048		

Source: US Inventory of Greenhouse Gas Emissions and Sinks 1990-2016 (April 2018) Annex 3, Tables A-103 - A-107.

Table 13.6 U.S. Default Factors for Calculating CH₄ and N₂O Emissions from Alternative Fuel Vehicles

Vehicle Type	CH ₄ (g / mi)	N ₂ O (g / mi)
Light Duty Vehicles		
Methanol	0.018	0.067
CNG	0.737	0.050
LPG	0.037	0.067
Ethanol	0.055	0.067
Biodiesel (BD20)	5E-04	1E-03
Medium and Heavy Duty Vehicles		
Methanol	0.066	0.175
CNG	1.966	0.175
LNG	1.966	0.175
LPG	0.066	0.175
Ethanol	0.197	0.175
Biodiesel (BD20)	0.005	0.005
Buses		
Methanol	0.066	0.175
CNG	1.966	0.175
Ethanol	0.197	0.175
Biodiesel (BD20)	0.005	0.005

Table 13.7 U.S. Default Factors for Calculating ${\rm CH_4}$ and ${\rm N_2O}$ Emissions from Non-Highway Vehicles

Vehicle Type / Fuel Type	CH ₄ (g / gallon)	N ₂ O (g / gallon)
Ships and Boats		
Residual Fuel Oil	0.11	0.60
Diesel Fuel	0.06	0.45
Gasoline	0.64	0.22
Locomotives		
Diesel Fuel	0.80	0.26
Agricultural Equipment		
Gasoline	1.26	0.22
Diesel Fuel	1.44	0.26
Construction/Mining Equipment		
Gasoline	0.50	0.22
Diesel Fuel	0.58	0.26
Other Non-Highway		
Snowmobiles (Gasoline)	0.50	0.22
Other Recreational (Gasoline)	0.50	0.22
Other Small Utility (Gasoline)	0.50	0.22
Other Large Utility (Gasoline)	0.50	0.22
Other Large Utility (Diesel)	0.58	0.26
Aircraft		
Jet Fuel		0.31
Aviation Gasoline	7.05	0.11

Source: US Inventory of Greenhouse Gas Emissions and Sinks 1990-2016 (April 2018) Annex 3, Table A-109. Original factors converted to g/gallon fuel using fuel density defaults from U.S. EPA Climate Leaders, Mobile Combustion Guidance (2008) Table A-6.

Table 13.8 Default Factors for Calculating LTO Emissions for Typical Aircraft

Aircraft	CO ₂ (kg / LTO)	CH ₄ (kg / LTO)	N ₂ O (kg / LTO)
A300	5450	0.12	0.2
A310	4760	0.63	0.2
A319	2310	0.06	0.1
A320	2440	0.06	0.1
A321	3020	0.14	0.1
A330-200/300	7050	0.13	0.2
A340-200	5890	0.42	0.2
A340-300	6380	0.39	0.2
A340-500/600	10660	0.01	0.3
707	5890	9.75	0.2
717	2140	0.01	0.1
727-100	3970	0.69	0.1
727-200	4610	0.81	0.1
737-100/200	2740	0.45	0.1
737-300/400/500	2480	0.08	0.1
737-600	2280	0.10	0.1
737-700	2460	0.09	0.1
737-800/900	2780	0.07	0.1
747-100	10140	4.84	0.3
747-200	11370	1.82	0.4
747-300	11080	0.27	0.4

747-400	10240	0.22	0.3
757-200	4320	0.02	0.1
757-300	4630	0.01	0.1
767-200	4620	0.33	0.1
767-300	5610	0.12	0.2
767-400	5520	0.10	0.2
777-200/300	8100	0.07	0.3
DC-10	7290	0.24	0.2
DC-8-50/60/70	5360	0.15	0.2
DC-9	2650	0.46	0.1
L-1011	7300	7.40	0.2
MD-11	7290	0.24	0.2
MD-80	3180	0.19	0.1
MD-90	2760	0.01	0.1
TU-134	2930	1.80	0.1
TU-154-M	5960	1.32	0.2
TU-154-B	7030	11.90	0.2
RJ-RJ85	1910	0.13	0.1
BAE 146	1800	0.14	0.1
CRJ-100ER	1060	0.06	0.03
ERJ-145	990	0.06	0.03
Fokker 100/70/28	2390	0.14	0.1
BAC111	2520	0.15	0.1
Dornier 328 Jet	870	0.06	0.03
Gulfstream IV	2160	0.14	0.1
Gulfstream V	1890	0.03	0.1
	1	ļ	l

Yak-42M	2880	0.25	0.1
Cessna 525/560	1070	0.33	0.03
Beech King Air	230	0.06	0.01
DHC8-100	640	0.00	0.02
ATR72-500	620	0.03	0.02

Source: IPCC, Guidelines for National Greenhouse Gas Inventories (2006), Volume 2: Energy, Chapter 3: Mobile Combustion, Table 3.6.9. LTO=landing/take-off.

