OTAY HILLS CONSTRUCTION AGGREGATE AND INERT DEBRIS ENGINEERED FILL OPERATION PROJECT

APPENDIX I

TRAFFIC IMPACT STUDY

for the

PUBLIC REVIEW DRAFT ENVIRONMENTAL IMPACT REPORT

PDS2004-3300-04-004 (MUP); PDS2004-3310-04-001 (RP); PDS2010-3813-10-002 (SPA); Log No. 04-190-04

JUNE 2020

Prepared for:

County of San Diego Planning & Development Services 5510 Overland Avenue, Suite 310 San Diego, California 92123

TRAFFIC IMPACT STUDY

For The

Otay Hills Project (P04-004, RP04-001)

Prepared For: The County of San Diego

Submitted To: EnviroMINE, Inc. 3511 Camino Del Rio South, Suite 403 San Diego, CA 92108

Prepared By:
Bill E Darnell, P.E. (RCE 22338)
Darnell & Associates, Inc.
4411 Mercury Street, Suite 207A
San Diego, CA 92141

Signature:

Date Signed: December 4, 2017

Original: December 4, 2017

No. 22338

Darnell & ASSOCIATES, INC.

TRANSPORTATION PLANNING & TRAFFIC ENGINEERING

December 4, 2017

Travis Jokerst EnviroMINE, Inc 3511 Camino Del Rio South, Suite 403 San Diego, CA 92108

Subject:

Traffic Impact Study for the Otay Hills Construction Aggregate and Inert Debris Engineered Fill Operation Project. Record ID: PDS204-3300-04-004 (MUP), PDS2004-3310-04-001 (RP); PDS2010-3813-10-002 (SPA), Environmental Log No.: 04-190-04 Project located at the end of Calzada de la Fuente in the Otay Mesa Area of the County of San Diego. APNs: 648-050-13 (por), 14(por); 648-080-13, 14(por); 648-040-39 (por); 40; 648-090-04 (por), Trust Account No.: 12-D-04-0032714

Dear Mr. Jokerst:

This report analyzes the traffic impacts associated with the proposed project on local roadway segments and intersections under the following conditions: Existing and Opening Day 2019 plus the project traffic generated by the implementation of Phase 4 of the project based on the maximum production scenarios for Phases 1 and 2 through Year 2040. The Year 2050 analysis will discuss trip generations of the proposed Otay Mesa Specific Plan Amendment to add 49.6 acres of Mixed Industrial add 216.7 acres of Conservation/Limited Use and decrease 266.3 acres of Rural Residential Land Uses resulting in a net increase of 2,328 daily vehicles to be added to the 2050 traffic forecasts.

If you have any questions, please feel free to contact this office.

Sincerely,

Darnell & Associates, Inc.

Bill E. Darnell, P.E. Firm Principal

RCE 22338

BED/jam

170404 OtayHill-Rpt-(Dec 2017)/ 12/17

PROFESSIONAL EVERETTE DANIER DE L'ERETTE DANIER DANIER DE L'ERETTE DANIER DE L'ERETTE DANIER DE L'ERETTE DANIER DANIER DE L'ERETTE DANIER DE L'ERETTE DANIER DE L'ERETTE DANIER DANI

D&A Ref. No: 170404

Date Signed 12/04/2017

TRAFFIC IMPACT STUDY

FOR

OTAY HILLS PROJECT (P04-004, RP04-001)

IN THE COUNTY OF SAN DIEGO

Submitted To:

EnviroMINE, Inc 3511 Camino Del Rio South, Suite 403 San Diego, CA 92108

Prepared by:

DARNELL & ASSOCIATES, INC

1144 Mercury Street, Suite 207A San Diego, California 92111 619-233-9373

December 4, 2017

170404 OtayHill-Rpt-(Dec 2017)

TABLE OF CONTENTS

SECTION I – INTRODUCTION	1
PROJECT DESCRIPTION	1
SANDAG/CALTRANS' PROJECTS	
EAST OTAY MESA BUSINESS PARK SPECIFIC PLAN	5
SCENARIOS STUDIED	6
LEVEL OF SERVICE	7
ANALYSIS METHODOLOGY	7
REPORT ORGANIZATION	7
TRIP GENERATION	
TRIP GENERATION FOR EAST OTAY MESA BUSINESS PARK SPECIFIC PLAN	
TRIP DISTRIBUTION/TRIP ASSIGNMENT	13
STUDY AREA	
SECTION III – EXISTING CONDITIONS	
EXISTING ROADWAY CHARACTERISTICS	17
ROADWAY SEGMENT DAILY TRAFFIC	22
INTERSECTION TRAFFIC COUNTS	
Existing – Roadway Segments	
Existing – Intersections	
SECTION IV – IMPACTS	
LEVELS OF SIGNIFICANCE STANDARDS	
City of San Diego	
County of San Diego	
Caltrans	
OPENING YEAR 2019 PLUS PROJECT LEVEL OF SERVICE CONDITIONS	
Opening Year 2019 Plus Project Phase 1 and 2 - Roadway Segments	
Opening Year 2019 Plus Project Phase 1 and 2 - Intersections	
SECTION V – YEAR 2050 CONDITIONS	
EAST OTAY MESA SPECIFIC PLAN AMENDMENT (EOMSPA)	
Circulation Network.	
Year 2050 Traffic Forecasts	
Year 2050 Analysis	
SECTION VI – PROJECT ACCESS	
SECTION VII – SUMMARY OF MITIGATION MEASURES	
TRANSPORTATION IMPACT FEE (TIF)	
DIRECT IMPACTS	
CUMULATIVE IMPACTS	
YEAR 2050 IMPACTS	
MITIGATION MEASURES	
FUTURE IMPACTS	
PROJECT ACCESS IMPROVEMENTS	
SECTION VIII – ALTERNATIVE PROJECT TRAFFIC ANALYSIS	
SECTION IX – SUMMARY OF FINDINGS AND CONCLUSIONS	50

LIST OF FIGURES

Figure 1 – Regional Location	2
Figure 2 – Otay Mesa Specific Plan Amendment Area Map	
Figure 3 – Project Site Plan	
Figure 4 – Project Traffic Trip Distribution	
Figure 5 – Phases 1&2 Project Traffic Volumes	
Figure 6 – Existing 2017 Traffic Volumes	
Figure 7 – Existing (2017/2019) Conditions	
Figure 8 – Opening Day 2019 Traffic Volumes	
Figure 9 – Opening Year 2019 Plus Phases 1&2 Traffic Volumes	
Figure 10 – Circulation Element.	
Figure 11 – Year 2050 Daily Traffic Volumes	
Figure 12 – Otay Hills SPA Year 2050 Additional Daily Traffic	
Figure 13 – Year 2050 Plus Project Traffic Volumes	
Figure 14 – Project Site Access Plan	
1 igure 14 – 1 roject one Access i taii	,
LIST OF TABLES	
Table 1: Change in Zoning District Acreages	
Table 2 - Level of Service Ranges	
Table 3 – Trip Generation Rates	
Table 4 – Estimation of Truck Trip Generation	
Table 5 – Trip Generation Calculations for Otay Hills	
Table 6 – Comparion of Trip Generations	
Table 7- Summary of Study Area Roadway Segments by Scenario	16
Table 8 – Summary of Study Area Intersections by Scenario	
Table 9 – Existing Conditions Roadway Segment Daily LOS Summary	
Table 10 – Existing Conditions Intersection LOS Summary	
Table 11– Existing Freeway Mainline Operations	
Table 12- Measures of Significant Project Impacts	
Table 13 – Measures of Significance on 2-Ln Hwys w/ Signalized Intersection	
Table 14 – Measures of Significance on 2-Ln Hwys w/ Signalized Intersection	
Table 15 – SANTEC/ITE Guidelines for Measures of Significant Project Impacts	
Segment Daily LOS Summary	
Table 17 – Opening Year 2019 + Project (Phases 1 & 2) Intersection LOS Summary – Maximum Productio	
Scenario	
Table 18 – Opening Year 2019 Plus P{roject Mainline Operations	
Table 19 – 2050 Segment Daily LOS Summary	
Table 20 – Project Alternatives Trip Generation Rates and Calculations Summary	
J	

LIST OF APPENDICES

APPENDIX A

- ➤ 24 Hour Machine Counts
- ➤ AM/PM Peak Hour Traffic Counts
- Excerpts from County of San Diego Public Road Standards
- > Excerpts from County's Guidelines for Determining Significance
- > Excerpts from Caltrans Guidelines for the Preparation of Traffic Impact Studies

APPENDIX B

- > Existing Synchro Analysis
- Existing + Project Phases 1&2 Conditions Synchro Analysis
- ➤ Existing + Project Phases 1-3 Conditions Synchro Analysis

APPENDIX C

- > Opening Year 2019 Conditions Synchro Analysis
- ➤ Opening Year 2019 + Project Phases 1&2 Conditions Synchro Analysis

APPENDIX D

- > Existing +Phases 1&2 Mitigated
- > Existing +Phases 1&3 Mitigated
- > Opening Year 2019 Mitigated
- > Opening Year 2019 +Phases 1&2 Mitigated

APPENDIX E

➤ SANDAG Series 12 Base Forecast Model for Otay Mesa 2050

APPENDIX F

➤ Project Alternatives Use Appendix M from the March 18, 2014 Report.

SECTION I – INTRODUCTION

PROJECT DESCRIPTION

The project proposes to develop a hard rock quarry located east of Alta Road at the end of Calzada De La Fuente in the County of San Diego. Figure 1 shows the regional location of the project. Figure 2 shows the proposed for the project Specific Plan Amendment Areas and Figure 3 shows the project site plan.

The project is a proposal to establish a mineral resource recovery operation and associated activities to create much needed construction aggregates and materials to serve the economy of San Diego County for an approximate 90±year period. The project is located within a 438-acre ownership with extractive operations proposed on 110 acres of the site. The balance of the 438-acre ownership would be placed in biological open space prior to aggregate recovery activities. Approximately 86-million tons of mineral resource would be extracted from the site and over 60 million tons of inert debris would be received over a 120± year period. Annual production amounts for the project are anticipated to be between 0.6 and 1.6 million tons of aggregate per year.

The proposed mineral resource recovery project would consist of site preparation for the processing plant equipment and a phased extraction and backfilling operation. Ongoing backfilling of the site during the open pit extraction phase of the project will allow reclamation to progress concurrently with the extraction operation. Assuming a start date of 2019, the project timeline for the project can be summarized as follows:

- Phase 1: Site Preparation, 1 Year (2019-2020)
- Phase 2: Extraction to Natural Grade Elevation, 22 Years (2020-2042)
- Phase 3: Open Pit Extraction, 68 Years (2042-2100)
- Phase 4: Inert Debris Engineered Fill Operation (Landfill), 80 Years (2042 2135)

It should be noted that the variables used to prepare the project time line include assumptions that could change over time. That is particularly true for Phase 4, where the amount of inert debris that will be available to fill the proposed landfill is dependent upon variables that will change such as: (1) the regional economy which affects the rate of construction; (2) the level of recycling; and (3) the competition from other inert landfill sites.

A more detailed description of the activities that will occur in each project phase is provided below:

- Phase 1: Site Preparation: Phase 1 of the project involves site preparation activities prior to mining including initial grading to establish access routes, extending water and power service to the site, and grading pad areas for the processing plan location. Site preparation operations are located in the northern portion of the site.
- Phase 2: Extraction to Natural Grade Elevation: Phase 2 will involve commencement of extractive operations within the extraction footprint. This phase will consist of cutting the landform to the natural grade elevation that exists along the western perimeter of the site. Phase 2 is divided into three sub phases, with Phase 2a occurring in the north and ending with Phase 2c in the south.
- Phase 3: Open Pit Extraction: Phase 3 is the continuation of the mine operations from Phase 2 however the extraction of material will extend below the finished grade to form a sub-grade depression. Like Phase 2, Phase 3 is divided into sub phases (Phases 3a through 3d) which will progress in a north to south direction. Extraction operations that will occur during Phases 3b through 3d will extend to a maximum depth of approximately 500 feet from the existing grade.
- <u>Phase 4: Inert Debris Engineered Fill Operation (Landfill):</u> As extraction operations advance in Phase 3, the pit will be backfilled with inert fill material (fill dirt) on a phase-by-phase basis.

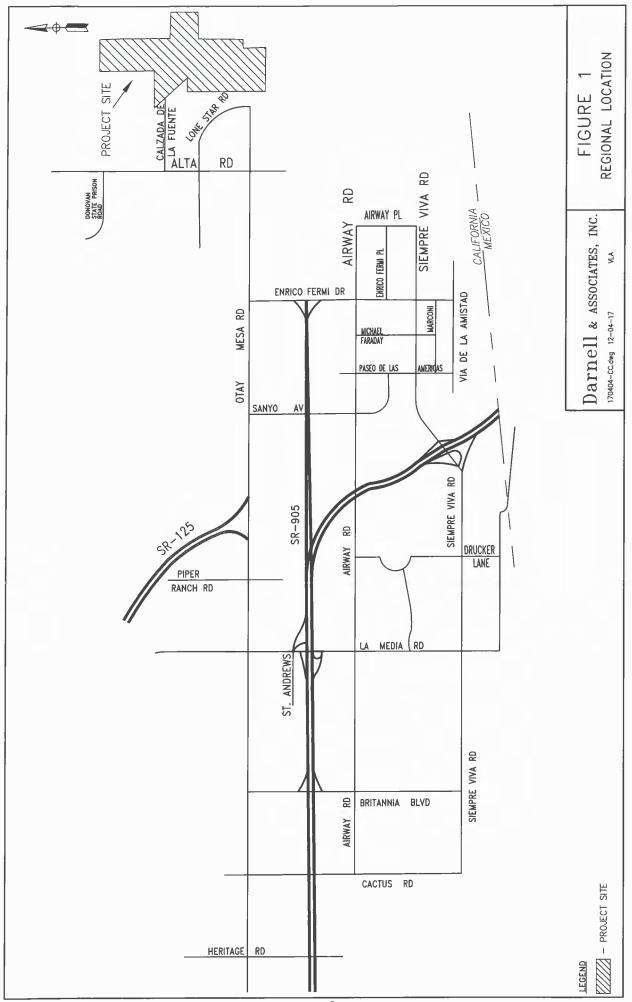
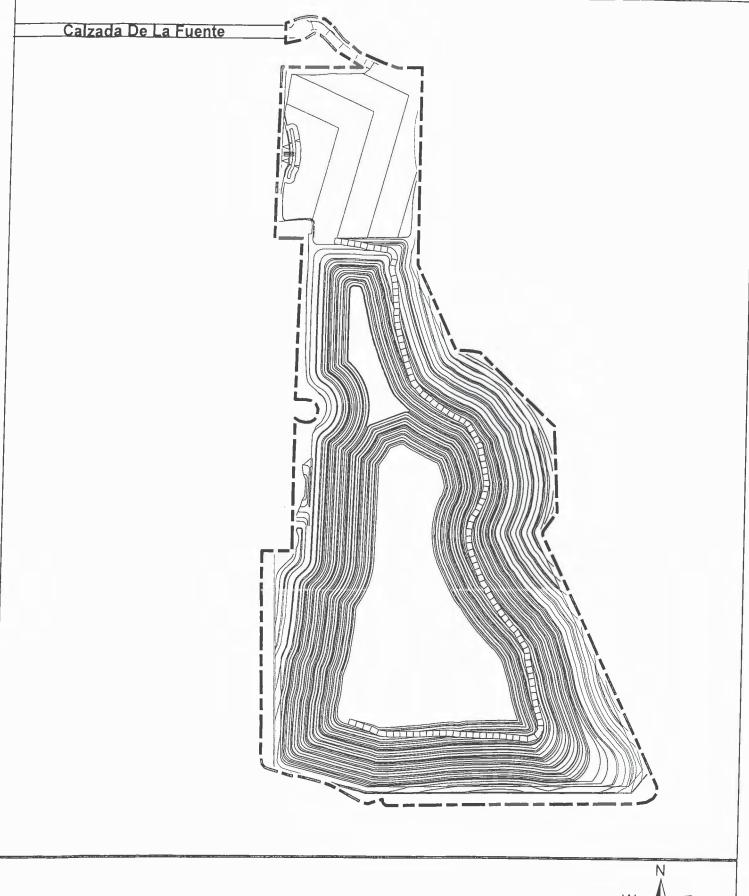
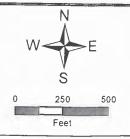




FIGURE 2 OTAY MESA SPECIFIC PLAN AMENDMENT AREA

Darnell & Associates, INC.

FIGURE 3 PROJECT SITE PLAN

As summarized in Section II, Phase 1 of the proposed project is estimated to generate 148 average daily passenger car equivalent (PCE) trips, 25 AM PCE trips, and 25 PM PCE trips.

Based on the average production scenario, Phase 2 and 3 (independently) are estimated to generate 1,332 average daily PCE trips, 83 AM PCE trips, and 97 PM PCE trips, and Phase 4 (independently) is estimated to generate 390 average daily PCE trips, 33 AM PCE trips, and 47 PM PCE trips.

Based on the maximum production scenario, Phase 2 and 3 (independently) are estimated to generate 2,154 average daily PCE trips, 127 AM PCE trips, and 141 PM PCE trips, and Phase 4 (independently) is estimated to generate 598 average daily PCE trips, 46 AM PCE trips, and 60 PM PCE trips.

Since the combination of Phases 1 and 2 generate the highest number of trips to occur thru to 2042, this report analyzes the project impacts associated with the addition of the traffic generated by the combination of Phases 1 and 2 of the proposed project, based on maximum production scenarios.

SANDAG/CALTRANS' PROJECTS

Caltrans currently proposes State Route 11 to be extended as a Toll road to the new Port of Entry. The following summarizes the project description and schedule for SR-11 project.

STATE ROUTE 11

The State Route 11 (SR-11) project will consist of constructing approximately two miles of a new four-lane toll highway from the proposed SR-905/SR-125 junction to the future Federal Port of Entry (POE) at east Otay Mesa in San Diego County. An environmental study for the SR-11 program has been completed. SR-11 was extended to Enrico Fermi Drive in February 2017. The design of the remainder SR-11 Toll Facility to construct a 4-lane Toll-way and connect to the future Otay Mesa East Port of Entry with Mexico is under design. Construction dates for the SR-11 and Otay Mesa East Port of Entry will not be established until funding for the project is secured. However, this project is a high priority project for the region. Caltrans has identified that the preferred interchange alternatives for the SR-11 include a full interchange at Enrico Fermi Drive and a one and one-half interchange at Siempre Viva Road. The SR-11 facility and the POE at the third border crossing were assumed to be constructed and operational under the 2050 conditions analysis. Planned State Route SR-11 is critical to accommodating the build out of future development of the entire Otay Mesa area. It should be noted that the SR-125 facility is an existing major transportation in the Otay Mesa area facility that was completed and opened to traffic in November 2007. SR-905 was just recently extended to Enrico Fermi Drive and opened to traffic in February 2017.

EAST OTAY MESA BUSINESS PARK SPECIFIC PLAN

The East Otay Mesa Business Park Specific Plan has been amended by SPA.14.002 on April 22, 2015 by the San Diego Board of Supervisors:

An application for a Specific Plan Amendment was submitted to address the land use concerns associated with long term use of the project site following the end of mining operations. The specific Plan Amendment would change the designation of approximately 36.3 acres of Mixed Industrial Land to Conservation/Limited Use. These lands are found to the north and east of the proposed quarry site. In addition, approximately 85.7 acres of land currently designated Rural Residential would be designated Mixed Industrial. All of the Rural Residential conversion to Mixed Industrial is located within the proposed quarry footprint (see Figure2). Also, the SPA would change the designation of 184 acres of Rural Residential to Conservation/Limited Use. Table 1 shows the currently proposed changes in land use designation when compared to the current plan totals:

Table 1: Chang	ge in Zoning Distr	rict Acreages	
Zone	Existing Plan	Total Plan	Net Change
Zone	(Acres)	(Acres)	(Acres)
Mixed Industrial	670	715	+45
Rural Residential	314	47	-267
Conservation/Limited Use	243	464	+222

The Specific Plan Amendment is proposed to establish a long-term land use policy for the area planned for extractive operation, IDEFO, and subsequent industrial use. Through adoption of the proposed SPA, and approval of the MUP/RP, the property owner will have the land use entitlement to operate a rock quarry for the production of construction aggregate and associated processing activities and for operation of an IDEFO. In addition to the regulations adopted with the Specific Plan the rock quarry will be required to follow the requirements of the San Diego County Grading Ordinance (Chapter 87.700 et seq.), the California Surface Mining and Reclamation ACT (SMARA) (Division 2, Chapter 9, Section 2710 et seq.), and the California Integrated Waste Management Board's regulations relating to the operation of an IDEFO (Title 14, Natural Resources-Division 7, Chapter 3).

As mining operations are occurring, the site will be backfilled and reclaimed to pad areas. Post-mining land uses on these pads will be consistent with the underlying land use designation. The Reclamation Plan will therefore include all necessary steps to prepare the project site for uses permitted by the Mixed Industrial land use designation.

SCENARIOS STUDIED

The following traffic scenarios were analyzed in this report:

Existing (Year 2017) Conditions refers to that condition which exists on the ground today, including existing traffic counts and existing lane configurations at intersections and on roadway segments. The extension of SR-905 to Enrico Fermi Drive was completed and opened to traffic in February 2017. To account for the extension of SR-905 to Enrico Fermi Drive the study area was revised to reflect the SR-905 extension and new traffic counts were collected in March 2016.

Opening Year 2019 Conditions with Proposed Project (Maximum Production) refers to the Opening Year 2019 condition plus the traffic generated by the combination of Phases 1 and 2 of the proposed project based on the maximum production scenario.

<u>Year 2050 Conditions</u> refers to the conditions and traffic volumes that will exist under 2050 conditions per the East Otay Mesa Specific Plan. All roadway segments were assumed to be built out to their classifications as identified in the *East Otay Mesa Business Park Specific Plan*, as Amended by SPA 14-0002 approved by the County Board of Supervisors on April 22, 2015. Traffic forecasts for the year 2050 were based on the February 20, 2014 Traffic Forecasts prepared by SANDAG for the General Plan Update. This scenario assumes that the project site shown on Figure 2 is developed with 62acres of mixed industrial use and 254 acres of rural residential use.

Year 2050 with Proposed SPA refers to those conditions which include the 2050 roadway classifications; however, the 2050 traffic volumes were adjusted to include the project's proposed specific plan amendment to increase the mixed industrial land use within the project site by a net of 43 acres and decrease the rural residential land use within the project site by a net of 254 acres. This results in the project site consisting 105 acres of mixed industrial use and approximately211 acres of conservation/limited use.

LEVEL OF SERVICE

Level of Service (LOS) is a professional industry standard by which the operating conditions of a given roadway segment or intersection is measured. Level of Service is defined on a scale of A to F; where LOS A represents the best operating conditions and LOS F represents the worst operating conditions. LOS A facilities are characterized as having free flowing traffic conditions with no restrictions on maneuvering or operating speeds; traffic volumes are low and travel speeds are high. LOS F facilities are characterized as having forced flow with many stoppages and low operating speeds. Table 2 shows the delay, miles per hour (mph), and ADT ranges that are equivalent to each Level of Service. In general, the region-wide goal for an acceptable Level of Service on all roadway segments and intersections is "D."

	Tal	ble 2 - Level of Service Ranges	
Level of Service	Roadway Segments - Average Daily Traffic (ADT) Volume ¹	Signalized Intersections - Delay (Seconds/Vehicle) ²	Unsignalized Intersections - Delay (Seconds/Vehicle) ²
Α	Less Than 1,900	Less Than or Equal to 10.0	Less Than or Equal to 10.0
В	1,901 to 4,100	10.1 to 20.0	10.1 to 15.0
С	4,101 to 7,100	20.1 to 35.0	15.1 to 25.0
D	7,101 to 10,900	35.1 to 55.0	25.1 to 35.0
Е	10,901 to 16,200	55.1 to 80.0	35.1 to 50.0
F	Greater Than 16,200	Greater than 80.0	Greater than 50.0

¹ The volume ranges are based on the County of San Diego Circulation Element of a Light Collector, the average daily volume ranges for the other roadway classifications has been provided in Appendix A.

ANALYSIS METHODOLOGY

The roadway segment daily LOS was determined by comparing the average daily traffic (ADT) volumes under all traffic conditions to the capacity of the roadway according to its roadway cross-section and classification. For the purpose of this report, the daily traffic volumes of the roadway segments in the vicinity of the project were compared to the County of San Diego Level of Service classification thresholds. The daily (24 hour) traffic count sheets, a copy of the "Summary of County of San Diego Public Road Standards" are included in Appendix A.

Synchro, Version 8, was utilized to analyze the morning and afternoon peak hour conditions of the intersections in the project vicinity. The signalized intersection methodology defines LOS based on delay using variables such as lane configuration, traffic volumes, and signal timings. The unsignalized intersection methodology defines LOS based on the longest delay experienced by any single movement. Since the Synchro program calculates the average delay per vehicle, there may be instances where the Synchro analysis will show a reduction in delay with the addition of more traffic. This phenomenon occurs when the additional traffic is added to a movement that experiences a shorter amount of delay, thereby decreasing the intersection's average delay per vehicle (i.e. a larger amount of vehicles will have to wait a shorter time while only a few vehicles have to wait an extended period of time). It should be noted that the Synchro program is based on the 2000 Highway Capacity Manual (HCM).

REPORT ORGANIZATION

Following this section, Section II examines the potential trips generated by the proposed project and it defines the trip distribution assumptions. Section III evaluates the Existing and Opening Year 2019 roadway characteristics and traffic conditions without the project. Section IV provides analysis of project's traffic impacts under Opening Year (2019) and Opening Year (2019) with project conditions and internal circulation, Section V analyzes the year 2050 Daily conditions. Section VI addresses the project's access, Section VII provides a summary of impacts and mitigation, Section VIII summarizes the report findings and conclusions.

² The delay ranges shown are based on the 2000 Highway Capacity Manual (HCM).

SECTION II – PROJECT RELATED CONDITIONS

TRIP GENERATION

The trip generation potential for a project is estimated based on the proposed land use characteristics. In the San Diego area, there are three sources that provide standard trip generation rates for various land use types: (1) The City of San Diego's *Trip Generation Manual*, (2) The San Diego Association of Governments' (SANDAG's) (*Not So*) *Brief Guide of Vehicular Traffic Generation Rates for the San Diego Region*, and (3) *The Institute of Transportation Engineers (ITE) Trip Generation Manual*, 8th *Edition*. None of these sources have published rates for a facility similar to the proposed Otay Hills Project; therefore, the trip generation potential for the project was estimated based on the anticipated operating characteristics of the project (i.e. number of employees, volume of material produced, etc.). Table 3 summarizes the trip generation rates used in this analysis for the proposed Otay Hills Project. Table 3 also shows the trip generation rates and summary for the employees of the rock quarry. It is estimated that about 15 employees would be working in the processing plant and approximately 20 truck drivers would be employed for transporting the production of and the import for the quarry.

	Table 3 – Trip Ge	eneration R	ates				
		AM P	eak Hou	r	PM Pe	eak Hou	r
Land Use/Activity	Daily	Total- % of Daily	%In	%Out	Total – % of Daily	%In	%Out
	Phase 1 Trip Ger	neration Rat	es				
Construction Workers	2.5 Trips / Employee	40%	100%	0%	40%	0%	100%
Vendors	2.0 Trips / Vendor	0%(a)	0%	0%	0% ^(a)	0%	0%
Equipment/Plant Deliveries	4 PCE Trips / Truck (b)	12.5% ^(c)	50%	50%	12.5% ^(c)	50%	50%
	Phase 2 or 3 Trip (Generation R	ates				
Concrete Production/Asphalt Production/Recycle	4 PCE Trips / Truck (b)	5.9% ^(d)	50%	50%	5.9% ^(d)	50%	50%
CTB Production/Rock Sales	4 PCE Trips / Truck (b)	5.9% ^(d)	50%	50%	5.9% ^(d)	50%	50%
Sand Import/Cement Import- Concrete Production/Asphalt Production/Oil Import	4 PCE Trips / Truck (b)	4.2% ^(e)	50%	50%	4.2% ^(e)	50%	50%
Rock Sales/ Cement Import - CTB Production	4 PCE Trips / Truck (b)	4.2% ^(e)	50%	50%	4.2% ^(e)	50%	50%
Recycle Production & Import	4 PCE Trips / Truck (b)	5.9% ^(d)	50%	50%	5.9% ^(d)	50%	50%
	Phase 4 Trip Ger	neration Rat	es				
Land Filling Activities	4 PCE Trips / Truck (b)	5.9% ^(d)	50%	50%	5.9% ^(d)	50%	50%
Emp	oloyee Trip Generation	Rates (Phas	es 2, 3,	or 4)			
Employee Trips – Processing Plant	2.5 Trips / Employee	5%	90%	10%	33%	10%	90%
Employee Trips – Truck Drivers	2.0 Trips / Employee	5%	90%	10%	33%	10%	90%

- (a) Assumes that the Vendors deliver materials to the site during non-peak hours
- (b) Assumes 2 Trips per Truck (1 inbound, 1 outbound), and that 1 Truck trip is equivalent to 2 passenger car equivalent (PCE) trips
- (c) Assumes Trucks are distributed equally throughout an 8-hour day
- (d) Assumes Trucks are distributed equally throughout a 17-hour day between 5:00 AM to 10:00 PM, the primary operation hours for the processing activities
- (e) Assumes imports and internal rock sales occur 24 hours a day and that the trucks are distributed equally throughout the day.

The volume of material for production and import of concrete, asphalt, CTB, and rock that would occur during Phases 2 and 3 has been estimated for the average and maximum daily numbers based on the discussions with the client and is summarized as follows:

Average Daily Trip Generation

- The quarry production comprises of 1,000 cubic yards of concrete production along with 1,000 tons of asphalt production, 200 tons of CTB production, and 1,800 tons of rock sales;
- Sand import comprises of 375 and 100 tons of concrete and asphalt production, respectively;
- Cement import comprises of 250 and 6 tons of concrete and CTB production, respectively;
- Approximately 50 tons of oil would need to be imported to the site each day to support the proposed asphalt production; and
- Recycle comprises of 1,200 tons of recycling production and recycling import combined.

Maximum Daily Trip Generation

- The quarry production comprises of 1,500 cubic yards of concrete production along with 2,000 tons of asphalt production, 1000 tons of CTB production, and 3,000 tons of rock sales;
- Sand import comprises of 375 and 200 tons of concrete and asphalt production, respectively;
- Cement import comprises of 250 and 20 tons of concrete and CTB production, respectively;
- Approximately 100 tons of oil would need to be imported to the site each day to support the proposed asphalt production; and
- Recycle comprises 2,000 tons of recycling production and recycle import combined.

Table 4 shows the estimated number of trucks that would be required for each phase of development. It is possible that the number of truck trips shown in Table 4 will vary depending on product demand. The sum of the maximum daily trips represents a worst-case scenario and will not be exceeded.

The trip generation calculations for the average and maximum operating conditions are summarized in Table 5. It should be noted that the maximum operating conditions would occur in rare situations, thus the trip generation calculations for the maximum operating conditions summarized in Table 5 should be considered a worst-case impact assessment scenario.

As summarized in Table 5, Phase 1 of the proposed project is estimated to generate 148 average daily passenger car equivalent (PCE) trips, 25 AM PCE trips, and 25 PM PCE trips. Based on the average production scenario, Phase 2 and 3 (independently) are estimated to generate 1,332 average daily PCE trips, 83 AM PCE trips, and 97 PM PCE trips It should be noted that a portion of the trips generated during Phases 2 and 3 are internal trips, (i.e. 50% of the trips attributed to the rock sales all stay on-site), thus based on the average production scenario, Phase 2 and 3 (independently) are estimated to generate 1,196 external average daily PCE trips, 77 external AM PCE trips, and 91 external PM PCE trips. Based on the maximum production scenario, Phase 2 and 3 (independently) are estimated to generate 2,154 external average daily PCE trips, 127 external AM PCE trips, and 141 external PM PCE trips.

	Table 4	4 – Estimati	on of Truck T	rip Generation	1	
Activity	Average Daily No. of Units	Unit	Truck Capacity (Units / Truck)	Average Daily No. of Trucks	Max. Daily No. of Units	Max. Daily No. of Trucks
]	Estimation of	Truck Trips fo	r Phase 1		
Construction Workers	-	-	-	0	-	0
Vendors	-	-	-	0	-	0
Equipment/Plant Deliveries	-	-	-	20	-	20
Total Phase 1				20	-	20
	Esti	imation of Tr	uck Trips for P	hase 2 and 3		
Quarry Production						
Concrete Production	1,000	Cubic Yards	8.4	119	1,500	179
Asphalt Production	1,000	Tons	27	37	2,000	74
CTB Production	200	Tons	27	8	1,000	37
Rock Sales	1,800	Tons	54	68	3,000	112
		·	Subtotal	232		401
Sand Import						
Concrete Production	375	Tons	27	14	375	14
Asphalt Production	100	Tons	27	4	200	7
			Subtotal	18		21
Cement Import						
Concrete Production	250	Tons	27	10	250	10
CTB Production	6	Tons	27	1	20	1
		•	Subtotal	11		11
Oil Import						
Asphalt Production	50	Tons	27	2	100	4
Subtotal				2		4
Recycle						
Recycle Production	600	Tons	27	23	1,000	37
Recycle Import	600	Tons	22	28	1,000	45
			Subtotal	51		82
		Tot	al Phase 2 and 3	314		519
]	Estimation of	Truck Trips fo	r Phase 4		
Land Fill						
Infill Material	2,106	Tons	27	78	3,510	130
			Total Phase 4	78		130

Based on the average production scenario, Phase 4 (independently) is estimated to generate 390 average daily PCE trips, 33 AM PCE trips, and 47 PM PCE trips. Based on the maximum production scenario, Phase 4 (independently) is estimated to generate 598 average daily PCE trips, 46 AM PCE trips, and 60 PM PCE trips.

		Table 5 –	Trip Generation	enera	tion C	alculat	ions f	or Ot	Calculations for Otay Hills							
		Aı	Average Production	uction						N	Maximum Production	Product	tion			
Land Use	Total #11nits	Daily	AM	AM Peak Hour	ur	PM P	PM Peak Hour	ür	Total # Units	Daily	AM	AM Peak Hour	our	PM	PM Peak Hour	our
	1 Otal # OIIItS	Башу	Total	ln	Out	Total	ln	Out	1 Otal # Ollits	Сапу	Total	In	Out	Total	In	Out
				Phase 1	- Site Pı	Site Preparation	u	ľ								
Construction Workers	15 Workers	38	15	15	0	15	0	15	15 Workers	38	15	15	0	15	0	15
Vendors	15 Vendors	30	0	0	0	0	0	0	15 Vendors	30	0	0	0	0	0	0
Equipment/Plant Deliveries	20 Trucks	80	10	S	2	10	5	5	20 Trucks	8	10	5	5	10	5	5
Sub-Total Phase 1:		148	25	20	S	25	8	20		148	25	20	5	25	5	20
				Phase (2 or 3 -	Extraction	_									
Quarry Production																
Concrete Production	119 Trucks	476	28	14	14	28	14	14	179 Trucks	714	42	21	21	42	21	21
Asphalt Production	137 Trucks	148	6	5	4	6	4	5	74 Trucks	296	17	6	8	17	8	6
CTB Production	8 Trucks	32	2	1	1	2	1	1	37 Trucks	148	6	5	4	6	4	5
Rock Sales - External	34 Trucks	136	9	3	3	9	3	3	56 Trucks	222	6	5	4	6	4	5
Rock Sales – Internal (a)	34 Trucks	136	9	3	3	9	3	3	56 Trucks	222	6	5	4	6	4	5
Sub-Total Production	232 Trucks	928	51	26	25	51	25	26	401 Trucks	1,602	98	45	41	98	42	44
Sand Import																
Concrete Production	14 Trucks	99	2	1	1	2	1	1	14 Trucks	99	2	1	1	2	1	1
Asphalt Production	4 Trucks	15	_	-	0	-	0	-	7 Trucks	30	-	-	0	-	0	1
Sub-Total Sand Import	18 Trucks	7.1	3	2	I	3	I	2	21 Trucks	98	3	2	I	3	I	2
Cement Import	E	Ç	•	,	,		,	,	E	Ş	,	,	ļ	•		
Concrete Production	10 Trucks	40	7 0	- 0	-	7 0	-	_ <	10 Trucks	40	7 0	- 0	_ <	7 0	_	I
CIB Production	I Irucks	4	0	ο,	0,	0	0	0	I Irucks	3	0	ο,	ο,	0	0	0
Sub-Total Cement Import	11 Trucks	44	2	1	1	2	7	1	11 Trucks	43	2	1	\ \	2	1	I
On import	Mount C	٢	C	C	c	0	c	c	/ Tanoba	15	-	-	c	-	0	1
Sub-Total Oil Import	2 Trucks	, 2	0	0	0	0	0	0	4 Trucks	15	1	1	0	1	0	7
Recycle			,		,		,	,			,	1	,	1		1
Recycle Production	23 Trucks	92	5	Э	2	5	2	3	37 Trucks	148	6	5	4	6	4	5
Recycle Import	28 Trucks	112	7	4	3	7	3	4	45 Trucks	182	11	9	5	11	5	9
Sub-Total Recycle	51 Trucks	204	12	7	5	12	5	7	82 Trucks	330	20	II	6	20	6	11
Sub-Total Phases 2 & 3	314 Trucks	1,254	89	36	32	89	32	36	519 Trucks	2,076	112	09	52	112	53	59
			P	Phase 4 –	- Land Fill	II Operation	ion									
Land Fill																
Infill Operation	78 Trucks	312	18	6	6	18	6	6	130 Trucks	520	31	16	15	31	16	15
Sub-Total Phase 4:		312	18	6	6	- 1	6	6		520	31	16	15	31	16	15
			3	mployec	Employees for Phases 2,	3	or 4	ŀ								
Processing Plant	15 Employees	38	2	2	0	2	0	2	15 Employees	38	2	2	0	2	0	2
Truck Drivers	20 Employees	40	13	12	-	27	14	13	20 Employees	40	13	12	-	27	14	13
	35 Employees		15	14	1	29	14	15	35 Employees	78	15	14	1	29	14	15
			Trip G	Generation		Totals w/Employee Trips	yee Tri	sd								
Total Trip Generation for Phase 1		148	25	20	S	25	ĸ	20		148	25	20	S	25	S	20
Total Trip Generation for Phase 2	1	1,332	83	20	33	97	46	51	1	2,154	127	74	53	141	29	74
Total Trip Generation for Phase 3	ı	1,332	83	20	33	97	46	51		2,154	127	74	53	141	67	74
Total Trip Generation for Phase 4		390	33	23	10	47	23	24	1	298	46	30	16	09	30	30
See Table 2 for Trin Generation Rates and Table 3 for the Calculation of the N	able 3 for the Calculat	=	mber of Truck	k Trins												

See Table 2 for Trip Generation Rates and Table 3 for the Calculation of the Number of Truck Trips

(a) Half of the Rock Sales are generated internally within the project site, therefore these project trips will not exit the project site

The combination of Phases 1 and 2, per the maximum production scenario, are estimated to generate 2,302 average daily PCE trips, 152 AM PCE trips, and 166 PM PCE trips. Since the combination of Phases 1 and 2 generate the highest number of trips to occur between now and 2042, this report analyzes the project impacts associated with the addition of the traffic generated by the combination of Phases 1 and 2 of the proposed project, based on the maximum production scenario. Since Phases 2 and 3 will develop independently the Phase 1 and 2 analysis would also address Phases 1 and 3 impacts.

TRIP GENERATION FOR EAST OTAY MESA BUSINESS PARK SPECIFIC PLAN

The project site located east of Alta Road at the end of Calzada De La Fuente in the East Otay Mesa area of the County of San Diego within the East Otay Mesa Business Park Specific Plan (EOMSP) and includes Mixed Industrial Land Use and Rural Residential Land Use. As part of the project, the current East Otay Mesa Specific Plan will need to be amended to designate the quarry footprint as all Mixed Industrial. It would also be necessary to eliminate the Mixed Industrial designation from areas of the site that will not be affected by extractive operations and to designate those areas as Conservation/Limited Use. The proposed Specific Plan Amendment (SPA) would create a total of 105 acres of Mixed Industrial Land Use and 211 acres of Conservation/Limited Use. This is a net increase of 43 acres of Mixed Industrial Land Use and a net decrease of 254 acres of Rural Residential Land Use within the EOMSP.

Table 6 provides a summary of the trip generation calculations for the project site based on the existing Specific Plan land use designations and the proposed SPA land use designations. As shown in Table 6, the proposed SPA will result in an increase of 1,033 average daily trips over what was assumed in the East Otay Mesa Business Park Specific Plan.

Table 6 – COMPARISON OF TRIP GENERATION RATES FROM THE PROJECT SITE PER USE SPECIFIED BY EOMSP AND PROPOSED SPA								
Land Use	Trip Rate	No. of Units	Unit	Daily Trip Generation				
Existing Use (per EOMSP)				•				
Mixed Industrial	90 Trips/Acre	62	Acres	5,580				
Rural Residential	12 Trips/Acre	254	Acres	3,048				
Conservation/Limited Use	1 Trip/Acre	0	Acres	0				
Total	-	316	Acres	8,628				
Proposed Use								
Mixed Industrial	90 Trips/Acre	105	Acres	9,450				
Rural Residential	12 Trips/Acre	0	Acres	0				
Conservation/Limited Use	1 Trip/Acre	211	Acres	211				
Total	-	316	Acres	9,661				
Net Difference								
Mixed Industrial	90 Trips/Acre	43	Acres	3,870				
Rural Residential	12 Trips/Acre	254	Acres	3,040				
Conservation/Limited Use	1 Trip/Acre	211	Acres	211				
Total	-	-0	Acres	1,033				
Source: Darnell & Associates 2017,	The remaining 94	acres of th	e project si	te are located				

Source: Darnell & Associates 2017, The remaining 94 acres of the project site are located outside the EOMSP and would be part of the Otay hills Conservation Area.

The proposed SPA is proposed to establish a long-term land use policy for the area planned for extractive operations, Inert Debris Engineered Fill Operations (IDEFO), and subsequent industrial use. The proposed Otay Hills project will establish interim uses on the project site thru 2042 and future mixed Industrial and Residential uses.

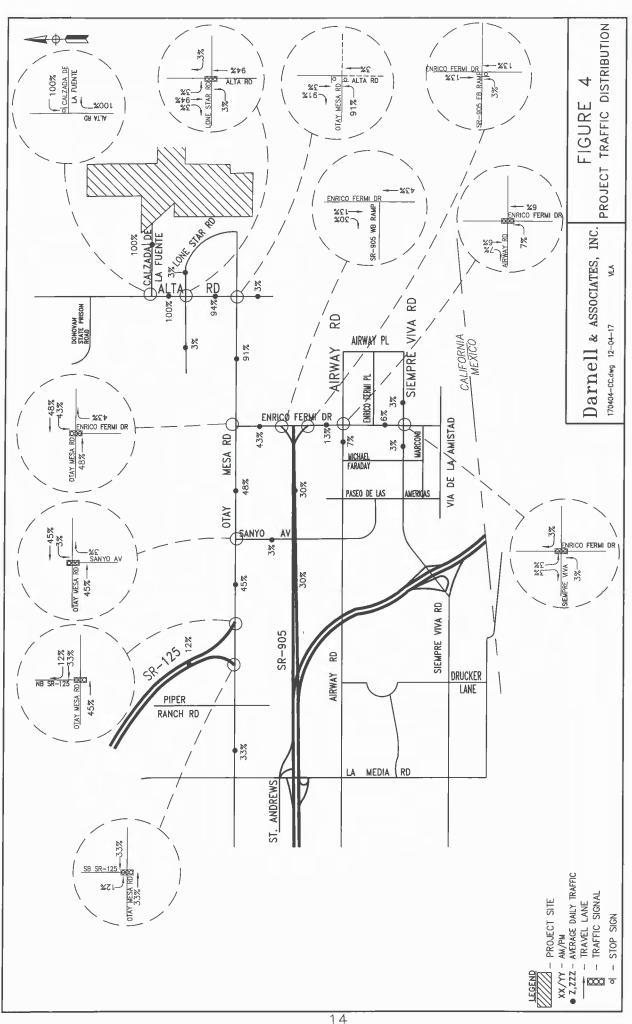
TRIP DISTRIBUTION/TRIP ASSIGNMENT

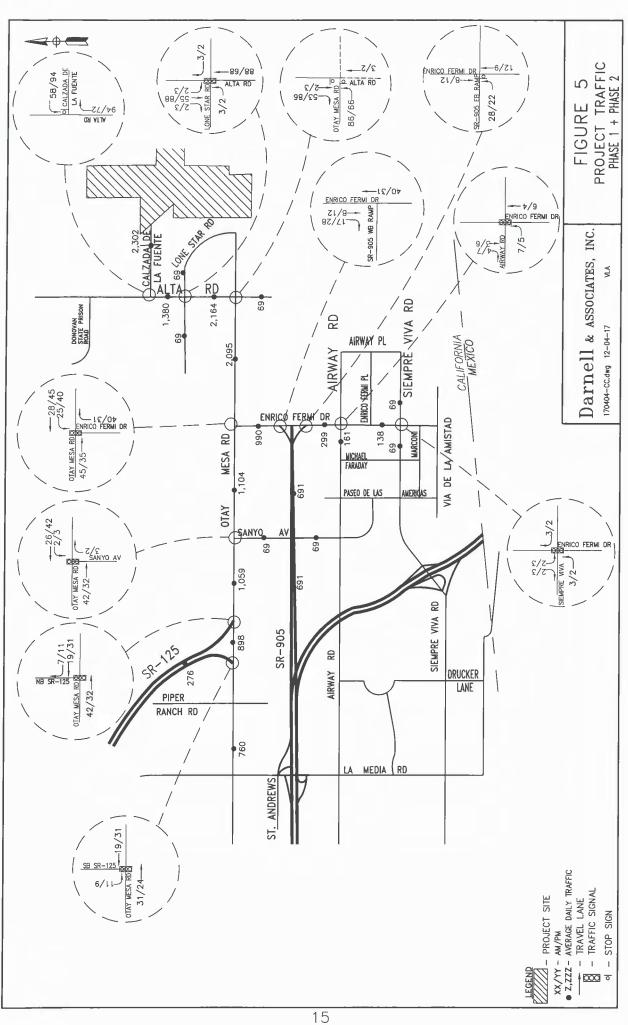
As previously discussed, since Phases 1 plus 2 generate the highest number of trips, this traffic study focuses on the potential impacts that would be associated with the addition of the traffic generated by the combination of Phases 1 and 2 of the proposed project, based on the maximum production scenario. Therefore, only the traffic generated by Phases 1 and 2 of the proposed project were distributed and assigned to the adjacent roadway network.

Per the proposed project time line, based on Phase 1 of the project starting in the Year 2019 Phase 2 of the proposed project is not anticipated to start until around the Year 2020 and Phase 4 of the proposed project is not anticipated to start until around the Year 2020. However, in order to determine the project's potential direct impacts, the project traffic for Phases 1 thru 2 was distributed and assigned to the roadway network under Existing and Opening Year 2019 conditions.

The proposed project is anticipated to last for $120 \pm \text{years}$ bringing the end of the project to approximately the Year 2142. At the end of the proposed project, the site could then be redeveloped per its proposed Specific Plan Amendment which would allow for a total of 83.0 acres of Mixed Industrial Land Use and 27.0 acres of Rural Residential Land Use and 216.7 Acres of Conservative Land Use. (This is a net increase of 53.4 acres of Mixed Industrial Land Use and 216.7 Acres of Conservative Land Use a net decrease of 270 acres of Rural Residential Land Use within the project site compared the existing Specific Plan land use designations.) Since the Year 2142 is to too far in the future to be able to predict what the traffic conditions would be with any kind of accuracy, this traffic study analyzes the potential impacts of the proposed Specific Plan Amendment under the Year 2050 conditions, the analysis year for the build out analysis provided in the County of San Diego's *East Otay Mesa Business Park Specific Plan (SPA 10-001)*.

The trip distribution and project related traffic volumes for Phases 1 and 2 are illustrated in Figures 4 and 5.


The impacts associated with the addition of project traffic are discussed in Sections IV and V.


STUDY AREA

To determine the study area for the project D&A utilized the County of San Diego's criteria which recommends the inclusion of all transportation facilities that receive 25 or more peak hour trips from the proposed project, and the City of San Diego's criteria which requires the analysis of all regionally significant arterial system segments and intersections where the proposed project will add 50 or more peak hour trips in either direction and all mainline freeway locations where the project will add 100 or more two-way peak hour trips. The County or City criteria was utilized dependent on the jurisdiction which the roadway segment or intersection or intersection was located in.

Based on the County, City of San Diego and Caltrans's criteria and a review of Figures 4 and 5, the study area for each scenario was determined. Tables 7 and 8 provide a summary of the roadway segments and intersections that need to be included in the analysis for each study scenario.

As illustrated in Tables 7 and 8, the project study area needs to include the segments and intersections along Otay Mesa Road between SR-125 and Alta Road, the segments and intersections along Alta Road between Calzada de la Fuente and Otay Mesa Road, the segment of Enrico Fermi Drive between Otay Mesa Road and Airway Road, and the Airway Road/Enrico Fermi Drive intersection.

Table 7– Summary of St	udy Area Roadway Seg	gments by Sce	nario
Roadway Segment	Criteria Utilized to Determine Study Area	Peak Hour Trip Threshold	Scenario Where Analysis is Required
Otay Mesa Road			
SR-125 SB Ramp to SR-125 NB Ramp	County/City	25-two-way	Existing, 2050
Harvest Rd to Sanyo Ave	County/City	25-two-way	Existing, Cumulative, 2050
Sanyo Ave to Enrico Fermi Dr	County/City	25-two-way	Existing, Cumulative, 2050
East of Enrico Fermi Dr	County	25-two-way	Existing, Cumulative, 2050
West of Alta Rd	County	25-two-way	Existing, Cumulative, 2050
Airway Road			
Michael Faraday to Enrico Fermi Dr	County	25-two-way	Analysis not Required
Enrico Fermi Dr to Airway Pl	County	25-two-way	Analysis not Required
Siempre Viva Road			
Michael Faraday to Enrico Fermi Dr	City	50/direction	Analysis not Required
Enrico Fermi Dr to Airway Pl	County	25-two-way	Analysis not Required
SR-125			
North of Otay Mesa Rd	Caltrans	100-two-way	Analysis not Required
SR-905			
West of Enrico Fermi Dr	Caltrans	100-two-way	Analysis not Required
SR-11 /SR-905			
SR-905/SR-125 to Enrico Fermi Dr	Caltrans	100-two-way	Analysis not Required
Sanyo Avenue			
Otay Mesa Rd to Airway Rd	City	50/direction	Analysis not Required
Enrico Fermi Drive			
Otay Mesa Rd to Airway Rd	County	25-two-way	Existing, Cumulative, 2050
Airway Rd to Siempre Viva Rd	City	50/direction	Analysis not Required
Alta Road			
Donovan State Prison Rd to Calzada De La Fuente	County	25-two-way	Analysis is Not Required
Calzada De La Fuente to Lone Star Rd (Paseo De La Fuente)	County	25-two-way	Existing, Cumulative, 2050
Lone Star Rd (Paseo De La Fuente) to Otay Mesa Rd	County	25-two-way	Existing, Cumulative, 2050

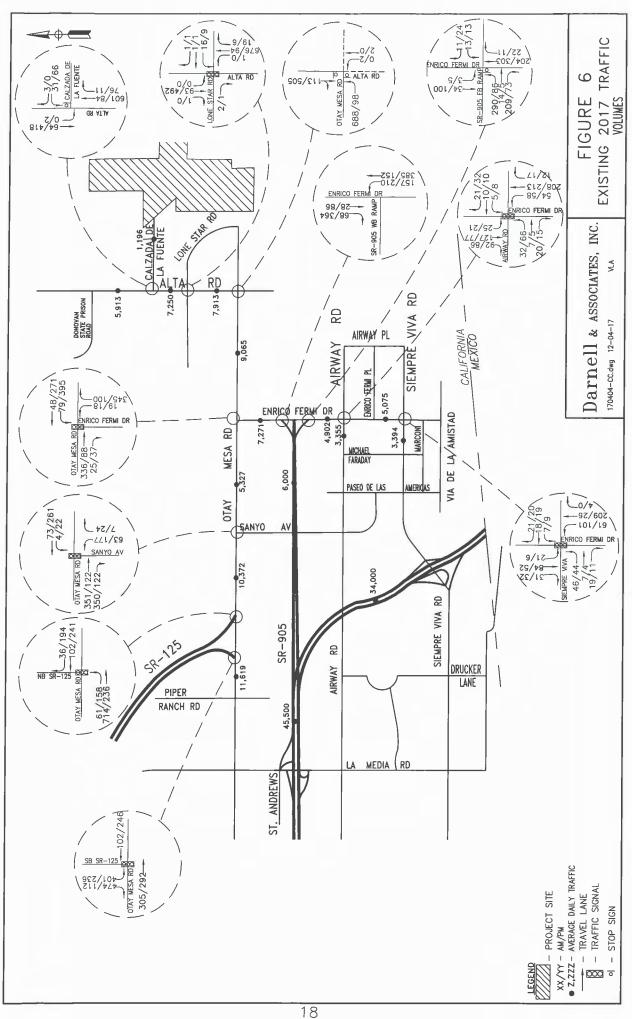
Table 8 – Summary of Study Area Intersections by Scenario						
Intersection	Criteria Utilized to Determine Study Area	Peak Hour Trip Threshold	Scenario Where Analysis is Required			
Otay Mesa Rd @ SR-125 SB	County	50/Directional	Analysis not Required			
Otay Mesa Rd @ SR-125 NB	County	50/Directional	Analysis not Required			
Otay Mesa Rd @ Sanyo Av	County	25-two-way	Existing, Cumulative, 2050			
Otay Mesa Rd @ Enrico Fermi Dr	County	25-two-way	Existing, Cumulative, 2050			
Otay Mesa Rd @ Alta Rd	County	25-two-way	Existing, Cumulative, 2050			
Airway Rd @ Enrico Fermi Dr	County	25-two-way	Analysis not Required			
Siempre Viva Rd @ Enrico Fermi Dr	County	25-two-way	Analysis not Required			
Alta Rd @ Calzada De La Fuente	County	25-two-way	Existing, Cumulative, 2050			
Alta Rd @ Lone Star Road (Paseo De La Fuente)	County	25-two-way	Existing, Cumulative, 2050			
E : E : D : O OD OOLYND O D	a /a t.	25-two-way	Existing, Cumulative, 2050			
Enrico Fermi Drive @ SR-905 WB On Ramp	County/Caltrans	100-two-way	Analysis not Required			
Enrico Fermi Drive @ SP 005 FR Off Pamp	County/Caltrans	25-two-way	Existing, Cumulative, 2050			
Enrico Fermi Drive @ SR-905 EB Off Ramp	County/Cattraits	100-two-way	Analysis not Required			

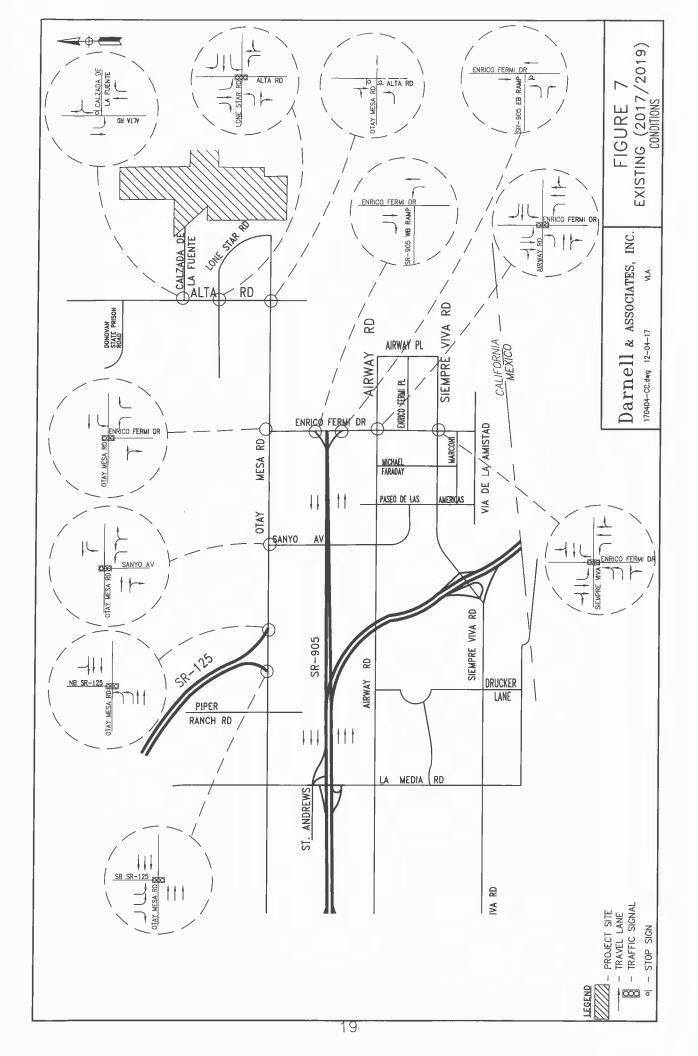
SECTION III – EXISTING CONDITIONS

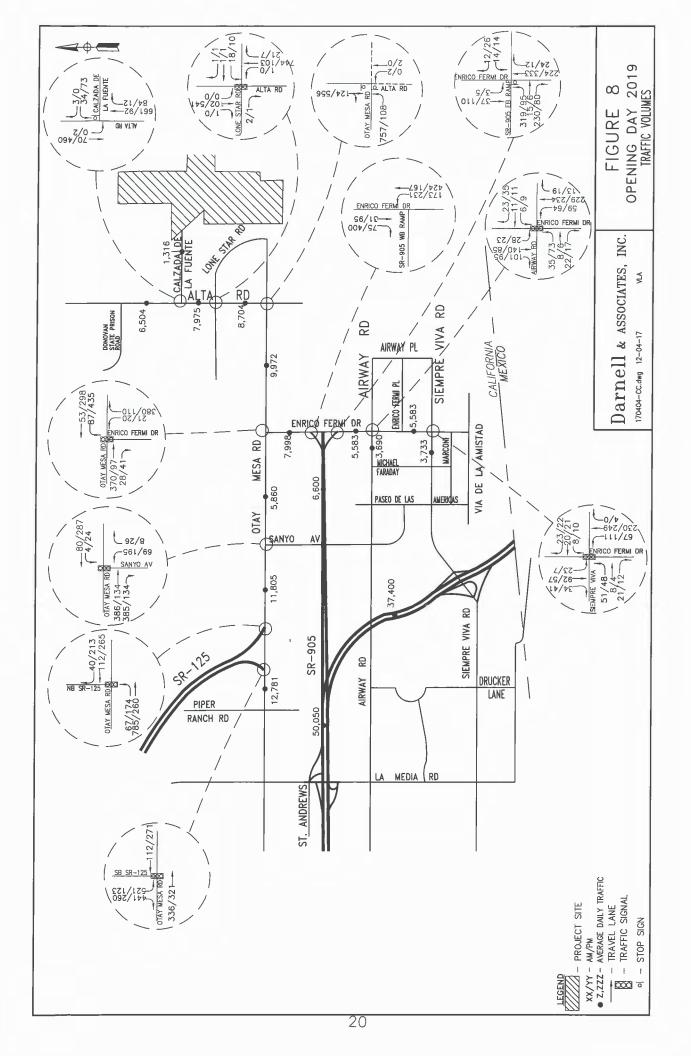
This section of the traffic study is intended to assess the existing conditions of the roadways within the vicinity of the project to determine travel flow difficulties, if any, that exist prior to adding the traffic generated by the proposed project. The existing conditions analysis establishes a base condition that is used to assess the other scenarios discussed in this report. Darnell & Associates, Inc (D&A) conducted a field review of the area surrounding the project in June 2017. Figures 6 illustrate the existing 2017 traffic volumes and Figure 7 depicts 2017/Opening Year 2019 roadway and intersection conditions in the project vicinity. Opening Year 2019 traffic volumes are presented on Figure 8.