Table 13.9 Factors for Estimating CH4 and N2O Emissions from Gasoline and Diesel Vehicles (SEM)

The Climate Registry

GHG	MT GHG per MT of CO ₂	
CH₄	2.70E-05	
N ₂ O	4.42E-05	

Source: Derived from US Inventory of Greenhouse Gas Emissions and Sinks 1990-2016 (April 2018), Table 2-13. Only includes data for passenger cars and light-duty trucks.

Table 14.1 U.S. Default Factors for Calculating Emissions from Grid Electricity by eGRID Subregion

The C	limate	Registr
-------	--------	---------

eGRID 2016	eGRID 2016 Subregion	2016 Emission Rates		
Subregion	Name	(lbs CO ₂ / MWh)	(lbs CH ₄ / GWh)	(lbs N ₂ O / GWh)
AKGD	ASCC Alaska Grid	1072.30	77.00	11.00
AKMS	ASCC Miscellaneous	503.10	23.00	4.00
AZNM	WECC Southwest	1043.60	79.00	12.00
CAMX	WECC California	527.90	33.00	4.00
ERCT	ERCOT All	1009.20	76.00	11.00
FRCC	FRCC All	1011.70	75.00	10.00
HIMS	HICC Miscellaneous	1152.00	95.00	15.00
HIOA	HICC Oahu	1662.90	181.00	28.00
MROE	MRO East	1668.20	156.00	26.00
MROW	MRO West	1238.80	115.00	20.00
NEWE	NPCC New England	558.20	90.00	12.00
NWPP	WECC Northwest	651.2	61.00	9.00

NYCW	NPCC NYC/Westchester	635.80	22.00	3.00
NYLI	NPCC Long Island	1178.30	126.00	16.00
NYUP	NPCC Upstate NY	294.70	21.00	3.00
RFCE	RFC East	758.20	50.00	9.00
RFCM	RFC Michigan	1272.00	67.00	18.00
RFCW	RFC West	1243.40	108.00	19.00
RMPA	WECC Rockies	1367.80	137.00	20.00
SPNO	SPP North	1412.40	149.00	22.00
SPSO	SPP South	1248.30	95.00	15.00
SRMV	SERC Mississippi Valley	839.90	50.00	7.00
SRMW	SERC Midwest	1612.60	82.00	26.00
SRSO	SERC South	1089.40	87.00	13.00
SRTV	SERC Tennessee Valley	1185.40	93.00	17.00
SRVC	SERC Virginia/Carolina	805.30	67.00	11.00
US Territories (not an eGRID Region)*	n/a	1891.57	75.91	17.13

Source: U.S. EPA Year 2016 eGRID 12th edition Version 1.0 (February 2018: eGRID subregion annual total output emission rates). Except * from Department of Energy Guidance on Voluntary Reporting of Greenhouse Gases, Form EIA-1605 (2007), Appendix F, Electricity Emission Factors, Table F-1.

Table 14.2 Canadian Emission Factors for Grid Electricity by Province

	2014 Emission Rates			
Province	g CO ₂ / kWh	g CH ₄ / kWh	g N ₂ O / kWh	
Alberta	740	0.04	0.01	
British Columbia	14.7	3E-3	8E-4	
Manitoba	3	3E-4	1E-4	
New Brunswick	280	0.02	4E-3	
Newfoundland and Labrador	30	4E-4	1E-3	
Northwest Territories	240	0.01	0.03	
Nova Scotia	680	0.03	0.01	
Ontario	38	0.01	1E-3	
Prince Edward Island	7	1E-4	1E-4	
Quebec	1.4	1E-4	1E-4	
Saskatchewan	750	0.04	0.02	
Yukon	38	2E-3	0.01	

Nunavut	750	0E+0	0E+0
Source: Environment Canada, National Inventory Report, 1990-2015: Greenhouse Gas Sources and Sinks in Canada (April 2017) Annex 13: Emission Factors, Table A13-2 - A13-13.			

Table 14.3 Mexican Default Factors for Calculating Emissions from Grid Electricity

The Climate Registry

Year	Emission Rates (kg CO ₂ e / MWh)
2000	604.1
2001	625
2002	600
2003	571.2
2004	549.6
2005	550.1

Source: Asociación de Técnicos y Profesionistas en Aplicación Energética (ATPAE), 2003, Metodologías para calcular el Coeficiente de Emisión Adecuado para Determinar las Reducciones de GEI Atribuibles a Proyectos de EE/ER – Justificación para la selección de la Metodología, versión final 4.1 (junio de 2003), proyecto auspiciado por la Agencia Internacional de Estados Unidos para el Desarrollo Internacional, México, D.F., México. Factors are a national average of all the power plants operating and delivering electricity to the National Electric System and do not include transmission and distribution losses. Factors for 2002 to 2005 were not calculated with actual data but instead estimated using the Electricity Outlooks published by Mexico's Ministry of Energy.

Note: These emission rates are in units of CO_2 equivalent (CO_2 e) and include emissions of CO_2 , CH_4 , and N_2O .

Table 14.4 Non-North America Default Factors for Calculating Emissions from Electricity Generation

Region / Country / Economy	2010 Emission Rates g CO ₂ / kWh	2011 Emission Rates g CO ₂ / kWh
Albania	2	7
Algeria	548	556
Angola	440	390
Argentina	367	390
Armenia	92	123
Australia	841	823
Austria	188	215
Azerbaijan	439	455
Bahrain	640	601
Bangladesh	593	564
Belarus	449	441
Belgium	220	196
Benin	720	722
Bolivia	423	433
Bosnia and Herzegovina	723	794

Botswana	2517	1787
Brazil	87	68
Brunei Darussalam	717	717
Bulgaria	535	591
Cambodia	804	793
Cameroon	207	200
Chile	410	441
Chinese Taipei	624	601
Colombia	176	108
Congo	142	230
Costa Rica	56	64
Côte d'Ivoire	445	437
Croatia	236	334
Cuba	1012	955
Cyprus	697	732
Czech Republic	589	591
Dem. Rep. of Congo	3	3
Denmark	360	315
Dominican Republic	589	743
		-

DPR of Korea	465	475
Ecuador	389	345
Egypt	450	457
El Salvador	223	243
Eritrea	646	849
Estonia	1014	1086
Ethiopia	7	7
Finland	229	191
France	79	61
FYR of Macedonia	685	811
Gabon	383	378
Georgia	69	102
Germany	461	477
Ghana	259	215
Gibraltar	762	752
Greece	718	720
Guatemala	286	286
Haiti	538	382
Honduras	332	371
•	•	-

Hong Kong, China	723	768
Hungary	317	317
Iceland	0	n/a
India	912	856
Indonesia	709	755
Iraq	1003	903
Ireland	458	427
Islamic Rep. of Iran	565	578
Israel	689	727
Italy	406	402
Jamaica	711	620
Japan	416	497
Jordan	566	637
Kazakhstan	403	431
Kenya	274	294
Korea	533	545
Kosovo	1287	1109
Kuwait	842	787
Kyrgyzstan	59	45

Latvia	120	133
Lebanon	709	707
Libya	885	636
Lithuania	337	270
Luxembourg	410	387
Malaysia	727	688
Malta	872	862
Mongolia	949	837
Montenegro	405	653
Morocco	718	729
Mozambique	1	1
Myanmar	262	255
Namibia	197	24
Nepal	1	1
Netherlands	415	404
Netherlands Antilles	707	708
New Zealand	150	141
Nicaragua	460	471
Nigeria	405	433

Norway	17	13
Oman	794	741
Pakistan	425	409
Panama	298	357
Paraguay	n/a	n/a
People's Rep. of China	766	764
Peru	289	297
Philippines	481	492
Poland	781	780
Portugal	255	303
Qatar	494	490
Republic of Moldova	517	486
Romania	413	499
Russian Federation	384	437
Saudi Arabia	737	754
Senegal	637	689
Serbia	718	784
Singapore	499	500
Slovak Republic	197	200

Slovenia	325	338
South Africa	927	869
Spain	238	291
Sri Lanka	379	469
Sudan	344	204
Sweden	30	17
Switzerland	27	30
Syrian Arab Republic	594	602
Tajikistan	14	12
Thailand	513	522
Togo	195	206
Trinidad and Tobago	700	506
Tunisia	463	455
Turkey	460	472
Turkmenistan	954	983
Ukraine	392	450
United Arab Emirates	598	600
United Kingdom	457	441
United Rep. of Tanzania	329	288
5	•	-

Uruguay	81	197
Uzbekistan	550	559
Venezuela	264	234
Vietnam	432	429
Yemen	655	633
Zambia	3	3
Zimbabwe	660	358

Source: 2010 emission rates from CO_2 Emissions from Fuel Combustion Highlights (2012) © OECD/IEA, 2012, CO_2 emissions $per \ kWh \ from \ electricity \ and \ heat \ generation. \ 2011 \ emission \ rates \ from \ CO_2 \ \textit{Emissions from Fuel Combustion Highlights} \ (2013)$ © OECD/IEA, 2013, CO₂ emissions per kWh from electricity and heat generation. Values were converted from tonnes/tWh to g/kWh using 1 tonne = 1,000,000 g and 1 tWh = 1,000,000,000 kWh. n/a=data not available.

Note: Emission rates more recent than 2011 are not publicly available, but are available for purchase from the International

Energy Agency.