EXISTING ROADWAY CHARACTERISTICS

The key segments analyzed in the study area are identified below:


<u>State Route 905 (SR-905)</u> is a 6-lane freeway, opened in July 2012, that provides a direct east-west connection from I-805 to the Otay Mesa Port of Entry. The posted speed limit is 55 miles per hour (mph).


The State Route 905 (SR-905 is part of an ongoing effort to construct a transportation facility from Interstate 805 to the Otay Mesa Port of Entry (POE) at the IS – Mexico Border to provide for more efficient transportation of people, goods and services within the Otay Mesa region of San Diego. The corridor is being built in multiple phases, with Phase 1A and 1B, the main-lines of the freeway, is already constructed and open to traffic. Phase 2 improvements to the I-805/ SR-905 interchange have also been completed. Phase 3A has constructed the northbound connectors between SR-905 and SR-125. Construction of the freeway to freeway northbound connectors were completed in 2017. Based on the most current information available from Caltrans, funding for the subsequent Phase 3B, which will construct the southbound connectors between SR-905 and SR-125 and Phase 4, which will construct an interchange at Heritage Road, has not yet been secured.


In addition to the SR-905 construction discussed above, Caltrans has extended SR-905 to provide at grade connections of SR-905 at Enrico Fermi Drive. This improvement was opened to traffic in February 2017. The improvements provide two travel lanes in each direction.

Otay Mesa Road (SC-1120) is basically an east-west roadway located within the jurisdictions of the County and City of San Diego. The segment from SR-125 to approximately 1,200 feet east of Sanyo Avenue is located within both jurisdictions, with the centerline of the existing road as the boundary. The posted speed limit on this section of Otay Mesa Road is 55 mph.

The segment of Otay Mesa Road (Old Otay Mesa Road) just east of the SR-125 Southbound ramp is currently constructed to provide six (6) travel lanes (2 eastbound lanes and 4 westbound lanes). The segment of Otay Mesa Road (Old Otay Mesa Road) just west of Harvest Road is currently constructed to provide five (5) travel lanes (2 eastbound lanes and 3 westbound lanes). These segments of Otay Mesa Road (Old Otay Mesa Road) have the capacity equivalent to that of a modified 4-lane Major Arterial, approximately 47,000 ADT at LOS E (the half-way point between a 4-lane Major Road and a 6-lane Prime Arterial).

The segment of Otay Mesa Road between Harvest Road and Sanyo Avenue is currently constructed to provide four (4) travel lanes (2 eastbound lanes and 2 westbound lanes). This segment of Otay Mesa Road (Old Otay Mesa Road) has the capacity equivalent to that of a 4-lane Major Road with a capacity of 37,000 ADT at LOS E.

The segment of Otay Mesa Road between Sanyo Avenue and Alta Road is basically a two-lane undivided roadway. This section of Otay Mesa Road has a varying pavement width of 40 to 58 feet. East of Sanyo Avenue the roadway is widened to provide one (1) lane westbound, a westbound left turn lane and two (2) eastbound travel lanes that reduces to one (1) lane in each direction at the City/County boundary and continues with one (1) lane in each direction to Enrico Fermi Drive. East of Enrico Fermi Drive the roadway is widened and striped to provide one (1) lane in each direction and a center left turn lane for 750 feet then reduces to one (1) lane in each direction within the existing 40 feet of pavement. The current capacity on the County two-lane segments of (Otay Mesa Road) is equivalent to that of a Light Collector, capacity of 16,200 ADT at LOS E. A Light Collector for the County has a cross section of 40 feet (40') curb to curb, and 60 feet (60') of right-of-way.

Based on the East Otay Mesa Specific Plan Amendment (SPA 10-001) approved by the Board of Supervisors September 15, 2010, the ultimate classification of the segment of Otay Mesa Road between Harvest Road and Enrico Fermi Drive is classified as a Prime Arterial. In the East Otay Mesa Specific Plan, this segment is a Prime Arterial with a capacity of 57,000 ADT at LOS E, with a modified cross section of 90 feet (90') curb to curb and 110 feet (110') of right-of-way. Between Enrico Fermi Drive and Alta Road, Otay Mesa Road is classified as a four-lane Major Road. A Major Road has a capacity of 37,000 ADT at LOS E, with a cross section of 78 feet (78') curb to curb and 98 feet (98') of right-of-way.

Enrico Fermi Drive (SA-1105) is constructed as a north-south facility. This roadway segment is split between County and City of San Diego jurisdictions. The segment north of Airway Road is under the County's jurisdiction and exists as a three-lane roadway just south of Otay Mesa Road and north of Airway Road. Some portion of this roadway segment currently exists as a two-lane roadway. For the purpose of analysis, the roadway segment under County's jurisdiction was analyzed as a Town Collector (capacity of 19,000 ADT at LOS E). The segment of Enrico Fermi Drive, south of Airway Road is under the County and City's jurisdiction and exists as a 4 lane Major Arterial (capacity of 40,000 ADT at LOS E).

Enrico Fermi Drive has the ultimate classification in the East Otay Mesa Specific Plan and County of San Diego Mobility Element as a four-lane Major facility with a capacity of 40,000 ADT at LOS E for the segment located within the City and a capacity of 37,000 ADT at LOS E for the segment located within the County. The cross section for a four-lane Major facility is 78 feet (78') curb to curb, within 98 feet (98') of right-of-way. Per the East Otay Mesa Specific Plan, the segment of Enrico Fermi Drive between Otay Mesa Road and SR-11 is classified as an Enhanced Major Road Facility that requires additional right-of-way to accommodate turn movements and freeway access from Otay Mesa Road to SR-11.

Alta Road (SR 1112) is constructed as a north-south facility. Between Otay Mesa Road and Lone Star Road the roadway is constructed to provide one (12) lane in each direction plus a left turn lane at Lone Star Road. The LOS E capacity of this roadway segment is 16,200 ADT. The majority of the roadway is generally constructed as a two (2)-lane (one lane each direction) undivided roadway with a capacity of a Light Collector, 16,200 ADT at LOS E. The segment of Alta Road between Lone Star Road and Calzada De La Fuente was widened to provide two (2) northbound travel lanes and two (2) southbound travel lanes and a painted median with a capacity of 28,000 ADT at LOS E.

Based on the County Circulation Element, the ultimate classification of Alta Road between Lone Star Road and Otay Mesa Road (Old Otay Mesa Road) is a modified four-lane Major Road with a bike trail on the east side of roadway, capacity of 37,000 ADT at LOS E. The ultimate classification of Alta Road between Lone Star Road and Donovan State Prison Road is a four-lane Industrial Collector with a center left turn lane, capacity of 34,200 ADT at LOS E with a modified cross section of 62 feet (62') curb to curb and 86 feet (86') of right-of-way.

From Donovan State Prison Road north to the Specific Plan Boundary, the roadway segment of Alta Road is classified as a four-lane Industrial Collector, capacity of 34,200 ADT at LOS E with a modified cross section of 58 feet (58') curb to curb and 84 feet (84') of right-of-way.

Calzada de la Fuente

Calzada de la Fuente is constructed as an east-west facility as a 2-lane Industrial/Commercial roadway with a LOS E capacity of 16,200 ADT.

KEY INTERSECTIONS

Figure 7 provides intersection configurations and traffic control for the key intersections for Existing 2017 and Opening Year 2019 conditions. Opening Day 2019 traffic volumes are presented on Figure 8. The key intersections analyzed include:

- Otay Mesa Road/SR-125 Southbound Ramp (signalized);
- Otay Mesa Road/SR-125 Northbound Ramp (signalized);
- Otay Mesa Road /Sanyo Avenue (signalized);
- Otay Mesa Road /Enrico Fermi Drive (signalized);
- Otay Mesa Road /Alta Road (all-way stop-controlled);
- Airway Road/Enrico Fermi Drive (signalized);
- Alta Road/Calzada De La Fuente (one-way stop-controlled);
- Alta Road/Lone Star Road (Paseo De La Fuente) (signalized);
- Enrico Fermi Drive at SR-905 westbound on ramp (uncontrolled); and
- Enrico Fermi Drive at SR-905 eastbound off ramp (one way stop controlled);
- Siempre Viva Road at Enrico Fermi Drive.

ROADWAY SEGMENT DAILY TRAFFIC

Existing twenty-four (24) machine counts were collected on the study area roadways in April 2017. The Existing 2017 daily traffic volumes utilized within this report are illustrated in Figure 7 and Opening Day 2019 traffic volumes were previously presented on Figure 8. Count summary sheets can be found in Appendix A.

INTERSECTION TRAFFIC COUNTS

Morning and afternoon peak hour turn counts for each of the key intersections as summarized below:

- Otay Mesa Rd/SR-125 SB Ramp;
- Otay Mesa Rd/SR-125 NB Ramp;
- Otay Mesa Rd/Sanyo Ave;
- Otay Mesa Rd/Enrico Fermi Dr;
- Otay Mesa Rd/Alta Rd;
- Airway Rd/Enrico Fermi Dr;
- Alta Rd/Calzada De La Fuente;
- Alta Rd/Lone Star Rd;
- Enrico Fermi Dr/SR-905 westbound on ramp; and
- Enrico Fermi Drive at SR-905 eastbound off ramp
- Siempre Viva Road at Enrico Fermi Drive.

EXISTING LEVEL OF SERVICE CONDITIONS

Existing – Roadway Segments

Table 9 summarizes the daily segment analysis for the existing conditions. As shown in Table 9, based on average daily conditions all key roadway segments currently operate at an acceptable LOS D or better.

Table 9 – Existing Conditions	Roadway Segmen	t Daily L	OS Summa	ıry	
Roadway Segment	Jurisdiction	Class	Capacity (LOS E)	ADT	LOS
Otay Mesa Road					
SR-125 SB Ramp to SR-125 NB Ramp	County/City/Caltrans	4M(m)	47,000 (a)	10,372	A
Harvest Rd to Sanyo Ave	County/City	4M	37,000	10,372	A
Sanyo Ave to Enrico Fermi Dr	County	2.2E	16,200	5,327	C
East of Enrico Fermi Dr	County	2.2C	19,000	9,065	C
West of Alta Rd	County	2.2E	16,200	9,065	D
Calzada De La Fuente					
East of Alta Rd	County	2-I/C	16,200	1,196	A
Alta Road					
Calzada De La Fuente to Lone Star Rd (Paseo De La Fuente)	County	2.2C	28,000	7,250	D
Lone Star Rd (Paseo De La Fuente) to Otay Mesa Rd	County	2.2E	19,000	7,913	D
Enrico Fermi Drive					
Otay Mesa Rd to SR-905	County	2.2C	19,000	7,271	C
SR-905 to Airway Rd	County	2.2C	19,000	4,902	C

City = Capacity of City segments is based on the upper limits of LOS E per the City of San Diego; County = Capacity of County segments is based on the upper limits of LOS E per the County of San Diego, **Bold** = Jurisdiction which capacity is based on; ADT= Average Daily Traffic; LOS= Level of Service; Class = Roadway Classification, v/c = Volume-to LOS E Capacity Ratio; 4M(m) = Modified 4-Lane Major Road; 4M = 4-Lane Major Arterial; 2.2E = Light Collector with no median; 2.2C = Light Collector with intermittent turn lanes; 2-I/C = 2-Lane Industrial/Commercial Collector, (a) Additional lanes may be provided to accommodate turning movements and freeway access; hence the roadway capacity 45,000 for City or 47,000 for County at LOS E (half-way between a 4-lane Major & 6-Lane Prime Arterial).

Existing – Intersections

Existing Intersection - Synchro Analysis

Table 10 illustrates the existing intersection levels of service summary under existing conditions. As can be seen from Table 10, all intersections currently operate at LOS B or better during both peak hours under existing conditions, except for Otay Mesa Road at Alta Road the operates at LOS D in the AM peak hour. A copy of the Synchro worksheets for the existing conditions can be found in Appendix A

Table 10 – Existi	ng Conditions In	tersection L(OS Sum	mary			
		Traffic	Critica	AM I	Peak	PM F	Peak
Intersection	Jurisdiction	Control	l Move	Delay	LOS	Delay	LOS
Otay Mesa Rd (E-W) @ SR-125 SB (N-S)	County/City/SBX	Sig	Int.	13.6	В	12.1	В
Otay Mesa Rd (E-W) @ SR-125 NB (N-S)	County/City/SBX	Sig	Int.	4.1	A	7.2	A
Otay Mesa Rd (E-W) @Sanyo Av (N-S)	County/City	Sig	Int.	8.0	A	10.1	В
Otay Mesa Rd (E-W) @ Enrico Fermi Dr (N-S)	County	Sig	Int.	14.5	В	14.0	В
Otay Mesa Rd (E-W) @ Alta Rd (N-S)	County	AWSC	Int.	33.6	D	10.7	В
Enrico Fermi Dr (N-S) @ SR-905 WB on Ramp	Caltrans	uncontrolled	Int.	3.1	A	6.3	A
Enrico Fermi Dr (N-S) @ SR-905 EB off Ramp	Caltrans	OWSC	Int.	13.1	В	12.1	В
Alta Rd (N-S) @ Calzada De La Fuente (E-W)	County	OWSC	WB	14.8	В	13.5	В
Alta Rd (N-S) @ Lone Star Rd (E-W)	County	Sig	Int.	2.8	A	2.3	A
Airway Rd (E-W) @ Alta Rd (N-S)	County/City	Sig	Int.	14.9	В	13.5	В

Delay is measured in seconds/vehicle; LOS=Level of Service; sig=signalized; AWSC = All-Way Stop-Controlled, OWSC=One Way Stop Controlled; sig – Signalized; Int = Intersection; EB = Eastbound Approach; WB = Westbound Approach; NB = Northbound Approach; SB = Southbound Approach; E-W = East-West Roadway; N-S = North-South Roadway

SR-905 Mainline Operating Conditions

Table 11 summarizes the SR-905 mainline freeway operating conditions along SR-905 based on Caltrans peak hour criteria and existing traffic count data. Review of Table 11 shows the SR-905 mainline segments are currently operating at acceptable levels of service during the AM and PM peak hours.

Table 11 – Existing Freeway Mainline Operations									
Intersection	Direction, Number of Lanes (a) & Capacity (b)			Existing Year 2017					
				Peak Hour Volume		V/C (c)		LOS (e)	
				AM	PM	AM	PM	AM	PM
SR-905 W/O Siempre	WB	3M	6,000	1,512	1,953	0.38	0.49	A	В
Viva Road	EB	3M + 1A	7,200	1,054	1,930	0.15	0.27	A	A
SR-905 to Enrico Fermi Drive	WB	2M	4,000	200	469	0.05	0.12	A	A
	EB	2M	4,000	407	142	0.10	0.04	A	A

 $\frac{LOS}{A} = < \frac{V/C}{0.41}$

B = < 0.62

C = < 0.80

D = < 0.92

E = < 1.0

⁽a) "M" = Mainline, "A" = Auxiliary Lane; (b) Capacity =2,000 vehicles per hour (Mainline), 1,200 vehicles per hour (Auxiliary), (c) Volumes to Capacity ratio,

⁽d) "Δ" denotes the Project-induced increase in Volume to Capacity ratio, (e)LOS = Level of Service

SECTION IV - IMPACTS

POLICIES AND SIGNIFICANCE STANDARDS

The County of San Diego General Plan Mobility Element Policy M-2.1 requires development projects to provide associated road improvements necessary to achieve a level of service of "D" or higher on all Mobility Element roads except for those where a failing level of service has been accepted by the County pursuant to the criteria specifically identified in the accompany tect5 box (Criteria for Accepting a Road Classification with Level of Service "E"/"F"). When development is proposed on roads where a failing level of service has been accepted the policy requires feasible mitigation in the form of road improvements or a fair share contribution to a road improvement program, consistent with the Mobility Element road network.

To address project impacts the County of San Diego Guidelines for Determining Significance and Report Format and Content Requirements for Transportation and Traffic dated August 24, 2011 identifies criteria, guidelines and standards to determine if, a discretionary project which has a significant impact on roadways will be required, as a condition of approval, to make "improvements or other measures necessary to mitigate traffic impacts to avoid reduction in the existing Level of Service below 'D' on off-site and on-site abutting County of San Diego's Circulation Element roads. New development that would significantly impact congestion on roads at LOS 'E' or 'F', either currently or as a result of the project, will be denied unless improvements are scheduled to increase the LOS to 'D' or better or appropriate mitigation is provided. Appropriate mitigation would include a fair share contribution in the form of road improvements or a fair share contribution to an established program or project. If impacts cannot be mitigated, the project will be denied unless a specific statement of overriding findings is made pursuant to Section 15091(b) and 15093 of the State CEQA Guidelines."

LEVELS OF SIGNIFICANCE STANDARDS

The roadway segments and intersections in the vicinity of the proposed project are located in the jurisdiction of both the City and County of San Diego. The criteria for determining project significance depend on whether the roadway segment or intersection is located in the City or the County. Both the City's and the County's significance of impact criteria are discussed below.

City of San Diego

For projects deemed complete on or after January 1, 2007, the City of San Diego has adopted a modification in the significance criteria in the level of service thresholds for facilities operating at LOS E or F. Therefore, the study utilizes the adopted level of significance thresholds to assess the proposed project's traffic impact on any City roadway network operating at LOS E or F located within the City's jurisdiction. The City of San Diego's Significance Transportation Impact Measures and significance thresholds per California Environmental Quality Act (CEQA) that the City originally adopted in January 2007 and revised in January 2011 are summarized in Table 12. A copy of excerpts from the City of San Diego's Significance Determination Thresholds, originally adopted January 2007 and revised in January 2011 is provided in Appendix A. Since the City of San Diego considers LOS D to be an acceptable level of service, the City of San Diego's Significant Transportation Impact Measures were only applied to the segments and intersections located within the City of San Diego that were found to operate at LOS E or F.

County of San Diego

The County of San Diego Guidelines for Determining Significance, dated August 24, 2011 was developed to evaluate the significance of traffic impacts on roadways and intersections which are currently operating at LOS E or F. A summary of the County's Guidelines is provided in Table 12.

Table 12 – Measures of Significant Project Impacts								
City of San Diego								
Allowable Increase/Decrease Due to Project Impacts (for projects deemed complete after January 1, 2007)								
w/Project	Intersection	Roadway Segments						
	Delay (sec)	V/C	Speed (mph)					
Е	2.0	0.02	1.0					
F	1.0	0.01	0.5					
County of San Diego								
	Allowable Increase on Congested Roads and Intersections							
LOS	Intersections	Road Segments						
	Signalized	Unsignalized	2-Lane Road	4-Lane Road	6-Lane Road			
LOS E	Delay of 2 seconds or less	20 or less peak hour trips on a critical movement	200 ADT	400 ADT	600 ADT			
LOS F	Either a Delay of 1 second, or 5 peak hour trips or less on a critical movement	5 or less peak hour trips on a critical movement	100 ADT	200 ADT	300 ADT			

County Notes:

- A critical movement is an intersection movement (right turn, left turn, through-movement) that experiences excessive queues, which typically operate at LOS F. Also, if a project adds significant volume to a minor roadway approach, a gap study should be provided that details the headways between vehicles on the major roadway.
- By adding proposed project trips to all other trips from a list of projects, this same table must be used to determine if total cumulative impacts are significant. If cumulative impacts are found to be significant, each project that contributes additional trips must mitigate a share of the cumulative impacts.
- The County may also determine impacts have occurred on roads even when a project's traffic or cumulative impacts do not trigger an unacceptable level of service, when such traffic uses a significant amount of remaining road capacity.
- For determining significance at signalized intersection with LOS F conditions, the analysis must evaluate both the delay <u>and</u> the number of trips on a critical movement, exceedance of either criteria result in a significant impact.

ADT = Average Daily Traffic; LOS = Level of Service, sec = Seconds of Delay per Vehicle

Roadway Segments

As shown in Table 12, per the County's Guidelines, "traffic volume increases from public or private projects that result in one or more of the following criteria will have a significant traffic volume or level of service traffic impact on a road segment:

- The additional or redistributed ADT generated by the proposed project will significantly increase congestion on a Circulation Element Road or State Highway currently operating at LOS E or LOS F, or will cause a Circulation Element Road or State Highway to operate at a LOS E or LOS F as a result of the proposed project as identified in Table [12], or
- The additional or redistributed ADT generated by the proposed project will cause a residential street to exceed its design capacity."

As discussed on pages 13 and 14 of the *County of San Diego Guidelines for Determining Significance, First Modification February 19, 2010*, an increase of the daily thresholds established for roadway segments operating at LOS E would result in only one additional car every 2.4 minutes per lane while the thresholds established for roadway segments operating at LOS F would result in only one additional car every 4.8 minutes. Therefore, the thresholds identified in Table 12, in most cases, would result in changes to traffic flow that would not be noticeable to the average driver and would thus not constitute a significant impact on the roadway.

The County guidelines also states that "For large projects, controversial projects and/or projects which are preparing Environmental Impact Reports, more detailed evaluations to verify the applicability of the significance thresholds for the individual project conditions may be necessary. Additional evaluations may include analysis of vehicle headways, speeds, average gaps, queues, delay, and/or other factors."

Two-Lane Highways

Intersection Spacing Over One (1) Mile

In the County of San Diego Guidelines for Determining Significance, dated August 24, 2011 the County of San Diego established a higher capacity and a higher impact significance level for two-lane highways with signalized intersection spacing over one mile. Table 13 provides a summary of the level of service criteria and guidelines for significance for two-lane highways with intersection spacing over one-mile.

Table 13 – Measures of Significance on 2-Ln Hwys w/ Signalized Intersection Spacing > 1 Mile						
Level of Service	LOS Criteria	Impact Significance Level				
E	> 16,200 ADT	>325 ADT				
F	> 22,900 ADT	>225 ADT				

Note: Where detailed data is available, the Director of Public Works may also accept a detailed level of service analysis based upon the two-lane highway analysis procedures provided in the Chapter 20 Highway Capacity Manual

Intersection Spacing Less Than One (1) Mile

"Similar to the experience of drivers in urban areas with closely space intersections, the functionality of two-lane highway conditions with signalized intersection spacing under one-mile becomes constrained not due to the segment capacity but the intersection operations. Therefore, the assessment of operates of intersection on two-lane highways shall be guided by a Level of Service standard. Level of Service for purposes of this significance guideline is based upon the overall intersection operations similar - to Urban Street analysis in Chapter 15 Highway Capacity Manual." Impacts for the two-lane highways with signalized intersection under one mile of spacing will be determined by evaluating the intersection impact criteria identified in Table 14.

Table 14 – Measures of Significance on 2-Ln Hwys w/ Signalized Intersection Spacing < 1 Mile					
Level of Service	Adjacent Signalized Intersection				
E	Delay of 2 seconds				
F	Delay of 1 second, or 5 peak hour trips on a critical movement				

Notes

- A critical movement is an intersection movement (right turn, left turn, through-movement) that experiences excessive queues which typically operate at LOS F.
- By adding proposed project trips to all other trips from a list of projects, these same tables are used to determine if total cumulative impacts are significant. If cumulative impacts are found to be significant, each project is responsible for mitigating its share of the cumulative impact.
- The County may also determine impacts have occurred on roads even when a project's traffic or cumulative impacts do not trigger an unacceptable level of service, when such traffic uses a significant amount of remaining road capacity.

It should be noted that per the *County of San Diego Guidelines for Determining Significance, dated August 24, 2011,* "impacts related to operational features on two-lane highways will be evaluated on a case-by-case basis based upon traffic flow patterns, geometrics, available sight distance, accident histories, and other factors."

Signalized Intersections

"Traffic volume increases from public or private projects that result in one or more of the following criteria will have a significant traffic volume or level of service traffic impact on a signalized intersection":

- "The additional or redistributed ADT generated by the proposed project will significantly increase congestion on a signalized intersection currently operating at LOS E or LOS F, or will cause a signalized intersection to operate at a LOS E or LOS F as identified in Table [14]."
- Based upon an evaluation of existing accident rates, the signal priority list, intersection geometrics, proximity of adjacent driveways, sight distance or other factors, the project would significantly impact the operations of the intersection."

As discussed on page 16 of the County of San Diego Guidelines for Determining Significance, dated August 24, 2011, an increase in delay of two seconds or less, the threshold established for signalized intersections operating at LOS E, "...is a small fraction of the typical cycle length for a signalized intersection that ranges between 60 and 120 seconds. The likelihood of increased queues forming due to the additional two seconds of delay is low." Thus, the increase in delay of two (2) seconds or less, on average, would result in changes to traffic flow that would not be noticeable to the average driver and would thus not constitute a significant impact. Since small changes and disruptions to the traffic flow at a signalized intersection can have a greater effect on the overall intersection operation when the intersection is operating at LOS F, versus LOS E, a more stringent guideline of one (1) second of delay was established for intersections operating at LOS F.

The five (5)-peak hour trip threshold, established for the critical movement of a signalized intersection operating at LOS F, when spread out over the peak hour, results in an increase of one (1) vehicle every 12 minutes or 720 seconds. This increase would not be noticeable to the average driver because one additional vehicle during a 12-minute interval on average would clear the traffic signal cycles well within the 12-minute period. Further, even if all five (5) additional peak hour vehicles arrived at the same time, these trips would also, on average, clear the traffic cycle and the existing queue lengths would be reestablished. Thus, the increase of five (5) peak hour trips to a critical movement at a signalized intersection, on average, would result in changes to traffic flow that would not be noticeable to the average driver and would thus not constitute a significant impact. (See page 17 of the County's *Guidelines for Determining Significance* provided in Appendix A.)

Unsignalized Intersections

"Traffic volume increases from public or private projects that result in one or more of the following criteria will have a significant impact at an unsignalized intersection as listed in Table [12] and described as text below:"

- "The additional or redistributed ADT generated by the proposed project will add 21 or more peak hour trips to a critical movement of an unsignalized intersection, and cause an unsignalized intersection to operate below LOS D, or
- The additional or redistributed ADT generated by the proposed project will add 21 or more peak hour trips to a critical movement of an unsignalized intersection currently operating at LOS E, or
- The additional or redistributed ADT generated by the proposed project will add 6 or more peak hour trips to a critical movement of an unsignalized intersection, and cause the unsignalized intersection to operate at LOS F, or
- The additional or redistributed ADT generated by the proposed project will add 6 or more peak hour trips to a critical movement of an unsignalized intersection currently operating at LOS F, or

• Based upon an evaluation of existing accident rates, the signal priority list, intersection geometrics, proximity of adjacent driveways, sight distance or other factors, the project would significantly impact the operations of the intersection."

As discussed on page 18 of the County of San Diego Guidelines for Determining Significance, dated August 24, 2011, the addition of 20 peak hour trips to a critical movement would result in an increase of one (1) vehicle every 3.0 minutes or 180 seconds. "Assuming the average wait time for a vehicle in the critical movement queue is less than 3.0 minutes, which is typical for LOS E conditions; this would not be noticeable to the average driver and would not be considered a significant impact." Five (5) – trips spread out over an hour would result in an increase of one (1) vehicle every 12.0 minutes or 720 seconds. "This typically exceeds the average wait time in the queue and would not be noticeable to the average driver." (See page 18 of the County's Guidelines for Determining Significance provided in Appendix A.)

Regionally Significant Arterials

For Regionally Significant Arterials (RSA), such as Otay Mesa Road Caltrans and the City of San Diego utilizes the San Diego Traffic Engineers' Council (SANTEC)/Institute of Transportation Engineers (ITE) Guidelines For Traffic Impact studies (TIS) in the San Diego Region to determine significance. A summary of the SANTEC/ITE Guidelines are provided in Table 15.

Table 15 – SANTEC/ITE Guidelines for Measures of Significant Project Impacts							
Allowable Change due to Project Impact							
LOS with Project	Freeways		Roadway Segments		Signalized Intersections	Ramps with > 15 min. delay	
with Project	V/C	Speed (mph)	V/C	Speed (mph)	Delay (sec.)	Delay (min.)	
E & F	0.01	1	0.02	1	2	2	
V/C = Volume to Capacity Ratio							

It should be noted that although Caltrans utilizes the SANTEC/ITE Guidelines summarized in Table 15 to determine significance on arterial roadway segments based on peak hour operating conditions, the City of San Diego still determines the project significance for the roadway segment based on average daily operating conditions and the change in volume-to-capacity ratio. With further analysis, however, the City of San Diego considers that even if an arterial roadway segment is determined to be impacted based on the average daily operating conditions, the impact would be less than significant and mitigation would not be required if the following conditions are satisfied:

- 1. The roadway segment is already built out to its community plan classification,
- 2. The signalized endpoints of the roadway segment operate acceptably, and
- 3. The HCM arterial analysis for the roadway segment operates acceptably.

It should be noted that the segment of Interim SR-905 (Otay Mesa Road) between La Media Road and Piper Ranch Road is currently only constructed to provide five (5) travel lanes (2 eastbound lanes and 3 westbound lanes) and is thus not yet constructed to its community plan classification of a 8-lane Major Roadway.

The segment of Interim SR-905 (Otay Mesa Road) from Piper Ranch Road to the SR-125 is located under the jurisdiction of the County, City, and Caltrans; however, the County of San Diego's roadway capacities and levels of significance have been utilized throughout this report to assess the impacts on this roadway segment. Since this roadway segment is a regionally significant arterial segment, the County considers that if the HCM arterial roadway segment operates acceptably and the signalized endpoints of the roadway segment also operate acceptably, then there is no significant impact and mitigation will not be required.

Caltrans

Caltrans Guide for the Preparation of Traffic Impact Studies, December 2002 requires that State highway facilities (i.e., freeway segments, signalized intersections, on-or off-ramps, etc.) maintain a target LOS at the transition between LOS C and LOS D. See Appendix A for excerpts from Caltrans traffic impact guidelines.

Definition of Direct and Cumulative Impact in the City of San Diego and the County of San Diego

The County's *Guidelines for Determining Significance* dated *August 24, 2011* was developed to evaluate the significance of traffic impacts on roadways and intersections which are currently operating at LOS E or F. It should be noted that the significance guidelines summarized in Table 10 are currently only utilized by the County of San Diego to determine if a project has a significant direct and/or future impact. A project is considered to have a significant cumulative impact if it adds any traffic to a roadway segment and/or intersection that operates at LOS E or F under cumulative conditions and the total cumulative traffic added to the roadway segment and/or intersection exceeds the value identified in Table 10.

Since the project is located in the County of San Diego, the traffic study is prepared in accordance with the guidelines provided by the County of San Diego. However, the City's significance thresholds will be utilized in analyzing the roadway segments and intersections located in the City of San Diego. The traffic study classifies direct and cumulative impacts based on CEQA and County requirements.

OPENING YEAR 2019 PLUS PROJECT LEVEL OF SERVICE CONDITIONS

This scenario addresses the traffic impact associated with the addition of traffic generated by Phases 1 plus Phase 2 project based on the maximum production scenario. The Opening Year 2019 traffic volumes were previously presented on Figure 8. These traffic volumes are estimated by increasing the 2017 volumes presented on Figure 7 by ten (10%) percent. Phase 1 plus Phase 2 project traffic presented on Figure 5 was then added to the Opening Year 2019 project traffic volumes previously presented on Figure 8 and the results are presented on Figure 9.

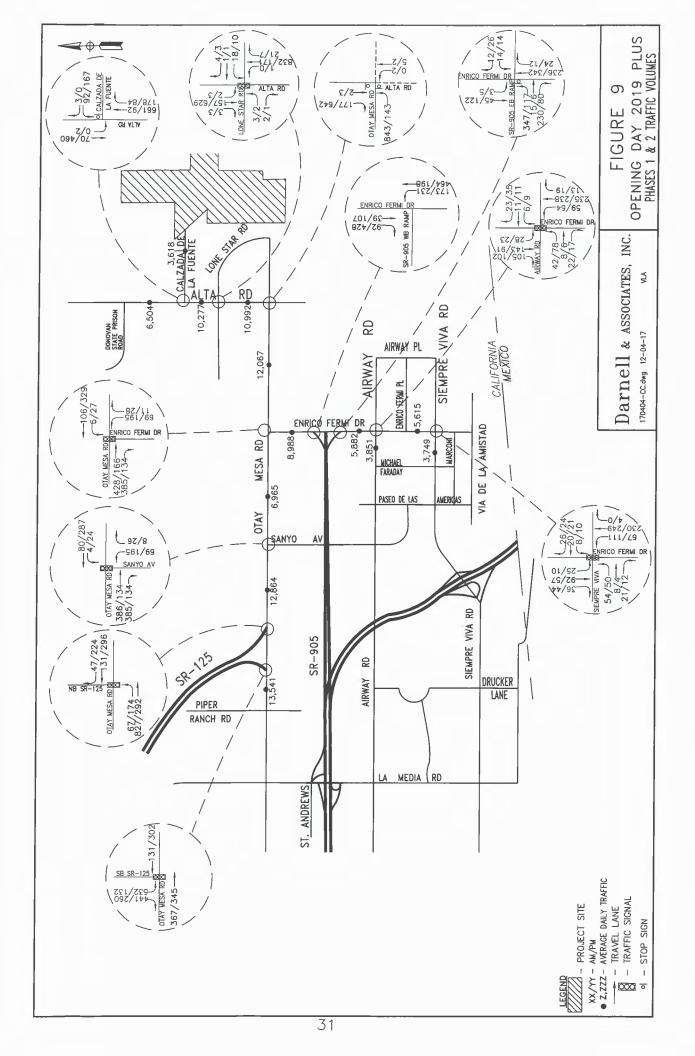

Opening Year 2019 Plus Project Phase 1 and 2 - Roadway Segments

Table 16 summarizes the daily roadway segment level of service analysis under Opening Year 2019 plus project (Phases 1 and 2) conditions based on the maximum production scenarios. As shown in Table 15, based on the maximum production scenario, all key roadway segments continue to operate at an acceptable LOS D or better under Opening Year 2019 plus project Phases 1 and 2 conditions except for Otay Mesa Road west of Alta Road, which operates at LOS E with the addition of Phase 1 plus 2 project traffic.

Opening Year 2019 Plus Project Phase 1 and 2 - Intersections

Opening Year 2019 Plus Project Phase 1 and 2 Intersections - Synchro Analysis

Table 17 summarizes the Opening Year 2019 plus project (Phases 1 and 2) conditions intersection level of service summary during the AM and PM peak hours for the maximum production scenarios, respectively. (A copy of the Synchro worksheets for Opening Year 2019 plus project (Phase 1 and 2) conditions can be found in Appendix C.) As shown in Table 16, all intersections continue to operate at an acceptable LOS C or better under Opening Year 2019 plus project (Phases 1 and 2) conditions for the maximum production scenarios, except Otay Mesa Road at Alta Road which operates at LOS F in the Am peak hour and LOS C in the PM peak hour. Further evaluation of the Synchro worksheets and Table 16 shows the eastbound left turn traffic causes the AM LOS F condition and the projects traffic is considered a significant impact. Therefore, mitigation of the projects impacts is required.

Table 16 - Opening Year 2019 + Project (Phases 1&2) Maximum Production Scenario Conditions Roadway Segment Daily LOS Summary	ct (Phases 1&2) Ms	aximum	Production	Scenario	Condition	ons Road	dway Seg	ment Dai	ily LOS	Sumr	nary
		-	Capacity	Open	Opening Year 2019	6	Opening	Opening Year 2019 + Project (Phases 1&2)	+ Project (Phases 18	22)
Roadway Segment	Jurisdiction	Class	(LOS E)	ADT	D//A	ros	Proj. Tr	ADT	A/C	TOS	Sig
Otay Mesa Road (Old Otay Mesa Road)											
SB SR-125 to NB SR-125	County/City/Caltrans	4M(m)	47,000(a)	12,275	0.272	A	092	13,035	0.273	A	No
Harvest Rd to Sanyo Ave	County/City	4M	37,000	11,805	0.319	A	1,056	12,861	0.347	A	No
Sanyo Ave to Enrico Fermi Dr	County	2.2C	16,200	5,805	0.358	C	1,104	6,909	0.430	C	No
East of Enrico Fermi Drive (1300 ft)	County	2.2E	19,000	9,972	0.524	D	2,095	12,067	0.635	О	No
West of Alta Rd (1300 ft)	County	2.2C	16,200	9,972	0.615	D	2,095	12,067	0.745	E	Yes
Calzada De La Fuente											
East of Alta Rd	County	2-I/C	16,200	1,316	0.08	A	2,302	3,618	0.223	A	No
Enrico Fermi Drive											
Otay Mesa Rd to SR-905	County	2.2C	16,200	7,998	0.421	C	066	8,988	0.555	C	No
SR-905 to Airway Rd	County	2.2C	19,000	5,392	0.284	В	299	5,691	0.300	В	
Alta Road											
Calzada De La Fuente to Lone Star	County	2.2C	19,000	7,975	0.42	C	2,302	10,277	0.541	C	No
Lone Star Rd (Paseo De La Fuente) to Otay Mesa Rd	County	2.2E	16,200	8,704	0.537	D	2,258	10,962	0.679	D	No
											I

City = Capacity of City segments is based on the upper limits of LOS E per the City of San Diego; County = Capacity of County segments is based on the upper limits of LOS E per the County of San Diego, Bold = Jurisdiction which capacity is based on; ADT= Average Daily Traffic; LOS= Level of Service; Class = Roadway Classification, v/c = Volume-to LOS E Capacity Ratio; 4M(m) = Modified 4-Lane Major Road; 4M = 4-Lane Major Arterial; 2.2E = Light Collector with no median; 2.2C = Light Collector with intermittent turn lanes; 2-I/C = 2-Lane Industrial/Commercial Collector, (a) Additional lanes may be provided to accommodate turning movements and freeway access; hence the roadway capacity 45,000 for City or 47,000 for County at LOS E (half-way between a 4-lane Major & 6-Lane Prime Arterial).

	Table 17—	Table 17 – Opening Year 2019 + Project (Phases 1 & 2) Intersection LOS Summary – Maximum Production Scenario	$2019 + P_1$	roject (P	hases 1	& 2)]	Intersed	tion L	OS Sur	nmary	. – Ma	rimum	Prod	etion (Scenai	rio		
						pening Y	Opening Year 2019			Openir	g Year 20	19 + Proj	ect (Phas	Opening Year 2019 + Project (Phases 1&2) Maximum Production	Maximun	n Product	on	
	Intercontions	Insightion	Traffic	Critical	AM Peak	eak	PM Peak	sak		A	AM Peak				PI	PM Peak		
	THEESECTIONS	Julisticuon	Control	Move	Delay	ros	Delay	SOT	Delay	SOT	Proj. Trips	Δ Delay	Sig.	Delay	SOT	Proj. Trips	Δ Delay	Sig.
	Otay Mesa Rd (E-W) @ SR-125 SB (N-S)	County/City SBX	Sig	Int	13.8	В	17.3	В	14.0	В	61	0.2	No	17.5	А	64	0.2	No
	Otay Mesa Rd (E-W) @ SR-125 NB (N-S)	County/City SBX	Sig	Int	4.1	А	7.3	А	3.9	А	89	0.2	No	8.9	А	74	-0.5	No
	Otay Mesa Rd (E-W) @ Sanyo Av (N-S)	County/City	Sig	Int	7.9	A	10.4	В	8.0	Ą	23	0.1	No	11.3	В	37	6.0	No
	Otay Mesa Rd (E-W) @ Enrico Fermi Dr (N-S)	County	Sig	Int	15.8	A	16.0	В	17.4	A	138	1.6	No	20.4	C	161	3.4	No
	Otay Mesa Rd (E-W) @ Alta Rd (N-S)	County	AWSC	EB Int	61.5 54.1	F	9.4	A B	118.5 98.8	F F	86 144	0.57	Yes Yes	10.9	В	66 157	1.5	No No
33	Enrico Fermi Dr (N-S) @ SR-905 WB on Ramp	County/Caltrans	OWSC	Int	3.2	А	6.7	A	3.2	A	9	0.4	No	6.7	A	71	0.0	No
	Enrico Fermi Dr (N-S) @ SR-905 EB off Ramp	County/Caltrans	OWSC	Int	14.4	В	11.4	В	16.1	С	48	1.7	No	14.0	В	46	3.6	No
	Enrico Fermi Dr (N-S) @ Airway Rd (E-W)	County/City	Sig	Int	26.4	C	23.2	C	26.8	C	20	0.4	No	23.4	C	22	0.2	No
	Alta Rd (N-S) @ Calzada De La Fuente (E-W)	County	OWSC	WB	16.1	С	14.4	В	18.8	C	152	2.7	No	17.8	C	166	3.4	No
	Alta Rd (N-S) @Lone Star Rd/ Paseo De La Fuente (E-W)	County	Sig	Int	3.1	А	2.3	А	3.8	А	150	0.7	No	2.4	А	166	0.1	No
	LOS=Level of Service: Delay is measured in seconds/vehicle: Sig=signalized: AWSC=All Way Stop Controlled; OWSC=One Way Stop Controlled:	ured in seconds/vehic	e: Sig=signs	lized: AWS	C=All Wa	y Stop Co	ontrolled: (OMSC=0	ne Wav S	top Cont	olled:							

LOS=Level of Service; Delay is measured in seconds/vehicle; Sig=signalized; AWSC=All Way Stop Controlled; OWSC=One Way Stop Controlled; Intersection; EB = Eastbound Approach; WB = Westbound Approach; NB = Northbound Approach; SB = Southbound Approach; EW = East-West Roadway; N-S = North-South Roadway; N-S = North-South Roadway; Bold = Jurisdiction which significance criteria is based on; A Delay = Increase (decrease) in delay; Occasionally adding traffic to a critical movement optimizes the intersection resulting in a decrease in delay

SR-905 2019 Plus Project Operating Conditions

Table 17 summaries the SR-905 mainline freeway operating conditions based on Caltrans Peak Hour criteria. Review of Table 17 shows the SR-905 mainline freeway segments will operate at LOS B or better for Opening Day 2019 and 2019 Plus Project conditions. Further review of Table 17 identifies the project does not have a significant direct impact to SR-905 freeway segments analysis.

				Table <u>18</u>	18 – Op	ening 1	Zear 20	19 Ph	us Pro	ject M	[ainlir	- Opening Year 2019 Plus Project Mainline Operations	ations						
						ing Year	Existing Year 2019 (a)				Existin	Existing Year 2019 Plus Project	019 Plus	Project					
	Direc	Direction, Number of	mber of	Peak Hour	Hour	(c)/C	(c)/LOS (c)	Γ	SOT	Project	ect	2019 + Project	Project)/Λ	(c) A/C	FOS e		Significant	ant
	Lanes	Lanes (a) & Capacity	pacity	Volume (a)	ne (a)					Peak Hour	Hour	Peak Hour	Hour) 		Impact	
	Ē		•							v olume	me	Volumes	mes			-			
				AM	PM	AM	PM	AM	PM	AM	PM	AM	PM	AM	PM	AM	PM	AM	PM
SR-905 W/O	WB	3M	6,000	1,420	2,063	0.24	0.34	A	В	17	28	1,427	2,091	0.24	0.35	A	В	NO	NO
Siempre Viva Rd	EB	3M +1A	7,200	1,051	805	0.15	0.25	A	A	98	99	1,137	871	0.16	0.12	A	A	NO	NO
SR-905 W/O	WB	2M	4,000	220	516	0.04	0.13	Α	A	17	28	237	544	90.0	0.14	Α	Α	ON	NO
Enrico Fermi Dr	EB	2M	4,000	448	156	0.11	0.04	А	A	98	99	543	222	0.14	90.0	Α	A	NO	NO
Footnotes: a. "M" = Mainline, "A" = Auxiliary Lane; b	fainline	e, "A" =	= Auxilia	ary Lane		$\frac{1}{\text{city}} = 2$,000 veľ	icles	per ho	ur (Ma	ainline	Capacity =2,000 vehicles per hour (Mainline), 1,200 vehicles per hour (Auxiliary), ° Volumes to	vehicle	s per h	our (Au	ıxiliary	/), ° Ve	olumes	to
Capacity ratio,	ratio,				ı				ı					ı					
D " Δ" denotes the Project-induced increase in Volume to Capacity ratio, ^e LOS = Level of Service	es the I	Project-	induced	increase	in Volu	ume to (Capacity	ratio	, ° LO	$S = \Gamma$	evel of	Service	4.						
(a) Existing volumes increased 10%	volum	es incre	eased 10	%			1												
LOS V/C																			
A = < 0.41																			
B = < 0.62																			
C = < 0.81																			
D = <0.92																			
E = < 1.0																			

SECTION V – YEAR 2050 CONDITIONS

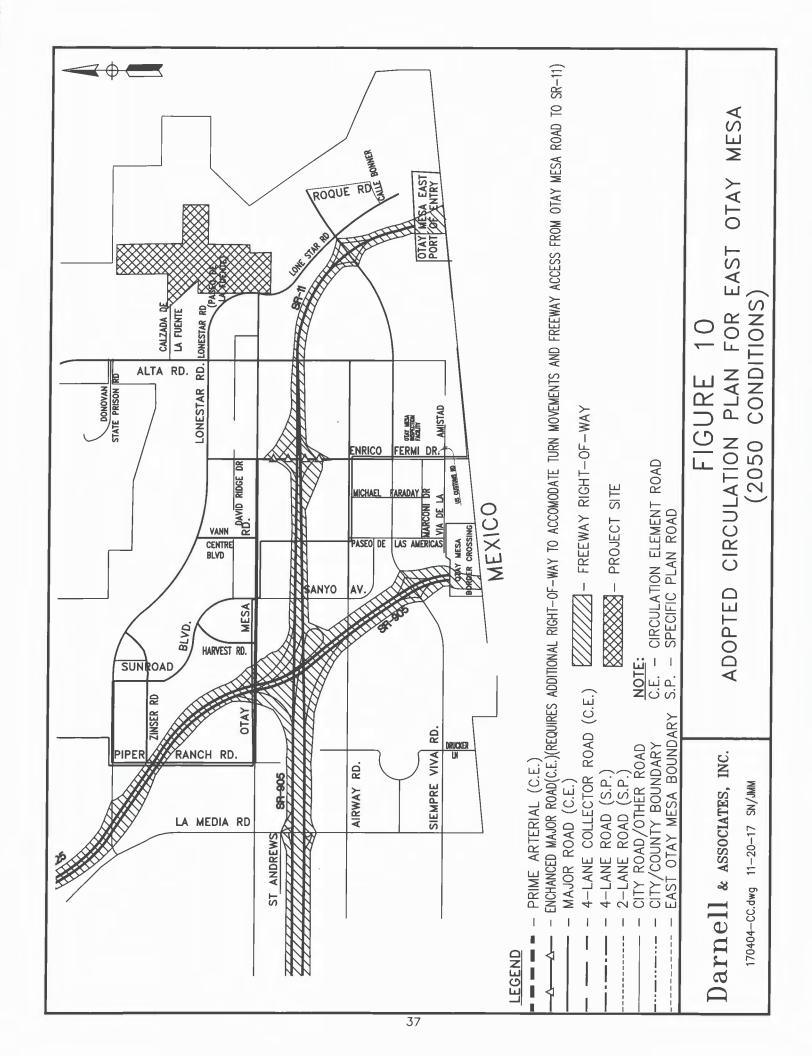
The 2050 roadway conditions and traffic forecast for the East Otay Mesa area are based on the East Otay Mesa Specific Plan Amendment (SPA 14-002) that was approved by the County Board of Supervisors on April 22, 2015. Descriptions of the roadway network and traffic volumes included in the East Otay Mesa Business Park Specific Plan are discussed in this section of the study.

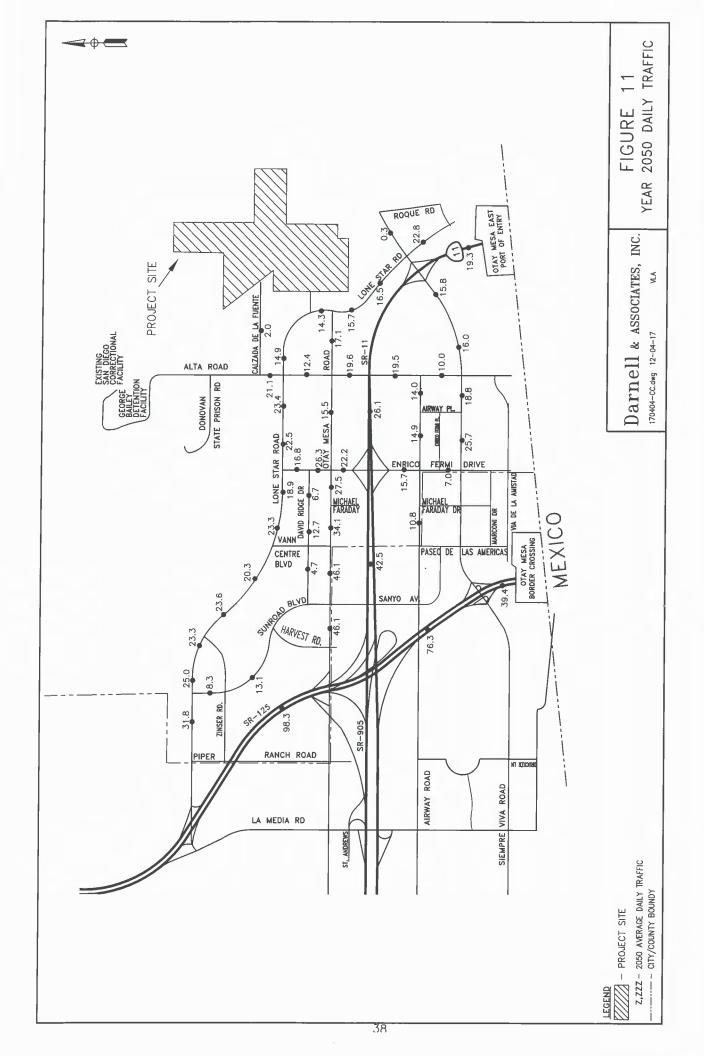
EAST OTAY MESA SPECIFIC PLAN AMENDMENT (EOMSPA)

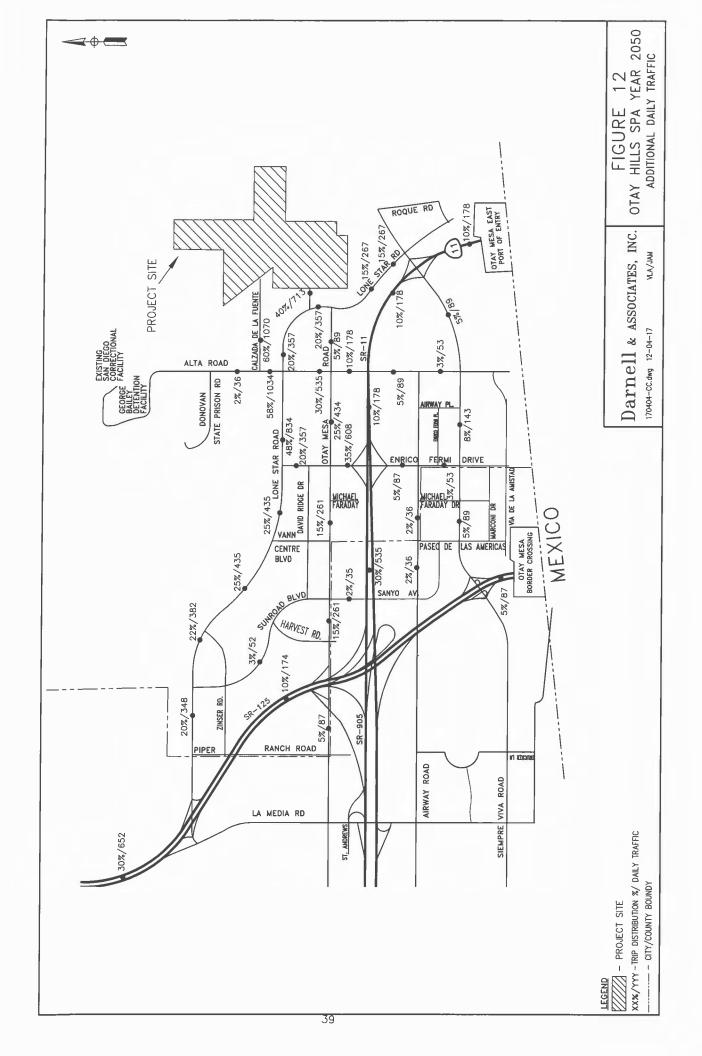
As discussed in Section I, the East Otay Mesa Specific Plan (SPA 10-001) that was approved by the County Board of Supervisors on April 22, 2015 is the most current approved amendment for East Otay Mesa. As previously noted in Section II, the proposed Otay Hills project site is currently zoned per the East Otay Mesa Business Park Specific Plan (EOMSP), SPA 14-002 to have 26.5 acres of Mixed Industrial Land Use and 83.5 acres of Rural Residential Land Use. As part of the project, the current East Otay Mesa Specific Plan will need to be amended to designate the quarry footprint as all Mixed Industrial. It would also be necessary to eliminate the Mixed Industrial designation from areas of the site that will not be affected by extractive operations and to designate those areas as Rural Residential. The proposed Specific Plan Amendment (SPA) would create a total of 85.7 acres of Mixed Industrial Land Use and 0.0 acres of Rural Residential Land Use and 216.7 acres of Conservation/Limited Use. This is a net increase of 53.4 acres of Mixed Industrial Land Use and a net decrease of 270 acres of Rural Residential Land Use and 216.7 Acres of Conservative Land Use within the EOMSPA.

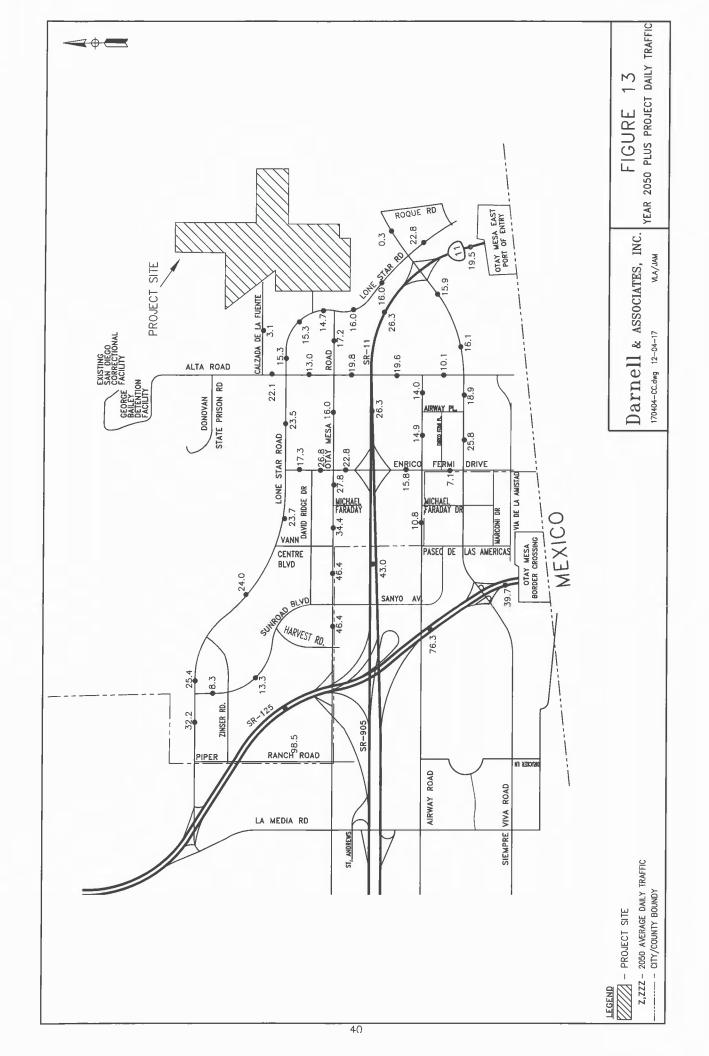
Circulation Network

Figure 10 illustrates the circulation plan for the 2050 conditions in the East Otay Mesa area of the County of San Diego as identified in the East Otay Mesa Business Park Specific Plan (SPA 10-001). It should be noted that the proposed specific plan amendment that is being processed as part of the Otay Hills project to modify the land use designations does not propose any changes to the circulation network depicted in Figure 10.


Year 2050 Traffic Forecasts


Traffic forecasts for the Year 2050 without the proposed Specific Plan Amendment were based on the SANDAG Series 12 2050 Model Base Forecasts. A copy of the Forecast Model is presented in Appendix E. Figure 11 depicts the Year 2050 daily traffic volumes based on the adopted East Otay Mesa Business Park Specific Plan.


The proposed Specific Plan Amendment will result in change in land use to permit an additional 53.4 acres of Mixed-Use Industrial Development and a reduction of 270 acres of Rural Residential Development and 216.7 acres of Conservation/Limited Use. The additional 53.4 acres of Mixed-Use Industrial Development will generate 4,806 daily trips, based on 90 trips per acre and the reduction of 270 acres of rural Residential Land Use will generate 3,240 fewer daily trips and the Conservation/Limited Use will generate 217 additional daily trips. These changes will result in 1,783 daily trips to be added to Future 2050 daily traffic volumes shown on Figure 12.


The additional traffic generated by the project site was then distributed to the Otay Mesa highway system presented on Figure 10. Figure 12 depicts the expected Year 2050 trip distribution for additional future project traffic resulting from approval of the proposed plan amendment. Also shown on Figure 12 is the Future 2050 daily project traffic.

The project traffic presented on Figure 12 was then added to the future 2050 traffic forecasts presented on Figure 11. The resulting Year 2050 plus project traffic is presented on Figure 13. The daily traffic volumes presented on Figure 11 and Figure 13 were then analyzed to determine if the proposed project creates any impacts.

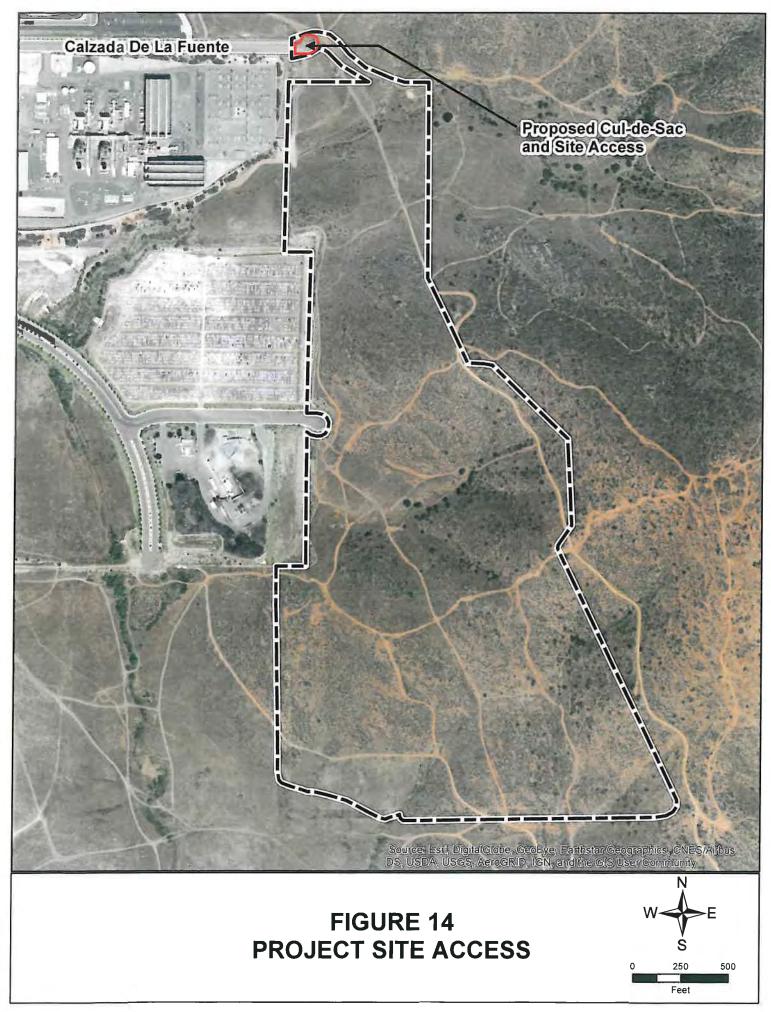
Year 2050 Analysis

The Future 2050 daily traffic forecast presented on Figure 11 for the adopted East Otay Mesa Business Park Specific Plan. Figure 13 with the proposed Otay Hills projects were analyzed, based on the daily traffic volumes and the adopted circulation element shown on Figure 10. Table 19 presents the results of the analysis. Review of Table 19 shows all the roadway segments will operate at LOS D or better and will continue to operate at LOS D or better with the addition of project traffic.

This analysis concludes the proposed Otay Hills Specific Plan Amendment does not require any amendments to the East Otay Mesa Business Park Specific Plan (SPA 14-002) Dated April 22, 2015.

	Table 19 – 209	50 Segme	e 19 – 2050 Segment Daily LOS Summary	OS Sum	mary							
Roadway Cammant	Limicdiction	sael)	Capacity	2050	2050 EOMSP			2050 + Proposed Otay Hills SPA	oposed Ot	ay Hills S	SPA	
waaway Segment	Janonne	Cidos	(LOS E)	ADT	A/C	TOS	Proj. Tr	ADT	V/C	SOT	AV/C	Sig
Otay Mesa Rd												
SR-125 SB to SR-125 NB	County/City	6P	57,000	46,100	0.81	D	261	46,361	0.82	Q	0.01	NO
Harvest Rd to Sanyo Ave	County/City	6P	57,000	46,100	0.81	D	261	46,361	0.82	Q	0.01	NO
Sanyo Ave to Vann Centre	County/City	6P	57,000	46,100	0.81	D	261	46,361	0.82	Q	0.01	NO
Vann Centre to Michael Faraday	County	6P	57,000	34,100	09.0	В	261	34,361	0.61	В	0.01	NO
Michael Faraday to Enrico Fermi Dr	County	49	57,000	27,500	0.48	В	261	27,761	0.49	В	0.01	NO
East of Enrico Fermi Dr	County	4M	37,000	15,500	0.42	В	434	15,934	0.43	В	0.01	NO
West of Alta Rd	County	4M	37,000	15,500	0.42	В	434	15,934	0.43	В	0.01	NO
Calzada De La Fuente												
East of Alta Rd	County	2-I/C	16,200	2,000	0.13	В	1,070	3,070	0.19	Э	90.0	NO
Lone Star Road												
Alta Road to Enrico Fermi Dr	County	4M	37,000	23,400	0.63	В	834	24,234	0.66	В	0.03	NO
West of Enrico Fermi Dr	County	4M	37,000	23,600	0.64	В	435	34,035	0.65	В	0.01	NO
West of Sunroad Blvd	County	4M	37,000	23,600	0.64	D	348	23,948	0.65	Q	0.01	NO
Enrico Fermi Drive												
Lone Star Rd to Otay Mesa Rd	County	4M	37,000	26,300	0.71	C	357	26,657	0.72	С	0.01	NO
Otay Mesa Rd to SR-905	County	4M(m)	47,000(a)	22,200	0.47	В	608	22,808	0.49	В	0.02	NO
SR-905 TO Airway Rd	County	4M	37,000	15,700	0.42	В	87	15,787	0.43	В	0.01	NO
Airway Rd to Siempre Viva Rd	City	4M	40,000	7,000	0.18	A	53	7,053	0.18	Α	0.0	NO
Alta Road												
Calzada De La Fuente to Lone Star Rd (Paseo De La Fuente)	County	4C	34,200	21,100	0.62	В	1,034	22,134	0.65	С	0.03	NO
Lone Star Rd (Paseo De La Fuente) to Otay Mesa Rd	County	4M	37,000	12,400	0.34	A	535	12,935	0.35	A	0.04	NO
South of Otay Mesa Rd	County	4M	37,000	19,500	0.53	A	89	19,589	0.53	В	0.0	NO
						;						

City = Capacity of City segments is based on the upper limits of LOS E per the City of San Diego; County = Capacity of County segments is based on the upper limits of LOS E per the County of San Diego; Bold = Jurisdiction which capacity is based on; ADT = Average Daily Traffic, LOS=Level of Service; V/C = Volume-to LOS E Capacity Ratio
8-Fwy = 8-Lane Freeway; 4-Toll = 4-Lane Toll Facility; 6P = 6-Lane Prime Arterial; 4M(m)= 4-Lane Modified Major Arterial; 4M = 4-Lane Major Arterial; 4C = 4-Lane Collector.
2-J/C = 2-Lane Industrial/Commercial Collector
(a) Additional lanes may be provided to accommodate turning movements and freeway access; hence the roadway capacity was assumed to be 47,000 ADT at LOS E (half way between a 4M & 6P).
(b) Capacity is 2,300 vehicles per hour per lane, LOS is based on Caltrans District 11 & HCM procedures, See Appendix G for LOS calculations


SECTION VI – PROJECT ACCESS

The project proposes to take access off Alta Road via Calzada De La Fuente located north of the Otay Mesa Road/Lone Star Road intersection. Figure 14 depicts the project site plan and internal access roads and their connection to Calzada De La Fuente. At this time Calzada De La Fuente terminates at the project boundary. A cul-de-sac at the end of Calzada De La Fuente is proposed to terminate the public road prior to entering the project.

Review of Figure 14 shows that direct access to/from Calzada De La Fuente is provided such that the vehicles enter and exit the site without requiring any extensive turning movements.

Shown in previous Sections of the report, the Alta Road/Calzada De La Fuente intersection operates at an acceptable level of service under Existing, Opening Year 2019 and Opening Year 2019 plus project conditions with existing stop control of Calzada de la Fuente.

Also shown on Figure 14 is an existing cul-de-sac of the roadway serving the existing development to the west. The cul-de-sac shown has been constructed to terminate the existing roadway and is not proposed as a project access.

SECTION VII – SUMMARY OF MITIGATION MEASURES

TRANSPORTATION IMPACT FEE (TIF)

The County of San Diego has developed an overall programmatic solution that addresses existing and projected future road deficiencies in the unincorporated portions of San Diego County. This program includes the adoption of a Transportation Impact Fee (TIF) program to fund improvements to roadways necessary to mitigate potential cumulative impacts caused by traffic from future development. Based on SANDAG regional growth and land use forecasts, the SANDAG Regional Transportation Model was utilized to analyze projected build-out (year 2050) development conditions on the existing circulation element roadway throughout the unincorporated area of the County. Based on the results of the traffic modeling, funding necessary to construct transportation facilities that will mitigate cumulative impacts from new development was identified. Existing roadway deficiencies will be corrected through improvement projects funded by other public funding sources, such as TransNet, gas tax and grants. Potential cumulative impacts to the region's freeways have been addressed in SANDAG's Regional Transportation Plan (RTP). This plan, which considers freeway build out over the next 40 years, will use funds from TransNet, state and federal funding to improve freeways to projected level of service objectives in the RTP.

Full build out of the project is estimated to generate a total of 5,565 average daily driveway trips. These trips were distributed on the circulation element roadways in Otay Mesa of which currently are projected to operate at adequate levels of service. The potential growth represented by the proposed project was analyzed in Section V of the report. The traffic impacts to County Circulation Element Roadways was identified and considered to be to less than significant.

The County Board of Supervisors adopted the County of San Diego Traffic Impact Fee (TIF) program in April 2005. The latest TIF Ordinance Update was adopted by the Board of Supervisors effective on December 31, 2012. It should be noted that the actual traffic impact fees are subject to change as the TIF ordinance is updated annually as the fees are adjusted to reflect the engineering cost index. Compliance with the County TIF ordinance will mitigate any cumulative impact that the project has on the County roadway facilities located within the East Otay Mesa Specific Plan Area and the South TIF region. The project proposes to comply with the County's TIF to mitigate the project's local and regional cumulative impacts within the unincorporated area.

DIRECT IMPACTS

Direct Impacts – Roadway Segments

The project has a direct impact to Otay Mesa Road west of Alta Road.

<u>Direct Impacts – Intersections</u>

The project has a direct impact on the Otay Mesa/Alta Road intersection.

CUMULATIVE IMPACTS

The project is considered to be part of cumulative impacts. To mitigate projects cumulative impacts the Applicant agrees to participate in the County of San Diego Traffic Impact Fees (TIF) Program and will pay the current County TIF Fees at the time building permits are issued.

YEAR 2050 IMPACTS

Analysis of Year 2050 conditions was examined in Section V of this report. The analysis concluded that the Otay Hills Specific Plan Amendment does not create a significant impact on the Year 2050 conditions to require any amendments to the East Otay Mesa Business Park approved Circulation Element

MITIGATION MEASURES

To mitigate the projects direct impact to Otay Mesa Road requires Otay Mesa Road west of Alta Road to east of Enrico Drive to restripe the existing two (2) lane roadway to provide one (1) lane in each direction plus a continuous center turn lane, from Alta Road to Enrico Fermi Drive. With this improvement the Level of Service of the roadway will operate at LOS D.

To mitigate the projects direct impact to the Otay Mesa Road/Alta Road intersection requires the intersection to be signalized. With these improvements the Level of Service will operate at LOS B in the AM peak and LOS A in the PM peak hours. To mitigate the projects impacts does not require the addition of any traffic lanes at the intersection.

FUTURE IMPACTS

As shown in Section VI, the proposed Otay Hills Specific Plan Amendment does not have a significant impact under 2050 conditions in the County or City of San Diego.

PROJECT ACCESS IMPROVEMENTS

The project applicant for Otay Hills will be responsible for constructing a cul-de-sac at the eastern terminus of Calzada De La Fuente to provide access to the Otay Hills project site. The project will also construct a cul-de-sac at the end of Calzada de la Fuente as shown on Figure 14.

SECTION VIII - ALTERNATIVE PROJECT TRAFFIC ANALYSIS

The California Environmental Quality Act (CEQA) requires that a project consider a minimum of three (3) project alternatives, one of which is a No Project alternative. Therefore, to satisfy the requirements of CEQA, the Otay Hills Project developed the following five (5) project alternatives in addition to the proposed project:

- Alternative 1 No Project/No Development Alternative
- Alternative 2 No Project/Existing Plan Alternative
- Alternative 3 –Extraction to Natural Grade Alternative
- Alternative 4 Extraction to 50-foot Depth Alternative
- Alternative 5 Extraction to 200-foot Depth Alternative.

A brief description of each of the project alternatives is provided below. An illustration of the layout for Alternative 3, 4, and 5 is provided in Appendix F. Table 19 provides a summary of the trip generation associated with each of the project alternatives.

<u>Alternative 1 – No Project/No Development Alternative</u>: Alternative 1 assumes that the proposed project site would not be mined and would remain undeveloped. The no project/no development alternative will analyze the environmental impacts associated with the site being left in its baseline condition (natural) with no development occurring within the foreseeable future.

Alternative 2 – No Project/Existing Plan Alternative: With Alternative 2, future conditions assume that the site will be developed per the existing land uses approved with the East Otay Mesa Specific Plan. As was discussed in Section III, the project site is currently zoned per the East Otay Mesa Business Park Specific Plan (EOMSP) to have 26.5 acres of Mixed Industrial Land Use and 83.5 acres of Rural Residential Land Use. The Hillside Residential District along the eastern portion of the site allows for low-density (1 dwelling unit/ 20 acres) rural residential use. The Mixed Industrial District permits uses such as, wholesale storage and distribution, research services, and general industrial along with compatible commercial uses of construction sales and services, automotive and equipment uses, and custom manufacturing, to be built under its land use designation. The trip generation for Alternative 2 is shown in Table 18.

Alternative 3 – Extraction to Natural Grade: Alternative 3, the extraction to natural grade alternative would include the same operations and footprint as the proposed project. This alternative would consist of Phases 1 and 2 of the proposed project. The total anticipated production of the quarry under this alternative would have an estimated life of 20 years and would extract approximately 19 million tons of mineral resource from the site (the proposed project would extract approximately 86-million tons of mineral resource over a $120 \pm \text{year period}$). Annual production amounts are anticipated to be similar to the proposed project (i.e. between 0.6 and 1.6 million tons of aggregate per year).

Similar to the proposed project, the proposed construction aggregate operation would be developed in phases. The timing for Phases 1 and 2 could change in the future depending upon aggregate needs in southern San Diego County, such that the phases presented herein could change and/or more than one phase could be in use at any one time.

As discussed previously, Alternative 3 would include only Phases 1 and 2 of the proposed project. The Inert Debris Engineered Fill Operation (IDEFO) that was part of Phase 4 of the proposed project would be eliminated with the project Alternative 3, thus the Phase 2 trip generation from the proposed project would represent the maximum trip generation potential for the project Alternative 3. Table 3 summarizes the trip generation for the project Alternative 3. (For details on the trip generation calculations, please refer to Section III of this report.)

	Table 20 -Project Alt	ject Alternativ	es Trip	Gener	ation	Rates a	nd Cal	ernatives Trip Generation Rates and Calculations Summary	ummar	Α					
			Trip (renera	Frip Generation Rates	tes									
T and The Andinibe.	Do. 11st. T Do. 45		AM Peak Hour Trip Rate	Hour Tr	ip Rate				F	PM Peak Hour Trip Rate	Iour Trip	Rate			
Land Ose/Activity	Бану тпр как	Total % of Daily	6	% In		% Out	ıt	Total % of Daily	Daily		uI %		%	% Out	
Mixed Industrial	90 Trips/Acre	11%	5	%06		10%		12%			20%		8(%08	
Rural Residential	12 Trips/Acre (a)	%8	(7)	30%		%02		10%			%02		3(30%	
		L	Trip Generation Calculations	eration	Calcu	lations									
		Avera	Average Production	on						Maximu	Maximum Production	ion			
Land Use	Total #	ı	AM P	AM Peak Hour		PM Peak Hour	Hour	Total #	.	AM	AM Peak Hour	11	PM Pe	PM Peak Hour	
	Units	Daily	Total	In C	Out Tc	Total In	Out	Units	Daily	Total	ln	nt	Total	In C	Out
			Prop	osed Pr	Proposed Project (b)	(q									
Proposed Project (Phases 3 & 4)	(p)	1,644	101	7 65	42 1	115 55	09	(b)	2,674	158	06	89	172	83 8	68
		Alternative 1	1	lo Proj	ect/No	No Project/No Development	ment								
No Development		0	0	0	0	0 0	0	,	0	0	0	0	0	0	0
Difference btwn Alt 1: & Proposed Proj:	-	(1,644)	(101)	7) (65)	(1)	(115) (55)	(09)	-	(2,674)	(158)	(06)	(89)	(172)	(83)	(88)
		Altern	Alternative 2 –	No Pr	oject/E	- No Project/Existing Plan	lan								
Mixed Industrial	26.5Acres	2,385	262	236	26 23	286 57	229	26.5Acres	2,385	262	236	56	286	57 2	229
Rural Residential	83.5 Acres	1,002	H	Ш	Н	00 70	H	83.5 Acres	1,002	80	Н	H	Н	70	30
Total Alternative 2:	110.0 Acres	3,387	342	260	82 3	386 127	259	110.0 Acres	3,387	342	260	82	386	H	259
Difference btwn Alt 2: & Proposed Proj:	-	1,743	241	201	40 2	271 72	199	-	713	184	170	14	214	44 1	170
		Alternative 3 –		traction	n to Na	Extraction to Natural Grade (c)	rade (c)	i							
Extraction to Natural Grade (Phase 2)	(၁)	1,332	83	50	33 6	97 46	51	(c)	2,154	127	74	53	141	. 19	74
Difference btwn Alt 3: & Proposed Proj:	-	(312)	(18)	(6)	(9)	(18) (9)	(6)	-	(520)	(31)	(16)	(15)	(31)	(16)	(15)
		Alternative 4 –	ve $4 - Ex$	tractio	n to 50	Extraction to 50-foot Depth (d)	pth (d)	,							
Extraction to Natural Grade	(p)	1,644	101	7 65	42 1	115 55	09	(p)	2,674	158	06	89	172	83 8	68
Difference btwn Alt 4: & Proposed Proj:	-	0	0	0	0	0 0	0	-	0	0	0	0	0	0	0
		Alternative	2-	raction	1 to 200	Extraction to 200-foot Depth (d)	epth (d)								
Extraction to Natural Grade	(p)	1,644	101	7 65	42 1	115 55	09	(p)	2,674	158	06	89	172	83 8	68
Difference btwn Alt 5: & Proposed Proj:	-	0	0	0	0	0 0	0	1	0	0	0	0	0	0	0
eron reating saillewh (1) eno semusa (0)															

(a) Assumes one (1) dwelling unit per acre
(b) See Table 4 in Section III for details on the trip generation break down
(c) Alternative 3 would only extend out to Phase 2 of the proposed project. Thus, the Phase 2 trip generation from the proposed project would represent the maximum trip generation potential for Alternative 3.
See Table 4 in Section III for details on the trip generation break down.
(d) Project Alternatives 4 and 5 will have the same daily average and maximum production levels as the proposed project. See Table 4 in Section III for details on the trip generation break down.
Therefore, the daily and peak hour trip generation for Alternatives 4 and 5 are the exact same as the proposed project. See Table 4 in Section III for details on the trip generation break down.

Alternative 4 – Extraction to 50-Foot Depth: Alternative 4, the extraction to 50-foot depth alternative would include the same operations and footprint as the proposed project. This alternative would consist of three (3) phases. Phase 1 would include site preparation and the construction of the processing plant. This phase would be consistent with Phase 1 of the proposed project. Phase 2 would include extraction of material that will extend to a maximum pit floor elevation of 530 feet above mean sea level (AMSL). Extraction would progress in a north to south direction. Phase 3 will involve backfilling the pit with inert fill material to compact the material to form pad areas (IDEFO). Similar to the proposed project, the pit will be backfilled consecutively with extraction that occurs during Phase 2.

The total anticipated production of the quarry under this alternative would have an estimated life of 36 years and would extract approximately 35 million tons of mineral resource from the site (the proposed project would extract approximately 86-million tons of mineral resource over a $120 \pm \text{year period}$). Annual production amounts are anticipated to be similar to the proposed project (i.e. between 0.6 and 1.6 million tons of aggregate per year). Therefore, daily production would also be consistent with the proposed project.

Similar to the proposed project, the proposed construction aggregate operation would be developed in phases. The timing for Phases 1 through 3 could change in the future depending upon aggregate needs in southern San Diego County, such that the phases presented herein could change and/or more than one phase could be in use at any one time.

Since the daily production activities based on the average and maximum production scenarios will be the same for the project Alternative 4 as they are for the proposed project, the trip generation for project Alternative 4 is the same as the proposed project. Table 3 summarizes the trip generation for the project Alternative 4. (For details on the trip generation calculations, please refer to Section III of this report.)

Alternative 5 – Extraction to 200-Foot Depth: Alternative 5, the extraction to 200-foot depth alternative would include the same operations and footprint as the proposed project. This alternative would consist of four (4) phases. These phases would be consistent with Phases 1 through 4 of the proposed project, except that the ultimate pit depth would be reduced to approximately 200 feet below the existing grade (the proposed project would extend to a depth of approximately 500 feet below the existing grade). Phase 1 would include site preparation and the construction of the processing plant. Phase 2 will consist of cutting the landform to the natural grade elevation that exists along the western perimeter of the site. The natural grade elevation of the mesa (west of the site) ranges between 580 and 630 feet AMSL. Extraction would progress in a north to south direction. Extraction operations during Phase 3 would extend below the Phase 2 area, to a maximum pit floor elevation of 380 feet AMSL. Phase 4 will involve backfilling the pit with inert fill material to compact the material to form pad areas (IDEFO). Similar to the proposed project, the pit will be backfilled consecutively with extraction that occurs during Phase 3.

The total anticipated production of the quarry under this alternative would have an estimated life of 62 years and would extract approximately 60 million tons of mineral resource from the site (the proposed project would extract approximately 86-million tons of mineral resource over a $120 \pm \text{year period}$). Annual production amounts are anticipated to be similar to the proposed project (i.e. between 0.6 and 1.6 million tons of aggregate per year). Therefore, daily production would also be consistent with the proposed project.

Similar to the proposed project, the proposed construction aggregate operation would be developed in phases. The timing for Phases 1 through 4 could change in the future depending upon aggregate needs in southern San Diego County, such that the phases presented herein could change and/or more than one phase could be in use at any one time.

Since the daily production activities based on the average and maximum production scenarios will be the same for the project Alternative 5 as they are for the proposed project, the trip generation for project Alternative 5 is the same as the proposed project. Table 3 summarizes the trip generation for the project Alternative 5. (For details on the trip generation calculations, please refer to Section III of this report.)

SECTION IX – SUMMARY OF FINDINGS AND CONCLUSIONS

- The Otay Hills Project is a hard rock quarry located east of Alta Road at the end of Calzada De La Fuente in the County of San Diego. The project is a proposal to establish a mineral resource recovery operation and associated activities to create much needed construction aggregates and materials to serve the economy of San Diego County for an approximate 80-year period. The project is located within a 433.9-acre ownership with extractive operations proposed on 110 acres of the site. The balance of the 433.9-acre ownership would be placed in biological open space prior to aggregate recovery activities. Approximately 86-million tons of mineral resource would be extracted from the site and over 60 million tons of inert debris would be received over a 120± year period.
- The proposed mineral resource recovery project would consist of site preparation for the processing plant equipment and a phased extraction and backfilling operation. Ongoing backfilling of the site during the open pit extraction phase of the project will allow reclamation to progress concurrently with the extraction operation. The project is proposed to be subdivided into four (4) phases with Phase 1 (Site Preparation) anticipated to run from 2017 to 2019, Phase 2 (Extraction to Natural Grade Elevation) anticipated to extend for a 26 year period from the Years 2019 to 2042; Phase 3 (Open Pit Extraction) anticipated to last 75 years from 2042 to 2117, and Phase 4 (Inert Debris Engineered Fill Operation, Landfill) lasting around 92 years starting around the year 2043 and lasting until around the year 2135.
- It should be noted that the variables used to prepare the project time line include assumptions that could change over time. That is particularly true for Phase 4, where the amount of inert debris that will be available to fill the proposed landfill is dependent upon variables that will change such as: (1) the regional economy which affects the rate of construction; (2) the level of recycling; and (3) the competition from other inert landfill sites.
- Based on information provided by the applicant for the average and maximum production scenario, trip generation was estimated for each phase of the project. Phase 1 and Phase 2 are proposed to operate independently of all other phases (i.e. they will not overlap any other phase). However, there is a period of approximately 74 years where Phases 3 and 4 of the proposed project may overlap.
- Phase 1 of the proposed project is estimated to generate 148 average daily passenger car equivalent (PCE) trips, 25 AM PCE trips, and 25 PM PCE trips.
- Based on the average production scenario, Phase 2 and 3 (independently) are estimated to generate 1,332 average daily PCE trips, 83 AM PCE trips, and 97 PM PCE trips, and Phase 4 (independently) is estimated to generate 390 average daily PCE trips, 33 AM PCE trips, and 47 PM PCE trips. The combination of Phases 3 and 4, per the average production scenario, are estimated to generate 1,644 average daily PCE trips, 101 AM PCE trips, and 115 PM PCE trips.
- Based on the maximum production scenario, Phase 2 and 3 (independently) are estimated to generate 2,154 average daily PCE trips, 127 AM PCE trips, and 141 PM PCE trips, and Phase 4 (independently) is estimated to generate 598 average daily PCE trips, 46 AM PCE trips, and 60 PM PCE trips.
- Since the combination of Phases 1 and 2 generate the highest number of trips, this report analyzed the project impacts associated with the addition of the traffic generated by the combination of Phases 1 and 2 of the proposed projects based on the maximum production scenarios to identify projects impacts.
- Analysis of the projects direct impacts found the project has a direct impact at the Otay Mesa Road/ Alta Road intersection with traffic from Phases 1 plus 2 traffic. Mitigation of the impact requires the installation of traffic signal control at the existing intersection. Installation of the signal will result in the intersection operating at LOS A in the AM and LOS B in the PM peak hour.

- Analysis of Opening Year 2019 Plus Project direct impacts found the project has a direct impact to Otay Mesa Road west of Alta Road to the existing improved roadway east of Enrico Fermi Drive. To mitigate the projects direct impacts the applicant proposes restriping the existing two (2) lane section of Otay Mesa Road between Alta Road and Enrico Fermi Drive to provide a minimum one (1) lane in each direction plus a center turn lane to increase the LOS E capacity of the roadway to 19,000 vehicles per day.
- Analysis of the Future 2050 traffic forecasts with the addition of project traffic from the additional 53.4 acres of mixed use industrial and decrease in 270 acres of Rural Residential land use and the addition of 216.7 acres of Conservation/Limited Use found the proposed approval of the proposed Specific Plan Amendment will result in the addition of 1,783 additional trips from the project area to the 2050 traffic forecasts. Analysis of the additional traffic generated by the proposed plan amendment does not create any impacts to require any changes to the adopted East Otay Mesa Business Park Circulation Element.
- To mitigate the projects cumulative impacts the project will pay the County Traffic Impact Fees based on the Average Trip Generation presented on Table 4.

APPENDIX A

➤ 24 Hour Machine Counts

➤ AM/PM Peak Hour Traffic Counts

> Excerpts from County of San Diego Public Road Standards

> Excerpts from County's Guidelines for Determining Significance

> Excerpts from Caltrans Guidelines for the Preparation of Traffic Impact Studies

24 Hour Machine Counts

TUESDAY - APRIL 25, 2017

ENRICO FERMI - OTAY MESA TO 905 WB RAMP

AM Period	<u>NE</u>	3	SE	3	EB	WB		PM Period	NB		SB		EB W	В	
00:00	9		9					12:00	58		59				
00:15	4		14					12:15	66		49				
00:30	2		15					12:30	61		4 4				
00:45	3	18	6	44			62	12:45	50	235	55	207			442
01:00	5	_	2					13:00	44		65				
01:15	2		4					13:15	42		68				
01:30	6		9					13:30	35		71				
01:45	6	19	4	19			38	13:45	28	149	111	315			464
02:00	5		9					14:00	36		130				
02:15	7		0					14:15	33		114				
02:30	14		10					14:30	28		112				
02:45	10	36	5	24			60	14:45	21	118	67	423			541
03:00	2		3					15:00	22		99				
03:15	6		6					15:15	26		76				
03:30	8		7					15:30	25		127				
03:45	11	27	_ 3	19			46	15:45	30	103	120	422			525
04:00	5		3					16:00	35		170				
04:15	15		5					16:15	30		104				
04:30	21		5					16:30	28		108				
04:45	34	75	11	24			99	16:45	33	126	70	452			578
05:00	35		7					17:00	38		81				
05:15	83		7					17:15	30		72				
05:30	133		9					17:30	38		39				
05:45	89	340	17	40			380	17:45	31	137	49	241			378
06:00	46		34				_	18:00	33		71				
06:15	80		35					18:15	28		53				
06:30	105		58					18:30	21		56				
06:45	127	358	37	164			522	18:45	26	108	35	215			323
07:00	81		28					19:00	22		36				
07:15	99		15					19:15	15		38				
07:30	105		33					19:30	19		29				
07:45	111	396	38	114			510	19:45	20	76	27	130			206
08:00	66		25					20:00	11		33				
08:15	61		31					20:15	9		14				
08:30	50		28					20:30	12		13				
08:45	48	225	33	117			342	20:45	11	43	18	78			121
09:00	57		45					21:00	8		6				
09:15	63		51					21:15	9		13				
09:30	56		38					21:30	10		17				
09:45	51	227	52	186			413	21:45	5	32	18	54			86
10:00	48		44					22:00	4		79				
10:15	43		35					22:15	6		33				
10:30	87		51					22:30	5		27				
10:45	60	238	47	177			415	22:45	9	24	17	156			180
11:00	58		61					23:00	12		11				_
11:15	69		57					23:15	5		8				
11:30	63		62					23:30	4		29				
11:45	44	234	45	225			459	23:45	5	26	7	55			81
							3346			·					
otal Vol.		2193		1153			3340			1177		2748			3925
										NB		CP	Daily Totals	WD	Combine
									-			SB	EB	WB	Combined
										3370	:	3901			7271
Salit 04		6E E01		24 F0/.	AM		46.0%		-	30.0%	7	0.004	PM		E4 00'
Split %		65.5%	4	34.5%				- "				0.0%			54.0%
eak Hour		06:30		10:45			06:15			12:00		15:30			15:30
Volume P.H.F.		412		227			551			235		521			641
P. M. P.		0.81		0.92			0.84			0.93		0.77			Err:504

PROJECT: PTD17-0428-01

PACIFICAECED ICAL DATA

TUESDAY - APRIL 25, 2017 CITY: OTAY PROJECT: PTD17-0428-01

ENDICO E			•	D A 640 =	CO ATDIA/AN		·OIAI					TROJECT. T	1017-0-12	.0 01
ENRICO F AM Period			EB SB		O AIRWAY EB WB		DM Dariad	ND		CD		ER	W/B	
00:00	1 NB		2		ED VVD		PM Period 12:00	<u>NB</u> 44		<u>SB</u> 34		EB	WB	
00:00	2		2				12:00	51		40				
00:30	1		2				12:30	40		28				
00:45	0	4	4	10		14	12:45	35	170		128			298
01:00	1		4				13:00	33		33				
01:15	2		4				13:15	28		31				
01:30	3		2				13:30	35		28				
01:45	2	8	1	11		19	13:45	40	136		114			250
02:00	4		1		-		14:00	32		18				
02:15	5		2				14:15	28		20				
02:30	6		3				14:30	44		16				
02:45	3	18	2	8		26	14:45	65	169		73			242
03:00	2		4				15:00	77		22				
03:15	4		5				15:15	84		28				
03:30	4		10				15:30	65		15				
03:45	9	19	9	28		47	15:45	74	300		84			384
04:00	16		15				16:00	88		22				
04:15	22		12				16:15	61		20				
04:30	41		23				16:30	84		28				
04:45	35	114	22	72		186	16:45	69	302		100			402
05:00	16		6				17:00	88		25				
05:15	22		12				17:15	70		21				
05:30	32		18				17:30	68		33				
05:45	28	98	15	51		149	17:45	70	296	20	99			395
06:00	15		35				18:00	51		16				
06:15	12		23				18:15	68		19				
06:30	15		21				18:30	70		20				
06:45	16	58	19	98		156	18:45	54	243	11	66			309
07:00	28		22				19:00	44		15				
07:15	44		12				19:15	35		9				
07:30	68		21				19:30	28		12				
07:45	61	201	33	88		289	19:45	21	128	8 4	44			172
08:00	55		35				20:00	22		9				
08:15	68		41				20:15	26		10				
08:30	70		33				20:30	11		5				
08:45	91	284	38	147		431	20:45	18	77	4 :	28			105
09:00	88		35				21:00	9		5				
09:15	70		44				21:15	12		3				
09:30	65		35				21:30	5		3				
09:45	55	278	28	142		420	21:45	4	30		16			46
10:00	51		26				22:00	9		4				
10:15	40		22				22:15	4		2				
10:30	35	4-4	29				22:30	5		1	•			_
10:45	33	159	35	112		271	22:45	3	21		8		_	29
11:00	28		35				23:00	2		0				
11:15	21		44				23:15	4		1				
11:30	19	00	41	155		245	23:30	5	12	2	4			. –
11:45	22	90	35	155		245	23:45	2	13	1	4			17
otal Vol.		1331		922		2253			1885	7	64			2649
												Daily Tota	ls	
								_	NB	9	SB	EB	WB	Combined
									3216	16	86			4902
					AM							PM		
plit %	-	59.1%		40.9%		46.0%		7	71.2%	28.	.8%			54.0%
eak Hour		08:30		10:45		08:30			15:15		:00			16:30
Volume P.H.F.		319 0.88		155 0.88		469 0.91			311 0.88		28 .80			415 Err:504
				5,00		4.54			0.00	Ů.				211.304

PACIFICATE DATA

PROJECT: PTD17-0428-01

AIRWAY -	SANYO	TO	PASEO	DE	LAS	AMERICAS
----------	-------	----	-------	----	-----	----------

AM Period NB	SB	EB		WB	1		PM Period	NB	SB		EB		WE	3	
00:00		1		1			12:00				25		77		
00:15		0		7			12:15				34		69		
00:30		1		2			12:30				38		87		
00:45		0	2	0_	10	12	12:45				35	132	88	321	453
01:00		0		1			13:00				29		59		
01:15		0		2			13:15				36		66		
01:30		0		0			13:30				38		51		
01:45		0	0	0	3	3	13:45				36	139	41	217	356
02:00		1		1			14:00				43		54		
02:15		0		0			14:15				34		40		
02:30		0		0			14:30				38		55		
02:45		3	4	1	2	6	14:45				43	158	41	190	348
03:00		1		3			15:00				36		44		
03:15		1		1			15:15				22		35		
03:30		1		0			15:30				30		40		
03:45		0	3	1	5	8	15:45				45	133	51	170	303
04:00		5		0			16:00				28		55		
04:15		8		1			16:15				25		58		
04:30		6	20	2	_		16:30				44	400	55	202	25-
04:45		9	28	4	7	35	16:45				31	128	41	209	337
05:00		1		8			17:00				25		58		
05:15		1		14			17:15				33		40		
05:30		4	1.4	12	E2	66	17:30				20	02	44	102	276
05:45	· ·	8	14	18	52	66	17:45				15	93	41	183	276
06:00		12		12			18:00				15		40		
06:15		10 12		20			18:15				14		35		
06:30 06:45		11	45	15 17	64	109	18:30 18:45				21 14	64	44 41	160	224
			73			103				-				100	227
07:00 07:15		15 20		17 25			19:00 19:15				7 13		35		
07:30		15		24			19:13				3		40 28		
07:45		42	92	21	87	179	19:45				2	25	22	125	150
08:00		22		33			20:00				6		26	125	150
08:15		28		30			20:15				8		12		
08:30		33		38			20:30				6		8		
08:45		19	102	41	142	244	20:45				4	24	9	55	79
09:00		40		57			21:00				4		2		
09:15		31		75			21:15				2		2		
09:30		53		97			21:30				7		7		
09:45		33	157	106	335	492	21:45				2	15	7	18	33
10:00		31		54			22:00				2		7		
10:15		36		51			22:15				3		4		
10:30		39		62			22:30				3		4		
10:45		21	127	52	219	346	22:45				3	11	7	22	33
11:00		36		66			23:00				0		5		
11:15		41		62			23:15				0		1		
11:30		28		57			23:30				0		0		
11:45		20	125	81	2 66	391	23:45				0	0	4	10	10
Total Vol.			699		1192	1891						922		1680	2602
											D	aily To	tale		
								١	IB	SB	J	EB	va 13	WB	Combined
												1621		2872	4493
			AM									PM		-	
Split %			37.0%		63.0%	42.1%						35.4%		64.6%	57.9%
Peak Hour			09:00		09:00	09:00						14:00		12:00	12:00
Volume P.H.F.			157 0.74		335 0.79	492 0.82						158 0.92		321	453 Fer: 504
Fiffifi.			U./4		0.79	0.02	A4					U.92		0.91	Err:504

PACIFICATECHNICAL DATA

TUESDAY - APRIL 25, 2017 CITY: OTAY PROJECT: PTD17-0428-01

Eak Muui													
eak Hour		09:15		09:00	09:00					13:00	C. C	13:45	13:30
Split %		AM 32.5%		67 5%	37.6%					PM		66.5%	62.4%
							NB	SB		1112		WB 2243	Combined 3355
							NB	CD	D	aily To	tals	WID	Comb!
otal Vol.		410		851	1261					702		1392	2094
11:45	4	77	25	111	188	23:45			0	3	2	3	6
11:30	22		27			23:15			0		1		
11:00 11:15	21 30		44 15			23:00 23:15			1 2		0		
10:45	14	75	30	125	200	22:45			4	9	6	13	22
10:30	22	7-	47	125	200	22:30			0	•	3	40	
10:15	20		30			22:15			1		4		
10:00	19		18			22:00			4		0		
09:45	_ 23	103	47	182	285	21:45			1	9_	6	16	25
09:30	38		45			21:30			2		4		
09:15	29		38			21:15			3		1		
09:00	13		52			21:00			3		5	- 50	
08:30 08:45	16	73	31	153	226	20:30 20:45			4 4	16	13 7	36	52
08:15	13 27		44 29			20:15			7 ₄		11		
08:00	17		49			20:00			1		5		
07:45	5	25	25	105	130	19:45			11	15	25	107	122
07:30	7		38			19:30			6		15		
07:15	7		28			19:15			5		40		
07:00	6		14			19:00			3		27		
06:45	6	24	16	50	74	18:45			13	53	49	199	252
06:30	4		5			18:30			19		52		
06:15	8		15			18:15			12		56		
06:00	6		14		••	18:00			9		42		
05:45	4	10	32	64	74	17:30 17:45			22	104	30	153	257
05:15 05:30	0 2		11 16			17:15 17:30			34 23		41 38		
05:00	4		5			17:00			25		44		
04:45	8	18	15	36	54	16:45			24	85	35	147	232
04:30	3	10	11	26	E4	16:30			19	or.	44	1.47	222
04:15	6		6			16:15			18		29		
04:00	1		4			16:00			24		39		
03:45	0	1	0	11	12	15:45			27	83	46	182	265
03:30	0		1			15:30			22		52		
03:15	0		4			15:15			11		35		
03:00	1		6			15:00			23		49		
02:45	2	2	0	7	9	14:45			25	112	48	198	310
02:30	0		2			14:15			42		34		
02:00 02:15	0 0		2 3			14:00 14:15			22 23		64 52		
		- 0			7					120		130	
01:30 01:45	0 0	0	1 1	4	4	13:30 13:45			55 22	128	30 51	150	278
01:15	0		2			13:15			27		44		
01:00	0		0			13:00			24		25		
00:45	. 0	2	1	3	5	12:45			18	85	50	188	273
00:30	0		1	_	_	12:30			29		63		
	2		1			12:15			21		41		
00:15	2		-										
00:00 00:15	0		0			12:00			17		34		

PACIFICATEC VICAL DATA

CITY: OTAY PROJECT: PTD17-0428-01

ENRICO	FFRMI	- ATRWAY TO	SIEMPRE VIVA

AM Period	l NB		SB		EB WB		PM Period	NB		SB		EB	WB	
00:00	2		1				12:00	54		46				
00:15	4		7				12:15	51		38				
00:30	0		8				12:30	40		44				
00:45	0	6	0	16		22	12:45	35	180	63	191			371
01:00	1		0	_			13:00	22		55				
01:15	1		0				13:15	41		62				
01:30	1		0				13:30	35		48				
01:45	2_	5	1	1		6	13:45	40	138	52	217			355
02:00	1		0				14:00	55		33				
02:15	0		1				14:15	41		35				
02:30	2		6				14:30	48		41				
02:45	3	6	2	9		15	14:45	54	198	48	157			355
03:00	2		0				15:00	65		44				
03:15	1		2				15:15	51		22				
03:30	9		4				15:30	60		26				
03:45	5	17	8	14	_	31	15:45	68	244	38	130		-	374
04:00	11		8				16:00	88		22				
04:15	12		14				16:15	60		17				
04:30	35	••	25	4.5.5			16:30	81	22-	33				44-
04:45	41	99	59	106		205	16:45	66	295	25	97			392
05:00	9		6				17:00	70		28				
05:15	11		9				17:15	61		26				
05:30	15	47	5	24		74	17:30	88	204	28	404			205
05:45	12	47	4	24		71	17:45	62	281	22	104			385
06:00	26		20				18:00	55		18				
06:15	22		15				18:15	40		23				
06:30 06:45	18 16	82	17 41	93		175	18:30 18:45	35 28	158	25 14	80			238
		02		33		1/3			130		80			236
07:00	28 44		20				19:00	33 31		23				
07:15 07:30	61		10 21				19:15 19:30	20		26 10				
07:45	60	193	33	84		277	19:45	15	99	20	79			178
08:00	51		39				20:00	11		8			-	
08:15	66		40				20:15	9		10				
08:30	68		35				20:30	10		6				
08:45	88	273	33	147		420	20:45	5	35	17	41			76
09:00	60		35				21:00	4		2			_	
09:15	77		40				21:15	9		7				
09:30	74		28				21:30	4		6				
09:45	54	265	22	125		390	21:45	2	19	4	19			38
10:00	41		26				22:00	3		4				
10:15	40		35				22:15	2		10				
10:30	35		41				22:30	1		8				
10:45	41	1 <u>57</u>	44	146		303	22:45	0	6	8	30			36
11:00	40		35				23:00	1		3				
11:15	35		41				23:15	2		1				
11:30	44		48				23:30	6		9				
11:45	48	167	44	168		335	23:45	2	11	3	16	<u> </u>		27
Total Vol.		1317		933		2250			1664		1161			2825
												Daily Tota	als	
								_	NB		SB	EB	WB	Combined
									2981		2094			5075
					AM							PM		
Split %		58.5%		41.5%		44.3%			58.9%	4	41.1%			55.7%
Peak Hour		08:45		11:15		08:30			15:45		12:45			15:45
		299		179		436					228			
Volume P.H.F.		0.85		0.93		0.90			297 0.78		0.90			407 Err:504
		0.00		0.50					0		7			

PACIFICATE DATA

CITY: OTAY PROJECT: PTD17-0428-01

	AULU DL LA	S AME	RICAS	101	MICHAI	EL FARAD	AY							
AM Period NB	SB	EB	ı	WE	3		PM Period	NB	SB	EB		WI	3	
00:00		1		2			12:00			59		68		
00:15		4		4			12:15			58		62		
00:30		2		2			12:30			56		50		
00:45		4	11	0	8	19	12:45	_		49	222	41	221	443
01:00		0		0			13:00			48		35		
01:15		1		0			13:15			38		44		
01:30		7		0			13:30			36		68		
01:45		5	13	2	2	15	13:45			51	_ 173	48	195	368_
02:00		5		0			14:00			52		40		
02:15		0		1			14:15			48		55		
02:30		5		10			14:30			46		51		
02:45		8	18	0	11	29	14:45			44	190	40	186	376
03:00		7		11			15:00		-	35		51		
03:15		3		2			15:15			35		44		
03:30		8		3			15:30			30		40		
03:45		5	23	1	17	40	15:45			47	147	51	186	333
04:00		13		4						28				
04:15		12		2			16:00 16:15			28		68 51		
04:15		15		2			16:15			33		51 66		
04:45		13	53	1	9	62	16:45			26	108	51	236	344
											100		230	211
05:00		5		8			17:00			37		55		
05:15		12 13		18 11			17:15			22		66		
05:30		5	35	27	64	99	17:30			21 25	105	41	220	222
05:45			33		04	33	17:45				105	66	228	333
06:00		18		17			18:00			11		68		
06:15		14		30			18:15			16		50		
06:30		26	77	30	107	104	18:30			19		40	404	240
06:45		19_		30	107	184	18:45			11	57	33	191	248
07:00		21		15			19:00			7		41		
07:15		20		20			19:15			9		35		
07:30		41		16			19:30			24		28		
07:45		33	115	28	79	194	19:45			8	48	30	134	182
08:00		36		33			20:00			9		22		
08:15		30		31			20:15			3		19		
08:30		49		30			20:30			8		12		
08:45		56	171	41	135	306	20:45			4	24	11	64	88
09:00		57		38			21:00			3		8		
09:15		52		49			21:15			1		9		
09:30		41		70			21:30			2		10		
09:45		47	197	86	243	440	21:45			4	10	5	32	42
10:00		43		65			22:00			5		4		
10:15		50		66			22:15			3		5		
10:30		45		75			22:30			3		2		
10:45		42	180	49	255_	435	22:45			0	11	2	13	24
11:00		45		94			23:00			3		4		
11:15		67		96			23:15			3		1		
11:30		49		80			23:30			1		5		
11:45		47	208	87	357	565	23:45			7	14	6	16	30
	- <u>-</u>													
otal Vol.			1101		1287	2388					1109		1702	2811
								NB		D	aily To	tals		
								NB	SB		EB		WB	Combine
											2210		2989	5199
	_		AM						_		PM			
iplit %			46.1%		53.9%	45.9%					39.5%		60.5%	54.1%
eak Hour			11:15		11:00	11:00					12:00		17:15	12:00
eak moni													20.20	12.00
Volume			222		357	565					222		241	443