Table 14.5 Average Cost per Kilowatt Hour by U.S. State

State	2016 Average Retail Price Residential (¢/kWh)	2016 Average Retail Price Commercial (¢/kWh)	2016 Average Retail Price Industrial (¢/kWh)
AK Total	19.83	17.56	15.22
AL Total	11.99	11.11	6.04
AR Total	9.92	8.23	6.08
AZ Total	12.15	10.41	6.07
CA Total	17.39	15.07	11.92
CO Total	12.07	9.60	7.35
CT Total	20.01	15.75	12.81
DC Total	12.29	11.72	8.80
DE Total	13.42	10.07	8.11
FL Total	10.98	8.90	7.69
GA Total	11.50	9.81	5.84
HI Total	27.47	24.64	20.69
IA Total	11.94	9.17	6.05
ID Total	9.95	7.76	6.51
IL Total	12.54	9.02	6.51

IN Total	11.79	10.01	6.97
KS Total	13.06	10.47	7.49
KY Total	10.49	9.57	5.67
LA Total	9.34	8.59	5.08
MA Total	19.00	15.60	13.38
MD Total	14.23	10.99	7.89
ME Total	15.83	12.08	8.96
MI Total	15.22	10.64	6.91
MN Total	12.67	9.86	7.37
MO Total	11.21	9.26	7.12
MS Total	10.47	9.57	5.79
MT Total	10.94	10.19	5.06
NC Total	11.03	8.62	6.31
ND Total	10.16	9.15	7.98
NE Total	10.84	8.80	7.69
NH Total	18.38	14.43	12.34
NJ Total	15.72	12.26	10.16
NM Total	12.03	9.75	5.84
NV Total	11.41	7.93	5.88

NY Total	17.58	14.45	6.03
OH Total	12.47	9.97	6.91
OK Total	10.20	7.66	5.02
OR Total	10.66	8.91	6.05
PA Total	13.86	9.22	6.92
RI Total	18.62	14.88	13.48
SC Total	12.65	10.28	6.09
SD Total	11.47	9.58	7.57
TN Total	10.41	10.19	5.68
TX Total	10.99	8.13	5.33
UT Total	11.02	8.75	6.33
VA Total	11.36	7.93	6.56
VT Total	17.37	14.54	10.23
WA Total	9.48	8.43	4.43
WI Total	14.07	10.77	7.49
WV Total	11.44	9.35	6.57
WY Total	11.13	9.40	6.92

Source: Energy Information Administration: Electric Power Annual, Table 2.10: Average Price of Electricity to Ultimate Customers by End-Use Sector, by State, in cents per kilowatt-hour (December 2017).

Table 14.6 Canadian Energy Intensity by Building Activity

The Climate Registry

Principal Building Activity Annual Energy Intensity	GJ / m ²
Office building (non-medical)	1.12
Medical office building	1.28
Primary or secondary school	0.88
Assisted daily care or residential care	1.30
Warehouse	0.82
Hotel, motel, or lodge	1.24
Hospital	2.45
Food or beverage store	1.88
Non-food retail store	1.12
Other activities or funactions	1.0

Source: Statistics Canada, Survey of Commercial and Institutional Energy Use, Table 2: Energy intensity by building type, 2014 (September, 2016). From 2009 Survey of Commercial and Institutional Energy Use, energy intensity values in Canada include both electricity (47%) and natural gas (53%) consumption (a small subset of other fuel types is included in the natural gas portion). Members should apportion their consumption totals between activities accordingly.

Table 14.7 U.S. Electricity Intensity by Building Activity

Principal Building Activity Annual Electricity Intensity	Electricity Intensity (kWh / ft ²)
Education	11.0
Food Sales	48.7
Food Service	44.9
Health Care	25.8
Inpatient	31.0
Outpatient	18.7
Lodging	15.3
Retail (other than mall)	15.2
Office	15.9
Public Assembly	14.5
Public Order and Safety	14.9
Religious Worship	5.2
Service	8.3
Warehouse and Storage	6.6
Other	28.3

Vacant	4.5
Enclosed and strip malls	21.1

Source: 2012 Commercial Buildings Energy Consumption Survey, Energy Information Administration (http://www.eia.doe.gov/emeu/cbecs/). Table E6.