PACIFICATECHNICAL DATA

TUESDAY - APRIL 25, 2017 CITY: OTAY PROJECT: PTD17-0428-01

SIEMPRE VIVA - MICHAEL FARADAY TO ENRICO FERMI MM Period NB SB EB WB PM Period NB SB EB 00:00 00:00 1 1 1 12:00 00:30 1 1 2 12:30 00:15 3 8 0 3 11 12:45 3 4 144 01:00 00:30 00:45 3 8 0 3 11 12:45 34 144 01:00 00:30 00:15 2 0 13:10 00:15 2 0 13:10 00:15 2 0 13:10 00:15 2 0 13:10 00:15 2 0 13:15 23 01:45 5 11 1 1 1 1 1 1 13:45 31 110 02:00 5 0 1 14:00 03:0 02:15 0 0 1 14:15 23 02:30 4 3 3 14:30 02:45 03:30 5 0 1 14:15 23 03:30 5 0 1 14:15 23 03:30 5 0 1 14:15 23 03:30 5 0 1 14:15 24 03:30 5 0 1 15:15 26 03:30 5 0 1 15:30 24 03:45 04:40 04:15 14 2 15:45 31 105 04:40 04:15 14 2 16:15 16 04:30 11 4 1 1 1 1 16:00 06:15 14 2 16:15 16 06:30 17 2 16:15 16 06:45 17 0 1 16:30 17:00 26 05:45 18 11 1 17:15 11 06:00 14 16 06:00 14 16 06:00 15 17 22 18:30 06:30 17 22 18:30 06:30 17 22 18:30 06:30 17 22 18:30 06:30 17 22 18:30 06:30 18 16 06:45 18 45 15 76 121 18:45 19:00 06:00 13 12 12 12 20:00 06:00 14 16 06:00 15 12 12 12 20:00 06:00 16 14 16 06:00 17 22 18:30 06:30 17 22 18:30 06:30 17 22 18:30 06:30 17 22 18:30 06:30 18 16 07:30 18 16 19:30 07:30 18 16 07:30 18 17:30 18 16 07:30 18 16 07:30 18 16 07:30 18 16 07:30 18 16 07:30	33 32 44 33 44 45 30 22 41 44 31 31 31 31 31 31 31 31 31 31 31 31 31	35 44 39 40 41	136 148 152	280 258 268
00:00 1 1 1 12:00 32 00:15 3 0 12:15 40 00:30 1 2 12:30 38 00:45 3 8 0 3 11 12:45 34 144 01:00 0 0 0 13:00 30 101:15 2 0 13:15 23 101:30 26 101:30 26 101:30 26 101:30 26 101:30 26 101:30 26 101:30 26 101:30 26 101:30 26 101:30 26 101:30 26 101:44 20 11:33:30 26 101:44 20 101:44 20 101:44 23 100:20 36 22 20:20 36 22 20:20 36 22 20:20 29 29 22 20:24 30:30 29 20:24 30:30 29 20:24 30:30 29 20:24 30:31	30 31 31 32 44 42 31 32 44 33 44 44 34 44 33 34 44 33 34 44 34 3	30 37 28 41 28 35 44 41 38 29 41 44 37 45 35 44 41 44 41 44 41 41 44 41 41 41 41 41	136 148	258
00:15 3 0 12:15 40 00:30 1 2 12:30 38 00:45 3 8 0 3 11 12:45 34 144 01:00 0 0 13:00 30 14 10 13:00 30 30 14 13:00 30 30 13:15 23 30:30 26 31 11:15 23 13:15 23 10:30 26 31 11:15 23 10:30 26 31 11:15 23 10:30 26 31 11:15 23 10:30 26 31 11:15 23 11:15 23 11:15 23 11:15 23 11:15 23 11:15 23 11:15 23 11:15 23 11:15 23 11:15 23 11:15 23 12:15 23 12:15 24 12:15 23 11:15 23 11:15 24 13:15 2	3 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	37 28 41 28 35 44 41 38 29 41 44 37 45 35 44 39 40 41	148	258
00:30 1 2 12:30 38 14 144 144 144 144 144 140 12:45 34 144 144 140 13:00 30 14 144 144 13:15 23 13:15 23 13:15 23 13:15 23 14:30 26 14:15 31 110 10:20 36 14:00 36 14:00 36 14:15 23 14:30 29 14:15 23 14:15 23 14:30 29 14:45 28 16:02 29 14:45 28 16:02 29 14:45 28 16:02 29 14:45 28 16:02 29 14:45 28 16:02 29 14:45 28 16:03 24 16:03 24 16:03 24 16:03 24 16:03 24 16:03 24 16:03 24 16:03 24 16:03 24 16:03 24 16:03 24	21 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	28 41 28 35 44 41 38 29 41 45 37 45 35 44 41 45 45 41 44 41 41 41 41 41 41 41 41 41 41 41	148	258
00:45 3 8 0 3 11 12:45 34 144 01:00 0 0 13:00 30 01:15 2 0 13:00 30 01:30 4 0 13:30 26 01:45 5 11 1 1 13:45 31 110 02:00 5 0 1 14:00 36 22 22 15:00 36 22 30:23 4 3 14:30 29 4 3 14:30 29 4 3 14:30 29 4 3 14:30 29 4 3 14:30 29 4 3 14:30 29 4 3 14:30 29 4 3 14:30 29 4 11:00 3 11 26 33:15 33 2 15:00 26 3 11:00 3 11 10:00 10 10:00 10 <td< td=""><td>4 21 33 44 4 5 2 2 4 4 4 5 4 5 4 6 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4 7</td><td>41 28 35 44 41 38 29 41 44 37 45 35 44 40 41 41</td><td>148</td><td>258</td></td<>	4 21 33 44 4 5 2 2 4 4 4 5 4 5 4 6 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4 7	41 28 35 44 41 38 29 41 44 37 45 35 44 40 41 41	148	258
01:00 0 0 13:00 30 01:15 2 0 13:15 23 01:30 4 0 13:30 26 01:45 5 11 1 12 13:45 31 110 02:00 5 0 14:00 36 20:30 20:30 4 3 14:30 29 10:245 88 17 0 4 21 14:45 28 116:00 24 23:15:15 28 116:00 24 23:15:15 26 24:03:15 3 2 15:15 26 24:03:15 3 2 15:15 26 24:03:15 3 2 15:15 26 24:03:15 3 2 15:15 26 24:03:15 31:10 10 24:03:15 31:10 10 24:03:15 31:10 34:04:00 16:04:15 31:10 34:04:00 36:04:00 36:04:00 36:04:00 36:04:00 36:04:00 36:04:15 36:05 <td< td=""><td>20 33 44 42 30 42 44 33 44 43 44 44 33 33 33 33 33 33</td><td>28 35 44 41 38 29 41 44 37 45 35 44 39 40 41</td><td>148</td><td>258</td></td<>	20 33 44 42 30 42 44 33 44 43 44 44 33 33 33 33 33 33	28 35 44 41 38 29 41 44 37 45 35 44 39 40 41	148	258
01:15 2 0 13:15 23 01:30 4 0 13:30 26 01:45 5 11 1 12 13:45 31 10 02:00 5 0 1 14:00 36 10 1 14:15 23 20:30 24 3 14:30 29 29 24:5 8 17 0 4 21 14:45 28 116 23:00 24 33:00 29 24:5 8 17 0 4 21 14:45 28 116 33:00 29 24:45 31:16 33:00 29 24:45 31:16 33:30 25 0 15:30 24 33:45 6 19 1 5 24 15:45 31 105 31 10 34 4 4 2 16:15 16 4 4 4 4 15:45 31 10 4 4 4	33 44 42 43 44 44 33 44 44 44 30 33 33 33 33 33 33 33	35 44 41 38 29 41 44 37 45 35 44 40 41	152	268
01:30 4 0 13:30 26 01:45 5 11 1 12 13:45 31 110 02:00 5 0 14:00 36 20 20:15 32 20 20:230 4 3 14:15 23 20 230 29 16:25 28 116 20 20:245 8 17 0 4 21 14:45 28 116 20 30:300 5 2 15:00 24 33:15 26 33:30 5 0 15:15 26 33:30 24 33:45 6 19 1 5 24 15:45 31 105 31 10 33:45 6 19 1 5 24 15:45 31 105 31 10 34 4 4 2 16:15 16 4 4 4 4 11:44 4 4 16:15 16:15 16 4	44 43 33 44 44 33 33 34 44 44 30 33 33 33 33 33 33 33	44 41 38 29 41 44 37 45 335 44 40 41	152	268
01:45 5 11 1 1 12 13:45 31 110 02:00 5 0 1 14:00 36 02:15 0 1 14:00 29 02:30 4 3 14:35 28 116 02:30 4 3 14:35 28 116 03:00 5 2 15:00 24 03:15 3 2 15:15 26 03:30 5 0 15:30 24 03:45 6 19 1 5 24 15:45 31 105 04:00 13 1 16:00 16 16 14 2 16:15 16 10 10 14 10 10 14 10 10 14 10 10 14 10 10 14 11 14 2 16:15 16 11 10 15 16:15 16<	4: 33 4: 44 33; 44 39; 40; 40; 40; 40; 40; 40; 40; 40; 40; 40	41 38 29 41 44 37 45 35 44 40 41 41	152	268
02:00 5 0 14:00 36 02:15 0 1 14:15 23 02:30 4 3 14:30 29 02:45 8 17 0 4 21 14:45 28 116 03:00 5 2 15:00 24 10:315 26 10:315 26 10:315 26 10:315 26 10:315 26 10:315 26 10:330 24 10:315 26 10:330 24 10:315 26 10:330 24 10:315 31 10:5 24 15:45 31 10:5 10:400 16 10:415 11 22 16:15 16 10:415 16 10:415 16 10:415 16 10:415 16 10:415 16 10:415 16 10:415 16 10:415 16 10:415 16 10:415 16 10:415 16 10:415 16 10:415 11:410 <td>33.24 4.44 33.34 4.64 30.33 31.33 31.33 31.33</td> <td>38 29 41 44 37 45 35 44 39 40 41</td> <td>152</td> <td>268</td>	33.24 4.44 33.34 4.64 30.33 31.33 31.33 31.33	38 29 41 44 37 45 35 44 39 40 41	152	268
02:15 0 1 14:15 23 02:30 4 3 14:30 29 02:45 8 17 0 4 21 14:45 28 16 03:00 5 2 15:100 24 33:15 26 33:30 24 33:30 24 33:30 24 33:30 24 33:45 6 19 1 5 24 15:30 24 33:30 24 33:45 6 19 1 5 24 15:45 31 105 31 105 31 105 31 105 31 105 31 105 31 105 31 105 31 105 31 105 31 105 31 105 31 105 31 105 31 31 32 32 33 33 33 33 33 33 33 33 33 33 34 34 34	29 4.4 44 3.5 4.5 4.6 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7	29 41 44 37 45 35 44 39 40 41		
02:30 4 3 14:30 29 02:45 8 17 0 4 21 14:45 28 116 03:00 5 2 15:00 24 4 03:15 3 2 15:15 26 03:30 5 0 15:30 24 03:45 6 19 1 5 24 15:45 31 105 04:00 13 1 16:00 16 6 14 2 16:15 16 6 04:30 11 1 16:30 14 6 14 2 16:15 16 6 04:45 11 49 2 6 55 16:15 16 6 22 68 05:00 5 3 17:00 26 6 55 16:15 11 10 10 10 10 10 10 10 10 10 10	4: 44: 31: 44: 39: 40: 41: 42: 30: 33: 31:	41 44 37 45 35 44 39 40 41		
02:45 8 17 0 4 21 14:45 28 116 03:00 5 2 15:00 24 03:15 3 2 15:15 26 03:30 5 0 15:30 24 03:45 6 19 1 5 24 15:45 31 105 04:00 13 1 16:00 16 16 16:15 16 16 14 2 16:15 16 16 14 16:30 14 16 14 14 2 16:15 16 16 14 14 14 14 16:15 16 16 14 16 16:30 14 16 16:30 14 16 16:30 14 16 17:10 26 68 22 68 25 16:45 11 10 17:10 20 11 11 17:15 11 10 10 10 10	31 41 32 44 39 40 41 30 33 31	44 37 45 35 44 39 40 41		
03:00 5 2 15:00 24 03:15 3 2 15:15 26 03:30 5 0 15:30 24 03:45 6 19 1 5 24 15:45 31 105 04:00 13 1 16:00 16 04:15 16 04:15 16 04:15 16 04:15 16 04:15 16 04:15 16 04:30 11 1 16:30 14 04:45 11 49 2 6 55 16:45 22 68 05:00 5 3 17:00 26 05:15 11 49 2 6 55 16:45 22 68 05:00 5 3 17:00 26 05:15 11 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 <td>31 4! 3! 44 39 40 41 44 30 33</td> <td>37 45 35 44 39 40 41</td> <td></td> <td></td>	31 4! 3! 44 39 40 41 44 30 33	37 45 35 44 39 40 41		
03:15 3 2 15:15 26 03:20 5 0 15:30 24 03:45 6 19 1 5 24 15:45 31 105 04:00 13 1 16:00 16 6 6 19 1 16:00 16 04:15 14 2 16:15 16 6 14 2 16:15 16 6 04:30 11 1 16:30 14 6 6 55 16:45 22 68 05:00 5 3 17:00 26 5 6 55 16:45 22 68 05:15 8 11 17:15 11 10 10 10 10 5 11 49 2 6 55 16:45 22 68 05:15 8 11 17:15 11 10 10 10 10 10 10	4! 3! 44 39 40 41 44 30 33 31	45 35 44 39 40 41	161	266
03:30 5 0 15:30 24 03:45 6 19 1 5 24 15:45 31 105 04:00 13 1 16:00 16 16 04:15 14 2 16:15 16 04:30 11 1 16:30 14 04:45 11 49 2 6 55 16:45 22 68 05:00 5 3 17:00 26 22 68 05:00 5 3 17:00 26 11 15:15 11 15:15 11 15:15 11 15:15 11 15:15 11 15:15 11 15:15 11 15:15 11 15:15 11 15:15 11 15:15 11 15:15 11 15:15 11 15:15 11 16:15 16:15 16:15 16:15 16:15 16:15 16:15 16:15 16:15 16:15<	3! 44 39 40 41 44 30 33 31	35 44 39 40 41	161	266
03:45 6 19 1 5 24 15:45 31 105 04:00 13 1 16:00 16 04:15 14 2 16:15 16 04:30 11 1 16:30 14 04:45 11 49 2 6 55 16:45 22 68 05:00 5 3 17:00 26 20 6 55 16:45 22 68 05:00 5 3 17:00 26 25 15 11 20 60 65 25 16:45 11 4 61 60 60 60 60 61 60 60 60 61 60 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 62 62 62 62 62 62 62	39 40 41 44 30 33 31	14 39 40 41 44	161	266
04:00 13 1 16:00 16 04:15 14 2 16:15 16 04:30 11 1 16:30 14 04:45 11 49 2 6 55 16:45 22 68 05:00 5 3 17:00 26 6 6 55 16:45 22 68 05:15 8 11 17:15 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 <td< td=""><td>39 40 41 44 30 33 31</td><td>39 40 41 14</td><td>101</td><td></td></td<>	39 40 41 44 30 33 31	39 40 41 14	101	
04:15 14 2 16:15 16 04:30 11 1 16:30 14 04:45 11 49 2 6 55 16:45 22 68 05:00 5 3 17:00 26 5 11 6 6 55 16:45 22 68 05:00 5 3 17:00 26 5 11 6 11 6 11 6 11 6 11 6 11 6 11 6 12 12 14 61 6 14 61 6 14 61 6 12 12 18:00 9 6 6 23 18:15 9 6 6 6 23 18:15 9 6 6 6 6 23 18:15 9 6 6 6 6 23 18:15 9 6 6 6 7 18:15	40 41 44 30 33 31	40 41 14		
04:30 11 1 16:30 14 04:45 11 49 2 6 55 16:45 22 68 05:00 5 3 17:00 26 5 6 6 6 6 6 6 6 6 6 17:15 11 6 17:15 11 6 17:15 11 6 17:15 11 6 17:30 10 6 6 6 17:45 14 61 6 6 6 6 17:45 14 61 6 6 6 6 6 18:00 9 6 6 6 6 6 6 18:00 9 6 7 18 18 15 7 <td>41 44 30 33 31</td> <td>41 44</td> <td></td> <td></td>	41 44 30 33 31	41 44		
04:45 11 49 2 6 55 16:45 22 68 05:00 5 3 17:00 26 05:15 8 11 17:15 11 05:30 7 8 17:30 10 05:45 5 25 12 34 59 17:45 14 61 06:00 14 16 18:00 9 66:15 6 23 18:15 9 66:03 6 6 23 18:15 9 6 6 6 23 18:15 9 6 6 6 23 18:15 9 6 6 6 23 18:15 9 6 6 6 23 18:15 9 6 6 6 23 18:15 9 6 6 6 23 18:15 9 6 6 6 23 18:15 9 7 10 13:15 10 <td< td=""><td>30 33 31</td><td>14</td><td></td><td></td></td<>	30 33 31	14		
05:00 5 3 17:00 26 05:15 8 11 17:15 11 05:30 7 8 17:30 10 05:45 5 25 12 34 59 17:45 14 61 06:00 14 16 18:00 9 66:15 6 23 18:15 9 66:15 6 23 18:15 9 66:20 6 7 7 7 12 18:30 6 7 7 12 19:00 9 9	30 33 31		164	222
05:15 8 11 17:15 11 05:30 7 8 17:30 10 05:45 5 25 12 34 59 17:45 14 61 06:00 14 16 18:00 9 66 6 23 18:15 9 66 6 23 18:15 9 66 7 10 3 1 1 9 9 9 9 1 1 1 1	33 31		164	232
05:30 7 8 17:30 10 05:45 5 25 12 34 59 17:45 14 61 06:00 14 16 18:00 9 6 6 23 18:15 9 6 06:30 17 22 18:30 6 8 6 6 6 10 3 1 10 3 1 10 3 1 10 3 10 10 10 10 10 10	31			
05:45 5 25 12 34 59 17:45 14 61 06:00 14 16 18:00 9 06:15 6 23 18:15 9 06:30 17 22 18:30 6 06:45 8 45 15 76 121 18:45 10 34 07:00 13 12 19:00 4 9 10 34 10 34 10 34 10 34 10 34 10 34 10 34 10 34 10 34 10 34 10 34 10 34 10 34 10 34 10 34 10 34 10 34 10 34 10 34 34 34 34 12 10 30 34 34 34 34 34 34 34 34 34 34 34 34 <td< td=""><td></td><td></td><td></td><td></td></td<>				
06:00 14 16 18:00 9 06:15 6 23 18:15 9 06:30 17 22 18:30 6 06:45 8 45 15 76 121 18:45 10 34 07:00 13 12 19:00 4 6 6 7 7 7 19:15 8 7 8 7 19:15 8 7 9 7 9 <td>44</td> <td></td> <td>120</td> <td>100</td>	44		120	100
06:15 6 23 18:15 9 06:30 17 22 18:30 6 06:45 8 45 15 76 121 18:45 10 34 07:00 13 12 19:00 4 19:00 4 10 15 19:15 8 10 10 15 19:15 8 10 23 10			138	199
06:30 17 22 18:30 6 06:45 8 45 15 76 121 18:45 10 34 07:00 13 12 19:00 4 19:00 4 19:00 4 19:00 4 19:00 20 18 16 19:15 8 19:15 8 19:30 23 10:00 23 10:00 23 10:00 23 10:00 23 10:00 24 10:00 20:00 4 10:00 10:00 10:00 10:00 4 10:00	35			
06:45 8 45 15 76 121 18:45 10 34 07:00 13 12 19:00 4 07:15 10 15 19:15 8 07:30 18 16 19:30 23 07:45 20 61 22 65 126 19:45 5 40 08:00 21 21 21 20:00 4 60:15 1 60:00 4 60:00 4 60:00 8 60:00 60:00 4 60:00 60:00 60:00 4 60:00	41			
07:00 13 12 19:00 4 07:15 10 15 19:15 8 07:30 18 16 19:30 23 07:45 20 61 22 65 126 19:45 5 40 08:00 21 21 2 20:00 4 60:15 1 60:15 1 60:15 1 60:15 1 60:15 1 60:15 1 60:15 1 60:15 1 60:15 1 60:15 1 60:15 1 60:15 1 60:15 1 60:15 1 60:15 1 60:15 1 60:15 1 60:15 1 60:15 1 7 60:15 1 7 7 10:15 1<	44		155	100
07:15 10 15 19:15 8 07:30 18 16 19:30 23 07:45 20 61 22 65 126 19:45 5 40 08:00 21 21 2 20:00 4 8 60 4 60	35		155	189
07:30 18 16 19:30 23 07:45 20 61 22 65 126 19:45 5 40 08:00 21 21 21 20:00 4 60 4 60 60 60 60 4 60	28			
07:45 20 61 22 65 126 19:45 5 40 08:00 21 21 21 20:00 4 08:15 22 28 20:15 1 08:30 28 33 20:30 8 08:45 22 93 27 109 202 20:45 4 17 09:00 36 32 21:00 4 9:15 1	31			
08:00 21 21 21 20:00 4 08:15 22 28 20:15 1 08:30 28 33 20:30 8 08:45 22 93 27 109 202 20:45 4 17 09:00 36 32 21:00 4 6 1	33		120	160
08:15 22 28 20:15 1 08:30 28 33 20:30 8 08:45 22 93 27 109 202 20:45 4 17 09:00 36 32 21:00 4 09:15 33 33 21:15 1 09:30 31 28 21:30 1 09:45 34 134 28 121 255 21:45 2 8	28		120	160
08:30 28 33 20:30 8 08:45 22 93 27 109 202 20:45 4 17 09:00 36 32 21:00 4 09:15 33 33 21:15 1 09:30 31 28 21:30 1 09:45 34 134 28 121 255 21:45 2 8	15			
08:45 22 93 27 109 202 20:45 4 17 09:00 36 32 21:00 4 09:15 33 33 21:15 1 09:30 31 28 21:30 1 09:45 34 134 28 121 255 21:45 2 8	12			
09:00 36 32 21:00 4 09:15 33 33 21:15 1 09:30 31 28 21:30 1 09:45 34 134 28 121 255 21:45 2 8	6 5		38	
09:15 33 33 21:15 1 09:30 31 28 21:30 1 09:45 34 134 28 121 255 21:45 2 8			36	55
09:30 31 28 21:30 1 09:45 34 134 28 121 255 21:45 2 8	0			
09:45 34 134 28 121 255 21:45 2 8	2			
	6		0	16
	0		8	16
10:00 29 35 22:00 4	8			
10:15 19 40 22:15 3 10:30 37 33 22:30 3	6			
	4		10	20
	1		19	29
11:00 28 31 23:00 0	2			
11:15 46 38 23:15 3	1			
11:30 34 33 23:30 0 11:45 32 140 45 147 287 23:45 6 9	4 5		12	ე₁
	3	,	12	21
otal Vol. 714 707 1421 722			1251	1973
Daily 1	otals	ls		
NB SB EB	_		WB	Combine
1436			1958	3394
AM PR Split % 50.2% 49.8% 41.9% 36.69		-	63.4%	58.1%
	_			***************************************
			14:30	12:00
Volume 144 147 290 144 P.H.F. 0.78 0.82 0.86 0.90			167 0.93	280 Err:504

PACIFICAEC ICAL DATA

CITY: OTAY PROJECT: PTD17-0428-01

ALTA DD					CLUCATE	CITT	.01/1					rkoseci.	F1D17-0-72	.0-01
ALTA RD AM Period			ZADA SE		EB WB		PM Period	NB		SB		EB	WB	
00:00	3		14		110		12:00	28		28			WD	· · · · · · · · · · · · · · · · · · ·
00:15	2		16				12:15	21		20				
00:30	0		10				12:30	35		25				
00:45	3_	8	3	43		51	12:45	40	124	18	91			215
01:00	1		4				13:00	24		44				
01:15	1		1				13:15	49		42				
01:30	3		10				13:30	61		42				
01:45	_1	6	0	15		21	13:45	35	169	113	241			410
02:00	0		7				14:00	19		126		-		
02:15	1		0				14:15	17		108				
02:30	2		1				14:30	19		89				
02:45	1	4	1	9		13	14:45	26	81	80	403			484
03:00	2		2				15:00	13		96				
03:15	9		3				15:15	22		83				
03:30	10		4				15:30	14		119				
03:45	10	31	3	12		43	15:45	12	61	124	422			483
04:00	6		6				16:00	16		196				
04:15	7		2				16:15	14		106				
04:30	8		7				16:30	19		81				
04:45	20	41	8	23		64	16:45	27	76	49	432		_	508
05:00	42		6				17:00	17		50				
05:15	98		2				17:15	24		38				
05:30	170		12				17:30	38		24				
05:45	125	435	19	39		474	17:45	20	99	48	160			259
06:00	47		57				18:00	8		50				
06:15	48		39				18:15	9		48				
06:30	88	204	62	101		405	18:30	12	20	49	4.50			
06:45	121	304	23	181		485	18:45	10	39	22	169	*		208
07:00	92		21				19:00	4		13				
07:15	122		20				19:15	6		21				
07:30	191 183	588	18 16	75		663	19:30	7	72	14 11	FO			00
07:45		300		/5		003	19:45	6	23		59			82
08:00	71		14				20:00	4		25				
08:15	51 46		30				20:15	4		6				
08:30 08:45	42	210	14 21	79		289	20:30 20:45	1 5	14	11 9	51			65
		210		73					17		31		<u> </u>	65
09:00 09:15	24 37		14 35				21:00 21:15	10 33		5 14				
09:30	28		22				21:15	33 42		16				
09:45	23	112	24	95		207	21:45	16	101	29	64			165
10:00	22		20				22:00	8		120				103
10:00	23		23				22:00 22:15	9		30				
10:30	29		25				22:30	5		29				
10:45	26	100	40	108		208	22:45	9	31	15	194			225
11:00	33		45				23:00	2		14				
11:15	25		23				23:15	4		2				
11:30	30		34				23:30	6		4				
11:45	28	1 16	27	129		245	23:45	7	19	7	27			46
otal Vol.		1955		808		2763		·	837		2313			3150
Jai VUI.		1933		000		2/03			03/		2313	B-21 = 1		3150
									NB		SB	Daily Tota EB	als WB	Combine
								-	2792		3121		- VVD	5913
					AM				4174		J121	РМ		3913
plit %	•	70.8%		29.2%	AM	46.7%		7	6.6%		73.4%	- PIVI		53.3%
ak Hour		07:00		06:00	Annual March Colors and Annual	07:00			12:45		15:30			15:30
olume		588		181		663			174		545			601
P.H.F.		0.77		0.73		0.79			0.83		0.70			601 Err:504
						-								

PACIFICA ECO ICAL DATA

CITY: OTAY PROJECT: PTD17-0428-01

ALTA RD -	CAL ZADA	DFIA	FUENTE TO	LONE STAR

M Period	<u>I NB</u>		SB		EB WB		PM Period	NB		SB		EB W	В	
00:00	3		16				12:00	31		37	·			
00:15	4		15				12:15	34		26				
00:30	0		10				12:30	58		31				
00:45	3	10	5	46	4.	56	12:45	42	165	31	125			290
01:00	1		4				13:00	41		55			-	
01:15	1		1				13:15	62		51				
01:30	5		10				13:30	64		51				
01:45	1	8	1	16		24	13:45	51	218	117	274			492
02:00	0		8				14:00	31		139			_	
02:00	3		0				14:00	29		114				
02:30	4		1				14:30	29		121				
02:45	11	18	1	10		28	14:45	45	134	92	466			600
		10		10		20			157		700			000
03:00	1		3				15:00	14		112				
03:15	10		8				15:15	29		103				
03:30	11	22	9	22		FF	15:30	15	75	177	F26			
03:45	10	32	3	23		55	15:45	17	75	144	536			611
04:00	13		6				16:00	21		222				
04:15	8		3				16:15	22		124				
04:30	13		6				16:30	23		98				
04:45	35	69	9	24		93	16:45	28	94	53	497			591
05:00	55		5				17:00	21		64				
05:15	118		6				17:15	28		45				
05:30	185		12				17:30	46		34				
05:45	158	516	20	43		559	17:45	26	121	50	193			314
06:00	66		57				18:00	10		60				
06:15	79		41				18:15	12		53				
06:30	133		62				18:30	16		54				
06:45	184	462	22	182		644	18:45	15	53	29	196			249
07:00	135		22				19:00	7		26				
07:15	146		19				19:15	6		32				
07:30	202		36				19:30	9		16				
07:45	190	673	26	103		776	19:45	6	28	12	86			114
08:00	85		18				20:00	5		27				
08:15	63		34				20:15	5		11				
08:30	57		14				20:30	4		13				
08:45	45	250	25	91		341	20:45	5	19	8	59			78
09:00	37		16				21:00	11		6				
09:15	50		37				21:15	32		12				
09:30	39		23				21:30	44		18				
09:45	32	158	24	100		258	21:45	16	103	28	64			167
	27		30				22:00	9		126	 -			207
10:00 10:15	28		31				22:00	13		29				
10:15	28 43		28				22:15	13		30				
	43 40	138	28 41	130		268	22:45	17	52	30 18	203			255
10:45		130		130		200			JL		203			255
11:00	35		54				23:00	7		15				
11:15	29		33				23:15	5		9				
11:30	31	120	39	150		201	23:30	9	30	39	70			0.5
11:45	40	135	30	156		291	23:45	5	26		70			96
tal Vol.		2469		924		3393			1088		2769			3857
												Daily Totals		
									NB		SB	EB	WB	Combine
								_	3557		3693			
														7250
					ΔМ				3337			DМ		7250
olit %		72.8%		27.2%	AM	46.8%		<u> </u>				PM		
	- Facility and	72.8%		27.2%	АМ	46.8%			28.2%		71.8%	PM		53.2%
plit % ak Hour 'olume	- Sald-max	72.8% 07:00 673		27.2% 06:00 182	AM	46.8% 07:00 776		7				PM		7250 53.2% 15:30 742

PACIFA TECH (I CAL DATA

TUESDAY - APRIL 25, 2017 CITY: OTAY PROJECT: PTD17-0428-01

ALTA F	SD - 10	INF STAI	S TO O	TAY MESA

AM Period	d NB		_ SB	•	EB	WB		PM Period	NB		SB		EB W	/B	
00:00	6		16					12:00	42		42			-	· · · · · · · · · · · · · · · · · · ·
00:15	6		19					12:15	41		39				
00:30	2		14					12:30	64		31				
00:45	5	19	7	56			75	12:45	51	198	37	149			347
										1,0		117			317
01:00	2		5					13:00	51		60				
01:15 01:30	1 7		4					13:15	71		62				
		14	9 4	22			26	13:30	69	220	56	202			E23
01:45	4_	14		22			36	13:45	48	239	115	293			532
02:00	1		13					14:00	37		157				
02:15	8		2					14:15	33		125				
02:30	7	27	7	26			F 2	14:30	34	450	129	F04			654
02:45	11	27	4	26			53	14:45	46	150	90	501		_	651
03:00	2		4					15:00	18		123				
03:15	11		7					15:15	28		100				
03:30	11		10				50	15:30	20		178	= 40			
03:45	11	35	3	24			59	15:45	_19	85	141	542			627
04:00	12		6					16:00	25		230				
04:15	8		4					16:15	24		131				
04:30	16		7					16:30	26	4.55	106				
04:45	41	77	8	25			102	16:45	32	107	56	523			630
05:00	57		8					17:00	24		64				
05:15	117		8					17:15	29		47				
05:30	196		14					17:30	50		36				
05:45	171	541	20	50			591	17:45	29	132	49	196			328
06:00	73		57					18:00	11		67				
06:15	97		47					18:15	12		53				
06:30	146		75					18:30	17		52				
06:45	193	509	25	204			713	18:45	17	57	36	208			265
07:00	139		22					19:00	7		25				
07:15	164		19					19:15	7		34				
07:30	204		35					19:30	6		19				
07:45	202	709	30	106			815	19:45	8	_28	12	90			118
08:00	93		16					20:00	6		27				
08:15	69		22					20:15	6		12				
08:30	70		20					20:30	4		13				
08:45	62	294	25	83			377	20:45	5	21	10	62		_	83
09:00	42		27					21:00	10		6				
09:15	66		44					21:15	33		13				
09:30	43		36					21:30	44		17				
09:45	35	186	36_	143			329	21:45	18	105	26	62		_	167
10:00	32		38					22:00	10		128				
10:15	40		36					22:15	13		31				
10:30	43		30					22:30	12		31				
10:45	45	160	39	143			303	22:45	16	51		211			262
11:00	49		68					23:00	8		15				
11:15	35		46					23:15	4		11				
11:30	35	4	45	100			0.5	23:30	9		37	70			
11:45	40	159	33	192			351	23:45	6	27	9	72			99
Total Vol.		2730		1074			3804			1200	:	2909			4109
													Daily Totals		
									_	NB		SB	EB	WB	Combined
										3930	:	3983			7913
					AM				-				PM		
Split %		71.8%	Marian Cara	28.2%			48.1%			29.2%	7	0.8%			51.9%
Peak Hour		07:00		06:00			07:00			12:45		15:30			15:30
Volume		709		204			815			242		680			768
P.H.F.		0.87		0.68			0.85			0.86		0.74			Err:504

PACIFIC TECHNICAL DATA

25, 2017 CITY: OTAY PROJECT: PTD17-0428-01

OTAV MECA - 40F ***		'											
OTAY MESA - 125 NB RAMP T AM Period NB SB	IO SAN		WB	3		PM Period	NB	SB	EB		WE	3	
00:00	3		11			12:00			80		72		
00:15	4		8			12:15			71		82		
00:30	5		6			12:30			103		67		
00:45	3	15	2	27	42	12:45			98	352	81	302	654
01:00	2		8			13:00			94		85		
01:15	1		5			13:15			114		88		
01:30	1		5			13:30			71		98		
01:45	3	7	3	21	28	13:45			129	408	98	369	777
02:00	1		9			14:00			82		138		
02:15	4		5			14:15			72		127		
02:30	6		1			14:30			80		136		
02:45	4	15	5	20	35_	14:45			88	322	134	535	857
03:00	2		1			15:00			66		149		
03:15	10		3			15:15			60		97		
03:30	9		8			15:30			92		139		
03:45	7	28	1	13	41	15:45			75	293	89	474	767
04:00	14		3			16:00			63		174		
04:15	14		11			16:15			62		111		
04:30	19		11			16:30			80		107		
04:45	39	86	19	44	130	16:45			69	274	74	466	740
05:00	37		7			17:00			74		137		
05:15	77		16			17:15			80		61		
05:30	119		28			17:30			76		85		
05:45	147	380	13	64	444	17:45			49	279	72	355	634
06:00	84		37			18:00			45		86		
06:15	93		36			18:15			45		63		
06:30	127		49			18:30			31		51		
06:45	126	430	24	146	576	18:45			35	156	51	251	407
07:00	131		19			19:00			32		45		
07:15	165		42			19:15			27		48		
07:30	190	700	50		000	19:30			30		43		
07:45	223	709	40	151	860	19:45			15	104	40	176	280
08:00	132		35			20:00			22		21		
08:15	124		44			20:15			21		23		
08:30	116 106	478	41 43	162	641	20:30			16 13	72	26	00	463
08:45		7/0		163	641	20:45				72	20	90	162
09:00	120		55			21:00			18		16		
09:15 09:30	100 98		57 108			21:15			33		11		
09:45	72	390	65	285	675	21:30 21:45			33 18	102	13 21	61	163
		330		203	0/3		· · ·			102		- 01	103
10:00	72 83		65 74			22:00			11		62		
10:15 10:30	73		85			22:15 22:30			14 17		10		
10:45	73 69	297	58	282	579	22:30			10	52	11 8	91	143
	76	//	95	202	J/ J					J <u>L</u>		<i>3</i> 1	
11:00 11:15	76 75		95 87			23:00 23:15			7 5		12 2		
11:30	73 70		83			23:15			9		15		
11:45	85	306	71	336	642	23:45			6	27	39	68	95
											~,	*	
otal Vol.		3141		1552	4693					2441		3238	5679
							ND			aily To	tals	MD	0
							NB	SE	•	EB		WB	Combine
										5582		4790	10372
		AM 66.9%		77 404	45.2%					PM 43.0%		57.0%	F4.60
mile O/s		mm UU/		55 1%	43.7%					45 114/0		2/11/6	54.8%
		00.570		331170						15.0 70		37.070	
Split % eak Hour		07:15		11:00	07:15					12:30		14:15	13:45

PACIFIC TECHNOCAL DATA

P.H.F.

CITY: OTAY

PROJECT: PTD17-0428-01

OTAV MECA -	DIDDED	DANCH TO	125 SB RAMP
UTAT MESA -	PIPPEK	KANCH 10	125 SB KAMP

ak Hour		07:00		07:15	07:15					16:30		14:15	14:15
plit %		39.4%		60.6%	42.5%					39.5%		60.5%	57.5%
		AM								4408 PM		6751	11159
							NB		SB	Daily To	tals	WB	Combined
tal Vol.		1872		2874	4746					2536		3877	6413
11:45	72	264	95	444	708	23:45			7	26	38	82	108
11:30	56		110			23:30			5		22		
11:15	71		122			23:15			7		7		
11:00	65		117			23:00			7		15		
10:45	53	239_	80	395	634	22:45			12	52	17	109	161
10:30	64		112			22:30			12		20		
10:15	67		111			22:00			12		29		
10:00	55		92		,	22:00			16		43		200
09:30 09:45	62	265	105	458	723	21:30 21:45			22		33	118	208
09:15	71 66		97 148			21:15 21:30			29 19		25 34		
09:00	66 71		108			21:00			20		26		
08:45	75	268	120	479	747	20:45			14	94_	36	163	257
08:30	60	260	119	470	747	20:30			23		45	4.00	
08:15	69		105			20:15			24		39		
08:00	64		135			20:00			33		43		
07:45	92	323	132	517	840	19:45			21	112	66	245	357
07:30	82		165			19:30			24		60		
07:15	72		117			19:15			29		61		
07:00	77		103			19:00			38		58		
06:45	61	227	93	287	514	18:45			40	183	63	299	482
06:30	58		86			18:30			34		50		
06:15	71		62			18:15			49		86		
06:00	37		46			18:00			60		100		
05:45	76	178	51	144	322	17:45			46		90	385	693
05:30	49		41			17:30			65		88		
05:15	34		33			17:15			99		91		
05:00	19		19			17:00			98		116		
04:45	16	47	28	69	116	16:45			78		101		810
04:30	14		19			16:30			89		108		
04:15	7		11			16:15			73		115		
04:00	10		11			16:00			86		160		
03:45	3	18	6	16	34	15:45			90		137		891
03:30	7		5			15:15			91		134		
03:00 03:15	2 6		1 4			15:00 15:15			74 73		168 124		
		14		20	- 40								311
02:30 02:45	5 1	14	5 8	26	40	14:30 14:45			84 94		134 165		911
02:15	7		5			14:15			81		130		
02:00	1		8			14:00			97		126		
01:45	2	9	4	22	31	13:45		_	93		115		804
01:30	3	^	5	22	21	13:30			66		117		004
01:15	0		7			13:15			100		129		
01:00	4		6			13:00			82		96		
00:45	2	20	1	17	37	12:45			86		116	417	731
00:30	8		5			12:30			81		103		
											104		
00:15	5		3			12:15			62)	104		

0.92

Err:504

0.89

CITY: OTAY PROJECT: PTD17-0428-01

10E30A1 AI RIE 23, 2017					CITT	·OIAI			rico	DECT.	711	11/-072	9-01
OTAY MESA - SANYO TO E)A/C			DM Davie d	ND	CD.			\ A (F		
AM Period NB SB	<u>EB</u>)	WE)		PM Period	NB	SB	EB		WE	3	
00:00 00:15	1		8 4			12:00			33		32		
00:30	2		2			12:15			30		41		
00:45	2	6	2	16	22	12:30			62 40	165	30	143	207
				10		12:45				165	39	142	307
01:00	1		2			13:00			47		52		
01:15	0		4			13:15			55		45		
01:30	1		2			13:30			47		48		
01:45	1	3	3	11	14	13:45			48	197	61	206	403
02:00	0		5			14:00			29		77		
02:15	0		3			14:15			36		85		
02:30	4		3			14:30			36		79		
02:45	3	7	1	12	19	14:45			40	141	73	314	455
03:00	2		1			15:00			29		64		
03:15	7		2			15:15			29		66		
03:30	2		5			15:30			24		98		
03:45	5	16	0	8	24	15:45			30	112	70	298	410
04:00	5		2			16:00			38		124		
04:15	6		7			16:15			33		60		
04:30	6		10			16:30			31		56		
04:45	14	31	7	26	57	16:45			34	136	49	289	425
												203	723
05:00	26		2			17:00			38		54		
05:15	60		7			17:15			36		27		
05:30	85	242	15	21	274	17:30			42	120	31	445	200
05:45	72	243	7	31	274	17:45			23	139	35	147	286
06:00	36		35			18:00			18		44		
06:15	43		21			18:15			12		37		
06:30	81		42			18:30			19		41		
06:45	84	244	12	110	354	18:45		<u>.</u>	14	63	24	146	209
07:00	71		9			19:00			8		20		
07:15	103		26			19:15			10		28		
07:30	122		25			19:30			5		29		
07:45	101	397	21	81_	478	19:45			7	30	23	100	130
08:00	47		17			20:00			12		12		
08:15	44		18			20:15			7		17		
08:30	46		12			20:30			8		17		
08:45	44	181	22	69	250	20:45			10	37	12	58	95
09:00	36		28			21:00			7		8		
09:15	39		21			21:15			25		8		
09:30	30		47			21:30			21		9		
09:45	27	132	27	123	255	21:45			11	64	12	37	101
				120						01			101
10:00	33 31		41			22:00			3		53		
10:15			31			22:15			9		6		
10:30	35	121	48	150	200	22:30			7	22	5		
10:45	32	131	39	159	290	22:45			3	22		69	91
11:00	25		52			23:00			4		7		
11:15	43		49			23:15			1		1		
11:30	39		42			23:30			8		15		
11:45	43	150	38	181	331	23:45			3	16	8	31	47
otal Vol.		1541		827	2368					1122		1837	2959
									D	aily To	tals		
							NB	SB		EB		WB	Combine
										2663		2664	5327
Split %		AM 65.1%		34 00/	44.5%					PM 37.9%		62.1%	EE EO
			*****										55.5%
eak Hour Volume		07:00 397		10:30 188	07:00 478					12:30		15:15	15:15
P.H.F.		0.81		0.90	0.81					204 0.82		358 0.72	479 Err:504
		_			_								

PACIFA TECHNICAL DATA

TUESDAY - APRIL 25, 2017 CITY: OTAY PROJECT: PTD17-0428-01

0741/14504 0441/070						017.1					J	, , ,	J17 0 120	, 01
OTAY MESA - SANYO TO AM Period NB SE			WB	,		PM Period	NB	SB		EB		WI	В	
00:00							IND	3D						
00:15	1		8			12:00				33		32		
00:30	1 2		4			12:15				30		41		
00:45	2	6	2 2	16	22	12:30				62 40	165	30		207
			•			12:45					165	39		307
01:00	1		2			13:00				47		52		
01:15	0		4			13:15				55		45		
01:30	1		2			13:30				47		48		
01:45	1	3	3	11	14	13:45				48	197	61	206	403
02:00	0		5			14:00				29		77		
02:15	0		3			14:15				36		85		
02:30	4		3			14:30				36		79		
02:45	3	7	1	12	19	14:45				40	141	73	314	455
03:00	2		1			15:00				29		64		
03:15	7		2			15:15				29		66		
03:30	2		5			15:30				24		98		
03:45	5	16	0	8	24	15:45				30	112	70	298	410
04:00	5		2			16:00				38		124		
04:15	6		7			16:15				33		60		
04:30	6		10			16:30				31		56		
04:45	14	31	7	26	57	16:45				34	136	49	289	425
		- 31		20	- 37						130		209	723
05:00	26		2			17:00				38		54		
05:15	60		7			17:15				36		27		
05:30	85	0.40	15			17:30				42		31		
05:45	72	243	7	31	274	17:45				23	139	35	147	286
06:00	36		35			18:00				18		44		
06:15	43		21			18:15				12		37		
06:30	81		42			18:30				19		41		
06:45	84	244	12	110	354	18:45				14	63	24	146	209
07:00	71		9			19:00				8		20		
07:15	103		26			19:15				10		28		
07:30	122		25			19:30				5		29		
07:45	101	397	21	81	478	19:45				7	30	23	100	130
08:00	47		17			20:00				12		12		
08:15	44		18			20:15				7		17		
08:30	46		12			20:30				8		17		
08:45	44	181	22	69	250	20:45				10	37	12	58	95
09:00	36		28			21:00				7		8		
09:15	39		21			21:15				, 25		8		
09:30	30		47			21:30				21		9		
09:45	27	132	27	123	255	21:45				11	64	12	27	101
		132		123							04		37	101
10:00	33		41			22:00				3		53		
10:15	31		31			22:15				9		6		
10:30	35		48			22:30				7		5		
10:45	32	131	39	159	290	22:45				3	22	5	69	91
11:00	25		52			23:00				4		7		
11:15	43		49			23:15				1		1		
11:30	39		42			23:30				8		15		
11:45	43	150	38	181	331	23:45				3	16	8	31	47
Cotol Vol		1541		027	2260						1122		1027	2050
otal Vol.		1541		827	2368						1122		1837	2959
										D	aily To	tals		
							NE	•	SB		EB		WB	Combine
											2663		2664	5327
		AM									PM			
Split %		65.1%		34.9%	44.5%						37.9%		62.1%	55.5%
eak Hour		07:00		10:30	07:00						12:30		15:15	15:15
Volume		397		188	478						204		358	479

Volume P.H.F. 397 0.81 188 0.90 204 0.82 358 0.72 479 Err:504

AM/PM Peak Hour Traffic Counts

PREPARED BY: PACIFIC TECHNICAL DATA

DATE: LOCATION: OTAY
4/25/17 NORTH & SOUTH: ALTA
TUESDAY EAST & WEST: CALZADA DE LA FUENTE

PROJECT #: PTD17-0428-01 LOCATION #: 1

CONTROL: 1-WAY STOP (WB)

		N	ORTHBOL	JND	S	OUTHBOL	IND	4	ASTBOU			/ESTBOU			i		U-TUI	RNS
		NL	ALTA NT	NR	SL	ALTA ST	SR	EL	ZADA DE LA F	ER	WL	ADA DE LA F	WR	TOTAL	NB	SB	EB	WB
	LANES:	X	1 1	0	0	2	Х	X	X	X	0.5	X	0.5	TOTAL	X	X	X	X
Г	7:00 AM		101	34	0	17					1		2	155	i	-		
1	7:15 AM		127	20	0	16					2		0	165		1		
1	7:30 AM		190	12	0	16					18		1	237				
	7:45 AM		183	10	0	15					10		0	218			1	
	8:00 AM		67	17	0	14					1		0	99		1	1	-1
	8:15 AM		56	8	0	22				1	0		0	86				
	8:30 AM	1	48	11	2	11				1	1		1	74		1	1	
ĮΣ	8:45 AM		32	8	0	20			1		5		1	66				
٦₹	VOLUMES	0	804	120	2	131	0	0	0	0	38	0	5	1,100	0	0	0	0
	APPROACH %	0%	87%	13%	2%	98%	0%	0%	0%	0%	88%	0%	12%					
1	APP/DEPART	924	1	809	133	1	169	0	1	122	43	1	0	0	11			
1	BEGIN PEAK HR		7:00 AM					ĺ	•						/			
	VOLUMES	Ιo	601	76	0	64	0	Ιo	0	0	31	0	3	775	//			
	APPROACH %	0%	89%	11%	0%	100%	0%	0%	0%	0%	91%	0%	9%		н			
	PEAK HR FACTOR		0.838			0.941			0.000			0.447		0.818	11			
	APP/DEPART	677		604	64	1	95	0	1	76	34	1	0	0	П			
	4:00 PM		20	4	2	191				;	33		0	250				T
1	4:15 PM		17	4	0	101			1	1	11		0	133		1		
1	4:30 PM		21	3	0	81					18		0	123		† 		
	4:45 PM		26	0	0	45					4		0	75				
	5:00 PM		19	4	0	49					14	-	0	86				
1	5:15 PM		27	0	0	34					7		0	68		1		
	5:30 PM		41	6	0	24					9		0	80				
Σ	5:45 PM		23	4	0	47					3		0	77		-		
ΙΞ	VOLUMES	0	194	25	2	572	0	0	0	0	99	0	0	892	0	0	0	0
	APPROACH %	0%	89%	11%	0%	100%	0%	0%	0%	0%	100%	0%	0%					
1	APP/DEPART	219	1	194	574	7	671	0	1	27	99	1	0	0				
1	BEGIN PEAK HR		4:00 PM															
1	VOLUMES	0	84	11	2	418	0	0	0	0	66	0	0	581				
	APPROACH %	0%	88%	12%	0%	100%	0%	0%	0%	0%	100%	0%	0%					
	PEAK HR FACTOR		0.913			0.544			0.000			0.500		0.581	ĺ			
	APP/DEPART	95	1	84	420		484	0		13	66	1	0_	0				

		ALTA		
		NORTH SIDE		
	†		↑	
CALZADA DE LA FUENTE	WEST SIDE		EAST SIDE	CALZADA DE LA FUENTE
<u></u>	_		\	
	-	SOUTH SIDE		
		ALTA		

	7:00 AM
	7:15 AM
	7:30 AM
_	7:45 AM
Α	8:00 AM
1	8:15 AM
	8:30 AM
	8:45 AM
	TOTAL
	4:00 PM
	4:15 PM
	4:30 PM
_	4:45 PM
Ξ	5:00 PM
-	5:15 PM
	5:30 PM
	5:45 PM
	TOTAL

	PEDESTR	IAN CR	OSSING:	S
N SIDE	S SIDE	E SIDE	W SIDE	TOTAL
				0
				0
				0
				0
				0
				0
				0
				0
0	0	0	0	0
				0
				0
				0
				0
				0
				0
				0
				0
0	0	_ 0	0	0

PI	EDESTR	AN ACT	IVATION	NS
N SIDE	S SIDE	E SIDE	W SIDE	TOTAL
				0
				0
				0
				00
ļ				0
				0
				0
				0
0	0	0	0	0
				0_
				0
				0
				0
				0
				0
				0
				0
70	0	0	0	0

В	ICYC	LE CR	OSSI	NGS
NS	SS	ES	WS	TOTAL
				0
				0
				0
				0
				0
				_ 0
				_ 0
				0
0	0	0	0	0
				0
				0
				0
				0
				0
				0
]	0
				0
0	0	0	0	0

TTL

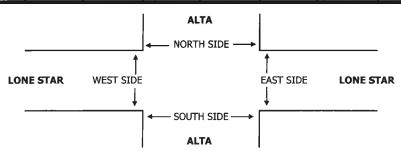
PREPARED BY: PACIFIC TECHNICAL DATA

DATE: 4/25/17 TUESDAY LOCATION: NORTH & SOUTH:

OTAY ALTA LONE STAR

PTD17-0428-01 PROJECT #: LOCATION #:

CONTROL:


SIGNAL

TUESDAY	EAST & WEST:	LONE STAR	CONTROL:	SIGNAL		
NOTES:			Air		A	
I			PM		N	
-			MD	⋖ W		E►
l .			OTHER		S	
			OTHER		•	

		N	ORTHBOU	ND	S	OUTHBOU	ND	E	ASTBOU	ND		/ESTBOU	ND	
			ALTA	,		ALTA		ļ	LONE STAR			LONE STAR		
		NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
	LANES:	0	2	0	1	1	0	0	1	0	1	0	1	
	7:00 AM	0	134	3	0	17	0	0	0	0	4	0	1	159
	7:15 AM	0	150	9	0	17	0	0	0	0	3	1	0	180
	7:30 AM	0	202	2	0	33	0	0	0	0	6	0	0	243
	7:45 AM	1	190	5	0	26	1	0	0	2	3	0	0	228
	8:00 AM	0	83	3	1	14	0	0	0	0	1	0	2	104
	8:15 AM	1	67	6	0	22	2	0	0	0	4	0	0	102
	8:30 AM	0	58	4	0	11	1	0	0	0	5	0	0	79
¥	8:45 AM	0	38	8	1	22	0	0	0	0	7	0	0	76
⋖	VOLUMES	2	922	40	2	162	4	0	0	2	33	1	3	1,171
	APPROACH %	0%	96%	4%	1%	96%	2%	0%	0%	100%	89%	3%	8%	
	APP/DEPART	964		925	168	/	197	2		42	37		7	0
	BEGIN PEAK HR		7:00 AM											
	VOLUMES	1	676	19	0	93	1	0	0	2	16	1	1	810
	APPROACH %	0%	97%	3%	0%	99%	1%	0%	0%	100%	89%	6%	6%	
	PEAK HR FACTOR		0.853			0.712			0.250			0.750		0.833
	APP/DEPART	696		677	94		111	2		19	_18		3	0
	4:00 PM	0	22	1	0	216	0	0	0	1	1	0	1	242
	4:15 PM	0	23	2	0	126	0	0	0	0	2	0	0	153
	4:30 PM	0	22	1	0	101	0	0	0	0	5	0	0	129
	4:45 PM	0	27	2	0	49	0	0	0	0	1	1	0	80
	5:00 PM	0	25	2	0	65	0	0	0	0	1	1	0	94
	5:15 PM	0	26 48	0	1	39 34	0	0	0	0	2	0	0	68
	5:30 PM	0	28	1	0	48	0	0	0	0	0	0	0	87 77
Σ	5:45 PM VOLUMES	0	221	10	1	678	0	0	0	1	16	2	1	930
		0%	96%	4%	0%	100%	0%	0%	0%	100%	84%	_	5%	930
	APPROACH % APP/DEPART	231	90%	222	679	100%	695	1	10%	11	19	11%	2	0
	BEGIN PEAK HR	231	4:00 PM	ZZZ	0/9		093			-11	19			- 0
	VOLUMES	0	94	6	0	492	0	0	0	1	9	1	1	604
	APPROACH %	0%	94%	6%	0%	100%	0%	0%	0%	100%	82%	9%	9%	00 1
	PEAK HR FACTOR	0%	0.862	0%	0%	0.569	U 70	U%	0.250	100%	0270	0.550	370	0.624
	APP/DEPART	100	1	95	492	1.303	502	1	1	6	11	/	1	0.624
_	AFF/DLFAKI	100		23	732		JUZ	1		U	11		1	U

X X X X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						
	L	NB X	SB X	EB X	WB X	TTL
	T					0
	┪					0
						0
						0
	_					0
0 0 0 0 0 0 0	_					0
0 0 0 0 0 0 0	_		_	•		0
0 0 0 0 0 0 0 0		0	U	0	0	0
0 0 0 0 0 0 0 0						
0 0 0 0 0 0 0 0	-1					
0 0 0 0 0 0 0 0	╛					
0 0 0 0 0 0 0 0	╡					
0 0 0 0 0 0 0 0	=					
0 0 0 0 0 0						
0 0 0 0 0 0						
0 0 0 0 0 0 0 0						
0 0						0
0 0						0
0						0
0						0 0
0						0 0
0 0 0 0 0						0 0 0 0
						0 0 0 0 0
_						0 0 0 0 0
		0	0	0	0	0 0 0 0 0

U-TURNS

	7:00 AM
	7:15 AM
	7:30 AM
	7:45 AM
AΜ	8:00 AM
`	8:15 AM
	8:30 AM
	8:45 AM
	TOTAL
	4:00 PM
	4:15 PM
	4:30 PM
	4:45 PM
Σ	5:00 PM
-1	5:15 PM
	5:30 PM
	TOTAL
PM	4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM

	PEDESTR			
N SIDE	S SIDE	E SIDE	W SIDE	TOTAL
				0
				0
				0
				0
				0
				0
				0
				0
0	0	0	0	0
				0
				0
				0
				0
				0
				0
				0
				0
0	0	0	0	0

			IOITAVI	
N SIDE	S SIDE	E SIDE	W SIDE	TOTAL
				0
				0
				0
				0
				0
				0
				0
				0
0	0	0	0	0
				0
				0
				_ 0
				0
				0
				0
				0
1-18				0
0	0	0	0	0

NS SS ES WS TOTAL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	В	ICYC	LE CR	OSSI	NGS
	NS	SS	ES	WS	TOTAL
					0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					0_
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					0
0 0 0 0 0 0 0 0					_ 0
0 0 0 0 0 0 0	0	0	0	0	0
0 0 0 0 0					0
0 0 0 0					0
0 0 0					0
0 0					0
0					0
0					
					0
0 0 0 0 0					0
	0	0	0	0	0

PREPARED BY: PACIFIC TECHNICAL DATA

DATE: LOCATION: OTAY
4/25/17 NORTH & SOUTH: PIPER RANCH
TUESDAY EAST & WEST: OTAY MESA

PROJECT #: PTD17-0428-01 LOCATION #: 3

CONTROL: SIGNAL

	O III III DOM	0011111021	02011112		
NOTES:	- 	AN		A	
		FM		N	
-		MD	⋖ W		É►
		OTHER		S	
		TOTHER			

		N	ORTHBOL		S	OUTHBOL		1	ASTBOU		7	WESTBOU			1
		NL	PIPER RANC	NR.	SL	PIPER RANC	SR	EL	OTAY MESA	ER	T WL	OTAY MESA	WR	TOTAL	NB
	LANES:	X	X	X	1.5	X	1.5	2	2	X	X	3	1	TOTAL	X
	7:00 AM		1		15		34	25	54		ī	74	20	222	1
	7:15 AM				7		32	44	64			80	34	261	
	7:30 AM				10		21	47	71			129	29	307	
	7:45 AM				16		26	60	62			99	24	287	
	8:00 AM				14		34	48	50			90	33	269	
	8:15 AM				13		36	38	48			76	21	232	
	8:30 AM				11		24	39	44			75	21	214	
Σ	8:45 AM				14		23	48	49			79	31	244	
⋖	VOLUMES	0	0	0	100	0	230	349	442	0	0	702	213	2,036	0
	APPROACH %	0%	0%	0%	30%	0%	70%	44%	56%	0%	0%	77%	23%		
	APP/DEPART	0		562	330		0	791	- 1	542	915	1	932	0]
	BEGIN PEAK HR		7:15 AM												11
	VOLUMES	0	0	0	47	0	113	199	247	0	0	398	120	1,124	H
	APPROACH %	0%	0%	0%	29%	0%	71%	45%	55%	0%	0%	77%	23%		H
	PEAK HR FACTOR		0.000			0.833			0.914			0.820		0.915	н
	APP/DEPART	0		319	160		0	446	1	294	518	1	511	0]
	4:00 PM				25		55	27	57			127	29	320	
	4:15 PM				16		41	30	49			87	24	247	
	4:30 PM				23		52	29	57			89	22	272	
	4:45 PM				22		48	22	52			82	23	249	
	5:00 PM				26		94	27	64			87	29	327	
	5:15 PM				19		44	34	66			84	10	257	
	5:30 PM				17		47	24	45			72	15	220	
Σ	5:45 PM				9		46	26	36			62	19	198	┛┖┷
Δ.	VOLUMES	0	0	0	157	0	427	219	426	0	0	690	171	2,090	0
4	APPROACH %	0%	0%	0%	27%	0%	73%	34%	66%	0%	0%	80%	20%		
1 1	APP/DEPART	0		390	584		0	645		583	861		1,117	0	1
- 3	BEGIN PEAK HR		4:30 PM			_									
	VOLUMES	0	0	0	90	0	238	112	239	0	0	342	84	1,105	
	APPROACH %	0%	0%	0%	27%	0%	73%	32%	68%	0%	0%	80%	20%		
	PEAK HR FACTOR	<u> </u>	0.000	100		0.683			0.878			0.918		0.845	Į.
	APP/DEPART	0	1	196	328	- /	0	351	1	329	426	1	580	0	

П					0
ı					0
ı	0	1	1	0	0 0 2
ı					
ı					
1					
ı					
ı					
Į					
		_			_
					0
			1		1
			1		1
					0
ı					1 1 0 0
l					0
I					0
i					0 0 2
ľ	0	0	2	0	2
•					

U-TURNS

TTL

	1	PIPER RANCH	1	
		NORTH SIDE	→	
-	<u></u>		1	
OTAY MESA	WEST SIDE		EAST SIDE	OTAY MESA
	ļ		ļ	
		— SOUTH SIDE ——	•	
		PIPER RANCH		

_		
	7:00 AM	
	7:15 AM	
	7:30 AM	
	7:45 AM	
Ψ	8:00 AM	
`	8:15 AM	
	8:30 AM	
	8:45 AM	
	TOTAL	
	4:00 PM	
	4:15 PM	
	4:30 PM	
	4:45 PM	
Σ	5:00 PM	
	5:15 PM	
	5:30 PM	
	5:45 PM	
	TOTAL	

	PEDESTRIAN CROSSINGS						
N SIDE	S SIDE	E SIDE	W SIDE	TOTAL			
				0			
				0			
				0			
				0			
				0			
				0			
				0			
				0			
0	0	0	0	0			
				0			
				0			
				_0			
				0			
				0			
				0			
				0			
				0			
0	0	0	0	0			

			IVATION	
N SIDE	S SIDE	E SIDE	W SIDE	TOTAL
				0
				_ 0
				0
				0
				0
				0
				0
				0
0	0	0	0	0
				0
				0
				0
				0
				0
				0
				0
1-19				0
0	0	0	0	0

В	BICYCLE CROSSINGS								
NS	SS	ES	WS	TOTAL					
				0					
				0					
				0					
				0					
				0					
				0					
				_ 0					
				0					
0	0	0	0	0					
				0					
			_ '	0					
				0					
				0					
				0					
				0					
				0					
				0					
0	0	0	0	0					

PREPARED BY: PACIFIC TECHNICAL DATA

DATE: 4/25/17 TUESDAY EAST & WEST:

LOCATION: NORTH & SOUTH:

125 SB RAMP **OTAY MESA**

PTD17-0428-01 PROJECT #:

LOCATION #: CONTROL: **SIGNAL**

NOTES:	 - -	Ai+:	A	
		PH	N N	
		MD	■ W	E►
		OTHER	S	
		OTHER	▼	

		N	ORTHBOU	ND	S	SOUTHBOUND			EASTBOUND		WESTBOUND			
	125 SB RAMP			125 SB RAMP			OTAY MESA			OTAY MESA				
		ŇL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
	LANES:	Х	Х	Х	2	X	1	Χ	3	X	X	3	Χ	
	7:00 AM				79		81		64			12		236
	7:15 AM				105		90		67			22		284
	7:30 AM				126		118		78			31		353
	7:45 AM				160		104		77			26		367
	8:00 AM				83		89		83			23		278
	8:15 AM				74		74		59			21		228
	8:30 AM				68		74		51			23		216
AΜ	8:45 AM				53		78		62			29		222
₹	VOLUMES	0	0	0	748	0	708	0	541	0	0	187	0	2,184
	APPROACH %	0%	0%	0%	51%	0%	49%	0%	100%	0%	0%	100%	0%	
	APP/DEPART	0		0	1,456	/	0	541	1	1,289	187	1	895	0
	BEGIN PEAK HR		7:15 AM											
	VOLUMES	0	0	0	474	0	401	0	305	0	0	102	0	1,282
	APPROACH %	0%	0%	0%	54%	0%	46%	0%	100%	0%	0%	100%	0%	
	PEAK HR FACTOR		0.000			0.829			0.919			0.823		0.873
	APP/DEPART	0		0	875	1	0	305		779	102		503	0
	4:00 PM				22		69		80			89		260
	4:15 PM				30		52		63			59		204
	4:30 PM				31		58		79			52		220
	4:45 PM				29		57		70			46		202
	5:00 PM				31		58		87			60		236
	5:15 PM				29		50		88			38		205
	5:30 PM				51		56		63			38		208
Σ	5:45 PM				24		40		44			37		145
_	VOLUMES	0	0	0	247	0	440	0	574	0	0	419	0	1,680
	APPROACH %	0%	0%	0%	36%	0%	64%	0%	100%	0%	0%	100%	0%	
	APP/DEPART	0		0	687		0	574		821	419		859	0
	BEGIN PEAK HR		4:00 PM											
	VOLUMES	0	0	0	112	0	236	0	292	0	0	246	0	886
	APPROACH %	0%	0%	0%	32%	0%	68%	0%	100%	0%	0%	100%	0%	
	PEAK HR FACTOR		0.000			0.956			0.913			0.691		0.852
	APP/DEPART	0		0	348		0	292	1	404	246	1	482	0

HR		4:00 PM											Γ
	0	0	0	112	0	236	0	292	0	0	246	0	ı
	0%	0%	0%	32%	0%	68%	0%	100%	0%	0%	100%	0%	
TOR		0.000			0.956			0.913			0.691		
	0		0	348		0	292	1	404	246		482	E
					5 SB RA								
				← N0	ORTH SI	DE → [
			1				1						
OTA	Y MESA	A WE	ST SIDE				EAST SII	DE	OTAY M	ESA			
			\downarrow				1						
				◄ S0	OUTH SIC)E→							

Т	7:00 AM	
Г	7:15 AM	
	7:30 AM	
	7:45 AM	
¥Γ	8:00 AM	
	8:15 AM	
	8:30 AM	
	8:45 AM	
	TOTAL	
Т	4:00 PM	Ī
	4:15 PM	
	4:30 PM	
	4:45 PM	
ΣΓ	5:00 PM	
- [5:15 PM	
	5:30 PM	
	5:45 PM	
	TOTAL	

PEDESTRIAN CROSSINGS									
N SIDE	N SIDE S SIDE E SIDE W SIDE								
				0					
				0					
				0					
				0					
				0					
				0					
				0					
				0					
.0	0	0	0	0					
				0					
				0					
				0					
				0					
				0					
		_		0					
				0					
				0					
0	0	0	0	0					

125 SB RAMP

	EDESTRI			
N SIDE	S SIDE	E SIDE	W SIDE	TOTAL
				0
				0
				0
				0
				0
				0
				0
				0
0	0	0	0	0
				0
				0
				0
				0
				0
				0
				0
-20				0
	0	0	0	0

В	BICYCLE CROSSINGS										
	_			TOTAL							
				0							
				0							
				0							
				0							
				0							
				0							
				0							
				0							
0	0	_0	0	0							
				0							
		_		0							
				0							
				0							
				0							
				0							
				0							
				0							
0	0	0	0	0							

U-TURNS

TTL

0

SB EΒ

0 0 0

PREPARED BY: PACIFIC TECHNICAL DATA

<u>DATE:</u> 4/25/17 TUESDAY LOCATION: NORTH & SOUTH: EAST & WEST: OTAY

125 SB **RAMP** OTAY MESA PROJECT #: LOCATION #:

PTD17-0428-01

CONTROL:

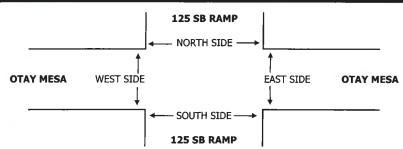
SIGNAL

NOTES:

PH.		N	
MD	⋖ W		_ E ▶
OTHER OTHER		S	
OTHER		▼	<u>L</u> .