Table 14.8 Utility-Specific CO₂ Emission Factors for Purchased Electricity in the United States

Utility	Factor Type	CO ₂ Emission Factor lbs / MWh
2005		
Northern States Power Company (Xcel Energy)	System Average	1236.79
Public Service Company of Colorado (Xcel Energy)	System Average	1847.47
Southwestern Public Service Company (Xcel Energy)	System Average	1693.15
2006		
Northern States Power Company (Xcel Energy)	System Average	1225.77
Public Service Company of Colorado (Xcel Energy)	System Average	1834.24
Southwestern Public Service Company (Xcel Energy)	System Average	1615.99
2007		
Northern States Power Company (Xcel Energy)	System Average	1234.59
Public Service Company of Colorado (Xcel Energy)	System Average	1752.67
Southwestern Public Service Company (Xcel Energy)	System Average	1638.03
2009		
Bonneville Power Administration	System Average	93.17
	Retail Power	1036.17
Modesto Irrigation District	Special Power	0.00
	Wholesale Power	2048.09
Northern States Power Company (Xcel Energy)	System Average	1104.51
Pacific Gas & Electric	System Average	575.38
Public Service Company of Colorado (Xcel Energy)	System Average	1611.58
Southwestern Public Service Company (Xcel Energy)	System Average	1574.10
2010		
Bonneville Power Administration	System Average	134.70
City of Vernon, Light and Power	System Average	775.83
	Retail Power	942.99
Modesto Irrigation District	Special Power	0.00
	Wholesale Power	2026.12
Newmont Nevada Energy Investment	Wholesale Power	2055.79

Utility	Factor Type	CO ₂ Emission Factor lbs / MWh
Northern States Power Company (Xcel Energy)	System Average	1033.97
Pacific Gas & Electric	System Average	444.64
Public Service Company of Colorado (Xcel Energy)	System Average	1660.08
	Retail Power	526.47
Sacramento Municipal Utility District	Special Power	0.00
	Wholesale Power	828.58
	Retail Power	45.57
Seattle City Light	Special Power	0.00
	Wholesale Power	537.64
Southwestern Public Service Company (Xcel Energy)	System Average	1558.67
2011		
Bonneville Power Administration	System Average	47.86
City of Vernon, Light and Power	System Average	731.49
Northern States Power Company (Xcel Energy)	System Average	1071.45
Pacific Gas & Electric	System Average	392.87
Public Service Company of Colorado (Xcel Energy)	System Average	1618.19
	Retail Power	429.29
Sacramento Municipal Utility District	Special Power	0.00
	Wholesale Power	795.14
	Retail Power	13.77
Seattle City Light	Special Power	0.00
	Wholesale Power	218.75
Southwestern Public Service Company (Xcel Energy)	System Average	1472.69
2012		
Bonneville Power Administration	System Average	36.91
City of Vernon, Light and Power	System Average	765.97
	Wholesale Power	658.73
Metropolitan Water District of Southern California	Self-consumed Power	157.87
Northern States Power Company (Xcel Energy)	System Average	930.35
Pacific Gas & Electric	System Average	444.62

Utility	Factor Type	CO ₂ Emission Factor lbs / MWh
Public Service Company of Colorado (Xcel Energy)	System Average	1547.64
	Retail Power	521.73
Sacramento Municipal Utility District	Special Power	0.00
	Wholesale Power	799.77
	Retail Power	25.62
Seattle City Light	Special Power	0.00
	Wholesale Power	362.85
Southwestern Public Service Company (Xcel Energy)	System Average	1558.67
2013		
Bonneville Power Administration	System Average	43.65
City of Palo Alto	System Average	0.00
City of Vernon, Light and Power	System Average	760.86
	Wholesale Power	610.82
Metropolitan Water District of Southern California	Self-consumed Power	239.10
Northern States Power Company (Xcel Energy)	System Average	950.19
Pacific Gas & Electric (corrected)	System Average	427.27
Public Service Company of Colorado (Xcel Energy)	System Average	1371.27
	Retail Power	559.86
Sacrameto Municipal Utility District	Special Power	0.00
	Wholesale Power	816.02
	Retail Power	33.23
Seattle City Light	Special Power	0.00
	Wholesale Power	491.61
Southwestern Public Service Company (Xcel Energy)	System Average	1512.37
2014		
Bonneville Power Administration	System Average	36.82
City of Palo Alto	System Average	0.00
	Wholesale Power	610.82
Metropolitan Water District of Southern California	Self-consumed Power	458.55
Northern States Power Company (Xcel Energy)	System Average	961.21
Pacific Gas & Electric	System Average	434.92
Public Service Company of Colorado (Xcel Energy)	System Average	1472.69

Utility	Factor Type	CO ₂ Emission Factor lbs / MWh	
	Retail Power	561.08	
Sacrameto Municipal Utility District	Special Power	0.00	
	Wholesale Power	803.58	
	Retail Power	20.08	
Seattle City Light	Special Power	0.00	
	Wholesale Power	376.25	
Sonoma Clean Power	Special Power - EverGreen	51.00	
Sonoma clean Fower	Special Power - CleanStart	224.38	
Southwestern Public Service Company (Xcel Energy)	System Average	1485.91	
2015			
Bonneville Power Administration	System Average	36.44	
City of Palo Alto	System Average	0.00	
Imperial Irrigation District	System Average	1037.52	
	Wholesale Power	650.32	
Metropolitan Water District of Southern California	Self-consumed Power	358.60	
Northern States Power Company (Xcel Energy)	System Average	877.44	
Pacific Gas & Electric	System Average	404.51	
Public Service Company of Colorado (Xcel Energy)	System Average	1468.28	
	Retail Power	590.84	
Sacrameto Municipal Utility District	Special Power	0.00	
	Wholesale Power	667.34	
	Retail Power	52.44	
Seattle City Light	Special Power	0.00	
	Wholesale Power	319.31	
Sonoma Clean Power	Special Power - EverGreen	57.00	
Soliolila Cleali Powei	Special Power - CleanStart	217.57	
Southwestern Public Service Company (Xcel Energy)	System Average	1375.68	
University of California, Office of the President	System Average	719.06	