		N	NORTHBOUND		SOUTHBOUND		EASTBOUND		WESTBOUND					
	125 SB RAMP		<u> </u>	125 SB RAMP OTAY MESA			OTAY MESA							
		NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
	LANES:	X	X	X	2	X	1	Х	3	X	Χ	3	X	
-	7:00 AM				79		81		64			12	i	236
	7:15 AM				105		90		67			22		284
	7:30 AM				126		118		78			31		353
	7:45 AM				160		104		77			26		367
	8:00 AM				83		89		83			23		278
	8:15 AM				74		74		59			21		228
	8:30 AM				68		74	-	51			23		216
Α	8:45 AM				53		78		62			29		222
⋖	VOLUMES	0	0	0	748	0	708	0	541	0	0	187	0	2,184
	Approach %	0%	0%	0%	51%	0%	49%	0%	100%	0%	0%	100%	0%	
	APP/DEPART	0		0	1,456		0	541		1,289	187		895	0
	BEGIN PEAK HR		7:15 AM											
	VOLUMES	0	0	0	474	0	401	0	305	0	0	102	0	1,282
	APPROACH %	0%	0%	0%	54%	0%	46%	0%	100%	0%	0%	100%	0%	1
	PEAK HR FACTOR		0.000			0.829			0.919			0.823		0.873
	APP/DEPART	0		. 0	875	/	0	305	1	779	102		503	_ 0
	4:00 PM				22		69		80			89		260
	4:15 PM				30		52		63			59		204
	4:30 PM				31		58		79			52		220
	4:45 PM				29		57		70			46		202
	5:00 PM				31		58		87			60		236
	5:15 PM				29		50		88			38		205
	5:30 PM				51		56		63			38		208
Σ	5:45 PM				24		40		44			37		145
	VOLUMES	0	0	0	247	0	440	0	574	0	0	419	0	1,680
	APPROACH %	0%	0%	0%	36%	0%	64%	0%	100%	0%	0%	100%	0%	
	APP/DEPART	0		0	687		0	574		821	419	/	859	0
	BEGIN PEAK HR		4:00 PM											
	VOLUMES	0	0	0	112	0	236	0	292	0	0	246	0	886
	APPROACH %	0%	0%	0%	32%	0%	68%	0%	100%	0%	0%	100%	0%	
	PEAK HR FACTOR		0.000			0.956			0.913			0.691		0.852
┙	APP/DEPART	0		0	348_	1.	Ô	292	1	404	246	1	482	0

				0
				-0
				0
				0
0	0	0	0	0
\vdash				0
				0
				0
				0
				0
				0
				0
0	0	0	0	0


U-TURNS

TTL

0 0 0

NB

SB EB

$\overline{}$	7:00 AM
-	7:15 AM
-	7:30 AM
	7:45 AM
Σ	8:00 AM
~ -	8:15 AM
	8:30 AM
	8:45 AM
	TOTAL
\top	4:00 PM
	4:15 PM
	4:30 PM
_ _	4:45 PM
Σ	5:00 PM
	5:15 PM
_	5:30 PM
_	5:45 PM
上	TOTAL

PEDESTRIAN CROSSINGS										
N SIDE	S SIDE	E SIDE	W SIDE	TOTAL						
				0						
				0						
				0						
				0						
				0						
				0						
				0						
				0						
0	0	0	0	0						
				0						
				0						
				0						
				0						
				0						
	_			0						
				_ 0						
				0						
0	0	0	0	0						

PEDESTRIAN ACTIVATIONS									
N SIDE	S SIDE	E SIDE	W SIDE	TOTAL					
				0					
				0					
				0					
				0					
				0					
				0					
				0					
				0					
0	0	0	0	0					
				0					
				0					
				0					
				0					
				0					
				_ 0					
				0					
4-21				0					
0	0	0	0	0					

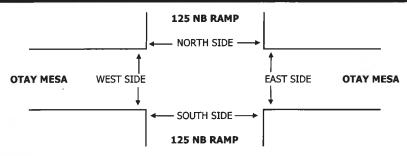
В	BICYCLE CROSSINGS									
NS	SŞ	ES	WS	TOTAL						
				0						
				0						
				0						
				0						
				0						
				0						
				0						
				_ 0						
0	0	0	0	0						
				_ 0						
				0						
				0						
				0						
				0						
				0						
				0						
				0						
0	0	0	0	0						
				,						

PREPARED BY: PACIFIC TECHNICAL DATA

DATE: LOCATION: OTAY PROJECT #: PTD17-0428-01
4/25/17 NORTH & SOUTH: 125 NB RAMP LOCATION #: 5
TUESDAY EAST & WEST: OTAY MESA CONTROL: SIGNAL

NOTES:

	<u> </u>										OTHER		S ▼						
		N	ORTHBOU		S	OUTHBOU 125 NB RAM	p	ŀ	ASTBOUL OTAY MESA			/ESTBOUI					U-TUF	INS	
	LANES:	NL X	NT X	NR X	SL X	ST X	SR X	EL 2	ET 2	ER X	WL X	WT 2	WR 1	TOTAL	NB X	SB X	EB X	WB X	TTL
	7:00 AM			1	ı	1		17	134]		14	4	169					0
	7:15 AM	1			i –			14	160			23	10	207					0
	7:30 AM					1		15	191			33	10	249					0
	7:45 AM		1			1		14	225			27	9	275					0
	8:00 AM							18	138		1	19	7	182					- 0
	8:15 AM							14	119		1	24	9	166					0
	8:30 AM				i -			10	109	1		23	7	149			1		1
Σ	8:45 AM							14	101			28	7	150					0
₹	VOLUMES	0	0	0	0	0	0	116	1,177	0	0	191	63	1,547	0	0	1	0	1
	APPROACH %	0%	0%	0%	0%	0%	0%	9%	91%	0%	0%	75%	25%						
	APP/DEPART	0		179	0	1	0	1,293	1	1,177	254	1	191	0	11				
	BEGIN PEAK HR		7:15 AM												11				
	VOLUMES	0	0	0	0	0	0	61	714	0	0	102	36	913	11				
	APPROACH %	0%	0%	0%	0%	0%	0%	8%	92%	0%	0%	74%	26%		11				
	PEAK HR FACTOR		0.000			0.000			0.811			0.802		0.830	41				
	APP/DEPART	0		97	0	/	0	775		714	138		102	0	<u> </u>				
	4:00 PM							43	64			88	68	263				\Box	0
	4:15 PM							50	67			47	49	213	I				0
	4:30 PM							25	49			61	43	178					0
	4:45 PM							40	56			45	34	175		ļ		\longrightarrow	0
	5:00 PM							41	80			66	50	237					0
	5:15 PM			_				57	69			45	31	202					0
	5:30 PM							31	77			38	23	169	l —			\longrightarrow	0
Μ	5:45 PM							29	42			35	31	137	╽ ┝┯┦				0
-	VOLUMES	0	0	0	0	0	0	316	504	0	0	425	329	1,574	0	0	0	0	0
	APPROACH %	0%	0%_	0%	0%	0%	0% 0	39%	61%	0%	0%	56%	44%		1				
	APP/DEPART	0	4:00 PM	645	0		U	820		504	754		425	0	1				
	BEGIN PEAK HR	_			١ ,	0	0	158	236	^	١,	241	194	829	1				
	VOLUMES APPROACH %	0 0%	0 0%	0 0%	0 0%	0 0%	0 0%	40%	60%	0 0%	0%	55%	194 45%	029					
	PEAK HR FACTOR	U%	0.000	U70	U70	0.000	U70	4070	0.842	U%0	070	0.697	4570	0.788					
	APP/DEPART	0	0.000	352	0	0.000	0	394	1.042	236	435	0.097	241	0.788					
	APP/DEPAKI	U		334	U		U	324		230	433		741	U	ı				


N

⋖W

E►

144

110

	7:00 AM
	7:15 AM
	7:30 AM
	7:45 AM
ξ	8:00 AM
`	8:15 AM
	8:30 AM
	8:45 AM
	TOTAL
	4:00 PM
	4:15 PM
	4:30 PM
[4:45 PM
Σ	5:00 PM
[5:15 PM
	5:30 PM
- 1	5:45 PM
Ы	TOTAL

PEDESTRIAN CROSSINGS								
N SIDE	S SIDE	E SIDE	W SIDE	TOTAL				
				0				
				0				
				_0				
				0				
				0				
				0				
				0				
				0				
0	0	0	0	0				
				0				
				0				
				0				
				0				
				0				
				0				
				0				
				0				
0	0	0	0	0				

	PEDESTRIAN ACTIVATIONS								
N SIDE	S SIDE	E SIDE	W SIDE	TOTAL					
				0					
				0					
				0					
				0					
				0					
				0					
				0					
				0					
0	0	0	0	0					
				0					
				0					
				0					
				0					
				0					
				0					
				0					
4-22	,			0					
0	0	0	0	0					

BICYCLE CROSSINGS									
В									
NS	SS	ES	WS	TOTAL					
	_			0					
				0					
				0					
				0					
				0					
				0					
				0					
				0_					
0	0	0	0	0					
				0					
				0					
				0					
				0					
				0					
				0					
				0					
				0					
0	0	0	0	0					
				,					

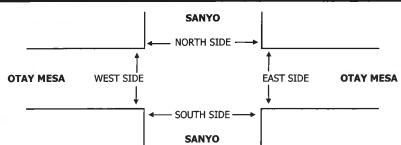
PREPARED BY: PACIFIC TECHNICAL DATA

<u>DATE:</u> 4/25/17 TUESDAY LOCATION: NORTH & SOUTH: EAST & WEST: OTAY SANYO OTAY MESA PROJECT #: PTD17-0428-01

⋖W

Ν

S


E►

LOCATION #: 6 CONTROL: SIGNAL

NOTES:	唐便
	F94
i	MD
	OTHER OTHER
	OTHER

		NO	DRTHBOL	IND	S	OUTHBOU	IND	E	ASTBOUN	ND .	V	VESTBOUL	ND	
			SANYO		l	SANYO			OTAY MESA			OTAY MESA		
		NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
	LANES:	1.5	X	0.5	X	Х	X	X	2	0	1	1	X	
	7:00 AM	7		1					69	59	0	8		144
	7:15 AM	14		0					95	64	1	17		191
	7:30 AM	20		4				1	115	72	2	24		237
	7:45 AM	15		2					96	126	1	19		259
	8:00 AM	14		1					45	88	0	13		161
	8:15 AM	18		0					40	77	4	14		153
	8:30 AM	12		2					38	65	0	13		130
Σ	8:45 AM	15		0					39	59	1	21		135
₹	VOLUMES	115	0	10	0	0	0	0	537	610	9	129	0	1,410
	APPROACH %	92%	0%	8%	0%	0%	0%	0%	47%	53%	7%	93%	0%	
	APP/DEPART	125		0	0	1	619	1,147	1	547	138	1	244	0
	BEGIN PEAK HR		7:15 AM										-	
	VOLUMES	63	0	7	0	0	0	0	351	350	4	73	0	848
	APPROACH %	90%	0%	10%	0%	0%	0%	0%	50%	50%	5%	95%	0%	
	PEAK HR FACTOR		0.729			0.000			0.789			0.740		0.819
_	APP/DEPART	70	/	0	0	/	354	701		358	77	1	136	0
_	4:00 PM	54	/	4	0	/	354	701	26	28	11	109	136	232
	4:00 PM 4:15 PM	54 42	/	5	0	/	354	701	24	28 34	3	63	136	232 171
	4:00 PM 4:15 PM 4:30 PM	54 42 49	/	5 7	0	/	354	701	24 49	28 34 24	3 3	63 50	136	232 171 182
	4:00 PM 4:15 PM 4:30 PM 4:45 PM	54 42 49 32	/	5 7 8	0	/	354	701	24 49 23	28 34 24 36	11 3 3 5	63 50 39	136	232 171 182 143
	4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM	54 42 49 32 85		4 5 7 8 12	0	/	354	701	24 49 23 22	28 34 24 36 49	11 3 3 5 0	63 50 39 46	136	232 171 182 143 214
	4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM	54 42 49 32 85 43		4 5 7 8 12 7	0	/	354	701	24 49 23 22 29	28 34 24 36 49 42	11 3 3 5 0 4	63 50 39 46 20	136	232 171 182 143 214 145
	4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM	54 42 49 32 85 43		4 5 7 8 12 7	0		354	701	24 49 23 22 29 38	28 34 24 36 49 42 36	11 3 3 5 0 4	63 50 39 46 20 26	136	232 171 182 143 214 145 157
Ψ	4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM	54 42 49 32 85 43 55 25	1	4 5 7 8 12 7 1		/			24 49 23 22 29 38 16	28 34 24 36 49 42 36 23	11 3 3 5 0 4 1	63 50 39 46 20 26 36		232 171 182 143 214 145 157
PM	4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM	54 42 49 32 85 43 55 25 385	0	4 5 7 8 12 7 1 1	0	0	0	0	24 49 23 22 29 38 16 227	28 34 24 36 49 42 36 23 272	11 3 3 5 0 4 1 0	63 50 39 46 20 26 36 389	0	232 171 182 143 214 145 157
PM	4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM VOLUMES APPROACH %	54 42 49 32 85 43 55 25 385 90%	0 0%	4 5 7 8 12 7 1 1 45 10%	0	0 0%	0 0%	0 0%	24 49 23 22 29 38 16	28 34 24 36 49 42 36 23 272 55%	11 3 3 5 0 4 1 0 27 6%	63 50 39 46 20 26 36	0 0%	232 171 182 143 214 145 157 101 1,345
PM	4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:30 PM 5:45 PM VOLUMES APPROACH % APP/DEPART	54 42 49 32 85 43 55 25 385 90% 430	0%	4 5 7 8 12 7 1 1	0	-	0	0	24 49 23 22 29 38 16 227	28 34 24 36 49 42 36 23 272	11 3 3 5 0 4 1 0	63 50 39 46 20 26 36 389	0	232 171 182 143 214 145 157
ЬМ	4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM VOLUMES APPROACH % APP/DEPART BEGIN PEAK HR	54 42 49 32 85 43 55 25 385 90% 430	0% / 4:00 PM	4 5 7 8 12 7 1 1 45 10%	0 0%	0%	0 0% 299	0 0% 499	24 49 23 22 29 38 16 227 45%	28 34 24 36 49 42 36 23 272 55% 272	11 3 3 5 0 4 1 0 27 6% 416	63 50 39 46 20 26 36 389 94%	0 0% 774	232 171 182 143 214 145 157 101 1,345
PM	4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM VOLUMES APPROACH % APP/DEPART BEGIN PEAK HR VOLUMES	54 42 49 32 85 43 55 25 385 90% 430	0% / 4:00 PM 0	4 5 7 8 12 7 1 1 45 10% 0	0 0% 0	0% /	0 0% 299	0 0% 499	24 49 23 22 29 38 16 227 45% /	28 34 24 36 49 42 36 23 272 55% 272	11 3 3 5 0 4 1 0 27 6% 416	63 50 39 46 20 26 36 389 94% /	0 0% 774	232 171 182 143 214 145 157 101 1,345
PM	4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM VOLUMES APPROACH % APP/DEPART BEGIN PEAK HR VOLUMES APPROACH %	54 42 49 32 85 43 55 25 385 90% 430	0% / 4:00 PM 0 0%	4 5 7 8 12 7 1 1 45 10%	0 0%	0% / 0 0%	0 0% 299	0 0% 499	24 49 23 22 29 38 16 227 45% /	28 34 24 36 49 42 36 23 272 55% 272	11 3 3 5 0 4 1 0 27 6% 416	63 50 39 46 20 26 36 389 94% /	0 0% 774	232 171 182 143 214 145 157 101 1,345
PM	4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM VOLUMES APPROACH % APP/DEPART BEGIN PEAK HR VOLUMES	54 42 49 32 85 43 55 25 385 90% 430	0% / 4:00 PM 0	4 5 7 8 12 7 1 1 45 10% 0	0 0% 0	0% /	0 0% 299	0 0% 499	24 49 23 22 29 38 16 227 45% /	28 34 24 36 49 42 36 23 272 55% 272	11 3 3 5 0 4 1 0 27 6% 416	63 50 39 46 20 26 36 389 94% /	0 0% 774	232 171 182 143 214 145 157 101 1,345

	NB X	SB X	EB X	WB X	0 0 0 0 0
					0 0 0
					0 0
					0
					0
					0
11					
ш					0
_ (0
41				_	0
Ш	0	0	0	0	0
71					0
41					0
41					0
41					
-11					0
┩╂			-	-	0
-11				-	0
-1 1	0	0	0	0	0
1'				v	v

	7:00 AM
	7:15 AM
	7:30 AM
	7:45 AM
Σ	8:00 AM
	8:15 AM
	8:30 AM
	8:45 AM
	TOTAL
	4:00 PM
	4:15 PM
	4:30 PM
	4:45 PM
Σ	5:00 PM
-1	5:15 PM
	5:30 PM
	5:45 PM
	TOTAL

PEDESTRIAN CROSSINGS								
N SIDE	S SIDE	E SIDE	W SIDE	TOTAL				
				0				
				0				
				0				
				0				
				_0				
				0				
				0				
				0				
0	0	0	0	0				
				0				
				0				
i				0				
				0				
				0				
				0				
				0				
				0				
0	0	0	0	0				

PEDESTRIAN ACTIVATIONS N SIDE S SIDE E SIDE W SIDE TOTAL									
N SIDE	S SIDE	E SIDE	W SIDE	TOTAL					
				0					
				0					
				0					
				0					
				0					
				0					
				0					
				0					
0	0	0	.0	0					
				0					
				0					
				0					
				0					
				0					
				0					
				0					
				0					
0	0	0	0	0					

В	ICYC	LE CŔ	BICYCLE CROSSINGS												
NS	SS	ES	WS	TOTAL											
				0											
				0											
				0											
				0											
				0											
				0											
				0											
				0											
0	_0	0	0	0											
				0											
				0											
				0											
				0											
				0											
				0											
				0											
				0											
0	0	0	0	0											

PREPARED BY: PACIFIC TECHNICAL DATA

<u>DATE:</u> 4/25/17 TUESDAY LOCATION: NORTH & SOUTH: EAST & WEST: OTAY SANYO OTAY MESA PROJECT #: PTD17-0428-01

LOCATION #: 6 CONTROL: SIGNAL

10200/11	 OTAT MEDA	00.11.11.02.1	DIGITAL		
NOTES:		PH		A N	
		MD	⋖ W		E▶
		OTHEL		S	
		OTHER			

		NO.	ORTHBOU	ND	S	SOUTHBOUND		E	EASTBOUND		WESTBOUND			
			SANYO			SANYO		L	OTAY MESA			OTAY MESA		
		NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
	LANES:	1.5	X	0.5	Х	X	Χ	Х	2	0	1	1	Х	
	7:00 AM	7		1					69	59	0	8		144
	7:15 AM	14		0					95	64	1	17		191
	7:30 AM	20		4					115	72	2	24		237
	7:45 AM	15		2		T			96	126	1	19		259
	8:00 AM	14		1					45	88	0	13		161
	8:15 AM	18		0					40	77	4	14		153
	8:30 AM	12		2					38	65	0	13		130
Σ	8:45 AM	15		0					39	59	1	21		135
¥	VOLUMES	115	0	10	0	0	0	0	537	610	9	129	0	1,410
	APPROACH %	92%	0%	8%	0%	0%	0%	0%	47%	53%	7%	93%	0%	
	APP/DEPART	125		0	0		619	1,147	1	547	138	1	244	0
	BEGIN PEAK HR		7:15 AM											
	VOLUMES	63	0	7	0	0	0	0	351	350	4	73	0	848
	APPROACH %	90%	0%	10%	0%	0%	0%	0%	50%	50%	5%	95%	0%	
	PEAK HR FACTOR		0.729			0.000			0.789			0.740		0.819
	APP/DEPART	70		0	. 0		354	701		358	77		136	0
	4:00 PM	54		4					26	28	11	109		232
	4:15 PM	42		5					24	34	3	63		171
	4:30 PM	49		7					49	24	3	50		182
	4:45 PM	32		8					23	36	5	39		143
	5:00 PM	85		12					22	49	0	46		214
	5:15 PM	43		7					29	42	4	20		145
	5:30 PM	55		1					38	36	1	26		157
Σ	5:45 PM	25		1					16	23	0	36		101
•	VOLUMES	385	0	45	0	0	0	0	227	272	27	389	0	1,345
	APPROACH %	90%	0%	10%	0%_	0%	0%	0%	45%	55%	6%	94%	0%	
	APP/DEPART	430		0	0	1	299	499	1	272	416		774	0
	BEGÎN PEAK HR		4:00 PM											
	VOLUMES	177	0	24	0	0	0	0	122	122	22	261	0	728
	APPROACH %	88%	0%	12%	0%	0%	0%	0%	50%	50%	8%	92%	0%	
	PEAK HR FACTOR		0.866			0.000			0.836			0.590		0.784
	APP/DEPART	201		0	0	1	144	244	1	146	283		438	0

	U	U	U	U	U
4					
4					
	<u> </u>				
					0
					0
					0
					0
					0
					0
					0
_					0
1	0	0	0	0	0
┛		_			
1					

U-TURNS

TTL

SB EB

		SANYO	_	
		- NORTH SIDE -		
	1		†	
OTAY MESA	WEST SIDE		EAST SIDE	OTAY MESA
	↓		↓	
		- SOUTH SIDE		
		SANYO		

	7:00 AM	
	7:15 AM	
AM	7:30 AM	
	7:45 AM	
	8:00 AM	
	8:15 AM	
	8:30 AM	
	8:45 AM	
	TOTAL	
	4:00 PM	
	4:15 PM	
	4:30 PM	
	4:45 PM	
Σ	5:00 PM	
	5:15 PM	
	5:30 PM	
	5:45 PM	
	TOTAL	
		_

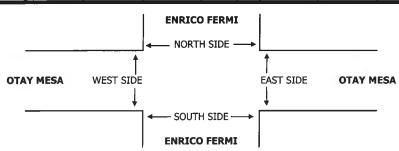
PEDESTRIAN CROSSINGS											
N SIDE	S SIDE	E SIDE	W SIDE	TOTAL							
				0							
				0							
				0							
				_ 0							
				0							
				0							
				0							
				0							
0	0	0	0	0							
				_0							
				0							
				0							
				0							
				0							
				0							
				0							
				0							
0	Ô	0	0	0							

	EDESTR			
N SIDE	S SIDE	E SIDE	W SIDE	TOTAL
				0
				_ 0
				_ 0
				0
				0
				0
				0
				0
0	0	0	0	0
				0
				0
				0
				0
				0
				0
				0
-24				0
0	0	0	0	0

В	ICYC	LE CR	OSSI	NGS
NS	SS	ES	WS	TOTAL
				0
				0
			L	0
				0
				0
				0
				0
				0
0	0	0	0	_ 0
				0
				0
				_ 0
				0
				0
				0
				0
				0
0	0	0	0	0

PREPARED BY: PACIFIC TECHNICAL DATA

DATE: LOCATION: OTAY PROJECT #: 4/25/17 NORTH & SOUTH: ENRICO FERMI LOCATION # EAST & WEST: OTAY MESA CONTROL:


PROJECT #: PTD17-0428-01 LOCATION #: 7 CONTROL: SIGNAL

TOLSDAT	LAST & WEST.	OIAI	WESA		CONTINC	L.	SIGNAL			
NOTES:	.	•		_		A41 PH		A N		
						MD	▼ W		E▶	1
						OTHER		S		ı
						OTHER		▼		ı
	NORTHROUND		COLTUBOLIND	EAG	TROUND	TA.	ECTROUNI		1	Ī

NORTHBOUND SOUTHBOUND		ND	EASTBOUND WESTBOUND											
			ENRICO FERM	1 I		ENRICO FERN	1I		OTAY MESA			OTAY MESA		
		NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
	LAN <u>E</u> S:	1	X	1	X	Х	X	Х	1	0	1	1	Х	
	7:00 AM	1		8					60	7	17	7		100
	7:15 AM	6		83					89	4	9	11		202
	7:30 AM	7		102					113	4	30	17		273
	7:45 AM	4		102		Ì			93	9	25	14		247
	8:00 AM	2		58		İ			41	8	15	6		130
	8:15 AM	6		56					25	9	2 6	12		134
	8:30 AM	6		34					40	8	19	7		114
Σ	8:45 AM	6		44	l			L	26	7	25	16		124
₹	VOLUMES	38	0	487	0	0	0	0	487	56	166	90	0	1,324
	APPROACH %	7%	0%	93%	0%	0%	0%	0%	90%	10%	65%	35%	0%	
	APP/DEPART	525		0	0	1	222	543		974	256	1	128	0
	BEGIN PEAK HR		7:15 AM											
	VOLUMES	19	0	345	0	0	0	0	336	25	79	48	0	852
	APPROACH %	5%	0%	95%	0%	0%	0%	0%	93%	7%	62%	38%	0%	
	PEAK HR FACTOR		0.835			0.000			0.771			0.676		0.780
	APP/DEPART	364		0	0	1	104	361	1	681	127		67	0
	4:00 PM	7		25					23	8	158	112		333
	4:15 PM	2		25					27	6	91	69		220
	4:30 PM	4		23					15	13	91	50		196
	4:45 PM	5		27					23	10	55	40		160
	5:00 PM	6		24					18	13	60	40		161
	5:15 PM	3		28					27	13	49	19		139
	5:30 PM	7		29					35	4	20	25		120
Δ	5:45 PM	6		29					17	4	40	27		123
- 1	VOLUMES	40	0	210	0	0	0	0	185	71	564	382	0	1,452
	APPROACH %	16%	0%	84%	0%	0%	0%	0%	72%	28%	60%	40%	0%	
	APP/DEPART	250		0	0	/	635	256	/	395	946	1	422	0
	BEGIN PEAK HR		4:00 PM											
	VOLUMES	18	0	100	0	0	0	0	88	37	395	271	0	909
	APPROACH %	15%	0%	85%	0%	0%	0%	0%	70%	30%	59%	41%	0%	
	PEAK HR FACTOR		0.922			0.000			0.947			0.617		0.682
	APP/DEPART	118	1	0	0		432	125	1	188	666	1	289	0

-	NID	CD	ED	AA/D	TTI
-	NB X	SB X	EB X	WB X	TTL
=			^		^
-	\vdash			\vdash	0
-	<u> </u>			-	0
1					0
П	_				0
					0
					0
4					0
Н	0	0	0	0	0
4					
4	l				
	ı				
	1				
ı					
					0
4					0
4	\vdash				0
4				-	0
-1					0
-					0
-1	\vdash				0
4	0	0	0	0	0
-1	Ü	v	Ū	v	Ÿ.
-					

U-TURNS

	7:00 AM
	7:15 AM
	7:30 AM
	7:45 AM
Ψ	8:00 AM
_	8:15 AM
	8:30 AM
	8:45 AM
	TOTAL
	4:00 PM
	4:15 PM
	4:30 PM
	4:45 PM
Σ	5:00 PM
_	5:15 PM
	5:30 PM
	5:45 PM
	TOTAL
	TOTAL

	PEDESTR			
N SIDE	S SIDE	E SIDE	W SIDE	TOTAL
				0
				0
				0
				0
				0
				0
				0
				0
0	0	0	0	0
				0
				0
				0
				0
				0
				0
				0
				0
0	0	0	0	0

			IVATION	
N SIDE	S SIDE	E SIDE	W SIDE	TOTAL
				0
				0
				0
				0
				0
				0
				0
				0
0	0	0	0	0
				0
				0
				0
				0
				0
				0
				0
E25				0
0	0	0	0	0

В	ICYC	LE CR	OSSI	NGS
NS	SS	ES		TOTAL
				0
				0
				0
				0
				0
				0
				0
				0
0	0	0	0	0
				0
				0
				0
				0
				0
				0
				0
				0
0	0	0	0	0

PREPARED BY: PACIFIC TECHNICAL DATA

<u>DATE:</u> 4/25/17 TUESDAY LOCATION: NORTH & SOUTH: OTAY ALTA DD

PROJECT #: PTD17-0428-01 LOCATION #: 8

2-WAY STOP (NS)

⋖W

N

S

E▶

NB

SB

0 0 0 0

0 0 0 0

U-TURNS

ĒΒ

WB

TTL

0

TUESDAY EAST & WEST: OTAY MESA CONTROL:

NOTES:

MD

OTHER

OTHER

OTHER

		NO	ORTHBOU	ND	S	SOUTHBOUND		EASTBOUND) V			
			ALTA			ALTA			OTAY MESA		l	OTAY MESA		
		NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
	LANES:	0	1	Х	Х	1	0	1	X	0	X	X	X	
_	7:00 AM	0	1			0	22	133		0				156
	7:15 AM	0	0			0	22	169		0				191
	7:30 AM	0	0			0	39	195		0				234
	7:45 AM	0	1			0	30	191		0				222
	8:00 AM	0	2			0	15	89		0				106
	8:15 AM	0	0	_		0	26	66		0				92
	8:30 AM	0	0			0	17	62		0				79
¥	8:45 AM	0	0			0	29	48		1				78
4	VOLUMES	0	4	0	0	0	200	953	0	1	0	0	0	1,158
	APPROACH %	0%	100%	0%	0%	0%	100%	100%	0%	0%	0%	0%	0%	
	APP/DEPART	4		957	200	1	1	954	1	0	0	-I	200	0
	BEGIN PEAK HR		7:00 AM											
	VOLUMES	0	2	0	0	0	113	688	0	0	0	0	0	803
	APPROACH %	0%	100%	0%	0%	0%	100%	100%	0%	0%	0%	0%	0%	
	PEAK HR FACTOR	L	0.500			0,724			0.882			0.000		0.858
	APP/DEPART	2	/	690	113	1.	0	688	/	0	0		113	0
	4:00 PM	0	0			0	225	22		0				247
	4:15 PM	1	0			0	123	23		0				147
	4:30 PM	1	0			0	105	21		0				127
	4:45 PM	0	0			0	52	32		0				84
	5:00 PM	0	0			0	65	25		0				90
	5:15 PM	0	0			0	41	26		0				67
	5:30 PM	0	0		<u> </u>	0	37	50		0				87
Σ	5:45 PM	0	0			0	51	28		0				79
	VOLUMES	2	0	0	0	0	699	227	0	0	0	0	0	928
	APPROACH %	100%	0%	0%	0%	0%	100%	100%	0%	0%	0%	0%	0%	
	APP/DEPART	2		227	699	/	00	227		0	0		701	0
	BEGIN PEAK HR		4:00 PM			_								
	VOLUMES	2	0	0	0	0	505	98	0	0	0	0	0	605
	APPROACH %	100%	0%	0%	0%	0%	100%	100%	0%	0%	0%	0%	0%	
	PEAK HR FACTOR		0.500			0.561			0.766			0.000		0.612
	APP/DEPART	2		98	505	/	0	98		0	0		507	0

	ļ	ALTA		
		- NORTH SIDE		
OTAY MESA	WEST SIDE		EAST SIDE	OTAY MESA
-	<u> </u>	- SOUTH SIDE	+	

Т	7:00 AM	
	7:15 AM	
	7:30 AM	
	7:45 AM	
¥	8:00 AM	
`	8:15 AM	
	8:30 AM	
	8:45 AM	
	TOTAL	
Т	4:00 PM	
	4:15 PM	
	4:30 PM	
Г	4:45 PM	
ΣL	5:00 PM	
	5:15 PM	
	5:30 PM	
	5:45 PM	
	TOTAL	_

	PEDESTR			
N SIDE	S SIDE	E SIDE	W SIDE	TOTAL
				0
				0
				0
				0
				0
				0
				0
				0
0	0	0	0	0
				0
				0
				0
				0
				0
				0
				0
				0
0	0	0	0	0

			OITAVI	
N SIDE	S SIDE	E SIDE	W SIDE	TOTAL
				0
				0
				0
				_ 0
				0
				0
				0
				0
0	0	0	0	0
				0
				0
				0
				0
				0
				0
				0
1-26				0
0	0	0	0	0

R	TCVC	LE CR	OSST	NGS
NS	SS	ES	WS	TOTAL
				0
				0
				0
				0
				0
				0
				0
				Ö
0	0	0	0	0
				0
				0
				0
				0
				0
				0
				0
				0
0	0	0	0	0

PREPARED BY: PACIFIC TECHNICAL DATA

DATE: 4/25/17 TUESDAY

LOCATION: NORTH & SOUTH: **OTAY**

ENRICO FERMI 905 WB RAMP

PROJECT #: PTD17-0428-01 LOCATION #:

CONTROL: NONE

TUESDAY	EAST & WEST:	905 WB RAMP	CONTROL:	NONE		
NOTES:			April Pets		N	
			MD OTHER OTHER	■ W	S ▼	E►

		N	ORTHBOL	IND	S			EASTBOUND		V	WESTBOUND				-	J-TUF	₹NS	
			ENRICO FERM		- CI	ENRICO FERM			905 WB RAM		1471	905 WB RAM		TOTAL	710	60		1415
	LANES:	NL 1	NT 1	NR X	SL X	ST 1	SR 1	EL X	ET	ER X	WL X	WT X	WR X	TOTAL	NB X	SB X	EB X	WB X
	7:00 AM	23	80			8	16		1		1			127				
	7:15 AM	29	95			3	10							137				
	7:30 AM	47	112			4	22	1						185				
	7:45 AM	39	115			10	23							187				
	8:00 AM	42	63			11	13							129				
	8:15 AM	36	61			10	22							129				
	8:30 AM	32	60			14	13							119				
Σ	8:45 AM	50	48			16	28							142				
	VOLUMES	298	634	0	0	76	147	0	0	0	0	0	0	1,155	0	0	0	0
	APPROACH %	32%	68%	0%	0%	34%	66%	0%	0%	0%	0%	0%	0%					
	APP/DEPART	932		634	223	/	76	0	1	0	0		445	0	II .			
	BEGIN PEAK HR		7:15 AM												II .			
	VOLUMES	157	385	0	0	28	68	0	0	0	0	0	0	638				
	APPROACH %	29%	71%	0%	0%	29%	71%	0%	0%	0%	0%	0%	0%	1 1				
	PEAK HR FACTOR		0.852			0.727			0.000			0.000	_	0.853				
	APP/DEPART	542		385	96	1	28	0	/	0	0		225	0				
	4:00 PM	57	34			18	142							251				
	4:15 PM	48	43			15	86				L			192				
	4:30 PM	51	34			23	90							198				
	4:45 PM	54	41			30	46							171				
	5:00 PM	74	43			28	64							209				
	5:15 PM	56	36			20	41							153				
	5:30 PM	61	42			22	27							152				
Σ	5:45 PM	41	48			16	35							140				
	VOLUMES	442	321	0	0	172	531	0	0	0	0	0	0	1,466	0	0	0	_0
	APPROACH %	58%	42%	0%	0%	24%	76%	0%	0%	0%	0%	0%	0%					
	APP/DEPART	763		321	703		172	0	/	0	0		973	0				
	BEGIN PEAK HR		4:00 PM															
- 1	VOLUMES	210	152	0	0	86	364	0	0	0	0	0	0	812				
	APPROACH %	58%	42%	0%	0%	19%	81%	0%	0%	0%	0%	0%	0%					
	PEAK HR FACTOR		0.953			0.703			0.000			0.000		0.809				
┙	APP/DEPART	362		152	450		86	0	1	0	0	1	574	0				

		ľ	ENRICO FERMI	l	
			← NORTH SIDE →		
		†		†	
905 W	B RAMP	WEST SIDE		EAST SIDE	905 WB RAMP
		ļ		1	
			← SOUTH SIDE →		
			ENRICO FERMI		

-	
	7:00 AM
	7:15 AM
	7:30 AM
_	7:45 AM
¥	8:00 AM
-	8:15 AM
	8:30 AM
	8:45 AM
	TOTAL
П	4:00 PM
	4:15 PM
	4:30 PM
_	4:45 PM
Σ	5:00 PM
	5:15 PM
	5:30 PM
	5:45 PM
┙	TOTAL

	PEDESTRIAN CROSSINGS								
N SIDE	S SIDE	E SIDE	W SIDE	TOTAL					
				0					
				0					
				0					
				0					
				0					
				0					
				0					
				0					
0	0	0	0	0					
				0					
				0					
				0					
				0					
				0					
				0					
				0					
				0					
0	0	0	0	0					

PEDESTRIAN ACTIVATIONS									
N SIDE	S SIDE	E SIDE	W SIDE	TOTAL					
				0					
				0					
				0					
				0					
				0					
				0					
				0					
				0					
0	0	0	0	0					
				0					
				0					
				0					
				0					
				0					
				0					
				0					
1-27				0					
0	0	0	0	0					
			_						

BICYCLE CROSSINGS										
NS	SS	ES	WS	TOTAL						
				0						
				0						
				0						
				0						
				0						
				0						
				0						
				0						
0	0	0	0	0						
				0						
				0						
				0						
				0						
				0						
				0						
				0						
				0						
0	0	0	0	0						

TTL

PREPARED BY: PACIFIC TECHNICAL DATA

DATE: 4/25/17 TUESDAY LOCATION: NORTH & SOUTH: **OTAY**

ENRICO FERMI 905 EB RAMP

PROJECT #: PTD17-0428-01

LOCATION #: 10

TUESDAY	EAST & WEST:	905 EB RAMP	CONTROL:	2-WAY STOP (EV	N)
NOTES:			ASI PH MD SOHEK STYLER		E►

		N	ORTHBOU	ND	S	OUTHBOU	JND	E	ASTBOU	ND		/ESTBOU	ND		
			ENRICO FERM			ENRICO FERM			905 EB RAM			905 EB RAMI			
		NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL	N
	LANES:	Х	1	0	0	1	X	1	0	1	0.5	X	0.5		X
	7:00 AM		26	2	1	- 8	l'	76	1	22	1		1	138	
	7:15 AM		45	4	0	4		79	2	23	1		0	158	
	7:30 AM		50	4	0	5		100	3	45	1		3	211	
	7:45 AM		52	7	0	10		96	7	46	2		2	222	
	8:00 AM		48	9	3	8		53	3	60	5		4	193	
	8:15 AM		54	2	0	11		41	1	58	5		2	174	
	8:30 AM		66	11	2	14		31	1	35	7		2	169	
Σ	8:45 AM		72	5	2	12		17	2	37	6		3	156	
¥	VOLUMES	0	413	44	8	72	0	493	20	326	28	0	17	1,421	0
	APPROACH %	0%	90%	10%	10%	90%	0%	59%	2%	39%	62%	0%	38%		
	APP/DEPART	457	1	923	80	1	426	839	1	72	45	1	0	0	
	BEGIN PEAK HR		7:30 AM												
	VOLUMES	0	204	22	3	34	0	290	14	209	13	0	11	800	
	APPROACH %	0%	90%	10%	8%	92%	0%	57%	3%	41%	54%	0%	46%		Ш
	PEAK HR FACTOR		0.958			0.841			0.861			0.667		0.901	П
	APP/DEPART	226		505	37	1	256	513	I	39	24	1	0	0	
	4:00 PM		76	5	2	15		11	3	13	3		1	129	
	4:15 PM		67	6	0	17		20	0	9	5		2	126	
	4:30 PM		66	10	1	20		13	2	13	3		0	128	
	4:45 PM		69	3	1	29		24	2	17	1		6	152	
	5:00 PM		99	2	1	27		19	0	16	6		9	179	
	5:15 PM		66	5	2	26		18	2	24	4		4	151	
	5:30 PM		69	1	1	18		25	1	16	2		5	138	
Σ	5:45 PM		62	2	1	15		23	0	10	4		1	118	
ᇫ	VOLUMES	0	574	34	9	167	0	153	10	118	28	0	28	1,121	0
	APPROACH %	0%	94%	6%	5%	95%	0%	54%	4%	42%	50%	0%	50%		
	APP/DEPART	608		755	176	1	313	281	\overline{I}	53	56	1	0	0	
	BEGIN PEAK HR		4:45 PM												
	VOLUMES	0	303	11	5	100	0	86	5	73	13	0	24	620	
	APPROACH %	0%	96%	4%	5%	95%	0%	52%	3%	45%	35%	0%	65%		
	PEAK HR FACTOR		0.777			0.875			0.932			0.617		0.866	
	APP/DEPART	314		413	105	1	186	164		21	37		. 0	0	

			ENRICO FERMI		
_			← NORTH SIDE →		
		1		†	
905 EB	RAMP	WEST SIDE		EAST SIDE	905 EB RAMP
		ļ		↓	
_	-	-	←— SOUTH SIDE ——		
			ENRICO FERMI		

	7:00 AM	
	7:15 AM	
	7:30 AM	Ī
	7:45 AM	
Ψ	8:00 AM	Ī
1	8:15 AM	1
	8:30 AM	
	8:45 AM	Ī
	TOTAL	
	4:00 PM	
	4:15 PM	
	4:30 PM	
	4:45 PM	Ī
Σ	5:00 PM	
_	5:15 PM	
	5:30 PM	
	5:45 PM	
	TOTAL	

F	PEDESTRIAN CROSSINGS							
N SIDE	S SIDE	E SIDE	W SIDE	TOTAL				
				0				
				0				
				0				
				0				
				0				
				0				
				0				
				0				
0	0	0	0	0				
				0				
,				0				
				0				
				0				
				0				
				0				
				0				
				0				
0	0	0	0	0				

	PEDESTRIAN ACTIVATIONS										
N SIDE	S SIDE	E SIDE	W SIDE	TOTAL							
				0							
				0							
				0							
				0							
				0							
				0							
				0							
				0							
0	0	0	0	0							
				0							
				0							
				0							
				0							
				0							
				0							
L				0							
4-28				0							
0	0	0	0	0							

В	BICYCLE CROSSINGS									
NS										
				0						
				0						
				0						
				0						
				0						
				0						
				0						
				0						
0	0	0	0	0						
				0						
				0						
				0						
				0						
				0						
				0						
				0						
				0						
0	0	0	0	0						

U-TURNS

SB EB

0 0 0

0 0 0

TTL

PREPARED BY: PACIFIC TECHNICAL DATA

DATE: 4/25/17 TUESDAY

LOCATION: NORTH & SOUTH:

OTAY **SANYO** AIRWAY PROJECT #: LOCATION #:

PTD17-0428-01 11

CONTROL:

TUESDAY	EAST & WEST:	AIRWAY	CONTROL:	4-WAY STOP	
NOTES:			Ø 5-	A N	
1			Ab	■ W	E▶
			OTHER OTHER) 5	

		N	ORTHBOL	IND	S	OUTHBOU	IND	l l	ASTBOU	ND) v	VESTBOU	ND	
		L	SANYO		<u> </u>	SANYO		ļ <u>.</u>	AIRWAY			AIRWAY		
	LANEC	NL	NT	NR	SL	ST	SR 1	EL	ET	ER 0	WL	WT	WR	TOTAL
	LANES:		0.5	0.5	0.5	0.5	<u> </u>	0.5	1.5	1 0	1 1	1	<u> </u>	
	7:00 AM	- 4	5	1	10	20	13	5	4	1	0	9	5	77
	7:15 AM	0	7	1	11	23	12	3	5	6	2	9	11	90
	7:30 AM	6	11	0	8	27	22	8	2	7	2	12	12	117
	7:45 AM	5	4	5	20	37	38	5	19	5	2	11	11	162
	8:00 AM	2	8	0	11	38	28	2	11	7	2	20	14	143
	8:15 AM	5	10	2	14	26	29	3	11	9	0	19	13	141
	8:30 AM	5	6	2	17	23	17	3	14	7	0	25	10	129
Σ	8:45 AM	11	5	0	9	23	19	3	7	9	2	32	12	132
₹	VOLUMES	38	56	11	100	217	178	32	73	51	10	137	88	991
	APPROACH %	36%	53%	10%	20%	44%	36%	21%	47%	33%	4%	58%	37%	
	APP/DEPART	105	1	176	495	1	278	156	1	184	235	7	353	0
	BEGIN PEAK HR		7:45 AM						1			•	-	
	VOLUMES	17	28	9	62	124	112	13	55	28	4	75	48	575
	APPROACH %	31%	52%	17%	21%	42%	38%	14%	57%	29%	3%	59%	38%	
	PEAK HR FACTOR		0.794			0.784			0.828			0.882		0.887
	APP/DEPART	54	1	89	298	7	156	96		126	127		204	0
	4:00 PM	14	11	5	9	15	19	15	11	19	4	36	13	171
	4:15 PM	17	14	3	9	15	17	5	12	10	6	24	19	151
	4:30 PM	14	11	4	18	22	8	11	18	6	3	31	20	166
	4:45 PM	9	7	3	16	18	12	9	18	15	4	29	12	152
	5:00 PM	6	34	0	12	22	7	24	8	17	4	31	15	180
	5:15 PM	8	17	1	18	26	9	12	14	12	1	30	11	159
	5:30 PM	13	12	2	5	21	15	15	11	9	0	29	11	143
-	5:45 PM	6	12	0	7	12	6	3	10	6	1	33	8	104
Σ	VOLUMES	87	118	18	94	151	93	94	102	94	23	243	109	1,226
	APPROACH %	39%	53%	8%	28%	45%	28%	32%	35%	32%	6%	65%	29%	
	APP/DEPART	223		321	338	I	268	290	1	214	375	1	423	0
	BEGIN PEAK HR		4:30 PM											
	VOLUMES	37	69	8	64	88	36	56	58	50	12	121	58	657
	APPROACH %	32%	61%	7%	34%	47%	19%	34%	35%	30%	6%	63%	30%	
	PEAK HR FACTOR		0.713			0.887			0.837			0.884		0.913
	APP/DEPART	114	-/	183	188	1	150	164	1	130	191	/	194	0

- 1					
ı					0
П					0 0
П					0
Н					0
П					0 0
					0
					0
Ш					0 0 0
	0	0	0	0	0
П					
П					
	[
ш					
l					
۱					
					0
				2	0 2
			1	2 3	0 2 4
			1	2 3 2	0 2 4 2
			1	2 3 2	0 2 4 2 0
			1	2 3 2	0 2 4 2 0
			1	2 3 2	0 2 4 2 0 0
					0 2 4 2 0 0
	0	0	1	2 3 2 7	0 2 4 2 0 0 0 0
	0	0			0 2 4 2 0 0 0 0
	0	0			0 2 4 2 0 0 0 0

U-TURNS

WB

TTL

SB EB

		SANYO		
	+	NORTH SIDE →		
AIRWAY	WEST SIDE		EAST SIDE	AIRWAY
	*	— SOUTH SIDE —→		
		SANYO		

	7:00 AM
	7:15 AM
	7:30 AM
	7:45 AM
Ψ	8:00 AM
_	8:15 AM
	8:30 AM
	8:45 AM
	TOTAL
	4:00 PM
	4:15 PM
	4:30 PM
_	4:45 PM
Σ	5:00 PM
	5:15 PM
	5:30 PM
	5:45 PM
	TOTAL

PEDESTRIAN CROSSINGS							
N SIDE	S SIDE	E SIDE	W SIDE	TOTAL			
				0			
				0			
				0			
				0			
				0			
				0			
				0			
				0			
0	0	0	0	0			
				0			
				0			
				0			
				0			
				0			
				0			
				0			
				0			
0	0	0	0	0			

	EDESTRI			
N SIDE	S SIDE	E SIDE	W SIDE	TOTAL
				0
				0
				0
				0
				0
				0
				0
				0
0	0	0	0	0
				0
				0
				0
				0
				0
				0
				0
-29				0
0	0	0	0	0

BICYCLE CROSSINGS								
NS	SS	ES	WS	TOTAL				
				0				
				0				
				0				
				0				
				0				
				0				
				0				
				0				
0	0	0	0	0				
				0				
				0				
				0				
				0				
				0				
				0				
				0				
				0				
0	0	0	0	0				

PREPARED BY: PACIFIC TECHNICAL DATA

<u>DATE:</u> 4/25/17 TUESDAY

LOCATION: NORTH & SOUTH: EAST & WEST: OTAY ENRICO FERMI AIRWAY

ERMI

PROJECT #: PTD17-0428-01 LOCATION #: 12

N

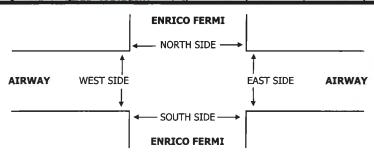
S

Ē▶

NΒ

CONTROL: SIGNAL

NOTES:	AM	
	PH PH	
	MU QTHEK COTHER	⋖ W
	GTHER	
	CHULD !	