Utility	Factor Type	CO ₂ Emission Factor lbs / MWh	
2016			
	Wholesale Power	568.65	
Metropolitan Water District of Southern California	Self-consumed Power	239.56	
Northern States Power Company (Xcel Energy)	System Average	817.91	
Pacific Gas & Electric	System Average	293.67	
Public Service Company of Colorado (Xcel Energy)	System Average	1342.61	
Sonoma Clean Power	Special Power - EverGreen	57.00	
Jonoma Clean Fower	Special Power - CleanStart	97.76	
Southwestern Public Service Company (Xcel Energy)	System Average	1287.50	

Source: These emission factors have been reported by TCR members using the Electric Power Sector (EPS) Protocol and the option to develop utility-specific electricity delivery metrics. TCR members who are customers of these utilities can use these verified emission factors when quantifying market-based Scope 2 emissions. Utility-specific emission factors have been converted from tonnes/MWh to lbs/MWh in order to streamline reporting in CRIS.

Note: The emission factors in this table are updated once per year based on the verified emission factors available at the time of publication. More recent utility-specific emission factors may be available on TCR's website: https://www.theclimateregistry.org/our-members/cris-public-reports/.

Table 16.2 Default Factors for for Calculating Emissions from Refrigeration/Air Conditioning Equipment

The Climate Registry

Type of Equipment	Refrigerant Capacity (kg)	Installation Emission Factor k (% of capacity)	Operating Emission Factor x (% of capacity/ year)	Refrigerant Remaining at Disposal y (% of capacity)	Recovery Efficiency z (% of remaining)
Domestic Refrigeration	0.05 - 0.5	1%	0.50%	80%	70%
Stand-alone Commercial Applications	0.2 - 6	- 6 3% 15%		80%	70%
Medium & Large Commercial Refrigeration	50 - 2,000	3%	35%	100%	70%
Transport Refrigeration	3 - 8	1%	1% 50%		70%
Industrial Refrigeration including Food Processing and Cold Storage	od 10 -10,000 3%		25%	100%	90%
Chillers	10 - 2,000	1%	15%	100%	95%
Residential and Commercial A/C including Heat Pumps	0.5 - 100	1%	10%	80%	80%

Mobile Air Conditioning	0.5 – 1.5	0.50%	20%	50%	50%
----------------------------	-----------	-------	-----	-----	-----

Source: IPCC, Guidelines for National Greenhouse Gas Inventories (2006), Volume 3: Industrial Processes and Product Use, Table 7.9.

Note: Emission factors above are the most conservative of the range provided by the IPCC. The ranges in capacity are provided for reference. You should use the actual capacity of your equipment. If you do not know your actual capacity, you should use the high end of the range provided (e.g., use 2,000 kg for chillers).

U.S. Default Factors for Calculating CO₂ Emissions from Geothermal Energy Production

The Climate Registry

Fuel Type	Carbon Content (Per Unit Energy)	CO ₂ Emission Factor (Per Unit Energy)	
Geothermal	kg C / MMBtu	kg CO ₂ / MMBtu	
Geothermal	2.05	7.52	

Source: US Inventory of Greenhouse Gas Emissions and Sinks 1990-2016 (April 2018) Annex 2, Table A-38.

Table B.1. Default Global Warming Potential Factors for Required Greenhouse Gases

The Climate Registry

Common Name	Formula	Chemical Name	SAR	TAR	AR4	AR5
Carbon dioxide	CO ₂		1	1	1	1
Methane	CH₄		21	23	25	28
Nitrous oxide	N ₂ O		310	296	298	265
Nitrogen trifluoride	NF ₃		n/a	10,800	17,200	16,100
Sulfur hexafluoride	SF ₆		23,900	22,200	22,800	23,500
Hydrofluorocarbon	s (HFCs)					
HFC-23 (R-23)	CHF ₃	trifluoromethane	11,700	12,000	14,800	12,400
HFC-32 (R-32)	CH ₂ F ₂	difluoromethane	650	550	675	677
HFC-41 (R-41)	CH ₃ F	fluoromethane	150	97	92	116
HFC-125 (R-125)	C ₂ HF ₅	pentafluoroethane	2,800	3,400	3,500	3,170
HFC-134 (R-134)	C ₂ H ₂ F ₄	1,1,2,2- tetrafluoroethane	1,000	1,100	1,100	1,120
HFC-134a (R-134a)	C ₂ H ₂ F ₄	1,1,1,2- tetrafluoroethane	1,300	1,300	1,430	1,300
HFC-143 (R-143)	C ₂ H ₃ F ₃	1,1,2-trifluoroethane	300	330	353	328

HFC-143a (R-143a)	C ₂ H ₃ F ₃	1,1,1-trifluoroethane	3,800	4,300	4,470	4,800
HFC-152 (R-152)	C ₂ H ₄ F ₂	1,2-difluoroethane	n/a	43	53	16
HFC-152a (R-152a)	C ₂ H ₄ F ₂	1,1-difluoroethane	140	120	124	138
HFC-161 (R-161)	C ₂ H ₅ F	fluoroethane	n/a	12	12	4
HFC-227ea (R-227ea)	C ₃ HF ₇	1,1,1,2,3,3,3- heptafluoropropane	2,900	3,500	3,220	3,350
HFC-236cb (R-236cb)	C ₃ H ₂ F ₆	1,1,1,2,2,3- hexafluoropropane	n/a	1,300	1,340	1,120
HFC-236ea (R-236ea)	C ₃ H ₂ F ₆	1,1,1,2,3,3- hexafluoropropane	n/a	1,200	1,370	1,330
HFC-236fa (R-236fa)	C ₃ H ₂ F ₆	1,1,1,3,3,3- hexafluoropropane	6,300	9,400	9,810	8,060
HFC-245ca (R-245ca)	C ₃ H ₃ F ₅	1,1,2,2,3- pentafluoropropane	560	640	693	716
HFC-245fa (R-245fa)	C ₃ H ₃ F ₅	1,1,1,3,3- pentafluoropropane	n/a	950	1,030	858
HFC-365mfc	C ₄ H ₅ F ₅	1,1,1,3,3- pentafluorobutane	n/a	890	794	804
HFC-43-10mee (R- 4310)	C ₅ H ₂ F ₁₀	1,1,1,2,3,4,4,5,5,5- decafluoropentane	1,300	1,500	1,640	1,650
Perfluorocarbons (F	PFCs)					
PFC-14 (Perfluoromethane)	CF ₄	tetrafluoromethane	6,500	5,700	7,390	6,630
PFC-116 (Perfluoroethane)	C ₂ F ₆	hexafluoroethane	9,200	11,900	12,200	11,100
PFC-218 (Perfluoropropane)	C ₃ F ₈	octafluoropropane	7,000	8,600	8,830	8,900
PFC-318 (Perfluorocyclobutane)	c-C ₄ F ₈	octafluorocyclobutane	8,700	10,000	10,300	9,540

PFC-3-1-10 (Perfluorobutane)	C ₄ F ₁₀	decafluorobutane	7,000	8,600	8,860	9,200
PFC-4-1-12 (Perfluoropentane)	C ₅ F ₁₂	dodecafluoropentane	n/a	8,900	9,160	8,550
PFC-5-1-14 (Perfluorohexane)	C ₆ F ₁₄	tetradecafluorohexane	7,400	9,000	9,300	7,910
PFC-9-1-18 (Perfluorodecalin)	C ₁₀ F ₁₈		n/a	n/a	>7,500	7,190

Source: Intergovernmental Panel on Climate Change (IPCC) Second Assessment Report (SAR) published in 1995, Third Assessment Report (TAR) published in 2001, Fourth Assessment Report (AR4) published in 2007, and Fifth Assessment Report published in 2013. All defaults 100-year GWP values. For any defaults provided as a range, use exact value provided for the purpose of reporting to TCR. n/a=data not available.

Note: Complete reporters must include emissions of all Kyoto-defined GHGs (including all HFCs and PFCs) in inventory reports. If HFCs or PFCs are emitted that are not listed above, complete reporters must use industry best practices to calculate CO_2 e from those gases.

Table B.2. Default Global Warming Potential Factors for Refrigerant Blends

The Climate Registry

Refrigerant Blend	Gas	SAR	TAR	AR4	AR5
R-401A	HFC	18.2	15.6	16.12	17.94
N-401A	TIFO	10.2	15.0	10.12	17.94
R-401B	HFC	15	13	14	15
R-401C	HFC	21	18	18.6	20.7
R-402A	HFC	1680	2040	2100	1902
R-402B	HFC	1064	1292	1330	1205
R-403A	PFC	1400	1720	1766	1780
R-403B	PFC	2730	3354	3444	3471
R-404A	HFC	3260	3784	3922	3943
R-407A	HFC	1770	1990	2107	1923
R-407B	HFC	2285	2695	2804	2547
R-407C	HFC	1526	1653	1774	1624
R-407D	HFC	1428	1503	1627	1487
R-407E	HFC	1363	1428	1552	1425
R-407F	HFC	1555	1705	1825	1674
R-408A	HFC	1944	2216	2301	2430
R-410A	HFC	1725	1975	2088	1924