		N	ORTHBOU	JND	S	OUTHBOL	JND] E	ASTBOU	ND	J 4	VESTBOU	ND	
			ENRICO FERN			ENRICO FERI			AIRWAY			AIRWAY		
		NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
	LANES:	1	2	0	1	2	0	1	2	0	1	1	1	
	7:00 AM	1	22	2	2	18	11	3	2	1 1	0	2	2	66
	7:15 AM	8	40	0	2	7	21	2	2	1	0	2	5	90
	7:30 AM	10	50	4	6	20	26	2	1	3	2	2	2	128
	7:45 AM	8	53	1	8	24	28	4	1	0	1	0	3	131
	8:00 AM	11	41	1	7	34	34	8	0	3	1	3	6	149
	8:15 AM	9	47	5	7	34	24	7	1	5	1	1	5	146
	8:30 AM	14	52	1	9	31	13	8	4	6	0	1	8	147
Ψ	8:45 AM	20	68	5	2	28	21	9	2	6	3	5	2	171
₹	VOLUMES	81	373	19	43	196	178	43	13	25	8	16	33	1,028
	APPROACH %	17%	79%	4%	10%	47%	43%	53%	16%	31%	14%	28%	58%	
	APP/DEPART	473		449	417		229	81	1	75	57	1	275	0
	BEGIN PEAK HR		8:00 AM											
	VOLUMES	54	208	12	25	127	92	32	7	20	5	10	21	613
	APPROACH %	20%	76%	4%	10%	52%	38%	54%	12%	34%	14%	28%	58%	1 1
	PEAK HR FACTOR		0.737			0.813			0.819			0.900		0.896
_	APP/DEPART	274		261	244		152	59		44	36		156	. 0
Т	4:00 PM	19	60	7	3	17	11	15	3	3	1	6	8	153
	4:15 PM	13	49	5	3	19	11	17	0	0	0	4	5	126
	4:30 PM	26	58	0	2	23	10	14	0	3	2	4	8	150
	4:45 PM	15	52	0	4	18	20	13	2	5	1	3	4	137
	5:00 PM	13	69	5	6	25	25	20	0	0	1	3	11	178
	5:15 PM	14	43	5	2	19	23	18	1	6	1	3	7	142
	5:30 PM	16	49	7	9	15	18	15	2	4	5	1	10	151
Σ	5:45 PM	18	47	2	5	14	11	13	2	3	1	2	7	125
-	VOLUMES	134	427	31	34	150	129	125	10	24	12	26	60	1,162
	APPROACH %	23%	72%	5%	11%	48%	41%	79%	6%	15%	12%	27%	61%	
	APP/DEPART	592	4.45.004	612	313		186	159		75	98		289	0
	BEGIN PEAK HR	F0	4:45 PM	17	۱ ,,	77	96	,,	-	15	١.,	10	22	600
	VOLUMES	58	213	17	21	77	86	66	5	15	8	10	32	608
	APPROACH %	20%	74%	6%	11%	42%	47%	77%	6%	17%	16%	20%	64%	0.054
	PEAK HR FACTOR	200	0.828	211	104	0.821	100	00	0.860	43		0.781	154	0.854
	APP/DEPART	288		311	184		100	86		43	50	/	154	0

3
0
0
0
1
0
1
3
1
1 3 1 6
1 6
1 6
6

U-TURNS

TTL

EΒ

	7:00 AM
	7:15 AM
	7:30 AM
	7:45 AM
Ψ	8:00 AM
_	8:15 AM
	8:30 AM
	8:45 AM
	TOTAL
	4:00 PM
	4:15 PM
	4:30 PM
	4:45 PM
Σ	5:00 PM
_	5:15 PM
	5:30 PM
	5:45 PM
	TOTAL

	PEDESTRIAN CROSSINGS N SIDE S SIDE E SIDE W SIDE TOTAL											
N SIDE	S SIDE	E SIDE	W SIDE	TOTAL								
				0								
				0								
		l		0								
				0								
				0								
				0								
				0								
				0								
0	0	0	0	0								
				0								
				0								
				0								
				0								
				0								
				0								
				0								
				0								
0	0	0	0	0								

	EDESTRI			
N SIDE	S SIDE	E SIDE	W SIDE	TOTAL
				0
				0
				0
				0
				0
				0
				0
				0
0	0	0	0	0
				0
				0
				0
				0
				0
				_ 0
				0
1-30				0
0	0	0	0	0

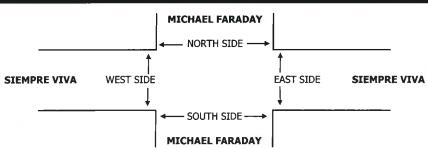
B	ICYC	LE CR	OSSI	NGS
NS	SS	ES	WS	TOTAL
				0
				0
				0
				0
				0
				0
				0
				0
0	0	_ 0	0	0
				0
				0
				0
				0
				0
				0
				0
				0
0	0	0	0	_ 0

PREPARED BY: PACIFIC TECHNICAL DATA

<u>DATE:</u> 4/25/17 TUESDAY LOCATION: NORTH & SOUTH: EAST & WEST: OTAY

MICHAEL FARADAY SIEMPRE VIVA PROJECT #: PTD17-0428-01

LOCATION #: 13


CONTROL: 2-WAY STOP (NS)

	2.01 0.112011	OILIMI ILL TITI	0011111021	E min bron (no	'/
NOTES:			AH	_ A	
			PM	N	
			MÈ	■W	E►
			OTHER	S	
			orași.	▼	

		- NO	DRTHBOU	ND	S	SOUTHBOUND			EASTBOUND			WESTBOUND			
		M:	ICHAEL FARAI	DAY		ICHAEL FARAI			SIEMPRE VIV			SIEMPRE VIV			
		NL	NT	NR	SL	ST	SR	EL	ET	ĒR	WL	WT	WR	TOTAL	
	LANES:	1	1	0	0	1	1	1	2	0	1	2	0		
	7:00 AM	2	0	0	0	3	1	5	9	2	1	11	0	34	
	7:15 AM	1	1	1	0	3	8	7	9	3	1	10	0	44	
	7:30 AM	0	1	0	0	0	2	12	17	1	3	12	1	49	
	7:45 AM	3	1	0	0	1	2	2	18	7	1	21	1	57	
	8:00 AM	6	2	0	0	4	5	8	12	7	2	18	1	65	
	8:15 AM	5	4	1	1	4	6	9	18	2	3	23	0	76	
	8:30 AM	3	4	1	1	2	5	6	20	9	6	22	3	82	
¥	8:45 AM	9	6	0	0	5	11	9	24	10	4	24	2	104	
⋖	VOLUMES	29	19	3	2	22	40	58	127	41	21	141	8	511	
	APPROACH %	57%_	37%	6%	3%	34%	63%	26%	56%	18%	12%	83%	5%		
	APP/DEPART	51	/	85	64	/	84	226	\overline{I}	132	170	1	210	0	
	BEGIN PEAK HR		8:00 AM												
	VOLUMES	23	16	2	2	15	27	32	74	28	15	87	6	327	
	APPROACH %	56%	39%	5%	5%	34%	61%	24%	55%	21%	14%	81%	6%		
	PEAK HR FACTOR		0.683			0.688			0.779			0.871		0.786	
_	APP/DEPART	41	1	54	44		58	134		78	108		137	0	
	4:00 PM	17	3	2	1 0	5	17	0	12	8	1	36	1	101	
	4 45 014						/	9							
	4:15 PM	11	4	2	0	4	6	7	12	4	1	37	0	88	
	4:30 PM	11 12	4 5	2	0	4	16	7	12 13	7	1 2	37 40	0	88 111	
	4:30 PM 4:45 PM	11 12 9	4 5 3	2 0 4	0 0 1	4 4 7	16	7 12 6	12 13	7	1 2 4	37 40 37	0 0 2	88 111 97	
	4:30 PM 4:45 PM 5:00 PM	11 12 9 17	4 5 3 4	2 0 4 2	0 0 1 0	4 4 7 4	8 12	7 12 6 10	12 13 12 19	7 4 5	1 2 4 4	37 40 37 25	0 0 2 0	88 111 97 102	
	4:30 PM 4:45 PM 5:00 PM 5:15 PM	11 12 9 17 11	4 5 3 4 7	2 0 4 2	0 0 1 0	4 4 7 4 6	16 8 12 9	7 12 6 10 6	12 13 12 19 10	4 7 4 5 2	1 2 4 4 2	37 40 37 25 37	0 0 2 0	88 111 97 102 92	
	4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM	11 12 9 17 11 5	4 5 3 4 7 5	2 0 4 2 2	0 0 1 0 0	4 4 7 4 6	16 8 12 9 4	7 12 6 10 6 2	12 13 12 19 10 8	4 7 4 5 2 6	1 2 4 4 2 2	37 40 37 25 37 34	0 0 2 0 0	88 111 97 102 92 69	
W	4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM	11 12 9 17 11 5	4 5 3 4 7 5	2 0 4 2 2 0	0 0 1 0 0	4 4 7 4 6 1	16 8 12 9 4 8	7 12 6 10 6 2 2	12 13 12 19 10 8 13	4 7 4 5 2 6 7	1 2 4 4 2 2 0	37 40 37 25 37 34 43	0 0 2 0 0	88 111 97 102 92 69 89	
	4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM VOLUMES	11 12 9 17 11 5 11	4 5 3 4 7 5 2	2 0 4 2 2 0 0	0 0 1 0 0 0	4 4 7 4 6 1 3 34	16 8 12 9 4 8 70	7 12 6 10 6 2 2 54	12 13 12 19 10 8 13 99	4 7 4 5 2 6 7	1 2 4 4 2 2 0 16	37 40 37 25 37 34 43 289	0 0 2 0 0 2 0 5	88 111 97 102 92 69	
	4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM VOLUMES APPROACH %	11 12 9 17 11 5 11 93 67%	4 5 3 4 7 5	2 0 4 2 2 0 0 12 9%	0 0 1 0 0 0 0 0	4 4 7 4 6 1	16 8 12 9 4 8 70 67%	7 12 6 10 6 2 2 54 28%	12 13 12 19 10 8 13	4 7 4 5 2 6 7 43 22%	1 2 4 4 2 2 0 16 5%	37 40 37 25 37 34 43	0 0 2 0 0 2 0 5 2%	88 111 97 102 92 69 89 749	
	4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM VOLUMES APPROACH % APP/DEPART	11 12 9 17 11 5 11	4 5 3 4 7 5 2 33 24%	2 0 4 2 2 0 0	0 0 1 0 0 0	4 4 7 4 6 1 3 34	16 8 12 9 4 8 70	7 12 6 10 6 2 2 54	12 13 12 19 10 8 13 99	4 7 4 5 2 6 7	1 2 4 4 2 2 0 16	37 40 37 25 37 34 43 289	0 0 2 0 0 2 0 5	88 111 97 102 92 69 89	
	4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM VOLUMES APPROACH % APP/DEPART BEGIN PEAK HR	11 12 9 17 11 5 11 93 67% 138	4 5 3 4 7 5 2 33 24% 1 4:30 PM	2 0 4 2 2 0 0 12 9% 92	0 0 1 0 0 0 0 0 1 1%	4 4 7 4 6 1 3 34 32%	16 8 12 9 4 8 70 67% 93	7 12 6 10 6 2 2 2 54 28% 196	12 13 12 19 10 8 13 99 51%	4 7 4 5 2 6 7 43 22% 112	1 2 4 4 2 2 0 16 5% 310	37 40 37 25 37 34 43 289 93%	0 0 2 0 0 2 0 5 2% 452	88 111 97 102 92 69 89 749	
	4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM VOLUMES APPROACH % APP/DEPART BEGIN PEAK HR VOLUMES	11 12 9 17 11 5 11 93 67% 138	4 5 3 4 7 5 2 33 24% 1 4:30 PM	2 0 4 2 2 0 0 12 9% 92	0 0 1 0 0 0 0 0 1 1% 105	4 4 7 4 6 1 3 34 32% /	16 8 12 9 4 8 70 67% 93	7 12 6 10 6 2 2 2 54 28% 196	12 13 12 19 10 8 13 99 51% /	4 7 4 5 2 6 7 43 22% 112	1 2 4 4 2 2 0 16 5% 310	37 40 37 25 37 34 43 289 93% /	0 0 2 0 0 0 2 0 5 2% 452	88 111 97 102 92 69 89 749	
	4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM VOLUMES APPROACH % APP/DEPART BEGIN PEAK HR VOLUMES APPROACH %	11 12 9 17 11 5 11 93 67% 138	4 5 3 4 7 5 2 33 24% / 4:30 PM 19 25%	2 0 4 2 2 0 0 12 9% 92	0 0 1 0 0 0 0 0 1 1%	4 4 7 4 6 1 3 34 32% /	16 8 12 9 4 8 70 67% 93	7 12 6 10 6 2 2 2 54 28% 196	12 13 12 19 10 8 13 99 51% /	4 7 4 5 2 6 7 43 22% 112	1 2 4 4 2 2 0 16 5% 310	37 40 37 25 37 34 43 289 93% /	0 0 2 0 0 2 0 5 2% 452	88 111 97 102 92 69 89 749	
	4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM VOLUMES APPROACH % APP/DEPART BEGIN PEAK HR VOLUMES	11 12 9 17 11 5 11 93 67% 138	4 5 3 4 7 5 2 33 24% 1 4:30 PM	2 0 4 2 2 0 0 12 9% 92	0 0 1 0 0 0 0 0 1 1% 105	4 4 7 4 6 1 3 34 32% /	16 8 12 9 4 8 70 67% 93	7 12 6 10 6 2 2 2 54 28% 196	12 13 12 19 10 8 13 99 51% /	4 7 4 5 2 6 7 43 22% 112	1 2 4 4 2 2 0 16 5% 310	37 40 37 25 37 34 43 289 93% /	0 0 2 0 0 0 2 0 5 2% 452	88 111 97 102 92 69 89 749	

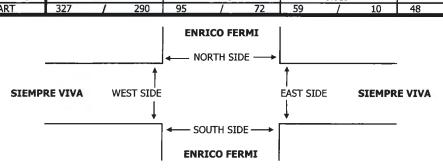
L	NB X	SB X	EB X	WB X	TTL
			1		1
-1		1	-		1 1 2 6 1 3
-	-	1	1		1
7			1 2 5 1 3		2
			5	1	6
			1		1
			3		3
	0	2	13	1	16
4					
\Box			5 1 4		5
4	L		1		1
-	Ш		4		4
-1			7		4
-1	\vdash			-	
-1	$\vdash\vdash$		1	-	1
-			-		5 1 4 7 0 1 0 22
-1	0	0	22	0	22
_					

U-TURNS

$\overline{}$	7:00 AM
H	
- 1	7:15 AM
L	7:30 AM
_ 1	7:45 AM
ξ	8:00 AM
1	8:15 AM
	8:30 AM
	8:45 AM
	TOTAL
\neg	4:00 PM
	4:15 PM
ľ	4:30 PM
ı	4:45 PM
₹ [5:00 PM
-	5:15 PM
	5:30 PM
	5:45 PM
$-\Gamma$	TOTAL

PEDESTRIAN CROSSINGS										
N SIDE	S SIDE	E SIDE	W SIDE	TOTAL						
				0						
				0						
				0						
				0						
				0						
				0						
				0						
				0						
0	0	0	0	0						
				_0						
				0						
				0						
				0						
				0						
				0						
				0						
				0						
0	- 0	0	0	0						

	EDESTRI			
N SIDE	S SIDE	E SIDE	W SIDE	TOTAL
				0
				0
				0
				0
				0
				_ 0
				0
				0
0	0	0	0	0
				0
				0
				0
				0
				0
				0
				0
1-31				0
0	0	0	0	0


В	ICYC	LE CR	OSSI	NGS
NS	SS	ES	WS	TOTAL
				0
				0
				0
				0
				0
				0
				0
				0
0	0	0	0	0
				0
				0
				0
				0
				0
				0
				0
				0
0	0	0	0	0

PREPARED BY: PACIFIC TECHNICAL DATA

LOCATION: OTAY PROJECT #: PTD17-0428-01 DATE: **ENRICO FERMI** 4/25/17 NORTH & SOUTH: LOCATION #: 14 TUESDAY EAST & WEST: SIEMPRE VIVA CONTROL: **SIGNAL**

NOTES:	Air	A	
	PH	N	
	- ND	■W	E▶
	OTHER	S	
	OTHER	▼	

		N	ORTHBOL	IND	S	OUTHBOU	JND	E	ASTBOU	ND) W	/ESTBOU	ND			ı	U-TUI	RNS	
			ENRICO FERM			ENRICO FERI			SIEMPRE VIV			SIEMPRE VIV							
	LANES:	NL	NT 2	NR 0	SL	ST	SR 0	EL 2	ET	ER	WL	WT	WR	TOTAL	NB	SB	EB	WB	TTL
							U			0			0		X	X	X	Χ	
	7:00 AM	6	17	0	1	13	5	6	0	2	0	2	3	55					0
	7:15 AM	7	39	0	0	6	0	5	1	1	0	4	7	70	II—				0
	7:30 AM	10	48	0	2	7	5	11	2	1	2	3	9	100	II—				0
	7:45 AM	13	38	0	5	11	5	13	2	2	0	5	7	101	II—		_1		1
	8:00 AM	12	41	1	3	18	6	9	1	1	1	4	4	101	l			Ш	0
	8:15 AM	16	51	0	9	23	7	9	2	6	1	2	4	130	II—				0
	8:30 AM	22	56	0	3	22	5	13	1	4	3	5	3	137	I	ļ			0
Σ	8:45 AM VOLUMES	11 97	61	3	6 29	21	13	15	3	8	2	,	10	160	 		4		0
_	APPROACH %	-	351 78%	4	15%	121	46	81	12	25	9	32	47	854	0	0	1	0	1
	APP/DEPART	21% 452	/8%	1% 479	196	62%	23% 155	69% 118	10%	21% 45	10% 88	36%	53%		ш				
	BEGIN PEAK HR	452	8:00 AM		196		155	118		45	88		175	0	Н				
	VOLUMES	61	209	4	21	84	31	46	7	19	7	18	24	528	Ш				
	APPROACH %	22%	76%	1%	15%	62%	23%	64%	10%	26%	15%	39%	21 46%	528	Ш				
	PEAK HR FACTOR	2270	0.878	170	15%	0.850	2370	0470	0.692	2070	1570	0.605	40%	0.825	Ш				
	APP/DEPART	274	1	276	136	/	110	72	1	32	46	1	110	0.825	Ш				
	4:00 PM	21	62	0	0	16	7	10	1 4	4	2	6	8	140	┅				0
	4:15 PM	27	48	0	0	11	9	11	0	4	3	4	4	121			1		1
	4:30 PM	22	66	0	5	10	13	12	0	2	1	3	3	137			2		2
	4:45 PM	31	50	0	1	15	8	11	0	1	3	6	5	131					0
	5:00 PM	18	53	1	1	15	11	22	2	3	4	1	2	133			2		2
	5:15 PM	19	49	0	0	15	10	11	1	0	3	8	6	122			2		2
	5:30 PM	12	61	0	0	10	12	12	1	2	1	5	3	119			3		3
M	5:45 PM	31	51	0	0	10	6	13	0	1	2	5	2	121					0
۵	VOLUMES	181	440	1	7	102	76	102	8	17	19	38	33	1,024	0	0	10	0	10
	APPROACH %	29%	71%	0%	4%	55%	41%	80%	6%	13%	21%	42%	37%						
	APP/DEPART	622		575	185		138	127	/	16	90	1	295	0					
	Begin Peak Hr		4:00 PM																
	VOLUMES	101	226	0	6	52	37	44	4	11	9	19	20	529					
	APPROACH %	31%	69%	0%	6%	55%	39%	75%	7%	19%	19%	40%	42%						
	PEAK HR FACTOR		0.929			0.848			0.819			0.750		0.945					
	APP/DEPART	327		290	95		72	59		10	48		157	0					

7:00 AM
7:15 AM
7:30 AM
7:45 AM
8:00 AM
8:15 AM
8:30 AM
8:45 AM
TOTAL
4:00 PM
4:15 PM
4:30 PM
4:45 PM
5:00 PM
5:15 PM
5:30 PM
5:45 PM
TOTAL

PEDESTRIAN CROSSINGS								
N SIDE S SIDE E SIDE W SIDE TOTAL								
				0				
				0				
				0				
				0				
				0				
				0				
				0				
				0				
0	0	0	0	0				
				0				
				0				
				0				
				0				
				0				
				0				
				0				
				0				
0	0	0	0	0				

	PEDESTRIAN ACTIVATIONS								
N SIDE	SIDE S SIDE E SIDE W SIDE								
				0					
				0					
				0					
				0					
				0					
				0					
				0					
				0					
0	0	0	0	0					
				_ 0					
				0					
				0					
				0					
				0					
				0					
				_ 0					
1-32				0					
	0	0	0	0					

В	BICYCLE CROSSINGS								
NS	SS	ES	WS	TOTAL					
				0					
				0					
				0					
				0					
				0					
				0					
				0					
				0					
0	0	0	0	0					
				0					
				0					
				0					
				0					
				0					
				0					
				0					
				0					
0	0	0	0	0					

Excerpts from County of San Diego Public Road Standards

A-33

PUBLIC ROAD STANDARDS

COUNTY OF SAN DIEGO DEPARTMENT OF PUBLIC WORKS

March 3, 2010

PUBLIC ROAD STANDARDS COUNTY OF SAN DIEGO

SECTION 4

REQUIRED PUBLIC ROAD RIGHTS-OF-WAY IMPROVEMENTS

Section 4.1 CLASSIFICATION

There are two general classifications of public roads as defined in these Standards: Circulation Element roads and Non-Circulation Element roads. The former are roads which have been adopted by the Board of Supervisors as the Regional Circulation Network for the General Plan.

Circulation Element Roads: Circulation Element roads are considered the regional backbone or skeleton road system. These roads provide for the vehicular movement of goods and services between various parts of the county.

Non-Circulation Element Roads: These roads feed vehicular traffic onto the Circulation Element system of roads. They provide access to residential neighborhoods and commercial and industrial areas.

Table No. 1 identifies specific road classifications and their normal expected carrying capacity in terms of vehicles per day at different levels of service. These capacities apply to road segments fully improved to County Standards, not those roads which are existing as partially improved or unimproved segments. The values shown are subject to adjustment based on the geometry of the roadway, side frictions, and other relevant factors as determined by the Director, Department of Public Works.

Section 4.2 ROAD CROSS-SECTIONS

Tables 2A and 2B are a listing of all road requirements. The data specified in Tables 2A and 2B are minimums and are subject to modification as further defined in this section.

Section 4.3 GENERAL NOTES

- A. Additional right-of-way width may be required to accommodate slopes, drainage structures, bikeways, pathways, additional turning lanes and/or other required improvements.
- B. Where a public road is entirely within a proposed project's boundary, the developer shall dedicate the right-of-way required in Tables 2A and 2B, consistent with the road classification. The developer shall also grade cut slopes and construct the ultimate fill slopes and improvements. Reduced improvements may be approved if the road does not connect with an adjacent fully improved road and if it is only needed for internal circulation within the project.

	TAB	LE 1	
AVERAGE	DAILY	VEHICLE	TRIPS*

	AVERAGI		VEITICI			7000	
	CIRCULATION ELEMENT ROA		LEVELS OF SERVICE				
	Road Classification	# of Travel Lanes	Α	В	С	D	E
Expressway		6	.<36,000	<54,000	<70,000	<86,000	<108,00
Prime Arteri	al (6.2)	6	<22,200	<37,000	<44,600	<50,000	<57,000
Major Road	(4.1A)	4	<14,800	<24,700	<29,600	<33,400	<37,000
inajor rtoda	w/ Intermittent Turn Lanes (4.1B)	4	<13,700	<22,800	<27,400	<30,800	<34,200
Collector		4	<13,700	<22,800	<27,400	<30,800	<34,200
Boulevard	w/ Raised Median (4.2A)	4	<18,000	<21,000	<24,000	<27,000	<30,000
Boulevalu	w/ Intermittent Turn Lanes (4.2B)	4	<16,800	<19,600	<22,500	<25,000	<28,000
Town Collec	tor	2	<3,000	<6,000	<9,500	<13,500	<19,000
	w/ Raised Median (2.1A)	2	<10,000	<11,700	<13,400	<15,000	<19,000
	w/ Continuous Left Turn Lane (2.1B)	2	<3,000	<6,000	<9,500	<13,500	<19,000
Community Collector	w/ Intermittent Turn Lane (2.1C)	2	<3,000	<6,000	<9,500	<13,500	<19,000
Concolor	w/ Passing Lane (2.1D)	2	<3,000	<6,000	<9,500	<13,500	<19,000
	No Median (2.1E)	2	<1,900	<4,100	<7,100	<10,900	<16,200
	w/ Raised Median (2.2A)	2	<3,000	<6,000	<9,500	<13,500	<19,000
	w/ Continuous Left Turn Lane (2.2B)	2	<3,000	<6,000	<9,500	<13,500	<19,000
	w/ Intermittent Turn Lane (2.2C)	2	<3,000	<6,000	<9,500	<13,500	<19,000
Light Collector	w/ Passing Lane (2.2D)	2	<3,000	<6,000	<9,500	<13,500	<19,000
Conector	No Median (2.2E)	2	<1,900	<4,100	<7,100	<10,900	<16,200
		2	<1,900	<4,100	<7,100	<10,900	<16,200
•	w/ Reduced Shoulder (2.2F)	2	<5,800	<6,800	<7,800	<8,700	<9,700
Rural Collect	tor	2	<1,900	<4,100	<7,100	<10,900	<16,200
Rural Light C	Collector	2	<1,900	<4,100	<7,100	<10,900	<16,200
Rural Mounta	ain	2	<1,900	<4,100	<7,100	<10,900	<16,200
Recreational	Parkway	2	<1,900	<4,100	<7,100	<10,900	<16,200
	w/ Raised Median (2.3A)	2	<3,000	<6,000	<7,000	<8,000	<9,000
Minor	w/ Intermittent Turn Lane (2.3B)	2	<3,000	<6,000	<7,000	<8,000	<9,000
Collector	No Median (2.3C)	2	<1,900	<4,100	<6,000	<7,000	<8,000
NON-	CIRCULATION ELEMENT ROA	ADS**		LEVE	S OF SER		
Residential Co	ollector	2	-	- 2	<4,500		
Rural Residen	itial Collector***	2	-	-	<4,500		-
Residential Ro	pad	2		-	<1,500	-	_
Rural Residen	tial Road***	2	-	-	<1,500	-	-
Residential Cu	Il-de-Sac or Loop Road	2	_	_	<200	_	-

The values shown are subject to adjustment based on the geometry of the roadway, side frictions, and other relevant factors as determined by the Director, Department

of Public Works.

"The Values's shown are excited to residential streets since their primary purpose is to serve abutting lots, not carry through traffic. Levels of service normally apply to reads carrying through traffic between major trip generators and attractors.

"The Values of Service are not applied to residential streets since their primary purpose is to serve abutting lots, not carry through traffic. Levels of service normally apply to reads carrying through traffic between major trip generators and attractors.

^{***}Rural Residential Collectors and Rural Residential Roads are intended to serve areas with lot sizes of 2 acres or more which do not have a demand for on-street parking. On-street parking is not assured for these cross sections. Additional right-of-way is needed if on-street parking is in paved area.

****See Tables 2A and 2B for roadway surfacing and right-of-way widths.

- C. Where a public road is adjacent to the project's boundary, the developer shall construct any required curbs, gutters, ditches/ and/or sidewalks and a minimum of one-half of the surfacing width specified in Tables 2A and 2B for that particular road classification, but in no case less than 28 feet of paving and 40 feet of grading plus slopes.
- D. Travel lanes are 12 feet wide unless otherwise specified.

Section 4.4 CIRCULATION ELEMENT ROADS – SUPPLEMENTAL INFORMATION

The following requirements supplement the minimum standards found in Tables 2A and 2B:

A. Access

It is intended that the roads identified on the County General Plan depict corridors for public mobility and access which are planned to meet the needs of the existing and anticipated population of San Diego County. It is intended that Circulation Element roads provide public mobility with minimum interference from local traffic as it accesses a General Plan road. Therefore, Circulation Element roads require access control to minimize traffic conflicts. Access control for each Circulation Element road classification shall be as follows:

1. Expressways

No lot or private road access allowed; only selected public road access with full grade separations.

2. Prime Arterials

Access is fully controlled with new development required to provide signalized intersections for ingress and egress. Residential lots are required to be served from interior residential roads.

3. Major Roads

Access is controlled with new development required to provide access roads, common driveways and signalized intersections. Residential lots are required to be served from interior residential roads.

4. Collector Roads/Rural Collector Roads

Access is controlled with new development required to provide common driveways, access roads and, on occasion, signalized intersections. Residential lots are required to be served from interior residential roads.

NOTES: 1 Minimum iongitudinal gradient shall be 1.0 percent for all road classificationis shown about

- 2 The maximum grade for a permanent cul-de-sec street turning area shall be 6 percent.
- 3 The maximum grade for a temporary cut-de-sec street turning area shall be that of the classification of the road being constructed.
- 4 For standards, see County Design Standard Drawing DS-2, DS-3, DS-4, and Section 4.5N of these Standards
- 5 Additional pavement and ROW may be required for CE Collectors (4 feet) and Light Collectors (12 feet) in Industrial/Commercial Zones.
- 8 CE roads needing additional turn lanes will require an additional 12 to 14 feet of pavement and ROW for each tane.
- 7 The maximum superelevation allowed on CE roads is 6%. Superelevation is not normally required on Non-CE roads.
- 8 CE roads designated with Bite Lenes will require an additional 10 feet of pavement and ROW. This may be increased to 12' for Collector Roads and above based upon the provisions in Section 7.3 of these standards.
- 8 The minimum curve redii, shown in the table above, are based on the design speed with 5% superelevation.
- 10 Interim roads are to be a minimum of 28 feet A.C. within a 40 feet graded roadbed. They may be larger if traffic volumes require more travel lanes.

LEGEND: * Similar to existing Collector Road

- " Similar to existing Town Collector
 " Similar to existing Rural Collector
- *** Similar to existing Rural Collector + Same as existing Light Collector
- + Same as existing Light Collector ++ Similar to existing Rural Light Collector
- +++ New Classification Standard

TABLE 2B: COUNTY OF SAN DIEGO - PUBLIC ROAD STANDARDS									
NON-CIRCULATION ELEMENT I	ROAD CLASSIF	ICATIO	NS .						
; ROAD CLASSIFICATION	# LANES / LANE WIDTH	MEDIAN	R.O.W. WIDTH	ROAD	PAVED SHOULDERS (# / WIDTH)	PARKWAY WIDTH	MINIMUM CURVE RADIUS	MAXIMUM DESIRABLE GRADE	MINIMUM DESIGN SPEED (MPH
Residential Collector	2 / 12'	-	60'	40'	2/8'	10'	300'	12%	30
Residential	2 / 12	-	56	36	2/6	10'	200'	15%	30
Residential Cul-de-sac	2 / 12		52'	32'	2/4	10'	200'	15%	30
Residential Loop	2 / 12'	-	52'	32'	2/4'	10'	200'	15%	30
Industrial/Commerical Collector	4 / 12'	-	88'	68'	2 / 10'	10'	300,	8%	30
Industrial/Commerical	2 / 16'		72'	52'	2/10'	10'	200'	8%	30
Industrial/Commercial Cul-de-sac	2 / 16'		72'	52'	2 / 10'	10'	200	8%	30
Frontage	2 / 12'	-	52' min	32' min	1/8'	10'	See above	See above	•
Alley	2 / 10'	-	20-30'	20-30'	None	· None	50'	12%	n/a
Hillside Residential	See NOTE 4	-		-	-	-	-	-	
Rural Collector *	2 / 12'	-	48'	28'	2/2'	10'	300'	12%	30
Rural Residential	2 / 12'	-	48'	28'	2 / 2'	10'	200'	15%	30

NOTES: 1 Minimum longitudinal gradient shall be 1.0 percent for all road classificationis shown above.

LEGEND: * Serves lots > 2 acres in size w/ no demand for on-street parking

2 The maximum grade for a permanent cut-de-sac street turning area shall be 6 percent.
3 The maximum grade for a temporary cut-de-sac street turning area shall be that of the classification of the road being constructed.

4 For standards, see County Design Standard Drawing DS-2, DS-3, DS-4, and Section 4.5N of these Standards.

5 The minimum curve radii, shown in the table above, are based on the design speed with 6% superelevation.

6 Interim roads are to be a minimum of 28 feet A.C. within a 40 feet graded roadbed. They may be larger if traffic volumes require more travel lanes.

5. Collector Roads/Rural Collector Roads

Access is controlled with new development required to provide common driveways, access roads and, on occasion, signalized intersections. Residential lots are required to be served from interior residential roads.

6. Community Collector

Access is controlled with new development required to provide common driveways, access roads and, on occasion, signalized intersections. Residential lots are required to be served from interior residential roads.

7. Boulevard

Access is controlled with new development required to provide common driveways, access roads and, on occasion, signalized intersections. Residential lots are required to be served from interior residential roads.

8. Town Collector Roads

Access is controlled with new development required to provide common driveways, access roads or signalized intersections. Residential lots are required to be served from interior residential roads. Commercial areas are required to provide driveway separation as identified in Section 6.1.C.2 as if the driveways were Non-Circulation Element roads.

9. Light Collector Roads/Rural Light Collector Roads

Access is generally controlled, with subdivisions and commercial developments required to provide access roads and common driveways respectively. Residential lots are required to be served from interior residential roads, where possible.

10. Minor Collector

Access is generally controlled. Lots in subdivisions are required to be served from interior residential roads. Commercial areas are required to be provided with common driveways for access.

10. Recreational Parkways/Rural Mountain Roads

Access is generally controlled. Lots in subdivisions are required to be served from interior residential roads. Commercial areas are required to be provided with common driveways for access.

B. Intersections

Intersectional sight distance shall have priority over all other standards and shall be achieved within standard right-of-way.

In general, at the intersection of Circulation Element roads, the right-of-way and improvement requirements of each leg of the intersection may be changed to the next higher road classification or to a special intersection design based on a traffic analysis of the intersection.

In the event a subdivision creates traffic requiring the construction of additional turning lanes and other safety features at a designated intersection, the subdivider shall construct or reconstruct such intersection.

C. Additional Turn Lanes

1. Prime Arterial and Expressway, if not grade separated

Where the left turn traffic volume is estimated to exceed 300 vehicles at peak hour, an additional 12 feet of right-of-way may be required for provision of a dual left turn lane. Minimum length of the additional left turn lane shall be 300 feet plus appropriate taper.

2. Major Road/Town Collector Road

Where the left turn traffic volume at an intersection on the above Circulation Element road is estimated to exceed 300 vehicles at peak hour, an additional 12 feet of right-of-way shall be required for provision of a dual left turn lane. Minimum length of the additional left turn lane shall be 300 feet plus appropriate taper.

3. Community Collector with raised medians/Boulevards with raised medians

Where the left turn traffic volume at an intersection on the above Circulation Element road is estimated to exceed 300 vehicles at peak hour, an additional 12 feet of right-of-way shall be required for provision of a dual left turn lane. Minimum length of the additional left turn lane shall be 300 feet plus appropriate taper.

4. Community Collector without raised medians/Boulevards without raised medians

Where a the above Circulation Element road intersects another Circulation Element road or where a left turn lane is specified, an additional 14 feet of right-of-way shall be required to provide a left turn lane. Minimum length of the additional left turn lane shall be 250 feet plus appropriate taper.

5. Rural Collector/Rural Mountain Roads

Where these roads intersect another Circulation Element road or where a left turn lane is specified, an additional 14 feet of right-of-way shall be required to provide a left turn lane. Minimum length of the additional left turn lane shall be 250 feet plus appropriate taper.

6. Light Collector/Rural Light Collector Roads/Minor Collector

Where these roads intersect another Circulation Element road or where a left turn lane is specified, an additional 14 feet of right-of-way shall be required to provide a left turn lane. Minimum length of the additional left turn lane shall be 200 feet plus appropriate taper.

D. Boulevards

Boulevards are four-lane roads with a wider parkway width (14 feet) that may be most suitable in village and town center areas with a high demand for pedestrian travel or rural areas with steep topography.

E. Town Collector Roads

Town collector roads are two lane divided roads to control access and turning movements in commercial or higher density residential areas. These roads are appropriate only in villages and rural villages and other multi-residential and commercial areas as determined by the Director or by the Board of Supervisors. This determination may be based upon existing and/or future traffic volumes, the number of existing and/or future access points (such as driveways and private streets), length of road and other similar factors.

F. Community Collector

Community Collectors are two-lane roads with variable right-of-way and improvement widths, as specified in Table 2A. Variations for the Community Collector include the provision of raised medians, continuous two-way left turn lanes, intermittent turn lanes, passing lanes and undivided two lanes roads. A right-of-way width of up to 84 feet may be obtained and may be most suitable for two-lane State highways where future passing lanes may be provided.

G Minor Collector

-27.115

Minor Collectors are two-lane roads with variable right-of-way and improvement widths, as specified in Table 2A. Minimum median, shoulder and parkway widths are identified in Table 2A. Variations for the Minor Collector include the provision of raised medians, intermittent turn lanes, passing lanes and undivided two lanes roads. A wider right-of-way width of up to 82 feet may be obtained with an increased parkway width of 14 feet. The wider parkway width may be utilized in rural areas to improve visibility, improve tight curves and/or grade slopes. In villages and town centers the wider parkway may be utilized for landscape buffers and/or to enhance pedestrian and bicycle circulation.

H. Rural Collector and Rural Mountain Roads

Rural Collector and Rural Mountain roads are two lanes undivided roads preserving right-of-way of 84 feet and 100 feet respectively with additional right-of-way required at intersections. These roads are appropriate only in rural mountain areas with unique scenic and historic resources.

A Rural Collector road, or a Rural Mountain road, shall be designed with the traveled way placed within the right-of-way so as to minimize the physical impact on the terrain, vegetation, scenic features, and

16 of 53

wildlife habitats. A developer shall construct, in accordance with standard drawings, any required dikes or curbs and gutters, and a minimum of 40 feet of pavement width. Where Rural Collector roads or Rural Mountain roads abut property zoned commercial, industrial, or multiple residential, appropriate commercial or industrial standards shall be constructed by the developer.

I. Recreational Parkway

Recreational Parkway is a road which serves rural recreational traffic. Such a road is to be designed for pleasure travel in keeping with the rural or recreational setting that it traverses and serves.

Recreational Parkways shall be designed and improved as follows:

- Right-of-way width for a Recreational Parkway shall be a minimum of 100 feet, except where such a
 road is included in a publicly-owned recreational facility the right-of-way width will be adjusted to
 include only the roadbed width plus appurtenant facilities.
- 2. The pavement width shall be a minimum of 40 feet. When travel in opposite directions is to be separated to accommodate terrain or other important natural features, the surfaced traveled way shall be a minimum width of 24 feet for each direction.
 - Increased pavement widths will be required in such cases where the Director finds that such an increase is necessary to provide for the safe and free flow of traffic to enhance the recreational and pleasure driving aspects of the Recreational Parkway.
- 3. View site parking and roadside stopping areas shall be an integral part of the design and function of a Recreational Parkway. Where appropriate, paved roadside stopping areas with parking shall be provided. Proposed parking and roadside stopping areas shall have been reviewed and approved by each appropriate public agency when such Recreational Parkway traverses a recreational facility possessed by such public agency.

J. Interim Road

Standards for this classification of road are specified in Table 2A, Note 10. The exception to the standard is at intersections. A 40-foot pavement width instead of 28-foot pavement width will be required along the road and shall extend a minimum of 200 feet with appropriate taper in each direction from the centerline of the street intersection. Appropriate graded width shall be provided. Interim roads larger than 28 ft. A.C. within 40 ft. graded roadbed may be required if the anticipated traffic volumes are greater than can be safely accommodated on the minimum size road.

Section 4.5 NON-CIRCULATION ELEMENT ROADS

A. Residential Collector Road

A residential collector road is provided to collect local traffic from adjacent residential lots. Such roads are not envisioned as providing for through traffic generating in one community and destined for another. They are designed to accommodate local traffic volumes of between 1,500 and 4,500 average daily trips. A residential collector shall be provided as follows:

- 1. Right-of-way width shall be 60 feet.
- 2. Pavement width between the curb faces shall be 40 feet.
- 3. Knuckles may not be used.

B. Rural Residential Collector

A rural residential collector is intended to serve an area with lot sizes of 2 acres or more where there is little demand for on-street parking. A rural residential collector road is provided to collect local traffic from adjacent residential lots. Such roads are not envisioned as providing for through traffic generating in one community and destined for another. They are designed to accommodate local traffic volumes of between 1,500 and 4,500 average daily trips. A rural residential collector shall be provided as follows:

- 1. Right-of-way width shall be 48 feet.
- 2. Pavement width between the curb faces shall be 28 feet.
- 3. On-street parking is prohibited.
- 4. Knuckles may not be used.

C. Residential Road

A residential road shall provide access to the residential lots it passes by and abuts. It is not to be used in those instances where a road may be expected to serve in the future as a residential collector road. This road shall be used in those instances where the projected average daily vehicular traffic is not expected to exceed 1,500 trips. A residential road shall be provided as follows:

- 1. Right-of-way width shall be 56 feet.
- 2. Pavement width between the curb faces shall be 36 feet.
- Knuckles may be used following the criteria shown on the County Standard Drawing.

18 of 53

4. Residential roads which are temporarily dead-ended shall end in a temporary cul-de-sac as shown on the County Standard Drawings unless the length is 200 feet or less, in which case no temporary culde-sac will be required.

D. Rural Residential Road

A rural residential road is intended to serve an area with lot sizes of 2 acres or more where there is little demand for on-street parking. A rural residential road shall provide access to the residential lots it passes by and abuts. It is not to be used in those instances where a road may be expected to serve in the future as a residential collector road. This road shall be used in those instances where the projected average daily vehicular traffic is not expected to exceed 1,500 trips. A residential road shall be provided as follows:

- 1. Right-of-way width shall be 48 feet.
- 2. Pavement width between the curb faces shall be 28 feet.
- 3. On-street parking is prohibited.
- 4. Knuckles may be used following the criteria shown on the County Standard Drawings.
- Residential roads which are temporarily dead-ended shall end in a temporary cul-de-sac as shown on the County Standard Drawings unless the length is 200 feet or less, in which case no temporary culde-sac will be required.

E. Residential Cul-De-Sac Road

A residential cul-de-sac is a dead-end road which provides access to adjacent residential lots. Residential cul-de-sac roads are to provide vehicular access where the projected average daily vehicular trips aree below 400. Residential cul-de-sace roads shall be provided as follows:

- 1. Right-of-way width shall be 52 feet.
- 2. Pavement width between the curb faces shall be 32 feet.
- 3. Minimum radius of the cul-de-sac shall be 38 feet to curb within a 48 foot radius of right-of-way.
- 4. Knuckles may be used following the criteria shown on the County Standard Drawing.
- 5 Residential cul-de-sacs roads are not to exceed 600 feet in length.

F. Residential Loop Road

A residential loop road is a local purpose road which is to accommodate a maximum of 200 projected average daily vehicular trips. Residential loop roads shall be provided as follows:

1. Right-of-way width shall be 52 feet.

19 of 53

- 2. Pavement width between the curb faces shall be 32 feet.
- 3. Knuckles may be used following the criteria shown on the County Standard Drawing.
- 5. Loop roads in excess of 600 feet shall be constructed to residential or residential collector standards in accordance with projected average daily vehicle trips.

G. Industrial/Commercial Collector Road

This road shall provide access to abutting lots zoned for industrial or commercial purposes and also collect traffic from intersecting industrial roads, commercial roads, or collector roads, or roads which provide access to property which has an area of more than five acres and is zoned for commercial purposes, or which will be required to carry more than 4,500 average daily vehicular trips. Industrial/Commercial collector roads shall be provided as follows:

- 1. Right-of-way width shall be 88 feet.
- 2. Pavement width between the curb faces shall be 68 feet.
- 3. Knuckles may not be used.

H. Industrial/Commercial Road

This road shall provide access to abutting industrial/commercial lots where the projected average daily vehicular trips are less than 4,500. Industrial/Commercial roads shall be provided as follows:

- 1. Right-of-way width shall be 72 feet.
- 2. Pavement width between the curb faces shall be 52 feet.
- 3. Knuckles may be used following the criteria shown on the County Standard Drawing.

I. Industrial/Commercial Loop Road

An industrial/commercial loop road may be used in those instances where the projected average daily vehicular trips are less than 4,500. Industrial/Commercial loop roads shall be provided as follows:

- 1. Right-of-way width shall be 72 feet.
- 2. Pavement width between the curb faces shall be 52 feet.
- 3. Knuckles may be used following the criteria shown on the County Standard Drawing.
- J. Industrial/Commercial Cul-De-Sac Road

20 of 53

45713 LT

An industrial/commercial cul-de-sac is a dead-end road which terminates in a cul-de-sac and provides access to abutting lots zoned for industrial or commercial purposes. Industrial/Commercial cul-de-sacs shall be used where the projected average daily vehicular trips do not exceed 1,000. Industrial/Commercial cul-de-sac roads shall be provided as follows:

- 1. Right-of-way width shall be 72 feet.
- 2. Pavement width between the curb faces shall be 52 feet.
- 3. The maximum length shall be 1,200 feet.
- 4. The cul-de-sac shall have a minimum 60 feet property line radius.
- 5. The cul-de-sac shall be paved to a radius of 50 feet.
- 6. Knuckles may be used following the criteria shown on the County Standard Drawing.

K. Half-Width Road (Boundary Road)

This road classification is for a road lying along a subdivision boundary for which only part of the right-of-way is to be presently dedicated and improved.

1. Right-of-Way

- a. When the half-width road is a residential street, residential collector road, industrial road, or commercial road, the minimum right-of-way width shall be 40 feet. In addition, the half-width road shall have a one-foot strip of land adjacent to and along the project boundary to which the access rights shall be waived.
- b. For all other roads, minimum right-of-way width for the half-width road shall be 40 feet or one-half of the ultimate right-of-way width, whichever is greater. In addition, the half-width road shall have a one-foot strip of land adjacent to and along the project boundary to which access rights shall be waived.
- 2. Surfaced roadbed shall be 28 feet in width, or one-half of the surfaced improvement that would be required for the development of the road at its ultimate width, whichever is greater.

L. Frontage Road

A frontage road is a road which is auxiliary to and located adjacent to a railroad, freeway, major highway, or arterial street, and which provides service to abutting property and adjacent areas and provides access control to the adjacent facility. A frontage road may be of any classification.

1. Right-of-way for the frontage road shall equal the standard right-of-way for whatever classification the frontage road is, less 4 to 1 0 feet, but in no event shall it be less than 52 feet.

Pavement width of the frontage road shall be equal to the improved width for whatever classification
the frontage road is, less one 8 foot shoulder, but in no event shall the pavement width be less than 28
feet.

M. Alley

- 1. No new alleys shall be accepted into the County's maintained road system.
- 2. Alleys are to be privately maintained.
- 3. Existing alleys shall be as follows:
 - a. Right-of-way shall be a minimum of 20 feet and a maximum of 30 feet in width.
 - b. The intersection of an existing alley with a road shall provide adequate sight distance.
 - c. Alleys shall not intersect.
 - d. Pavement width shall be the full width of the right-of-way, except at intersections of roads, where curb returns with radii equal to the curb-to-property-line dimension shall be constructed.
 - e. Pavement for alleys shall be portland cement concrete (P.C.C.).

N. Interim Road

Standards for this classification of road are specified in Table 2B, Note 6. The exception to the standard is at intersections. A 40-foot pavement width instead of 28-foot pavement width will be required along the road and shall extend a minimum of 200 feet with appropriate taper in each direction from the centerline of the street intersection. Appropriate graded width shall be provided. Interim roads larger than 28 ft. A.C. within 40 ft. graded roadbed may be required if the anticipated traffic volumes are greater than can be safely accommodated on the minimum size road.

O. Split-Level Road

A split-level road is a road of any classification providing the improvements and capacity provided in a normal road of the same classification but with each direction of traffic provided for at different elevations and separated by a median. Right-of-way shall be as follows:

- 1. The typical right-of-way section for a split-level road shall provide for the same parkway strip, parking lanes, traveled way, and turning lane area required for a normal road of the same classification and, in addition, shall provide:
 - a. A shoulder, at least two feet in width, along the median (edge nearest centerline) of the lower roadway.

22 of 53

- b. A strip at least four feet in width along the median edge of the upper roadway. In this strip the concrete curb or asphalt concrete dike, or approved barrier, shall be installed in those locations where they are required. Guardrail and/or retaining wall shall be required on the median side of the upper roadway when the difference in road level elevation exceeds 10 feet
- c. An additional width sufficient to permit construction of the cut or fill slope without exceeding the safe slope angle determined from soil tests. In the case of vertical or near vertical cuts in rock material, an approved barrier shall be required on the median side of upper roadway. A shoulder at least 10 feet wide or an approach barrier shall be required on the median side of the lower roadway.
- 2. The width of the dedicated right-of-way shall not be less than the sum of the foregoing widths.

P. Hillside Residential Street

To encourage the orderly development of steep areas, certain deviations from the normal standards for subdivision streets will be permitted as shown on County Design Standard Drawings or as specified herein.

The narrower roadway sections provided in the hillside standards outlined below for category 1 hillside standards and category 2 hillside standards have a reduced capacity for traffic and on-road parking. Their use is therefore limited to residential roads in areas where the natural slope exceeds 15 percent and where at least 80 percent of the lots have a net area of not less than 20,000 square feet.

1. Category 1 hillside standards are identified as applying to those areas where the natural slope is between 15 and 20 percent.

The method of determining the percent slope for a category 1 hillside development is as follows:

- a. Tabulate the cross-sections with slopes which are less than 15 percent or less.
- b. Tabulate the cross-sections with slopes which are 15 percent or greater but less than 20 percent.
- c. Add the lengths (L₁) for cross-sections computed in a. above.
- d. Add the lengths (L2) for cross-sections computed in b. above.
- e. Perform calculation: $L_2 (L_1 + L_2) \times 100 = "X"$ percent.
- f. If the "X" is 50 or greater, this meets category 1 hillside standards.
- 2. Category 2 hillside standards are identified as applying to those areas where the natural slope exceeds 20 percent.

SECTION 6

DESIGN STANDARDS

Section 6.1 INTERSECTIONS

- A. Property line and curb return radii. The values below are provided for the majority of situations:
 - 1. Commercial and Industrial General Plan Areas:
 - a. Curb return radii shall be a minimum of 40 feet.
 - b.Pr operty line radii shall be a minimum of 30 feet.
 - 2. Other General Plan Areas:
 - a. Curb return radii shall be a minimum of 30 feet.
 - b.Pr operty line radii shall be a minimum of 20 feet.
 - 3. Special routes identified to accommodate interstate trucks:
 - a. Curb return radii shall be a minimum of 60 feet.
 - b. Property line radii shall be a minimum of 50 feet.
- B. Where the angle of intersection is less than 90 degrees, or where a sight distance problem may be anticipated, an increased property line radius may be required.
- C. Minimum distance between roads entering into other roads shall be as follows:
 - 1. Non-Circulation Element roads entering into other Non-Circulation Element roads shall have their centerlines separated by at least 200 feet.
 - 2. Non-Circulation Element roads entering into a Circulation Element road shall have their centerlines separated by at least 300 feet.
 - 3. Circulation Element roads entering into other Circulation Element roads shall have their centerlines separated by at least 600 feet.

- E. The angle between centerlines of intersecting roads shall be as nearly a right angle as possible, but in no case less than 70 degrees or greater than 110 degrees. Where the angle between the centerlines is between 70 and 80 degrees or between 100 and 110 degrees, there shall be required on the acute angle corner of the intersection a taper to accommodate right-hand turning movements. Said taper shall be set back 5 feet at the exiting point of the curb return and extend 40 feet in such a manner as to safely allow completion of the right-hand turning movement.
- F. Sight distance requirements at all intersections shall conform to the intersectional sight distance criteria as provided in Table 5:

TABLE 5

STANDARD CORNER SIGHT DISTANCE AT INTERSECTIONS

Design Speed, MPH	Minimum Corner Intersection Sight Distance in Feet*		
60	600		
50	500		
40 [°]	400		
30	300		
20	200		

*Corner sight distance measured along the direction of travel from a point on the minor road at least 10 feet from the edge of the major road pavement and measured from a height of eye of 3.5 feet on the minor road to a height of object of 4.25 feet on the major road (see County Road Standard Drawings DS-20A and DS-20B). The design speed used to determine the minimum sight distance requirement shall be the greater of the current prevailing speed (if known) and the minimum design speed of the respective road classification shown in Tables 2A and 2B. Additional corner intersection sight distance may be required for left turns at divided highways, left turns onto two-way highways with more than two lanes, or grades which exceed 3 percent, as per "AASHTO A Policy on Design of Highways and Streets".

- G. The maximum grade at any intersection of two streets shall be 6 percent within the intersection and for at least 20 feet beyond the right-of-way of the intersecting street.
- H. Where two road centerlines intersect, the lower classified road is not to intersect the primary road with a curve. Instead, the alignment of the lower classified road must intersect the primary road in a straight line for a length not less than the full width of the primary road's right-of-way.
- I. Prior to the installation of a new traffic signal, traffic signal warrant analysis must be performed. The Californian Manual for Uniform Traffic Control Devices (CA MUTCD) should be consulted for procedures of conducting signal warrant analysis. The design and installation of the traffic signal and pavement markings should also conform to the CA MUTCD.

37 of 53

J. Roundabouts are also acceptable traffic control devices at intersections. Prior to placement of a roundabout a comprehensive engineering design prepared by a licensed civil engineer experienced in the design and construction of roundabouts must be prepared. A peer review of the roundabout design should also be provided prior to installation of a roundabout on a Circulation Element Road. "Roundabouts: An Informational Guide" published by the Federal Highway Administration should be consulted as a guide in the design of the roundabout. Striping and pavement markings for the roundabout should conform to the CA MUTCD.

Section 6.2 FUTURE ROAD EXTENSIONS

When any road is extended to a subdivision boundary for the purpose of providing a future connection to adjoining property, the subdivider shall submit an alignment and profile demonstrating the feasibility of such future extension.

The demonstration shall include a provision of acceptable sight distance for any intersecting street shown on the plan which is within the design sight distance of the subdivision boundary. Such demonstration shall also extend for a distance of ¼ mile from the subdivision boundary or longer if specific circumstances so dictate.

Section 6.3 GRADING

- A. Roads shall be graded by the developer to full width of right-of-way with the following exceptions:
 - 1. For Rural Collectors and Rural Mountain Roads, full grading may be required depending on expected ultimate traffic and/or special findings.
 - 2. Grading for Recreational Parkways shall be minimized wherever possible. All embankments shall be contour graded to blend into the natural terrain and cut slopes are to be rounded. Graded slopes shall be as flat as possible and shall be planted in accordance with the surrounding natural flora.
 - 3. The Director shall have the authority to modify full width grading requirements in areas where such modification would not compromise driver, cyclist, or pedestrian or equestrian safety or in any way be detrimental to the public. In any such case, slope rights for future grading and drainage facilities shall be dedicated.

This requirement shall apply to all Circulation Element roads and to all other roads where the County has a legal interest (fee, road easement, rejected offer of dedication, irrevocable offer of dedication) or where improvement plans are required as a condition of approval of acceptance of the project.

- B. Grading or excavating in an existing County road right-of-way shall not be permitted unless authorized by a valid permit.
- C. Where required improvements extend beyond the public right-of-way and onto private land, the entity to provide such improvements shall acquire legal permission to trespass and construct the improvements. Permission is identified as a temporary construction easement or a letter signed by the owner of the private land or other documents acceptable to the Department of Public Works.

Section 6.4 PAVEMENT AND STRUCTURAL SECTION

- A. Road Surface. The structural section shall be in accordance with San Diego County Standards and as approved by the County Materials Laboratory.
- B. Design Criteria. Structural section design shall be based upon the highest Traffic Index (T.I.) expected to occur during a period of 20 years following construction; except that minimum. Traffic Indices shall be as shown in Table 6.

Excerpts from County's Guidelines for Determining Significance
A-54

COUNTY OF SAN DIEGO GUIDELINES FOR DETERMINING SIGNIFICANCE

TRANSPORTATION AND TRAFFIC

LAND USE AND ENVIRONMENT GROUP

Department of Planning and Land Use Department of Public Works

> Second Revision June 30, 2009

First Modification February 19, 2010

EXPLANATION

These Guidelines for Determining Significance for Transportation and Traffic and information presented herein shall be used by County staff in their review of discretionary projects and environmental documents pursuant to the California Environmental Quality Act (CEQA). These Guidelines present a range of quantitative, qualitative, and performance levels for particular environmental effects. Normally, (in the absence of substantial evidence to the contrary), non-compliance with a particular standard stated in these Guidelines will usually mean the project will result in a significant effect, whereas compliance will normally mean the effect will be determined to be "less than significant." Section 15064(b) of the State CEQA Guidelines states:

"The determination whether a project may have a significant effect on the environment calls for careful judgment on the part of the public agency involved, based to the extent possible on factual and scientific data. An ironclad definition of significant effect is not always possible because the significance of an activity may vary with the setting."

These Guidelines assist in providing a consistent, objective and predictable evaluation of significant effects. These Guidelines are not binding on any decision-maker and should not be substituted for the use of independent judgment to determine significance or the evaluation of evidence in the record. The County reserves the right to request further, project specific, information in its evaluation of a project's environmental effects and to modify these Guidelines in the event a scientific discovery or factual data alters the common application of a Guideline. In addition, evaluations to verify the applicability of the significance guidelines for individual project conditions may be necessary. Additional evaluations may include analysis of vehicle headways, speeds, average gaps, queues, delay, or other factors.

i

4.0 GUIDELINES FOR DETERMINING SIGNIFICANCE

The following significance guidelines should guide the evaluation of whether a significant impact to transportation and traffic will occur as a result of project implementation. A project will generally be considered to have a significant effect if it proposes any of the following, absent specific evidence to the contrary. Conversely, if a project does not propose any of the following, it will generally not be considered to have a significant effect on transportation and traffic, absent specific evidence of such an effect.

This section provides guidance for evaluating adverse environmental effects a project may have in relation to traffic and transportation. The guidelines for determining significance are organized into eight categories: road segments, intersections, two-lane highways, ramps, congestion management plan, hazards due to an existing transportation design feature, hazards to pedestrians or bicyclists, and public transportation.

Land Development Projects

Land Development projects are projects that may result in an increase in the density or intensity or use on a parcel or parcels of land. These projects include, but are not limited to subdivisions, use permits, rezones and general plan amendments. Land development projects, typically, require discretionary approval. Due to the increased intensity of uses, land development projects generate additional traffic onto the County's road network and can contribute towards traffic congestion. A traffic impact study is often required to fully assess potential traffic impacts that may result from implementation of the proposed project.