R-410B	HFC	1833	2118	2229	2048
R-411A	HFC	15	13	14	15
R-411B	HFC	4.2	3.6	3.72	4.14
R-412A	PFC	350	430	442	445
R-415A	HFC	25.2	21.6	22.32	24.84
R-415B	HFC	105	90	93	104
R-416A	HFC	767	767	843.7	767
R-417A	HFC	1955	2234	2346	2127
R-417B	HFC	2450	2924	3027	2742
R-417C	HFC	1570	1687	1809	1643
R-418A	HFC	3.5	3	3.1	3.45
R-419A	HFC	2403	2865	2967	2688
R-419B	HFC	1982	2273	2384	2161
R-420A	HFC	1144	1144	1258	1144
R-421A	HFC	2170	2518	2631	2385
R-421B	HFC	2575	3085	3190	2890
R-422A	HFC	2532	3043	3143	2847
R-422B	HFC	2086	2416	2526	2290
R-422C	HFC	2491	2983	3085	2794
R-422D	HFC	2232	2623	2729	2473

R-422E	HFC	2135	2483	2592	2350
R-423A	HFC	2060	2345	2280	2274
R-424A	HFC	2025	2328	2440	2212
R-425A	HFC	1372	1425	1505	1431
R-426A	HFC	1352	1382	1508	1371
R-427A	HFC	1828	2013	2138	2024
R-428A	HFC	2930	3495	3607	3417
R-429A	HFC	14	12	12	14
R-430A	HFC	106.4	91.2	94.24	104.88
R-431A	HFC	41	35	36	40
R-434A	HFC	2662	3131	3245	3075
R-435A	HFC	28	24	25	28
R-437A	HFC	1567	1684	1805	1639
R-438A	HFC	1890	2151	2264	2059
R-439A	HFC	1641	1873	1983	1828
R-440A	HFC	158	139	144	156
R-442A	HFC	1609	1793	1888	1754
R-444A	HFC	85	72	87	88
R-444B	HFC	85	72	87	88
R-445A	HFC	117	117	128.7	117

R-446A	HFC	442	374	459	460
R-447A	HFC	540	493	582	571
R-447B	HFC	666	646	739	714
R-448A	HFC	1170	1300	1386	1273
R-449A	HFC	1184	1308	1396	1282
R-449B	HFC	1199	1320	1411	1296
R-449C	HFC	1067	1167	1250	1146
R-450A	HFC	546	546	600.6	546
R-451A	HFC	132.6	132.6	145.86	132.6
R-451B	HFC	145.6	145.6	160.16	145.6
R-452A	HFC	1724	2067	2139	1945
R-452B	HFC	632	607	697	675
R-452C	HFC	1789	2143	2219	2018
R-453A	HFC	1534	1664	1765	1636
R-454A	HFC	228	193	236	237
R-454B	HFC	448	379	465	466
R-454C	HFC	140	118	145	146
R-456A	HFC	624	618	684	626
R-457A	HFC	131	113	136	138
R-458A	HFC	1457	1576	1650	1564

R-500	HFC	37	31	32	36
R-503	HFC	4692	4812	5935	4972
R-504	HFC	313	265	325	326
R-507 or R-507A	HFC	3300	3850	3985	3985
R-509 or R-509A	PFC	3920	4816	4945	4984
R-512A	HFC	198	179	189.3	196.1
R-513A	HFC	572	572	629.2	572
R-513B	HFC	540	539.5	593	539.5
R-515A	HFC	348	420	386	402

Source: Refrigerant blend GWPs are calculated using a weighted average from the blend composition and the IPCC GWP values. The blend compositions are from ASHRAE Standard 34-2016. The GWP values are 100-year values from the Intergovernmental Panel on Climate Change (IPCC) Second Assessment Report (SAR) published in 1995, Third Assessment Report (TAR) published in 2001, Fourth Assessment Report (AR4) published in 2007, and Fifth Assessment Report (AR5) published in 2013.

Table B.3. Default Composition of Refrigerant Blends that Contain HFCs and PFCs

The Climate Registry

Blend	Constituents	Composition (%)	
R-405A	HCFC-22/HFC-152a/HCFC-142b/PFC-318	(45.0/7.0/5.5/42.5)	
R-413A	PFC-218/HFC-134a/HC-600a	(9.0/88.0/3.0)	
R-508A	HFC-23/PFC-116	(39.0/61.0)	
R-508B	HFC-23/PFC-116	(46.0/54.0)	

Source: 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 3, Table 7.8, page 7.44.