Road Improvement Projects

Road improvement projects are projects that can affect transportation system operations; including level of service and other performance measures. Projects may consist of increasing road capacity or improving the traffic operations on the County's road network. This section refers to stand alone road improvement projects that are not improvements associated with a proposed development. These projects are typically publicly initiated. Road improvement projects do not generate additional trips but, in some cases, may cause a redistribution of trips on the County's road network. Road improvement projects are typically one or more of the following; road widening. improvements operational of new road. intersection and construction improvements/road maintenance. Additional guidance on how to evaluate Publicly Initiated Road Improvement Projects is included as Attachment B of the Report Format and Content Requirements.

4.1 Road Segments

Pursuant to the County's General Plan Public Facilities Element (PFE Pg. XII-4-18), new development must provide improvements or other measures to mitigate traffic impacts to avoid:

- (a) Reduction in Level of Service (LOS) below "C" for on-site Circulation Element roads;
- (b) Reduction in LOS below "D" for off-site and on-site abutting Circulation Element roads; and
- (c) "Significantly impacting congestion" on roads that operate at LOS "E" or "F". If impacts cannot be mitigated, the project cannot be approved unless a statement of overriding findings is made pursuant to the State CEQA Guidelines. The PFE, however, does not include specific guidelines for determining the amount of additional traffic that would "significantly impact congestion" on such roads.

The County has created the following guidelines to evaluate likely motor vehicle traffic impacts of a proposed project for road segments and intersections serving that project site, for purposes of determining whether the development would "significantly impact congestion" on the referenced LOS E and F roads. The guidelines are summarized in Table 1. The levels in Table 1 are based upon average operating conditions on County roadways. It should be noted that these levels only establish general guidelines, and that the specific project location must be taken into account in conducting an analysis of traffic impact from new development.

On-site Circulation Element Roads

PFE, Transportation, Policy 1.1 states that "new development shall provide needed roadway expansion and improvements on-site to meet demand created by the development, and to maintain a Level of Service C on Circulation Element Roads during peak traffic hours". Pursuant to this policy, a significant traffic impact would result if:

• The additional or redistributed ADT generated by the proposed land development project will cause on-site Circulation Element Roads to operate below LOS C during peak traffic hours except within the Otay Ranch and Harmony Grove Village plans as specified in the PFE, Implementation Measure 1.1.2.

Off-site Circulation Element Roads

PFE, Transportation, Policy 1.1 also addresses offsite Circulation Element roads. It states, "new development shall provide off-site improvements designed to contribute to the overall achievement of a Level of Service D on Circulation Element Roads". Implementation Measure 1.1.3 addresses projects that would significantly impact

congestion on roads at LOS E or F. It states that new development that would significantly impact congestion on roads operating at LOS E or F, either currently or as a result of the project, will be denied unless improvements are scheduled to attain a LOS to D or better or appropriate mitigation is provided. The following significance guidelines define a method for evaluating whether or not increased traffic volumes generated or redistributed from a proposed project will "significantly impact congestion" on County roads, operating at LOS E or F, either currently or as a result of the project.

Traffic volume increases from public or private projects that result in one or more of the following criteria will have a significant traffic volume or level of service traffic impact on a road segment:

- The additional or redistributed ADT generated by the proposed project will significantly increase congestion on a Circulation Element Road or State Highway currently operating at LOS E or LOS F, or will cause a Circulation Element Road or State Highway to operate at a LOS E or LOS F as a result of the proposed project as identified in Table 1, or
- The additional or redistributed ADT generated by the proposed project will cause a residential street to exceed its design capacity.

Table 1

Measures of Significant Project Impacts to Congestion on Circulation Element Road Segments:

Allowable Increases on Congested Road Segments

Level of service	Two-lane road	Four-lane road	Six-lane road
LOSE	200 ADT	400 ADT	600 ADT
LOS F	100 ADT	200 ADT	300 ADT
lotes:			

By adding proposed project trips to all other trips from a list of projects, this same table
must be used to determine if total cumulative impacts are significant. If cumulative
impacts are found to be significant, each project that contributes additional trips must
mitigate a share of the cumulative impacts.

2. The County may also determine impacts have occurred on roads even when a project's traffic or cumulative impacts do not trigger an unacceptable level of service, when such traffic uses a significant amount of remaining road capacity.

LOS E

The first significance criterion listed in Table 1 addresses roadways presently operating at LOS E. Based on these criteria, an impact from new development on an LOS E road would be reached when the increase in average daily trips (ADT) on a two-lane road exceeds 200 ADT. Using SANDAG's "Brief Guide for Vehicular Traffic Generation Rates for the San Diego Region" for most discretionary projects this would generate less than 25 peak hour trips. On average, during peak hour conditions, this would be only one additional car every 2.4 minutes.

Therefore, the addition of 200 ADT, in most cases, would result in changes to traffic flow that would not be noticeable to the average driver and therefore would not constitute a

significant impact on the roadway. Significance criteria were also established for 4-lane and 6-lane roads operating at LOS E and are based upon the above 24 hour ADT significance criterion established for two-lane roads. The two-lane road criterion was doubled to determine impacts to four-lane roads and tripled to determine impacts to six-lane roads. This was considered to be conservative since the 24 hour per lane road capacity for a 4-lane road is more than double that of a two-lane road and the per lane capacity of a six-lane road is more than triple that of the two-lane road. For LOS E roads, the additional significance criteria are 400 ADT for a 4-lane road and 600 ADT for a 6-lane road.

Similar to the criteria for two-lane roads, 400 ADT for a 4-lane road and 600 ADT for a 6-lane road criteria would generate less than 25 per lane peak hour trips for most discretionary projects. On average, during peak hour conditions, this would be only one additional car per lane every 2.4 minutes. The addition of 200 ADT per lane (400 ADT for a 4 lane road or 600 ADT for a 6 lane road), in most cases, would result in changes to traffic flow that would not be noticeable to the average driver and therefore would not constitute a significant impact on the roadway. Road capacities based upon level of service for County roads can be found in the County's Public Road Standards, available online at http://www.sdcounty.ca.gov/dpw/land/rtelocs.html.

LOS F

The second significance criteria listed in Table 1 addresses roadways presently operating at LOS F. Under LOS F congested conditions, small changes and disruptions to the traffic flow on County Circulation Element Roads can have a greater effect on traffic operations when compared to other LOS conditions. In order to better account for potential effects of increased traffic on LOS F roads more stringent significance criteria was established when compared to that for LOS E. Based on this guidance, an impact from new development on an LOS F road would be reached when the increase in average daily trips (ADT) on a two-lane road exceeds 100. Again, using SANDAG's "Brief Guide for Vehicular Traffic Generation Rates for the San Diego Region" for most discretionary projects this would generate less than 12.5 peak hour trips. On average, during peak hour conditions, this would be only one additional car every 4.8 minutes.

The addition of 100 ADT, in most cases, would not be noticeable to the average driver and therefore would not constitute a significant impact on the roadway. The same approach used to determine significance criteria for 4-lane and 6-lane roads operating at LOS E was used to determine appropriate significance criteria for four-lane and six-lane roads operating at LOS F. Based on this approach, the significance criteria for a four-lane road (200 ADT) and for a six-lane road (300 ADT) would generate less than 12.5 per lane peak hour trips for most discretionary projects. On average, during peak hour conditions, this would be only one additional car per lane every 4.8 minutes. The addition of 100 per lane ADT (200 ADT for a 4-lane road and 300 ADT for a 6-lane road) would, in most cases, not be noticeable to the average driver and therefore would not constitute a significant impact on the roadway.

In summary, under extremely congested LOS F conditions, small changes and disruptions to the traffic flow can significantly affect traffic operations and additional project traffic can increase the likelihood or frequency of these events. Therefore, the LOS F ADT significance criteria was set at 100 ADT (50% of the LOS E criterion) to provide a higher level of assurance that the traffic allowed under the criterion would not significantly impact traffic operation on the road segment.

Non-Circulation Element Residential Streets

Levels of service are not applied to residential streets since their primary purpose is to serve abutting lots and not to carry through traffic, however, for projects that will substantially increase traffic volumes on residential streets, a comparison of the traffic volumes on the residential streets with the recommended design capacity must be provided. Recommended design capacities for residential non-Circulation Element streets are provided in the San Diego County Public and Private Road Standards. Traffic volume that exceeds the design capacity on residential streets may impact residences and should be analyzed on a case-by-case basis.

4.2 Intersections

This section provides guidance for evaluating adverse environmental effects a project may have on signalized and unsignalized intersections. Table 2 summarizes significant project impacts for signalized and unsignalized intersections.

Table 2

Measures of Significant Project Impacts to Congestion on Intersections:

Allowable Increases on Congested Intersections

Level of Service	Signalized	Unsignalized	
LOSE	Delay of 2 seconds or less	20 or less peak hour trips on a critical movement	
LOSF	Either a Delay of 1 second, or 5 peak hour trips or less on a critical movement	5 or less peak hour trips on a critical movement	

Notes:

- 1. A critical movement is an intersection movement (right turn, left turn, through-movement) that experiences excessive queues, which typically operate at LOS F. Also if a project adds significant volume to a minor roadway approach, a gap study should be provided that details the headways between vehicles on the major roadway.
- 2. By adding proposed project trips to all other trips from a list of projects, these same tables are used to determine if total cumulative impacts are significant. If cumulative impacts are found to be significant, each project is responsible for mitigating its share of the cumulative impact.
- 3. The County may also determine impacts have occurred on roads even when a project's direct or cumulative impacts do not trigger an unacceptable level of service, when such traffic uses a significant amount of remaining road capacity.
- 4. For determining significance at signalized intersections with LOS F conditions, the analysis must evaluate both the delay <u>and</u> the number of trips on a critical movement, exceedance of either criteria result in a significant impact.

4.2.1 Signalized

Traffic volume increases from public or private projects that result in one or more of the following criteria will have a significant traffic volume or level of service traffic impact on a signalized intersection:

- The additional or redistributed ADT generated by the proposed project will significantly increase congestion on a signalized intersection currently operating at LOS E or LOS F, or will cause a signalized intersection to operate at a LOS E or LOS F as identified in Table 2.
- Based upon an evaluation of existing accident rates, the signal priority list, intersection geometrics, proximity of adjacent driveways, sight distance or other factors, the project would significantly impact the operations of the intersection.

LOS E

The significance criterion for signalized intersections identified in Table 2 allows an increase in the overall delay at an intersection operating at LOS E of two seconds. This is consistent with the capacity limit contained in the SANDAG's CMP and guidelines established by the City of San Diego. A delay of two seconds is a small fraction of the typical cycle length for a signalized intersection that ranges between 60 and 120 seconds. The likelihood of increased queues forming due to the additional two seconds of delay is low. Therefore, an increased wait time of two seconds, on average, would result in changes to traffic flow that would not be noticeable to the average driver. Therefore the significance guideline for intersections operating at LOS E is 2 seconds.

LOS F

The primary significance criterion for signalized intersections operating at LOS F conditions was based upon increased delay at the intersection. Under LOS F congested conditions, small changes and disruptions to the traffic flow to signalized intersections can have a greater effect on overall intersection operations when compared to other LOS conditions. In order to better account for potential effects of increased traffic at signalized intersections operating at LOS F, a more stringent guideline was established when compared to signalized intersection operating at LOS E. A significance guideline of an increased delay of 1 second was established for signalized intersections operating at LOS F. An increase in the overall delay at an intersection of one second, on average, would result in changes to traffic flow that would not be noticeable to the average driver. Therefore the significance guideline for intersections operating at LOS F is 1 second.

Signalized intersections operating at LOS F also have the potential for substantial queuing at specific turning movements that may detrimentally effect overall intersection and/or road segment operations. Thus, an increase of peak hour trips to a critical move was also established as a secondary significance criterion for signalized intersections. A critical movement would be a movement or a lane at an intersection that is experiencing queuing or substantial delay and is affecting the overall operation of the

intersection. The increase in peak hour trips to a critical move is a measurement of how many cars can be added to an existing queue. The addition of more than five trips (peak hour) per critical movement will normally be considered a significant impact. This significance criterion was selected because the five or less additional trips spread out over the peak hour would not significantly increase the length of an existing queue and would not be noticeable to the average driver (5 peak hour trips equals one trip every 12 minutes or 720 seconds).

For LOS F intersections, the 5 peak hour trips to a critical movement would not be noticeable to the average driver since the one additional trip during the 12 minute interval on average would clear the traffic signal cycles well within the 12 minute period. It should also be noted that if the 5 additional peak hour trips arrived at the same time these trips would also clear the traffic cycle and existing queue lengths would be reestablished.

4.2.2 Unsignalized

Traffic volume increases from public or private projects that result in one or more of the following criteria will have a significant impact to an unsignalized intersection as listed in Table 2 and described as text below:

- The additional or redistributed ADT generated by the proposed project will add 21 or more peak hour trips to a critical movement of an unsignalized intersection, and cause an unsignalized intersection to operate below LOS D, or
- The additional or redistributed ADT generated by the proposed project will add 21 or more peak hour trips to a critical movement of an unsignalized intersection currently operating at LOS E, or
- The additional or redistributed ADT generated by the proposed project will add 6 or more peak hour trips to a critical movement of an unsignalized intersection, and cause the unsignalized intersection to operate at LOS F, or
- The additional or redistributed ADT generated by the proposed project will add 6 or more peak hour trips to a critical movement of an unsignalized intersection currently operating at LOS F, or
- Based upon an evaluation of existing accident rates, the signal priority list, intersection geometrics, proximity of adjacent driveways, sight distance or other factors, the project would significantly impact the operations of the intersection.

The operating parameters and conditions for unsignalized intersections differ dramatically from those of signalized intersections. Very small volume increases on one

leg or turn and/or through movement of an unsignalized intersection can substantially affect the calculated delay for the entire intersection. As noted in Table 2 on page 15, significance criteria for unsignalized intersections are based upon a minimum number of trips added to a critical movement at an unsignalized intersection.

LOS E

The significance guidelines for unsignalized intersections identify a minimum number of trips added to a critical movement at an unsignalized intersection. Since the operations of unsignalized intersections under congested conditions are heavily influenced by traffic volume increases on critical moves, the significance guidelines for unsignalized intersections were based upon the number of trips added to a critical movement. This guideline directly relates to the number of vehicles that can be added to an existing queue that forms at the intersection. A significance criteria of (21) twenty-one or more trips (peak hour) per critical movement was used for LOS E conditions. Although delays drivers experience under LOS E condition may be noticeable, they are not yet considered unacceptable. Twenty trips spread out over the peak hour would not likely cause the intersection delay or existing queue lengths to become unacceptable. The twenty trips (peak hour) would not be noticeable to the average driver.

The operations of unsignalized intersections under congested conditions are heavily influenced by traffic volume increases on critical moves. Therefore, the significance guidelines for unsignalized intersections are based upon the number of peak hour trips added to a critical movement at that intersection. This guideline examines the number of vehicles that may be added to an existing queue that forms at the intersection by the additional traffic generated by a project. In LOS E situations, the delays that drivers experience are noticeable, but are not considered excessive. A peak hour increase of twenty trips to the critical movement of an unsignalized intersection would be, on average, one additional car every 3.0 minutes or 180 seconds. Assuming the average wait time for a vehicle in the critical movement queue is less than 3.0 minutes, which is typical for LOS E condition, this would not be noticeable to the average driver and would not be considered a significant impact.

LOS F

For LOS F conditions, a significance level of 6 or more trips (peak hour) per critical movement was used. Five trips or less spread out over the peak hour would not significantly increase the length of an existing queue and would not be noticeable to the average driver. For example, 5 trips spread out over an hour would be one car every 12 minutes. This typically exceeds the average wait time in the queue and would not be noticeable to the average driver.

4.3 Two-Lane Highways

This section provides level of service impact guidelines for State highways and County arterials operating as two-lane highways.

Several designated County Circulation Element Roads are State highways that are managed and maintained by Caltrans. These highways include State Route 67, State Route 76, State Route 78, State Route 79 and State Route 94 and within the unincorporated area of the County most of these routes operate as two-lane highways. Caltrans has prepared a "Guide for the Preparation of Traffic Impact Studies" that should also be referenced when evaluating traffic impacts to the above Circulation Element Roads that are under the jurisdiction of Caltrans. Also, Caltrans District 11 local office should be consulted early to adequately scope the traffic study and ensure potential local district issues in the traffic impact study are addressed. While the "Guide for the Preparation of Traffic Impact Studies" provides guidance for scoping a traffic study to assess impacts on Caltrans facilities, it does not provide specific guidelines for determining when a significant traffic impact occurs; hence, the development of the following significance guidelines for two-lane highways.

In addition to the State Routes identified above, several County Circulation Element Roads, although designated as arterials, operate as two-lane highways. These include roadways that have passing opportunities for 40% or more along the length of the roadway and/or have few/limited access points and intersections along the length of the roadway. Examples would include sections of Old Highway 80, Old Highway 395 and Del Dios Highway. The Highway Capacity Manual (HCM) includes analysis criteria for assessment of LOS for two-lane highways. Section 2.2 of the County of San Diego's "Transportation and Traffic Report Format and Content Requirements" states that "The Director of Public Works may, based upon a review of the operational characteristics of the roadway, designate that a HCM analysis be used to determine the LOS for a two-lane County arterial in lieu of the LOS table provided in the County of San Diego Public Road Standards." Level of service tables for two-lane highways have also been established by the County of Riverside and the County of Sacramento.

4.3.1 Signalized Intersection Spacing Over One Mile

This section provides LOS impact significance levels for State highways and County arterials operating as two-lane highways with signalized intersection spacing over one mile. County arterials were addressed in section 4.1 and Table 1, however, those that operate as two-lane highways would have higher project contribution amounts and different LOS E and LOS F levels and are treated in this section.

Table 3
Measures of Significant Project Impacts to Congestion: Allowable Increases on Two-lane Highways with Signalized Intersection Spacing Over One Mile

Level of Service	LOS Criteria	Impact Significance Leve
LOS E	> 16,200 ADT	>325 ADT
LOS F	> 22,900 ADT	>225 ADT

where detailed data are available, the Director of Public Works may also accept a detailed level of service analysis based upon the two-lane highway analysis procedures provided in the Chapter 20 Highway Capacity Manual.

Two-lane highways with intersection spacing over one mile have minimal side friction and conform to the HCM assumptions for two-lane highways. Level of service criteria for LOS E and LOS F are provided in Table 3 based upon criteria established with the Counties of Riverside and Sacramento and concurred upon by Caltrans-District 11. These criteria are appropriate for use for most projects with the potential to affect two-lane highways, as road conditions for two-lane highways in these Counties are similar to those in the County of San Diego. The ADT based guidelines should be the first applied method of analysis, however, County staff may allow the use of HCM Chapter 20 methodology (average travel speed and/or percent time spent following) to provide a more detailed evaluation and to determine the overall level of service in certain cases, with the approval of the Director of Public Works. Where impacts to State Highways are involved, consultation with Caltrans is recommended.

LOS E

Impact significance levels are provided in Table 3 for two-lane highways with signalized intersection spacing over one mile. The first impact significance level addresses impacts from new development (both direct and cumulative impacts) on an LOS E road. In this scenario a significant impact would be reached when the increase in average daily trips (ADT) on a two-lane road exceeds 325. For most discretionary projects, the 325 ADT level would generate less than 35 peak hour trips. On average, during peak hour conditions, this would be only one additional car every 1.7 minutes. The addition of 325 ADT would, in most cases, not be noticeable to the average driver on a two-lane highway which has higher speeds and reduced side friction compared to a typical arterial. The additional 325 ADT, therefore, would not constitute a significant impact on a two-lane highway operating at LOS E; however, the addition of more than 325 ADT would generally result in a significant impact.

LOS F

The second impact significance guideline concerns roadways presently operating at LOS F (for a 2-lane highway LOS F would not occur until ADT exceeds 22,900 trips per day. Under LOS F congested conditions, small changes and disruptions to the traffic flow on County Circulation Element Roads can have a greater affect on traffic operations when compared to other LOS conditions. In order to better account for potential effects of increased traffic on LOS F roads, a more stringent guideline was established when compared to that for LOS E. The guideline for determining significance from new development (both direct and cumulative impacts) on a LOS F road would be reached when the increase in average daily trips (ADT) on a two-lane road exceeds 225. For most discretionary projects, the 225 ADT level would generate less than 25 peak hour trips. On average, during peak hour conditions, this would be only one additional car every 2.4 minutes. The addition of 225 ADT would, in most cases, not be noticeable to the average driver on a two-lane highway which has higher speeds and reduced side friction compared to a typical arterial. The addition 225 ADT or less would therefore not constitute a significant impact on a two-lane highway operating at LOS F. However, the addition of more than 225 ADT would be considered a significant impact.

4.3.2 Signalized Intersection Spacing Under One Mile

This section provides level of service impact guidelines for State highway segments and County arterials operating as two-lane highways with signalized intersection spacing under one mile. Typical examples of this type of roadway are those segments of two lane highways that traverse town centers. Similar to the experience of drivers in urban areas with closely spaced intersections, the functionality of two-lane highway conditions with signalized intersections spacing under one mile becomes constrained not due to the segment capacity but the intersection operations. Therefore the assessment of operations of intersections on two-lane highways shall be guided by a Level of Service standard. Level of Service for purposes of this significance guideline is based upon the overall intersection operations — similar to Urban Street analysis in Chapter 15 Highway Capacity Manual. For determining impact significance at the signalized intersection, Table 4 "Measures of Significant Project Impacts to Congestion on Intersections Allowable Increases on Congested Intersections" may be used as summarized below:

Table 4
Measures of Significant Project impacts to Congestion: Allowable increases on Two-lane Highways with Signalized intersection Spacing Under One Mile

Level of Service	Signalized
LOS E	Delay of 2 seconds or less
LOS F	Delay of 1 second, or 5 peak hour trips or less on a critical movement

Notes:

- A critical movement is an intersection movement (right turn, left turn, throughmovement) that experiences excessive queues which typically operate at LOS F.
- 2. By adding proposed project trips to all other trips from a list of projects, these same tables are used to determine if total cumulative impacts are significant. If cumulative impacts are found to be significant, each project is responsible for mitigating its share of the cumulative impact.
- The County may also determine impacts have occurred on roads even when a project's traffic or cumulative impacts do not trigger an unacceptable level of service, when such traffic uses a significant amount of remaining road capacity.

The second impact significance guideline (Table 4) concerns two-lane highways with signalized intersection spacing less than 1 mile. Two-lane highways with intersection spacing less than 1 mile operate similar to urban streets as identified in the HCM. Per the HCM, level Urban Streets have lower speeds with levels of service most characterized by the operation of the intersections along the highway/street. For two-lane highways with intersection spacing less than 1 mile, the level of service will be determined to be that of the intersections along the highway. Impacts to the highway will be determined by evaluating the intersection impact criteria identified in Table 4.

Impacts related to operational features on two-lane highways will be evaluated on a case-by-case basis based upon traffic flow patterns, geometrics, available sight distance, accident histories, and other factors. Coordination with County staff and Caltrans is recommended regarding any additional operational analysis that may be necessary.

4.4 Ramps

Additional or redistributed ADT generated by the proposed project may significantly increase congestion at a freeway ramp. Caltrans' "Guide for the Preparation of Traffic Impact Studies" states that an operational analysis based upon Caltrans' Highway Design Manual should be used in the evaluation of ramps and that Caltrans' Ramp Metering Guidelines should be used in the preparation of the operational analysis. However, specific criteria for the determination of an impact at a ramp are not provided in the above documents.

The CMP includes guidelines for the determination of traffic impacts at a ramp. These guidelines are summarized in Table 5. Table 5 may be used as a guide in determining significant increases in congestion on ramps and for identifying conflicts with the congestion management program. Other factors that may be considered include ramp metering, location (rural vs. urban), ramp design, and the proximity of adjacent intersections. Coordination with Caltrans and the local jurisdiction should be conducted to determine appropriate impact criteria for the specific ramps being assessed.

4.5 Congestion Management Program

Projects that generate over 2,400 ADT or 200 peak hour trips, must comply with the traffic study requirements of SANDAG's Congestion Management Program. Trip distributions for these projects must also use the current regional computer traffic model. Projects that must prepare a CMP analysis should also follow the CMP traffic impact analysis guidelines. These guidelines are summarized in Table 5.

Table 5
Measure of Significant Project Traffic Impacts for
Circulation Element Roads, Signalized Intersections, and Ramps

		Allowable Change Due to Project Impact						
Level of Service With Project	Freeways		Roadway Segments*		Intersections**	Ramps**	Ramps with >15 min. delay	
	V/C	Speed (mph)	V/C	Speed (mph)	Delay (sec.)	Delay (min.)	Delay (min.)	
E&F	0.01	1	0.02	1	2	-	2	

^{*} For County arterials, which are not identified in SANDAG's Regional Transportation Plan and Congestion Management Program as regionally significant arterials, significance may be measured based upon an increase in average daily trips. The allowable change in ADT due to project impacts in this instance would be identified in Table 1.

<u>KEY</u> ∇/C = Volume to Capacity ratio

Speed = Speed measured in miles per hour

Delay = Average stopped delay per vehicle measured in seconds, or minutes

LOS = Level of Service
ADT = Average Daily Trips

^{**} Signalized Intersections

^{***} See the Report Format and Content Requirements for guidance on ramp metering analysis.

4.6 <u>Hazards Due to an Existing Transportation Design Feature</u>

Many roadways and intersections in the County were designed and constructed prior to the adoption of current road design standards. The design of the roadways and intersections that were able to handle lower traffic volumes, may pose an increased risk if traffic volumes substantially increase along the road segment or at the intersection as a result of the proposed project. Increased traffic generated or redistributed by a proposed project may cause a significant traffic operational impact to an existing transportation design feature. Therefore, it is necessary to evaluate potential hazards to an existing transportation design feature.

The determination of significant hazards to an existing transportation design feature shall be on a case-by-case basis, considering the following factors:

- Design features/physical configurations of access roads may adversely affect the safe movement of all users along the roadway.
- The percentage or magnitude of increased traffic on the road due to the proposed project may affect the safety of the roadway.
- The physical conditions of the project site and surrounding area, such as curves, slopes, walls, landscaping or other barriers, may result in conflicts with other users or stationary objects.
- Conformance of existing and proposed roads to the requirements of the private or public road standards, as applicable.

4.7 Hazards to Pedestrians or Bicyclists

Many roadways and intersections in the County do not currently have pedestrian or bicycle facilities. The roadways and intersections designed prior to adoption of current road standards may have conditions that may pose an increased risk if traffic volumes, pedestrian volumes, or bicycle volumes substantially increase along the road segment or at the intersection, as a result of the proposed project. Increased traffic generated or redistributed by a proposed project may cause a significant traffic operational impact to pedestrians or bicyclists. Therefore, it is necessary to evaluate potential hazards to pedestrians or bicyclists.

The determination of significant hazards to pedestrians or bicyclists shall be on a case-by-case basis, considering the following factors:

 Design features/physical configurations on a road segment or at an intersection that may adversely affect the visibility of pedestrians or bicyclists to drivers entering and exiting the site, and the visibility of cars to pedestrians and bicyclists.

- The amount of pedestrian activity at the project access points that may adversely affect pedestrian safety.
- The preclusion or substantial hindrance of the provision of a planned bike lane or pedestrian facility on a roadway adjacent to the project site.
- The percentage or magnitude of increased traffic on the road due to the proposed project that may adversely affect pedestrian and bicycle safety.
- The physical conditions of the project site and surrounding area, such as curves, slopes, walls, landscaping or other barriers that may result in vehicle/pedestrian, vehicle/bicycle conflicts.
- Conformance of existing and proposed roads to the requirements of the private or public road standards, as applicable.
- The potential for a substantial increase in pedestrian or bicycle activity without the presence of adequate facilities.

4.8 Alternative Transportation

Alternative transportation (cycling, walking, and transit use) is addressed in the County's General Plan Public Facilities Element (PFE). The County's stated objective for alternative transportation is addressed by the PFE, Objective 4. Objective 4 asks for a "Reduction in the demand on the road system through increased public use of alternate forms of transportation and other means." Pursuant to Objective 4, Policies 4.1 - 4.4 establish a means for the County to meet the objective. As such, if a proposed project is not in conformance with the applicable alternative transportation policies in the PFE, a significant conflict with the County's alternative transportation policies may occur.

5.0 STANDARD MITIGATION AND PROJECT DESIGN CONSIDERATIONS

If a proposed project's traffic results in a significant traffic impact (per the criteria specified above), mitigation for the traffic impact must be proposed. If mitigation is infeasible or impractical, the technical, economic, and physical reasons for the infeasibility must be detailed to support a statement of overriding considerations under CEQA. Potential mitigation measures can include traffic signal improvements, physical road improvements, street re-striping and parking prohibitions, fair share contributions toward identified, funded and scheduled projects, and transportation demand management programs.

A variety of possible generalized mitigation measures are provided below. It should be recognized that a variety of improvements may be required to mitigate direct impacts depending on the extent of the project's impact. For example, a project may identify a direct impact to a road segment; however the entire segment may not need to be improved. Depending on the situation, frontage improvements or turn pockets may adequately mitigate the impact. However, analysis must be provided to demonstrate that with implementation of the proposed mitigation measure, conditions would either not change or not become worse with the implementation of the project. For example, travel time or queue lengths may need to be quantified to justify the adequacy of a proposed mitigation measure as being proportional to the project's significant impact. It should be noted that fair share contributions are not adequate to fully mitigate a direct impact because the construction of actual improvements must be in place prior to the project impact occurring. Consult with County staff, as necessary, for further information. Conceptual striping plans to ensure feasibility of the proposed mitigation measures may be required.

5.1 Traffic Signal Improvements

- New Signal (provided that it meets traffic signal warrants)
- Signal modifications including timing, coordination, phasing improvements, etc.

5.2 Physical Road Improvements

- Turn Restrictions
- New Roadway
- Curve Realignment
- Roadway widening to add lanes or shoulders
- Provision of pathway or sidewalk
- Extension of truncated street
- Shoulder provisions for bicycle-lanes
- Redesign of freeway on- and off-ramps
- Median construction/modification to restrict access
- Flaring of intersections to add turn lanes
- Provision of passing lanes or turnouts
- Acceleration and deceleration lanes

- Removal of obstructions (vegetation, rock outcroppings, utilities, etc.)
- Roundabouts

5.3 Street Re-striping and Parking Restrictions

- · Re-striping to add lanes with or without parking removal or restrictions
- Protected left-turn pockets, or free right turn lanes
- Parking restrictions, daily or during peak hours
- Bicycle lanes and or sharrows

5.4 Fair Share Contributions

- Payment of the County's Traffic Impact Fee for mitigation of cumulative impacts within the unincorporated County (Refer to Section 2.2 of these Guidelines for discussion of how the TIF mitigates cumulative impacts)
- Contribution of funds to approved projects identified in the County's Capital Improvement Program Plan
- Agreement between an applicant and a City or non-County agency to contribute
 a fair share payment towards the construction of a specific traffic improvement
 found adequate by the County for impacts outside of the jurisdiction of the
 unincorporated County (Refer to Section 5.0 of the Report Format and Content
 Requirements for additional discussion of impacts outside of the County's
 jurisdiction).

5.5 Transportation Demand Management*

- Flexible or staggered work hours
- Properly pricing parking
- Transit incentives and improvements including subsidized transit passes, bus turnouts, or bus shelters/benches
- Carpool, vanpool programs and participation in a computerized matching system
- Incentives to promote bicycle and walk trip modal split

5.6 Traffic Safety/Hazards to Pedestrians or Bicyclists

If traffic safety or pedestrian/bicycle safety impacts are present, then conditions are placed on a project prior to approval to address those concerns. Often, compliance with County of San Diego Public or Private Road Standards will provide sufficient mitigation for an identified impact. However, site specific mitigation measures, such as the improvement of sight distance along the frontage of a project, will be imposed as a condition of approval. Conceptual striping plans to ensure feasibility of the proposed mitigation measures may be required.

^{*} Implementation of these measures will require monitoring on an on-going basis.

Projects that would generate a high demand for pedestrian traffic such as schools, shopping centers, and large office parks may be required to provide pedestrian and bicycle routes to the facilities to accommodate the pedestrian demand.

Bicycle lanes and routes designated on the County's General Plan/Circulation Element must be specified and existing facilities identified. Provisions to provide/accommodate the ultimate right-of-way needed to construct designated bike lanes must be incorporated into the proposed project. Construction of bicycle lanes may be based upon the demand and connections to existing facilities in the area.

5.7 Alternative Transportation

Alternative transportation is addressed in the County's General Plan Public Facilities Element (PFE), Policies 4.1 – 4.4. The PFE identifies several viable ways of promoting alternative transportation and to reduce demand on the road system. However, many of these solutions are programmatic in nature and cannot typically be implemented by an individual project. Program level solutions include establishing incentive programs for employers to encourage their employees to use alternative transportation and coordinating the planning and development of transit centers with other jurisdictions and public transportation agencies. Project level solutions include identifying the need for transit improvements for large scale projects and conditioning new development on the dedication and construction of bikeways as indicated in the Circulation Element's Bicycle Network.

5.8 Project Phasing

If a proposed project will be developed in phases and the county agrees that phased implementation of mitigation measures is a feasible option, the traffic analysis will need to identify impacts and associated mitigation according to each phase of development. The implementation of mitigation measures would be timed with each project phase to address the impacts that each phase of development would create. The traffic analysis will need to evaluate each phase separately in order to justify the mitigation that will be implemented at each phase. For example, if a project proposes to construct in phases (stages) or with interim uses before full build out, then the traffic study shall detail the projects traffic impacts and needed mitigation for each phase (stage) as it comes online and identify appropriate mitigation at each stage. This level of analysis will allow County staff to draft road and frontage improvement conditions in conjunction with actual project improvements via phasing or stages.

Excerpts fro	m Caltrans Gui	delines for the	Preparation of	of Traffic Impac	t Stı
		A-74			

GUIDE FOR THE PREPARATION

OF

TRAFFIC IMPACT STUDIES

STATE OF CALIFORNIA DEPARTMENT OF TRANSPORTATION

December 2002

PREFACE

The California Department of Transportation (Caltrans) has developed this "Guide for the Preparation of Traffic Impact Studies" in response to a survey of cities and counties in California. The purpose of that survey was to improve the Caltrans local development review process (also known as the Intergovernmental Review/California Environmental Quality Act or IGR/CEQA process). The survey indicated that approximately 30 percent of the respondents were not aware of what Caltrans required in a traffic impact study (TIS).

In the early 1990s, the Caltrans District 6 office located in Fresno identified a need to provide better quality and consistency in the analysis of traffic impacts generated by local development and land use change proposals that effect State highway facilities. At that time, District 6 brought together both public and private sector expertise to develop a traffic impact study guide. The District 6 guide has proven to be successful at promoting consistency and uniformity in the identification and analysis of traffic impacts generated by local development and land use changes.

The guide developed in Fresno was adapted for statewide use by a team of Headquarters and district staff. The guide will provide consistent guidance for Caltrans staff who review local development and land use change proposals as well as inform local agencies of the information needed for Caltrans to analyze the traffic impacts to State highway facilities. The guide will also benefit local agencies and the development community by providing more expeditious review of local development proposals.

Even though sound planning and engineering practices were used to adapt the Fresno TIS guide, it is anticipated that changes will occur over time as new technologies and more efficient practices become available. To facilitate these changes, Caltrans encourages all those who use this guide to contact their nearest district office (i.e., IGR/CEQA Coordinator) to coordinate any changes with the development team.

ACKNOWLEDGEMENTS

The District 6 traffic impact study guide provided the impetus and a starting point for developing the statewide guide. Special thanks is given to Marc Birnbaum for recognizing the need for a TIS guide and for his valued experience and vast knowledge of land use planning to significantly enhance the effort to adapt the District 6 guide for statewide use. Randy Treece from District 6 provided many hours of coordination, research and development of the original guide and should be commended for his diligent efforts. Sharri Bender Ehlert of District 6 provided much of the technical expertise in the adaptation of the District 6 guide and her efforts are greatly appreciated.

A special thanks is also given to all those Cities, Counties, Regional Agencies, Congestion Management Agencies, Consultants, and Caltrans Employees who reviewed the guide and provided input during the development of this Guide for the Preparation of Traffic Impact Studies.

TABLE OF CONTENTS

	<u>Contents</u>	Page Number
P	PREFACE and ACKNOWLEDGEMENTS	ii
I.	INTRODUCTION	1
П.	WHEN A TRAFFIC IMPACT STUDY IS NEEDED	1
	A. Trip Generation Thresholds	2
	B. ExceptionsC. Updating An Existing Traffic Impact Study	2
III.	SCOPE OF TRAFFIC IMPACT STUDY	2
	A. Boundaries of the Traffic Impact Study	2
	B. Traffic Analysis Scenarios	2
IV.	TRAFFIC DATA	4
	A. Trip Generation	4
	B. Traffic Counts	4
	C. Peak Hours	4
	D. Travel Forecasting (Transportation Modeling)	5
V.	TRAFFIC IMPACT ANALYSIS METHODOLOGIES	5
	A. Freeway Sections	5
	B. Weaving Areas	5
	C. Ramps and Ramp Junctions	5 5 5 5
	D. Multi-lane Rural and Urban Highways	5
	E. Two-lane Highways	5
	F. Signalized Intersections	5
	G. Unsignalized Intersections	5
	H. Transit Capacity	5
	I. Pedestrians	5
	J. Bicycles	5
	K. Caltrans Criteria/Warrants	5
	L. Channelization	5
VI.	MITIGATION MEASURES	6

Appendix "A" Minimum Contents of Traffic Impact Study Appendix "B" Methodology for Calculating Equitable Mitigation Measures Appendix "C" Measures of Effectiveness by Facility Type

I. INTRODUCTION

Caltrans desires to provide a safe and efficient State transportation system for the citizens of California pursuant to various Sections of the California Streets and Highway Code. This is done in partnership with local and regional agencies through procedures established by the California Environmental Quality Act (CEQA) and other land use planning processes. The intent of this guide is to provide a starting point and a consistent basis in which Caltrans evaluates traffic impacts to State highway facilities. The applicability of this guide for local streets and roads (non-State highways) is at the discretion of the effected jurisdiction.

Caltrans reviews federal, State, and local agency development projects¹, and land use change proposals for their potential impact to State highway facilities. The primary objectives of this guide is to provide:

- puidance in determining if and when a traffic impact study (TIS) is needed,
- consistency and uniformity in the identification of traffic impacts generated by local land use proposals,
- consistency and equity in the identification of measures to mitigate the traffic impacts generated by land use proposals,
- lead agency² officials with the information necessary to make informed decisions regarding the existing and proposed transportation infrastructure (see Appendix A, Minimum Contents of a TIS)
- TIS requirements early in the planning phase of a project (i.e., initial study, notice of preparation, or earlier) to eliminate potential delays later,
- a quality TIS by agreeing to the assumptions, data requirements, study scenarios, and analysis methodologies prior to beginning the TIS, and
- early coordination during the planning phases of a project to reduce the time and cost of preparing a TIS.

II. WHEN A TRAFFIC IMPACT STUDY IS NEEDED

The level of service³ (LOS) for operating State highway facilities is based upon measures of effectiveness (MOEs). These MOEs (see Appendix "C-2") describe the measures best suited for analyzing State highway facilities (i.e., freeway segments, signalized intersections, on- or off-ramps, etc.). Caltrans endeavors to maintain a target LOS at the transition between LOS "C" and LOS "D" (see Appendix "C-3") on State highway facilities, however, Caltrans acknowledges that this may not always be feasible and recommends that the lead agency consult with Caltrans to determine the appropriate target LOS. If an existing State highway facility is operating at less than the appropriate target LOS, the existing MOE should be maintained.

¹ "Project" refers to activities directly undertaken by government, financed by government, or requiring a permit or other approval from government as defined in Section 21065 of the Public Resources Code and Section 15378 of the California Code of Regulations.

² "Lead Agency" refers to the public agency that has the principal responsibility for carrying out or approving a project. Defined in Section 21165 of the Public Resources Code, the "California Environmental Quality Act, and Section 15367 of the California Code of Regulations.

³ "Level of service" as defined in the latest edition of the Highway Capacity Manual, Transportation Research Board, National Research Council.

A. Trip Generation Thresholds

The following criterion is a starting point in determining when a TIS is needed. When a project:

- 1. Generates over 100 peak hour trips assigned to a State highway facility
- 2. Generates 50 to 100 peak hour trips assigned to a State highway facility and, affected State highway facilities are experiencing noticeable delay; approaching unstable traffic flow conditions (LOS "C" or "D").
- 3. Generates 1 to 49 peak hour trips assigned to a State highway facility the following are examples that may require a full TIS or some lesser analysis⁴:
 - a. Affected State highway facilities experiencing significant delay; unstable or forced traffic flow conditions (LOS "E" or "F").
 - b. The potential risk for a traffic incident is significantly increased (i.e., congestion related collisions, non-standard sight distance considerations, increase in traffic conflict points, etc.).
 - c. Change in local circulation networks that impact a State highway facility (i.e., direct access to State highway facility, a non-standard highway geometric design, etc.).

Note: A traffic study may be as simple as providing a traffic count to as complex as a microscopic simulation. The appropriate level of study is determined by the particulars of a project, the prevailing highway conditions, and the forecasted traffic.

B. Exceptions

Exceptions require consultation between the lead agency, Caltrans, and those preparing the TIS. When a project's traffic impact to a State highway facility can clearly be anticipated without a study and all the parties involved (lead agency, developer, and the Caltrans district office) are able to negotiate appropriate mitigation, a TIS may not be necessary.

C. Updating An Existing Traffic Impact Study

A TIS requires updating when the amount or character of traffic is significantly different from an earlier study. Generally a TIS requires updating every two years. A TIS may require updating sooner in rapidly developing areas and not as often in slower developing areas. In these cases, consultation with Caltrans is strongly recommended.

III. SCOPE OF TRAFFIC IMPACT STUDY

Consultation between the lead agency, Caltrans, and those preparing the TIS is recommended before commencing work on the study to establish the appropriate scope. At a minimum, the TIS should include the following:

A. Boundaries of the Traffic Impact Study

All State highway facilities impacted in accordance with the criteria in Section II should be studied. Traffic impacts to local streets and roads can impact intersections with State highway facilities. In these cases, the TIS should include an analysis of adjacent local facilities, upstream and downstream, of the intersection (i.e., driveways, intersections, and interchanges) with the State highway.

⁴ A "lesser analysis" may include obtaining traffic counts, preparing signal warrants, or a focused TIS, etc.

B. Traffic Analysis Scenarios

Caltrans is interested in the effects of general plan updates and amendments as well as the effects of specific project entitlements (i.e., site plans, conditional use permits, subdivisions, rezoning, etc.) that have the potential to impact a State highway facility. The complexity or magnitude of the impacts of a project will normally dictate the scenarios necessary to analyze the project. Consultation between the lead agency, Caltrans, and those preparing the TIS is recommended to determine the appropriate scenarios for the analysis. The following scenarios should be addressed in the TIS when appropriate:

- 1. When only a general plan amendment or update is being sought, the following scenarios are required:
 - a) <u>Existing Conditions</u> Current year traffic volumes and peak hour LOS analysis of effected State highway facilities.
 - b) <u>Proposed Project Only with Select Zone⁵ Analysis</u> Trip generation and assignment for build-out of general plan.
 - c) General Plan Build-out Only Trip assignment and peak hour LOS analysis. Include current land uses and other pending general plan amendments.
 - d) General Plan Build-out Plus Proposed Project Trip assignment and peak hour LOS analysis. Include proposed project and other pending general plan amendments.
- 2. When a general plan amendment is not proposed and a proposed project is seeking specific entitlements (i.e., site plans, conditional use permits, sub-division, rezoning, etc.), the following scenarios must be analyzed in the TIS:
 - a) Existing Conditions Current year traffic volumes and peak hour LOS analysis of effected State highway facilities.
 - b) <u>Proposed Project Only</u> Trip generation, distribution, and assignment in the year the project is anticipated to complete construction.
 - c) <u>Cumulative Conditions</u> (Existing Conditions Plus Other Approved and Pending Projects Without Proposed Project) Trip assignment and peak hour LOS analysis in the year the project is anticipated to complete construction.
 - d) <u>Cumulative Conditions Plus Proposed Project</u> (Existing Conditions Plus Other Approved and Pending Projects Plus Proposed Project) Trip assignment and peak hour LOS analysis in the year the project is anticipated to complete construction.
 - e) <u>Cumulative Conditions Plus Proposed Phases</u> (Interim Years) Trip assignment and peak hour LOS analysis in the years the project phases are anticipated to complete construction.
- 3. In cases where the circulation element of the general plan is not consistent with the land use element or the general plan is outdated and not representative of current or future forecasted conditions, all scenarios from Sections III. B. 1. and 2. should be utilized with the exception of duplicating of item 2.a.

⁵ "Select zone" analysis represents a project only traffic model run, where the project's trips are distributed and assigned along a loaded highway network. This procedure isolates the specific impact on the State highway network.

IV. TRAFFIC DATA

Prior to any fieldwork, consultation between the lead agency, Caltrans, and those preparing the TIS is recommended to reach consensus on the data and assumptions necessary for the study. The following elements are a starting point in that consideration.

A. Trip Generation

The latest edition of the Institute of Transportation Engineers' (ITE) TRIP GENERATION report should be used for trip generation forecasts. Local trip generation rates are also acceptable if appropriate validation is provided to support them.

- 1. Trip Generation Rates When the land use has a limited number of studies to support the trip generation rates or when the Coefficient of Determination (\mathbb{R}^2) is below 0.75, consultation between the lead agency, Caltrans and those preparing the TIS is recommended.
- 2. Pass-by Trips⁶ Pass-by trips are only considered for retail oriented development. Reductions greater than 15% requires consultation and acceptance by Caltrans. The justification for exceeding a 15% reduction should be discussed in the TIS.
- 3. Captured Trips⁷ Captured trip reductions greater than 5% requires consultation and acceptance by Caltrans. The justification for exceeding a 5% reduction should be discussed in the TIS.
- 4. Transportation Demand Management (TDM) Consultation between the lead agency and Caltrans is essential before applying trip reduction for TDM strategies.

NOTE: Reasonable reductions to trip generation rates are considered when adjacent State highway volumes are sufficient (at least 5000 ADT) to support reductions for the land use.

B. Traffic Counts

Prior to field traffic counts, consultation between the lead agency, Caltrans and those preparing the TIS is recommended to determine the level of detail (e.g., location, signal timing, travel speeds, turning movements, etc.) required at each traffic count site. All State highway facilities within the boundaries of the TIS should be considered. Common rules for counting vehicular traffic include but are not limited to:

- 1. Vehicle counts should be conducted on Tuesdays, Wednesdays, or Thursdays during weeks not containing a holiday and conducted in favorable weather conditions.
- 2. Vehicle counts should be conducted during the appropriate peak hours (see peak hour discussion below).
- 3. Seasonal and weekend variations in traffic should also be considered where appropriate (i.e., recreational routes, tourist attractions, harvest season, etc.).

C. Peak Hours

To eliminate unnecessary analysis, consultation between the lead agency, Caltrans and those preparing the TIS is recommended during the early planning stages of a project. In general, the TIS should include a morning (a.m.) and an evening (p.m.) peak hour analyses. Other peak hours (e.g., 11:30 a.m. to 1:30 p.m., weekend, holidays, etc.) may also be required to determine the significance of the traffic impacts generated by a project.

^{6 &}quot;Pass-by" trips are made as intermediate stops between an origin and a primary trip destination (i.e., home to work, home to shopping, etc.).

7 "Captured Trips" are trips that do not enter or leave the driveways of a project's boundary within a mixed-use development.

D. Travel Forecasting (Transportation Modeling)

The local or regional traffic model should reflect the most current land use and planned improvements (i.e., where programming or funding is secured). When a general plan build-out model is not available, the closest forecast model year to build-out should be used. If a traffic model is not available, historical growth rates and current trends can be used to project future traffic volumes. The TIS should clearly describe any changes made in the model to accommodate the analysis of a proposed project.

V. TRAFFIC IMPACT ANALYSIS METHODOLOGIES

Typically, the traffic analysis methodologies for the facility types indicated below are used by Caltrans and will be accepted without prior consultation. When a State highway has saturated flows, the use of a micro-simulation model is encouraged for the analysis (please note however, the micro-simulation model must be calibrated and validated for reliable results). Other analysis methods may be accepted, however, consultation between the lead agency, Caltrans and those preparing the TIS is recommended to agree on the data necessary for the analysis.

- A. Freeway Segments Highway Capacity Manual (HCM)*, operational analysis
- B. Weaving Areas Caltrans Highway Design Manual (HDM)
- C. Ramps and Ramp Junctions HCM*, operational analysis or Caltrans HDM, Caltrans Ramp Metering Guidelines (most recent edition)
- D. Multi-Lane Highways HCM*, operational analysis
- E. Two-lane Highways HCM*, operational analysis
- F. <u>Signalized Intersections</u>⁸ HCM*, Highway Capacity Software**, operational analysis, TRAFFIXTM**, Synchro**, see footnote 8
- G. <u>Unsignalized Intersections</u> HCM*, operational analysis, Caltrans Traffic Manual for signal warrants if a signal is being considered
- H. Transit HCM*, operational analysis
- I. Pedestrians HCM*
- J. Bicycles HCM*
- K. <u>Caltrans Criteria/Warrants</u> Caltrans Traffic Manual (stop signs, traffic signals, freeway lighting, conventional highway lighting, school crossings)
- L. <u>Channelization</u> Caltrans guidelines for Reconstruction of Intersections, August 1985, Ichiro Fukutome
- *The most current edition of the Highway Capacity Manual, Transportation Research Board, National Research Council, should be used.
- **NOTE: Caltrans does not officially advocate the use of any special software. However, consistency with the HCM is advocated in most but not all cases. The Caltrans local development review units utilize the software mentioned above. If different software or analytical techniques are used for the TIS then consultation between the lead agency, Caltrans and those preparing the TIS is recommended. Results that are significantly different than those produced with the analytical techniques above should be challenged.

⁸ The procedures in the Highway Capacity Manual "do not explicitly address operations of closely spaced signalized intersections. Under such conditions, several unique characteristics must be considered, including spill-back potential from the downstream intersection to the upstream intersection, effects of downstream queues on upstream saturation flow rate, and unusual platoon dispersion or compression between intersections. An example of such closely spaced operations is signalized ramp terminals at urban interchanges. Queue interactions between closely spaced intersections may seriously distort the procedures in" the HCM.

VI. MITIGATION MEASURES

The TIS should provide the nexus [Nollan v. California Coastal Commission, 1987, 483 U.S. 825 (108 S.Ct. 314)] between a project and the traffic impacts to State highway facilities. The TIS should also establish the rough proportionality [Dolan v. City of Tigard, 1994, 512 U.S. 374 (114 S. Ct. 2309)] between the mitigation measures and the traffic impacts. One method for establishing the rough proportionality or a project proponent's equitable responsibility for a project's impacts is provided in Appendix "B." Consultation between the lead agency, Caltrans and those preparing the TIS is recommended to reach consensus on the mitigation measures and who will be responsible.

Mitigation measures must be included in the traffic impact analysis. This determines if a project's impacts can be eliminated or reduced to a level of insignificance. Eliminating or reducing impacts to a level of insignificance is the standard pursuant to CEQA and the National Environmental Policy Act (NEPA). The lead agency is responsible for administering the CEQA review process and has the principal authority for approving a local development proposal or land use change. Caltrans, as a responsible agency, is responsible for reviewing the TIS for errors and omissions that pertain to State highway facilities. However, the authority vested in the lead agency under CEQA does not take precedence over other authorities in law.

If the mitigation measures require work in the State highway right-of-way an encroachment permit from Caltrans will be required. This work will also be subject to Caltrans standards and specifications. Consultation between the lead agency, Caltrans and those preparing the TIS early in the planning process is strongly recommended to expedite the review of local development proposals and to reduce conflicts and misunderstandings in both the local agency CEQA review process as well as the Caltrans encroachment permit process.

APPENDIX "A"

MINIMUM CONTENTS

OF A

TRAFFIC IMPACT STUDY

MINIMUM CONTENTS OF TRAFFIC IMPACT STUDY REPORT

I. EXECUTIVE SUMMARY

II. TABLE OF CONTENTS

- A. List of Figures (Maps)
- B. List of Tables

III. INTRODUCTION

- A. Description of the proposed project
- B. Location of project
- C. Site plan including all access to State highways (site plan, map)
- D. Circulation network including all access to State highways (vicinity map)
- E. Land use and zoning
- F. Phasing plan including proposed dates of project (phase) completion
- G. Project sponsor and contact person(s)
- H. References to other traffic impact studies

IV. TRAFFIC ANALYSIS

- A. Clearly stated assumptions
- B. Existing and projected traffic volumes (including turning movements), facility geometry (including storage lengths), and traffic controls (including signal phasing and multisignal progression where appropriate) (figure)
- C. Project trip generation including references (table)
- D. Project generated trip distribution and assignment (figure)
- E. LOS and warrant analyses existing conditions, cumulative conditions, and full build of general plan conditions with and without project

V. CONCLUSIONS AND RECOMMENDATIONS

- A. LOS and appropriate MOE quantities of impacted facilities with and without mitigation measures
- B. Mitigation phasing plan including dates of proposed mitigation measures
- C. Define responsibilities for implementing mitigation measures
- D. Cost estimates for mitigation measures and financing plan

VI. APPENDICES

- A. Description of traffic data and how data was collected
- B. Description of methodologies and assumptions used in analyses
- C. Worksheets used in analyses (i.e., signal warrant, LOS, traffic count information, etc.)

APPENDIX "B"

METHODOLOGY FOR

CALCULATING EQUITABLE

MITIGATION MEASURES

METHOD FOR CALCULATING EQUITABLE MITIGATION MEASURES

The methodology below is neither intended as, nor does it establish, a legal standard for determining equitable responsibility and cost of a project's traffic impact, the intent is to provide:

- 1. A starting point for early discussions to address traffic mitigation equitably.
- 2. A means for calculating the equitable share for mitigating traffic impacts.
- 3. A means for establishing rough proportionality [Dolan v. City of Tigard, 1994, 512 U.S. 374 (114 S. Ct. 2309)].

The formulas should be used when:

- A project has impacts that do not immediately warrant mitigation, but their cumulative effects are significant and will require mitigating in the future.
- A project has an immediate impact and the lead agency has assumed responsibility for addressing operational improvements

NOTE: This formula is not intended for circumstances where a project proponent will be receiving a substantial benefit from the identified mitigation measures. In these cases, (e.g., mid-block access and signalization to a shopping center) the project should take full responsibility to toward providing the necessary infrastructure.

EQUITABLE SHARE RESPONSIBILITY: Equation C-1

NOTE: $T_E < T_{B_i}$ see explanation for T_B below.

$$P = \frac{T}{T_B - T_E}$$

Where:

P = The equitable share for the proposed project's traffic impact.

T = The vehicle trips generated by the project during the peak hour of adjacent State highway facility in vehicles per hour, vph.

T_B = The forecasted traffic volume on an impacted State highway facility at the time of general plan build-out (e.g., 20 year model or the furthest future model date feasible), vph.

T_E = The traffic volume existing on the impacted State highway facility plus other approved projects that will generate traffic that has yet to be constructed/opened, vph.

EQUITABLE COST: Equation C-2

$$C = P(C_T)$$

Where:

- C = The equitable cost of traffic mitigation for the proposed project, (\$). (Rounded to nearest one thousand dollars)
- P = The equitable share for the project being considered.
- C_T = The total cost estimate for improvements necessary to mitigate the forecasted traffic demand on the impacted State highway facility in question at general plan build-out, (\$).

NOTES

- 1. Once the equitable share responsibility and equitable cost has been established on a per trip basis, these values can be utilized for all projects on that State highway facility until the forecasted general plan build-out model is revised.
- 2. Truck traffic should be converted to passenger car equivalents before utilizing these equations (see the Highway Capacity Manual for converting to passenger car equivalents).

3. If the per trip cost is not used for all subsequent projects, then the equation below will be necessary to determine the costs for individual project impact and will require some additional accounting.

Equation C-2.A

$$C = P (C_T - C_c)$$

Where:

C = Same as equation C-2.

P = Same as equation C-2.

 C_T = Same as equation C-2.

 C_C = The combined dollar contributions paid and committed prior to current project's contribution. This is necessary to provide the appropriate cost proportionality. Example: For the first project to impact the State highway facility in question since the total cost (C_T) estimate for improvements necessary to mitigate the forecasted traffic demand, C_C would be equal to zero. For the second project however, C would equal $P_2(C_T - C_1)$ and for the third project to come along C would equal $P_3[C_T - (C_1 + C_2)]$ and so on until build-out or the general plan build-out was recalculated.

APPENDIX "C"

MEASURES OF EFFECTIVENESS

\mathbf{BY}

FACILITY TYPE

MEASURES OF EFFECTIVENESS BY FACILITY TYPE

TYPE OF FACILITY	MEASURE OF EFFECTIVENESS (MOE)
Basic Freeway Segments	Density (pc/mi/ln)
Ramps	Density (pc/mi/ln)
Ramp Terminals	Delay (sec/veh)
Multi-Lane Highways	Density (pc/mi/ln)
Two-Lane Highways	Percent-Time-Following
	Average Travel Speed (mi/hr)
Signalized Intersections	Control Delay per Vehicle (sec/veh)
Unsignalized Intersections	Average Control Delay per Vehicle (sec/veh)
Urban Streets	Average Travel Speed (mi/hr)

Measures of effectiveness for level of service definitions located in the most recent version of the Highway Capacity Manual, Transportation Research Board, National Research Council.

Transition between LOS "C" and LOS "D" Criteria (Reference Highway Capacity Manual)

BASIC FREEWAY SEGMENTS @ 65 mi/hr

LOS	Maximum Density (pc/mi/ln)	Minimum Speed (mph)	Maximum v/c	Maximum Service Flow Rate (pc/hr/ln)
A	11	65.0	0.30	710
В	18	65.0	0.50	1170
C	26	64.6	0.71	1680
D	35	59.7	0.89	2090
E	45	52.2	1.00	2350

SIGNALIZED INTERSECTIONS and RAMP TERMINALS

LOS	Control Delay per Vehicle (sec/veh)
A	≤ 10
В	> 10 - 20
C	> 20 - 35
D	> 35 - 55
E	> 55 - 80
F	> 80

MULTI-LANE HIGHWAYS @ 55 mi/hr

LOS	Maximum Density (pc/mi/ln)	Minimum Speed (mph)	Maximum v/c	Maximum Service Flow Rate (pc/hr/ln)
A	11	55.0	0.29	600
В	18	55.0	0.47	990
C	26	54.9	0.68	1430
D	35	52.9	0.88	1850
E	41	51.2	1.00	2100

Dotted line represents the transition between LOS "C" and LOS "D"

TWO-LANE HIGHWAYS

LOS	Percent Time-Spent-Following	Average Travel Speed (mi/hr)
A	≤ 35	> 55
В	> 35 - 50	> 50 - 55
C	>50.65	> 45 - 50
D	> 65 - 80	> 40 - 45
E	> 80	≤ 40

URBAN STREETS

Urban Street Class	I	П	Ш	IV
Range of FFS	55 to 45 mi/hr	45 to 35 mi/hr	35 to 30 mi/hr	35 to 25 mi/hr
Typical FFS	50 mi/hr	40 mi/hr	35 mi/hr	30 mi/hr
LOS		Average Trave	l Speed (mi/hr)	22.
A	> 42	> 35	> 30	> 25
В	> 34 - 42	> 28 - 35	> 24 - 30	> 19 - 25
C	> 27 - 34	> 22 - 28	> 18 - 24	> 13 - 19
D	> 21 - 27	> 17 - 22	> 14 - 18	> 9 - 13
Æ	> 16 - 21	> 13 - 17	> 10 - 14	> 7 - 9
JF	≤ 16	≤ 13	≤ 10	≤ 7

Dotted line represents the transition between LOS "C" and LOS "D"

GRAY DAVIS
Governor

MARIA CONTRERAS-SWEET

Secretary

Business, Transportation and Housing Agency

JEFF MORALES

Director

California Department of Transportation

RANDELL H. IWASAKI

Deputy Director

Maintenance and Operations

BRIAN J. SMITH

Deputy Director

Planning and Modal Programs

JOHN A. (Jack) BODA

Chief

Division of Traffic Operations

JOAN SOLLENBERGER

Chief

Division of Transportation Planning

Additional copies of these guidelines can be copied from the internet at, http://www.dot.ca.gov/hq/traffops/developserv/operationalsystems/

APPENDIX B

- > Existing Synchro Analysis
- Existing + Project Phases 1& 2 Conditions Synchro Analysis
 Existing + Project Phases 1-3 Conditions Synchro Analysis

> Existing - Synchro Analysis

Otay Hills 1: Alta Rd & Calzada De La Fuente

	•	4	†	-	1	+
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	W		4	7	7	↑
Volume (veh/h)	31	3	601	76	Ö	64
Sign Control	Stop		Free	2054		Free
Grade	0%		0%			0%
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	34	3	653	83	0	70
Pedestrians	TABLE					7/12/
Lane Width (ft)	FI - 17 15 1		F F - 7		TELS.	TO THE
Walking Speed (ft/s)						
Percent Blockage		1930		77.5		11-5-11
Right turn flare (veh)						
Median type	1 1 3 1 5		None			None
Median storage veh)						
Upstream signal (ft)			684			
pX, platoon unblocked	0.90	0.90			0.90	
vC, conflicting volume	723	653			736	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	636	559			651	
tC, single (s)	6.4	6.2			4.1	
tC, 2 stage (s)						
tF (s)	3.5	3.3			2.2	
p0 queue free %	92	99			100	
cM capacity (veh/h)	398	476			842	
Direction, Lane #	WB1	NB 1	NB 2	SB 1	SB 2	
Volume Total	37	653	83	0	70	
Volume Left	34	0	0	0	0	
Volume Right	3	0	83	0	0	
cSH	403	1700	1700	1700	1700	
Volume to Capacity	0.09	0.38	0.05	0.00	0.04	
Queue Length 95th (ft)	8	0	0	0	0	
Control Delay (s)		0.0	0.0	0.0	0.0	
Lane LOS						
Approach Delay (s)	14.8	0.0		0.0		
Approach LOS	В					
		200		F	Topic .	
Average Delay						- Constant
	ation			IÇ	U Level o	f Service
Analysis Period (min)			15			
Control Delay (s) Lane LOS Approach Delay (s) Approach LOS Intersection Summary Average Delay Intersection Capacity Utiliza	14.8 B 14.8 B		0.0 0.7 41.6%	0.0	0 0.0	of Service

	1	*	†	-	-	ļ			
Movement	WBL	WBR	NBT	NBR	SBL	SBT			- 1-9
Lane Configurations	W		A	7	7	4			
Volume (veh/h)	66	0	84	11	2	418			
Sign Control	Stop		Free	244		Free			
Grade	0%		0%			0%			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92			
Hourly flow rate (vph)	72	0	91	12	2	454			
Pedestrians	345		- 4		- 7	39/1			
Lane Width (ft)									
Walking Speed (ft/s)									
Percent Blockage									
Right turn flare (veh)									
Median type			None	-		None	-		
Median storage veh)			HOHE			None			
Upstream signal (ft)			684						
pX, platoon unblocked			004	1		-20			
vC, conflicting volume	550	91			103				
vC1, stage 1 conf vol	550	91		1111	103				
vC2, stage 2 conf vol vCu, unblocked vol	550	91			103				
	6.4	6.2			4.1				-
tC, single (s)	0.4	0.2			4.1				
C, 2 stage (s)	2.5	3.3			2.2				
F (s)	3.5								
o0 queue free %	86	100	_		100				
cM capacity (veh/h)	495	966			1489				14-
Direction, Lane #	WB1	NB 1	NB 2	SB 1	SB 2				
/olume Total	72	91	12	2	454				
/olume Left	72	0	0	2	0				
Volume Right	0	0	12	0	0				
SH	495	1700	1700	1489	1700				
Volume to Capacity	0.14	0.05	0.01	0.00	0.27			•	
Queue Length 95th (ft)	13	0	0	0	0				
Control Delay (s)	13.5	0.0	0.0	7.4	0.0				
ane LOS	В			Α					
Approach Delay (s)	13.5	0.0		0.0					
Approach LOS	В								
ntersection Summary				249		-2-3	7-17		
Average Delay			1.6						
ntersection Capacity Utilization	n		32.3%	IC	U Level o	of Service		Α	
Analysis Period (min)			15						
Analysis Period (min)			15						

	→	1	-	1	4	†	1	1	
Lane Group	EBT	WBL	WBT	WBR	NBL	NBT	SBT	SBR	100
Lane Configurations	1	7	*	7	7	1>	4	7	
Volume (vph)	0	16	1	1	1	676	93	1	
Turn Type	NA	Perm	NA	Perm	Perm	NA	NA	Perm	
Protected Phases	4		8			2	6		
Permitted Phases		8		8	2		100	6	
Detector Phase	4	8	8	8	2	2	6	6	
Switch Phase									
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
Minimum Split (s)	20.5	20.5	20.5	20.5	20.5	20.5	20.5	20.5	
Total Split (s)	20.6	20.6	20.6	20.6	39.4	39.4	39.4	39.4	
Total Split (%)	34.3%	34.3%	34.3%	34.3%	65.7%	65.7%	65.7%	65.7%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	
Lead/Lag									
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	Min	Min	Min	Min	

Cycle Length: 60 Actuated Cycle Length: 38.7 Natural Cycle: 60

Control Type: Actuated-Uncoordinated

Splits and Phases: 2: Alta Rd & Lone Star Rd/Lone Start Rd

₫	₽ ø4
39.4s	20.6 s
₩ ø6	₩ p8
39.4s	20.6 g

	•	→	*	1	←	1	4	†	1	-	1	4
Movement	EH!	F81	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	1→		ħ	↑	7	Ŋ	7>		7	4	7
Volume (vph)	0	0	2	16	1	1	1	676	19	0	93	1
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.5		4.5	4.5	4.5	4.5	4.5			4.5	4.5
Lane Util. Factor		1.00		1.00	1.00	1.00	1.00	1.00			1.00	1.00
Frt		0.85		1.00	1.00	0.85	1.00	1.00			1.00	0.85
Fit Protected		1.00		0.95	1.00	1.00	0.95	1.00			1.00	1.00
Satd. Flow (prot)		1583		1770	1863	1583	1770	1855			1863	1583
Flt Permitted		1.00		1.00	1.00	1.00	0.69	1.00			1.00	1.00
Satd. Flow (perm)		1583		1863	1863	1583	1288	1855			1863	1583
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	0	2	17	1	1	1	735	21	0	101	1
RTOR Reduction (vph)	0	2	0	0	0	1	0	1	0	0	0	0
Lane Group Flow (vph)	0	0	0	17	1	0	1	755	0	0	101	1
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA		Perm	NA	Perm
Protected Phases	7 (1111	4		1 0,111	8	7 01117	7 01111	2			6	
Permitted Phases	4			8		8	2	-		6		6
Actuated Green, G (s)		0.9		0.9	0.9	0.9	32.3	32.3			32.3	32.3
Effective Green, g (s)		0.9		0.9	0.9	0.9	32.3	32.3			32.3	32.3
Actuated g/C Ratio		0.02		0.02	0.02	0.02	0.77	0.77			0.77	0.77
Clearance Time (s)		4.5		4.5	4.5	4.5	4.5	4.5			4.5	4.5
Vehicle Extension (s)		3.0	1000	3.0	3.0	3.0	3.0	3.0			3.0	3.0
Lane Grp Cap (vph)		33		39	39	33	985	1419			1425	1211
v/s Ratio Prot		0.00			0.00		-	c0.41			0.05	
v/s Ratio Perm		0.00		c0.01	0.00	0.00	0.00					0.00
v/c Ratio		0.00		0.44	0.03	0.00	0.00	0.53			0.07	0.00
Uniform Delay, d1		20.2		20.4	20.2	20.2	1.2	2.0			1.2	1.2
Progression Factor		1.00		1.00	1.00	1.00	1.00	1.00			1.00	1.00
Incremental Delay, d2		0.0		7.6	0.3	0.0	0.0	0.4			0.0	0.0
Delay (s)		20.2		28.0	20.5	20.2	1.2	2.3			1.2	1.2
Level of Service		С		С	С	C	A	A			A	A
Approach Delay (s)		20.2			27.2			2.3			1.2	
Approach LOS		С			C			A			Α	
Intersection Summary				300			100	-			-	50
HCM 2000 Control Delay			2.8	Н	CM 2000	Level of S	Service		Α			
HCM 2000 Volume to Capac	ity ratio		0.53									
Actuated Cycle Length (s)			42.2	Su	ım of lost	time (s)			9.0			
Intersection Capacity Utilizat	ion		51.8%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									
c Critical Lane Group												

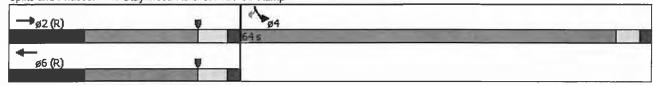
	-	1	←	*	†	↓	
Lane Group	EBT	WBL	WBT	WBR	NBT	SBT	
Lane Configurations	1>	7	4	7	4	4	
Volume (vph)	0	9	1	1	94	492	
Turn Type	NA	Perm	NA	Perm	NA	NA	
Protected Phases	4		8		2	6	
Permitted Phases		8		8			
Detector Phase	4	8	8	8	2	6	
Switch Phase							
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	
Minimum Split (s)	20.5	20.5	20.5	20.5	20.5	20.5	
Total Split (s)	20.6	20.6	20.6	20.6	39.4	39.4	
Total Split (%)	34.3%	34.3%	34.3%	34.3%	65.7%	65.7%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.5	4.5	4.5	4.5	4.5	4.5	
Lead/Lag							
Lead-Lag Optimize?							
Recall Mode	None	None	None	None	Min	Min	400

Cycle Length: 60
Actuated Cycle Length: 32.9
Natural Cycle: 45
Control Type: Actuated-Uncoordinated

Splits and Phases: 2: Alta Rd & Lone Star Rd/Lone Start Rd

	*	→	*	1	←	*	1	†	1	-	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	1}		ሻ	4	7	7	7>		7	4	۴
Volume (vph)	0	0	1	9	1	1	0	94	6	0	492	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.5		4.5	4.5	4.5		4.5			4.5	
Lane Util. Factor		1.00		1.00	1.00	1.00		1.00			1.00	
Frt		0.85		1.00	1.00	0.85		0.99			1.00	
Flt Protected		1.00		0.95	1.00	1.00		1.00			1.00	
Satd. Flow (prot)		1583		1770	1863	1583		1845			1863	
Flt Permitted		1.00		1.00	1.00	1.00		1.00			1.00	
Satd. Flow (perm)		1583		1863	1863	1583		1845			1863	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	0	1	10	1	1	0	102	7	0	535	0
RTOR Reduction (vph)	0	1	0	0	0	1	0	2	0	0	0	0
Lane Group Flow (vph)	0	0	0	10	1	0	0	107	0	0	535	0
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA		Perm	NA	Perm
Protected Phases		4			8			2			6	
Permitted Phases	4			8		8	2			6	**	6
Actuated Green, G (s)		0.9		0.9	0.9	0.9		26.6			26.6	
Effective Green, g (s)		0.9		0.9	0.9	0.9		26.6			26.6	
Actuated g/C Ratio		0.02		0.02	0.02	0.02		0.73			0.73	HEN
Clearance Time (s)		4.5		4.5	4.5	4.5		4.5			4.5	
Vehicle Extension (s)		3.0		3.0	3.0	3.0	-	3.0			3.0	
Lane Grp Cap (vph)		39		45	45	39		1344			1357	
v/s Ratio Prot		0.00			0.00		-	0.06			c0.29	
v/s Ratio Perm		10.001.0		c0.01	25000000	0.00					1560, 250	
v/c Ratio		0.00		0.22	0.02	0.00		0.08			0.39	
Uniform Delay, d1		17.4		17.5	17.4	17.4		1.4			1.9	
Progression Factor		1.00		1.00	1.00	1.00		1.00			1.00	
Incremental Delay, d2		0.0		2.5	0.2	0.0		0.0			0.2	
Delay (s)		17.4		20.0	17.6	17.4		1.5			2.1	
Level of Service		В		В	В	В		Α			Α	
Approach Delay (s)		17.4			19.5			1.5			2.1	
Approach LOS		В			В			Α			Α	
Intersection Summary												
HCM 2000 Control Delay			2.3	Н	CM 2000	Level of S	Service		Α			
HCM 2000 Volume to Capa	city ratio		0.39									
Actuated Cycle Length (s)			36.5	Su	m of lost	time (s)			9.0			
Intersection Capacity Utiliza	ition		40.6%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									
c Critical Lane Group												

-	←	1	4			
EBT	WBT	SBL	SBR			
ተተተ	444	ሻሻ	74			
305	102	474	401			
NA	NA	Prot	Perm			
2	6	4				
			4			
2	6	4	4			
5.0	5.0	5.0	5.0			
27.0	31.7	21.7	21.7			
36.0	36.0	64.0	64.0			
36.0%	36.0%	64.0%	64.0%			
4.7	4.7	3.6	3.6			
2.0	2.0	2.0	2.0			
0.0	0.0	0.0	0.0			
6.7	6.7	5.6	5.6			
C-Max	C-Max	Max	Max			
	\$\partial \partial \part	††† ††† 305 102 NA NA 2 6 2 6 5.0 5.0 27.0 31.7 36.0 36.0 36.0% 36.0% 4.7 4.7 2.0 2.0 0.0 0.0	\$\frac{1}{1}\$ \$\frac{1}{1}\$ 305 102 474 NA NA Prot 2 6 4 2 6 4 5.0 5.0 5.0 27.0 31.7 21.7 36.0 36.0 64.0 36.0% 36.0% 64.0% 4.7 4.7 3.6 2.0 2.0 2.0 0.0 0.0 0.0 6.7 6.7 5.6	### ### ### ### ### ### ### ### ### ##	↑↑↑ ↑↑ ↑ 305 102 474 401 NA NA Prot Perm 2 6 4 2 6 4 4 2 6 4 5.0 5.0 5.0 27.0 31.7 21.7 21.7 36.0 36.0 64.0 64.0 36.0 36.0% 64.0% 64.0% 4.7 4.7 3.6 3.6 2.0 2.0 2.0 2.0 0.0 0.0 0.0 0.0 6.7 6.7 5.6 5.6	444 444 401 NA NA Prot Perm 2 6 4 2 6 4 4 4 5.0 5.0 5.0 27.0 31.7 21.7 36.0 36.0 64.0 64.0 64.0 36.0% 36.0% 64.0% 4.7 4.7 3.6 3.6 2.0 2.0 2.0 2.0 0.0 0.0 0.0 0.0 6.7 6.7 5.6 5.6


Cycle Length: 100
Actuated Cycle Length: 100

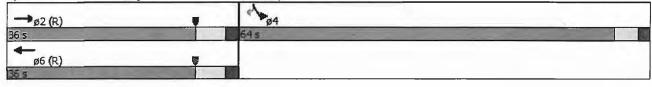
Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of Yellow

Natural Cycle: 55

Control Type: Actuated-Coordinated

Splits and Phases: 4: Otay Mesa Rd & SR-125 SB Ramp

	۶	→	-	•	-	1	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		ተተተ	ተተተ		ሻሻ	7	
Volume (vph)	0	305	102	0	474	401	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)		6.7	6.7		5.6	5.6	
Lane Util. Factor		0.91	0.91		0.97	1.00	
Frt		1.00	1.00		1.00	0.85	
Fit Protected		1.00	1.00		0.95	1.00	
Satd. Flow (prot)		5085	5085		3433	1583	
Flt Permitted		1.00	1.00		0.95	1.00	
Satd. Flow (perm)		5085	5085		3433	1583	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	0.02	332	111	0.02	515	436	
RTOR Reduction (vph)	0	0	0	0	0	181	
Lane Group Flow (vph)	0	332	111	0	515	255	
Turn Type	•	NA	NA		Prot	Perm	
Protected Phases		2	6		4	1 01111	
Permitted Phases		-			100	4	
Actuated Green, G (s)		29.3	29.3		58.4	58.4	
Effective Green, g (s)		29.3	29.3		58.4	58.4	
Actuated g/C Ratio		0.29	0.29		0.58	0.58	
Clearance Time (s)		6.7	6.7		5.6	5.6	
Vehicle Extension (s)		3.0	3.0	- 2	3.0	3.0	
Lane Grp Cap (vph)	-	1489	1489		2004	924	
v/s Ratio Prot		c0.07	0.02	24	0.15		
v/s Ratio Perm		00.01	0.02		5,,,0	c0.16	
v/c Ratio		0.22	0.07		0.26	0.28	
Uniform Delay, d1		26.7	25.6		10.2	10.3	
Progression Factor		0.67	0.92		1.00	1.00	
Incremental Delay, d2		0.3	0.1		0.3	0.7	
Delay (s)		18.3	23.6		10.5	11.1	
Level of Service		В	С		В	В	
Approach Delay (s)		18.3	23.6		10.7		
Approach LOS		В	С		В		
Intersection Summary					7 31		
HCM 2000 Control Delay			13.6	НС	CM 2000	Level of Service	В
HCM 2000 Volume to Capacity	ratio		0.26				
Actuated Cycle Length (s)			100.0	Su	m of lost	time (s)	12.3
ntersection Capacity Utilization			39.2%			of Service	Α
Analysis Period (min)			15	- 22			
c Critical Lane Group							


	-	—	1	1	
Lane Group	EBT	WBT	SBL	SBR	200
Lane Configurations	ተተተ	^	ሻሻ	7	
Volume (vph)	292	246	112	236	
Turn Type	NA	NA	Prot	Perm	
Protected Phases	2	6	4		
Permitted Phases				4	
Detector Phase	2	6	4	4	
Switch Phase					
Minimum Initial (s)	5.0	5.0	5.0	5.0	
Minimum Split (s)	27.0	31.7	21.7	21.7	
Total Split (s)	36.0	36.0	64.0	64.0	
Total Split (%)	36.0%	36.0%	64.0%	64.0%	
Yellow Time (s)	4.7	4.7	3.6	3.6	
All-Red Time (s)	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.7	6.7	5.6	5.6	
Lead/Lag					
Lead-Lag Optimize?					
Recall Mode	C-Max	C-Max	Max	Max	

Intersection Summa Cycle Length: 100

Actuated Cycle Length: 100
Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of Yellow

Natural Cycle: 55 Control Type: Actuated-Coordinated

Splits and Phases: 4: Otay Mesa Rd & SR-125 SB Ramp

	•	→	4		-	1
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		444	444		ሻሻ	7
Volume (vph)	0	292	246	0	112	236
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.7	6.7	.500	5.6	5.6
Lane Util. Factor		0.91	0.91		0.97	1.00
Frt		1.00	1.00		1.00	0.85
Flt Protected		1.00	1.00		0.95	1.00
Satd. Flow (prot)		5085	5085		3433	1583
Fit Permitted		1.00	1.00		0.95	1.00
		5085	5085		3433	1583
Satd. Flow (perm)	0.00			0.00		
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	317	267	0	122	257
RTOR Reduction (vph)	0	0	0	0	0	107
Lane Group Flow (vph)	0	317	267	0	122	150
Turn Type		NA	NA		Prot	Perm
Protected Phases		2	6		4	
Permitted Phases						4
Actuated Green, G (s)		29.3	29.3		58.4	58.4
Effective Green, g (s)		29.3	29.3		58.4	58.4
Actuated g/C Ratio		0.29	0.29		0.58	0.58
Clearance Time (s)		6.7	6.7		5.6	5.6
Vehicle Extension (s)		3.0	3.0		3.0	3.0
Lane Grp Cap (vph)		1489	1489		2004	924
v/s Ratio Prot		c0.06	0.05		0.04	
v/s Ratio Perm		a contraction				c0.09
v/c Ratio		0.21	0.18	5 3 1	0.06	0.16
Uniform Delay, d1		26.7	26.4		9.0	9.6
Progression Factor		0.73	0.92		1.00	1.00
Incremental Delay, d2		0.3	0.3		0.1	0.4
Delay (s)		19.8	24.6		9.0	9.9
Level of Service		В	C		A	A
Approach Delay (s)		19.8	24.6		9.6	
Approach LOS		В	C		Α.	
Intersection Summary HCM 2000 Control Delay			17.1	ш	N 2000	Level of S
			0.18	п	JIVI 2000	revel of 2
HCM 2000 Volume to Capacity	ratio		2504101-510	0		4: (a)
Actuated Cycle Length (s)	-		100.0		m of lost	THE RESERVE THE PARTY OF THE PA
Intersection Capacity Utilization			29.6%	IC	U Level o	of Service
Analysis Period (min)			15			
c Critical Lane Group						

•

	_		
Timing	Plar	n: AM	Peak

		\rightarrow		
Lane Group	EBL	EBT	WBT	WBR
Lane Configurations	77	ተተ	ተተኩ	7
Volume (vph)	61	714	102	36
Turn Type	Prot	NA	NA	Perm
Protected Phases	5		6	
Permitted Phases		2		6
Detector Phase	5	2	6	6
Switch Phase				
Minimum Initial (s)	5.0	5.0	5.0	5.0
Minimum Split (s)	10.2	20.5	28.7	28.7
Total Split (s)	32.0	100.0	68.0	68.0
Total Split (%)	32.0%	100.0%	68.0%	68.0%
Yellow Time (s)	3.2	3.0	4.7	4.7
All-Red Time (s)	2.0	0.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.2	3.0	6.7	6.7
Lead/Lag	Lead		Lag	Lag
Lead-Lag Optimize?	Yes		Yes	Yes
Recall Mode	None	C-Max	C-Max	C-Max

Intersection Summary

Cycle Length: 100

Actuated Cycle Length: 100

Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of Yellow, Master Intersection

Natural Cycle: 40

Control Type: Actuated-Coordinated

Splits and Phases: 5: Otay Mesa Rd & SR-125 NB Ramp

	•	→		*	-	1		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations	ሻሻ	44	ተ ቀጭ	7				
Volume (vph)	61	714	102	36	0	0		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	5.2	3.0	6.7	6.7				
Lane Util. Factor	0.97	0.95	0.86	0.86				
Frt	1.00	1.00	0.99	0.85				
Flt Protected	0.95	1.00	1.00	1.00				
Satd. Flow (prot)	3433	3539	4769	1362				
Flt Permitted	0.95	1.00	1.00	1.00				
Satd. Flow (perm)	3433	3539	4769	1362				
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92		
Adj. Flow (vph)	66	776	111	39	0	0		- 15
RTOR Reduction (vph)	0	0	1	6	0	0		
Lane Group Flow (vph)	66	776	116	27	0	0		
Turn Type	Prot	NA	NA	Perm				
Protected Phases	5		6	1 01111				
Permitted Phases		2	_	6				
Actuated Green, G (s)	6.2	100.0	81.9	81.9				
Effective Green, g (s)	6.2	100.0	81.9	81.9				
Actuated g/C Ratio	0.06	1.00	0.82	0.82				
Clearance Time (s)	5.2	3.0	6.7	6.7				
Vehicle Extension (s)	3.0	3.0	3.0	3.0				
Lane Grp Cap (vph)	212	3539	3905	1115				
v/s Ratio Prot	0.02	0000	0.02	1110				
v/s Ratio Perm		c0.22	0.02	0.02				
v/c Ratio	0.31	0.22	0.03	0.02				
Uniform Delay, d1	44.9	0.0	1.7	1.7				
Progression Factor	1.24	1.00	1.00	1.00				
Incremental Delay, d2	0.8	0.1	0.0	0.0				
Delay (s)	56.6	0.1	1.7	1.7				
Level of Service	E	Α	Α	Α				
Approach Delay (s)		4.6	1.7		0.0			
Approach LOS		Α	Α		Α			
Intersection Summary								
HCM 2000 Control Delay			4.1	HC	M 2000 I	Level of Service	e A	
HCM 2000 Volume to Capa	city ratio		0.25					
Actuated Cycle Length (s)			100.0	Su	m of lost	time (s)	11.9	
ntersection Capacity Utiliza	ition		39.2%	ICI	J Level o	f Service	A	
Analysis Period (min)			15					
Critical Lane Group								

•	-	←	*

Cycle Length: 100


Actuated Cycle Length: 100

Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of Yellow, Master Intersection

Natural Cycle: 40

Control Type: Actuated-Coordinated

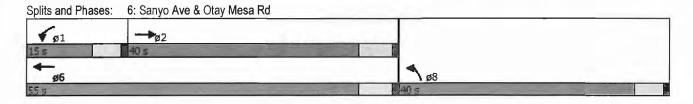
Splits and Phases: 5: Otay Mesa Rd & SR-125 NB Ramp



	*	→	—	*	1	4		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations	77	44	444	77				
Volume (vph)	158	236	241	194	0	0		200
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	5.2	3.0	6.7	6.7				
Lane Util. Factor	0.97	0.95	0.86	0.86				
Frt	1.00	1.00	0.96	0.85				
Flt Protected	0.95	1.00	1.00	1.00				
Satd. Flow (prot)	3433	3539	4602	1362				
Flt Permitted	0.95	1.00	1.00	1.00				
Satd. Flow (perm)	3433	3539	4602	1362				
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92		
Adj. Flow (vph)	172	257	262	211	0	0		
RTOR Reduction (vph)	0	0	23	24	0	0		
Lane Group Flow (vph)	172	257	342	84	0	0		
Turn Type	Prot	NA	NA	Perm				
Protected Phases	5		6					
Permitted Phases	- 1-20	2	-	6				
Actuated Green, G (s)	10.4	100.0	77.7	77.7				
Effective Green, g (s)	10.4	100.0	77.7	77.7				
Actuated g/C Ratio	0.10	1.00	0.78	0.78				
Clearance Time (s)	5.2	3.0	6.7	6.7				
Vehicle Extension (s)	3.0	3.0	3.0	3.0				
Lane Grp Cap (vph)	357	3539	3575	1058				
v/s Ratio Prot	c0.05		c0.07					
//s Ratio Perm	45.05	0.07		0.06				
v/c Ratio	0.48	0.07	0.10	0.08				
Uniform Delay, d1	42.3	0.0	2.7	2.6				
Progression Factor	0.69	1.00	1.00	1.00				
Incremental Delay, d2	1.0	0.0	0.1	0.1				
Delay (s)	30.3	0.0	2.7	2.8				
Level of Service	С	Α	Α	Α				
Approach Delay (s)		12.2	2.8		0.0			
Approach LOS		В	Α		Α			
Intersection Summary	1000			9.70				
HCM 2000 Control Delay	-		7.2	НС	CM 2000 I	Level of Service	Α	
HCM 2000 Volume to Capa	city ratio		0.14					
Actuated Cycle Length (s)			100.0	Su	m of lost	time (s)	11.9	
ntersection Capacity Utiliza	ation		29.6%	ICI	J Level o	f Service	Α	
Analysis Period (min)			15					
Critical Lane Group								

	-	1	-	1	
Lane Group	EBT	WBL	WBT	NBL	
Lane Configurations	1	ሻ	†	TY	
Volume (vph)	351	4	73	63	
Turn Type	NA	Prot	NA	Prot	
Protected Phases	2	1	6	8	
Permitted Phases					
Detector Phase	2	1	6	8	
Switch Phase					
Minimum Initial (s)	6.0	4.0	6.0	4.0	
Minimum Split (s)	24.0	9.3	24.0	23.3	
Total Split (s)	40.0	15.0	55.0	40.0	
Total Split (%)	42.1%	15.8%	57.9%	42.1%	
Yellow Time (s)	5.0	4.3	5.0	4.3	
All-Red Time (s)	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	5.3	6.0	5.3	
Lead/Lag	Lag	Lead			
Lead-Lag Optimize?	Yes	Yes			
Recall Mode	None	None	None	None	

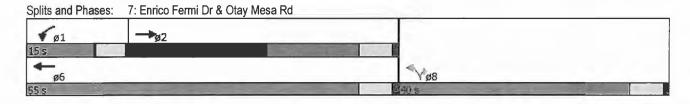
Cycle Length: 95
Actuated Cycle Length: 30.7
Natural Cycle: 60


Control Type: Actuated-Uncoordinated

	→	-	-	←	4	-
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	†	- CONC. 2 C	7		MAN	33-103
Volume (vph)	351	350	4	73	63	7
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0		5.3	6.0	5.3	
Lane Util, Factor	0.95		1.00	1.00	0.97	
Frt	0.93		1.00	1.00	0.98	
Flt Protected	1.00		0.95	1.00	0.96	
Satd. Flow (prot)	3274		1770	1863	3404	
Flt Permitted	1.00		0.95	1.00	0.96	
Satd. Flow (perm)	3274		1770	1863	3404	
	0.92	0.92	0.92	0.92	0.92	0.92
Peak-hour factor, PHF		A Transport				
Adj. Flow (vph)	382	380	4	79	68	8
RTOR Reduction (vph)	171	0	0	0	7	0
Lane Group Flow (vph)	591	0	4	79	69	0
Turn Type	NA		Prot	NA	Prot	
Protected Phases	2		1	6	8	
Permitted Phases	landar de la			- Colonia	No. of the last	
Actuated Green, G (s)	15.2		0.5	21.0	3.9	
Effective Green, g (s)	15.2		0.5	21.0	3.9	
Actuated g/C Ratio	0.42		0.01	0.58	0.11	
Clearance Time (s)	6.0		5.3	6.0	5.3	
Vehicle Extension (s)	3.5		2.0	3.5	2.0	
Lane Grp Cap (vph)	1374		24	1080	366	
v/s Ratio Prot	c0.18		0.00	c0.04	c0.02	
v/s Ratio Perm	- Jeanson		100 100			
v/c Ratio	0.43		0.17	0.07	0.19	
Uniform Delay, d1	7.4		17.6	3.3	14.7	
Progression Factor	1.00		1.00	1.00	1.00	
Incremental Delay, d2	0.3		1.2	0.0	0.1	
Delay (s)	7.7		18.8	3.4	14.8	
Level of Service	A		В	A	В	
Approach Delay (s)	7.7			4.1	14.8	
Approach LOS	A			A	В	
Intersection Summary HCM 2000 Control Delay			8.0	H	CM 2000	Level of Se
HCM 2000 Control Delay	acity ratio		0.38	11	OI41 2000	201010100
Actuated Cycle Length (s)	doity ratio		36.2	C.	um of lost	time (c)
Intersection Capacity Utilization	ation		33.7%		U Level c	1.7
	auUII			IC.	O Level C	i Selvice
Analysis Period (min)			15			
c Critical Lane Group						

	-	1	+	1	
Lane Group	EBT	WBL	WBT	NBL	
Lane Configurations	A \$	7	4	TW	
Volume (vph)	122	22	261	177	
Turn Type	NA	Prot	NA	Prot	
Protected Phases	2	1	6	8	
Permitted Phases					
Detector Phase	2	1	6	8	
Switch Phase					
Minimum Initial (s)	6.0	4.0	6.0	4.0	
Minimum Split (s)	24.0	9.3	24.0	23.3	
Total Split (s)	40.0	15.0	55.0	40.0	
Total Split (%)	42.1%	15.8%	57.9%	42.1%	
Yellow Time (s)	5.0	4.3	5.0	4.3	
All-Red Time (s)	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	5.3	6.0	5.3	
Lead/Lag	Lag	Lead	3		
Lead-Lag Optimize?	Yes	Yes			
Recall Mode	None	None	None	None	

Intersection Summary
Cycle Length: 95
Actuated Cycle Length: 31
Natural Cycle: 60
Control Type: Actuated-Uncoordinated



		*	1	-	4	-		
Movement	FBT	FBR	WBL	WBT	NBL	NBR		
Lane Configurations	1		*	4	N. S.A.			
Volume (vph)	122	122	22	261	177	24		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	6.0	-	5.3	6.0	5.3			
Lane Util. Factor	0.95		1.00	1.00	0.97			
Frt	0.93		1.00	1.00	0.98			
Flt Protected	1.00		0.95	1.00	0.96			
Satd. Flow (prot)	3274		1770	1863	3399			
Flt Permitted	1.00		0.95	1.00	0.96			
Satd. Flow (perm)	3274		1770	1863	3399			
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92		
Adj. Flow (vph)	133	133	24	284	192	26		
RTOR Reduction (vph)	88	0	0	0	15	0		
Lane Group Flow (vph)	178	0	24	284	203	0		
Turn Type	NA		Prot	NA	Prot			
Protected Phases	2		1	6	- 8			
Permitted Phases	7	-						
Actuated Green, G (s)	12.1		0.7	18.1	6.1			
Effective Green, g (s)	12.1		0.7	18.1	6.1			
Actuated g/C Ratio	0.34		0.02	0.51	0.17			
Clearance Time (s)	6.0		5.3	6.0	5.3			
Vehicle Extension (s)	3.5		2.0	3.5	2.0		**	
Lane Grp Cap (vph)	1115		34	949	584			
v/s Ratio Prot	0.05		0.01	c0.15	c0.06			
v/s Ratio Perm	SAM.							
v/c Ratio	0.16		0.71	0.30	0.35	4		
Uniform Delay, d1	8.2		17.3	5.0	12.9			
Progression Factor	1.00		1.00	1.00	1.00			
Incremental Delay, d2	0.1		42.4	0.2	0.1			
Delay (s)	8.2		59.7	5.2	13.1			
Level of Service	Α		Е	Α	В			
Approach Delay (s)	8.2			9.5	13.1			
Approach LOS	Α			Α	В			
Intersection Summary	9 9						77777	- 19 3
HCM 2000 Control Delay			10.1	Н	CM 2000	Level of Service	ce B	
HCM 2000 Volume to Capa	city ratio		0.40					
Actuated Cycle Length (s)			35.5	Si	um of lost	time (s)	16.6	
Intersection Capacity Utiliza	ition		30.3%	IC	U Level o	of Service	A	
Analysis Period (min)			15					
c Critical Lane Group								

	₩		7		
EBT	WBL	WBT	NBL	NBR	
1>	N	4	N	7	
336	79	48	19	345	
NA	Prot	NA	Perm	Perm	
2	1	6			
			8	8	
2	1	6	8	8	
6.0	4.0	6.0	4.0	4.0	
40.0	15.0	40.0	40.0	40.0	
40.0	15.0	55.0	40.0	40.0	
42.1%	15.8%	57.9%	42.1%	42.1%	
5.0	4.3	5.0	5.0	5.0	
1.0	0.5	1.0	1.0	1.0	
0.0	0.0	0.0	0.0	0.0	
6.0	4.8	6.0	6.0	6.0	
Lag	Lead				
Yes	Yes				
Min	None	Min	None	None	
	\$336 NA 2 2 6.0 40.0 40.0 42.1% 5.0 1.0 0.0 6.0 Lag Yes	336 79 NA Prot 2 1 2 1 6.0 4.0 40.0 15.0 40.0 15.0 42.1% 15.8% 5.0 4.3 1.0 0.5 0.0 0.0 6.0 4.8 Lag Lead Yes Yes	\$\frac{1}{336}\$ 79 48 \$\text{NA}\$ Prot NA \$\frac{2}{1}\$ 6 \$\frac{6}{6}.0\$ 4.0 6.0 \$\frac{4}{0}.0\$ 15.0 40.0 \$\frac{4}{0}.0\$ 15.0 55.0 \$\frac{42.1\%}{2}\$ 15.8\% 57.9\% \$\frac{5}{0}\$ 0.5 1.0 \$0.0 0.0 0.0 \$6.0 4.8 6.0 \$\text{Lag}\$ Lead \$\text{Yes}\$ Yes	1336 79 48 19 NA Prot NA Perm 2 1 6 8 2 1 6 8 2 1 6 8 6.0 4.0 6.0 4.0 40.0 15.0 40.0 40.0 40.0 15.0 55.0 40.0 42.1% 15.8% 57.9% 42.1% 5.0 4.3 5.0 5.0 1.0 0.5 1.0 1.0 0.0 0.0 0.0 0.0 6.0 4.8 6.0 6.0 Lag Lead Yes Yes	336 79 48 19 345 NA Prot NA Perm Perm 2 1 6 8 8 2 1 6 8 8 2 1 6 8 8 6.0 4.0 6.0 4.0 4.0 40.0 15.0 40.0 40.0 40.0 40.0 15.0 55.0 40.0 40.0 42.1% 15.8% 57.9% 42.1% 42.1% 5.0 4.3 5.0 5.0 5.0 1.0 0.5 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 6.0 4.8 6.0 6.0 6.0 Lag Lead Yes Yes

Cycle Length: 95

Actuated Cycle Length: 44.1
Natural Cycle: 95
Control Type: Actuated-Uncoordinated

-	*	1	-	1	1		
1111	1:01	:VBL	WBT	NBL	NBR		
1>			4	7	7		
	25		-	-	345		
100000000000000000000000000000000000000	10000				1900		
	1	4.8		6.0	6.0		
		1.00	1.00	1.00	1.00		
0.99		1.00	1.00	1.00	0.85		
1.00		0.95	1.00	0.95	1.00	_	
			1863	1770	1583		
200,000,000			1.00	0.95	1.00		
1845		1770	1863	1770	1583		
0.92	0.92	0.92	0.92	0.92	0.92		
365	27	86	52	21	375		
3	0	0	0	0	313		
389	0	86	52	21	62		
NA		Prot	NA	Perm	Perm		
2		1	6				
				8	8		
16.4		4.1	25.3	7.4	7.4		
16.4		4.1	25.3	7.4	7.4		
0.37		0.09	0.57	0.17	0.17		
6.0		4.8	6.0	6.0	6.0		
3.5		2.0	3.5	2.0	2.0		
676		162	1054	293	262		
c0.21		c0.05	0.03				
3333223				0.01	c0.04		
0.58		0.53	0.05	0.07	0.24		
11.4		19.4	4.3	15.7	16.2		
1.00		1.00	1.00	1.00	1.00		
1.3		1.7	0.0	0.0	0.2		
12.6		21.1	4.4	15.8	16.4		
В		C	Α	В	В		
12.6			14.8	16.3			
В			В	В			
				-			
		14.5	Н	CM 2000	Level of Service	B	
city ratio			111	CIVI 2000	ECACI OI OCIAIO	, ,	
ory rado			Şı.	ım of loet	time (s)	16.8	
fion			The sale of				
uon		A STATE OF THE PARTY OF THE PAR	10	O LOVOI C	// OCI NOC	n n	
		10					
	336 1900 6.0 1.00 0.99 1.00 1845 1.00 1845 0.92 365 3 389 NA 2 16.4 16.4 0.37 6.0 3.5 676 c0.21 0.58 11.4 1.00 1.3 12.6 B	336 25 1900 1900 6.0 1.00 0.99 1.00 1845 1.00 1845 0.92 0.92 365 27 3 0 389 0 NA 2 16.4 16.4 0.37 6.0 3.5 676 c0.21 0.58 11.4 1.00 1.3 12.6 B 12.6 B	\$\frac{1}{336}\$ 25 79 \$\frac{1}{900}\$ 1900 1900 \$\frac{6.0}{6.0}\$ 4.8 \$\frac{1}{.00}\$ 0.99 \$\frac{1}{.00}\$ 0.95 \$\frac{1}{1845}\$ 1770 \$\frac{1}{.00}\$ 0.92 \$\frac{3}{.65}\$ 27 86 \$\frac{3}{.3}\$ 0 0 \$\frac{3}{.89}\$ 0 86 NA Prot \$\frac{2}{.1}\$ 1 \$\frac{1}{.6.4}\$ 4.1 \$\frac{1}{.6.4}\$ 4.1 \$\frac{1}{.0.37}\$ 0.09 \$\frac{6}{.0}\$ 0.48 \$\frac{3}{.5}\$ 2.0 \$\frac{6}{.76}\$ 162 \$\frac{1}{.00}\$ 0.58 \$\frac{1}{.00}\$ 1.00 \$\frac{1}{.3}\$ 1.7 \$\frac{1}{.2.6}\$ 21.1 \$\frac{1}{.6}\$ 6 \$1	336 25 79 48 1900 1900 1900 1900 6.0 4.8 6.0 1.00 1.00 1.00 0.99 1.00 1.00 1.00 0.95 1.00 1845 1770 1863 1.00 0.95 1.00 1845 1770 1863 0.92 0.92 0.92 0.92 365 27 86 52 3 0 0 0 389 0 86 52 NA Prot NA 2 1 6 16.4 4.1 25.3 16.4 4.1 25.3 16.4 4.1 25.3 16.4 4.1 25.3 16.4 4.1 25.3 0.37 0.09 0.57 6.0 4.8 6.0 3.5 2.0 3.5 676 162 1054 c0.21 c0.05 0.03 0.58 0.53 0.05 11.4 19.4 4.3 1.00 1.00 1.00 1.3 1.7 0.0 12.6 21.1 4.4 B C A 12.6 14.8 B B	336 25 79 48 19 1900 1900 1900 1900 1900 6.0 4.8 6.0 6.0 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 0.95 1.00 0.95 1845 1770 1863 1770 1.00 0.95 1.00 0.95 1845 1770 1863 1770 0.92 0.92 0.92 0.92 0.92 365 27 86 52 21 3 0 0 0 0 389 0 86 52 21 NA Prot NA Perm 2 1 6 8 16.4 4.1 25.3 7.4 16.4 4.1 25.3 7.4 16.4 4.1 25.3 7.4 16.4 4.1 25.3 7.4 16.4 4.1 25.3 7.4 16.5 2.0 3.5 2.0 676 162 1054 293 c0.21 c0.05 0.03 0.01 0.58 0.53 0.05 0.07 11.4 19.4 4.3 15.7 1.00 1.00 1.00 1.00 1.3 1.7 0.0 0.0 1.3 1.3 1.7 0.0 0.0 1.3 1.3 1.7 0.0 0.0 1.3 1.3 1.7 0.0 0.0 1.3 1.3 1.7 0.0 0.0 1.3 1.3 1.7 0.0 0.0 1.	1	The Note of Part

	-	1	+	4	-	
Lane Group	EDT	WOL	WBT	NBL	NBR	
Lane Configurations	7>	N.	4	M	7	
Volume (vph)	88	395	271	18	100	
Turn Type	NA	Prot	NA	Perm	Perm	
Protected Phases	2	1	6			
Permitted Phases				8	8	
Detector Phase	2	1	6	8	8	
Switch Phase						
Minimum Initial (s)	6.0	4.0	6.0	4.0	4.0	
Minimum Split (s)	40.0	15.0	40.0	40.0	40.0	
Total Split (s)	40.0	20.0	60.0	40.0	40.0	
Total Split (%)	40.0%	20.0%	60.0%	40.0%	40.0%	
Yellow Time (s)	5.0	4.3	5.0	5.0	5.0	
All-Red Time (s)	1.0	0.5	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	4.8	6.0	6.0	6.0	
Lead/Lag	Lag	Lead				
Lead-Lag Optimize?	Yes	Yes				
Recall Mode	Min	None	Min	None	None	

Cycle Length: 100
Actuated Cycle Length: 47.3
Natural Cycle: 105

Control Type: Actuated-Uncoordinated

Splits and Phases: 7: Enrico Fermi Dr & Otay Mesa Rd

	-	7	1	←	1	-		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	f >		Ŋ	4	4	7		
Volume (vph)	88	37	395	271	18	100		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	6.0		4.8	6.0	6.0	6.0	7	
Lane Util. Factor	1.00		1.00	1.00	1.00	1.00		
Frt	0.96		1.00	1.00	1.00	0.85		
Flt Protected	1.00		0.95	1.00	0.95	1.00		
Satd. Flow (prot)	1789		1770	1863	1770	1583		
Flt Permitted	1.00		0.95	1.00	0.95	1.00		
Satd. Flow (perm)	1789		1770	1863	1770	1583		
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92		
Adj. Flow (vph)	96	40	429	295	20	109		
RTOR Reduction (vph)	18	0	0	0	0	97		
Lane Group Flow (vph)	118	0	429	295	20	12		
Turn Type	NA	****	Prot	NA	Perm	Perm		
Protected Phases	2		1	6				
Permitted Phases	357				8	8		
Actuated Green, G (s)	10.1		16.0	30.9	5.5	5.5		
Effective Green, g (s)	10.1		16.0	30.9	5.5	5.5		
Actuated g/C Ratio	0.21		0.33	0.64	0.11	0.11		
Clearance Time (s)	6.0		4.8	6.0	6.0	6.0		
Vehicle Extension (s)	3.5		2.0	3.5	2.0	2.0		
Lane Grp Cap (vph)	373		585	1189	201	179		
v/s Ratio Prot	c0.07	1	c0.24	0.16		- 1		
v/s Ratio Perm					c0.01	0.01		
v/c Ratio	0.32		0.73	0.25	0.10	0.07		
Uniform Delay, d1	16.2		14.3	3.8	19.2	19.2		
Progression Factor	1.00		1.00	1.00	1.00	1.00		
Incremental Delay, d2	0.6		4.1	0.1	0.1	0.1		
Delay (s)	16.8		18.4	3.9	19.3	19.2		
Level of Service	В		В	Α	В	В		
Approach Delay (s)	16.8			12.5	19.2			
Approach LOS	В			В	В			
Intersection Summary	700							- by
HCM 2000 Control Delay			14.0	H	CM 2000	Level of Servic	В	
HCM 2000 Volume to Capa	acity ratio		0.49					
Actuated Cycle Length (s)			48.4	Si	um of lost	time (s)	16.8	
Intersection Capacity Utiliza	ation		46.1%	IC	U Level o	of Service	A	
Analysis Period (min)			15					
Critical Lane Group								

EXPM.syn

8: Otay Mesa Rd & Alta Rd

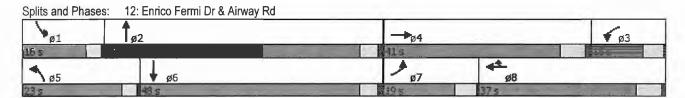
	*	*	4	†	Ţ	4		
Movement	1-131	FBR	NBL	NBT	SBT	SBR		
Lane Configurations	W			4	1>			
Sign Control	Stop			Stop	Stop			
Volume (vph)	688	0	0	2	0	113		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Hourly flow rate (vph)	748	0	0	2	0	123		
Direction, Lane #	EB 1	NB 1	SB 1					
Volume Total (vph)	748	2	123					
Volume Left (vph)	748	0	0					
Volume Right (vph)	0	0	123					
Hadj (s)	0.23	0.03	-0.57					
Departure Headway (s)	4.5	6.0	5.1					
Degree Utilization, x	0.93	0.00	0.18					
Capacity (veh/h)	794	585	687					
Control Delay (s)	37.7	9.0	9.2					
Approach Delay (s)	37.7	9.0	9.2					
Approach LOS	E	A	Α					
Intersection Summary		231					1000	1 30
Delay			33.6					
Level of Service			D					
Intersection Capacity Utiliza	ation		51.8%	IC	U Level o	f Service		Α
Analysis Period (min)			15					

	1	*	4	†	Ţ	1	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	W			र्स	1>		
Sign Control	Stop			Stop	Stop		
Volume (vph)	98	0	2	0	0	505	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	107	0	2	0	0	549	
Direction, Lane #	EB 1	NB 1	SB 1	71-5			
Volume Total (vph)	107	2	549				
Volume Left (vph)	107	2	0				
Volume Right (vph)	0	0	549				
Hadj (s)	0.23	0.23	-0.57				
Departure Headway (s)	5.2	4.9	3.6				
Degree Utilization, x	0.15	0.00	0.55				
Capacity (veh/h)	630	688	975				
Control Delay (s)	9.1	7.9	11.1				
Approach Delay (s)	9.1	7.9	11.1				
Approach LOS	Α	A	В				
Intersection Summary			N. L.X.				
Delay			10.7				
Level of Service			В				
Intersection Capacity Utiliza	tion		43.4%	IC	U Level o	f Service	A
Analysis Period (min)			15				

	•	7	1	†	Ţ	1		
Movement	EBL	EBR	NBL	NBT	SBI	SBR		
Lane Configurations				र्स	1>			
Volume (veh/h)	0	0	157	385	28	68		
Sign Control	Stop			Free	Free			
Grade	0%			0%	0%			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Hourly flow rate (vph)	0	0	171	418	30	74		
Pedestrians								
Lane Width (ft)								
Walking Speed (ft/s)								
Percent Blockage								
Right turn flare (veh)								
Median type				None	None			
Median storage veh)								
Upstream signal (ft)				-	791			
pX, platoon unblocked								
vC, conflicting volume	827	67	104					
vC1, stage 1 conf vol								
vC2, stage 2 conf vol								
vCu, unblocked vol	827	67	104					
tC, single (s)	6.4	6.2	4.1				-	
tC, 2 stage (s)	77.1	-3,41-3						
tF (s)	3.5	3.3	2.2					
p0 queue free %	100	100	89					
cM capacity (veh/h)	302	996	1487					
Direction, Lane #	NB 1	SB 1					251	
Volume Total	589	104						
Volume Left	171	0						
Volume Right	0	74						
cSH	1487	1700						
Volume to Capacity	0.11	0.06						
Queue Length 95th (ft)	10	0						
Control Delay (s)	3.1	0.0						
Lane LOS	Α							
Approach Delay (s)	3.1	0.0						
Approach LOS								
intersection Summary								
Average Delay			2.6					
Intersection Capacity Utiliza	tion		38.9%	IC	U Level o	f Service	Α	
Analysis Period (min)			15					

9: Enrico Fermi Dr & SR-905 WB Ramp

	۶	*	4	†	1	4	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations			- 100	લી	\$		
Volume (veh/h)	0	0	210	152	86	364	
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	0	0	228	165	93	396	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type				None	None		A STATE OF THE PARTY OF THE PAR
Median storage veh)							
Upstream signal (ft)					791		
pX, platoon unblocked							
vC, conflicting volume	913	291	489				
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	913	291	489				
tC, single (s)	6.4	6.2	4.1				
tC, 2 stage (s)							
tF (s)	3.5	3.3	2.2				
p0 queue free %	100	100	79				
cM capacity (veh/h)	239	748	1074				
Direction, Lane #	NB 1	SB 1	ALC:				
Volume Total	393	489					
Volume Left	228	0					
Volume Right	0	396					
cSH	1074	1700					
Volume to Capacity	0.21	0.29					
Queue Length 95th (ft)	20	0					
Control Delay (s)	6.3	0.0					
Lane LOS	Α						
Approach Delay (s)	6.3	0.0					
Approach LOS							
Intersection Summary		33E					
Average Delay			2.8				
Intersection Capacity Utiliza	tion		53.2%	IC	U Level o	f Service	A
Analysis Period (min)			15				

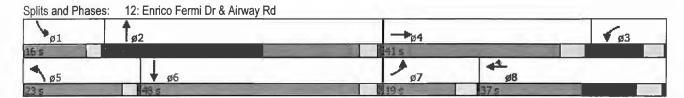

	۶	→	7	1	-	*	4	†	-	1	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7		7	M		7		1>			4	
Volume (veh/h)	290	14	209	13	0	11	0	204	22	3	34	0
Sign Control		Stop			Stop			Free	-		Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	315	15	227	14	0	12	0	222	24	3	37	0
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)								1318				
pX, platoon unblocked												
vC, conflicting volume	289	289	37	512	277	234	37			246		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	289	289	37	512	277	234	37			246		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)						2.4	-			2.2		
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	52	98	78	96	100	99	100			100		
cM capacity (veh/h)	652	619	1035	361	629	805	1574			1320		
Direction, Lane#	EB 1	EB 2	WB1	WB 2	NB 1	SB 1			- +			
Volume Total	315	242	14	12	246	40						
Volume Left	315	0	14	0	0	3						
Volume Right	0	227	0	12	24	0						
cSH	652	993	361	805	1700	1320						
Volume to Capacity	0.48	0.24	0.04	0.01	0.14	0.00						
Queue Length 95th (ft)	66	24	3	1	0	0						
Control Delay (s)	15.6	9.8	15.4	9.5	0.0	0.6						
Lane LOS	С	Α	С	Α	(DV) 21	Α						
Approach Delay (s)	13.1		12.7		0.0	0.6						
Approach LOS	В		В									
Intersection Summary								200	-			
Average Delay			8.8									
Intersection Capacity Utilization	on		Err%	IC	U Level o	of Service			Н			
Analysis Period (min)			15									

	۶	\rightarrow	•	-	-	*	4	†	-	1	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	CBT	CDC
Lane Configurations	4		7	M		7		1>			4	
Volume (veh/h)	86	5	73	13	0	24	0	303	11	5	100	0
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	93	5	79	14	0	26	0	329	12	5	109	0
Pedestrians		-										
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)								1318				
pX, platoon unblocked					7.5							
vC, conflicting volume	481	461	109	537	455	335	109			341		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	481	461	109	537	455	335	109			341		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	80	99	92	97	100	96	100			100		
cM capacity (veh/h)	475	495	945	412	499	707	1482			1218	-	
Direction, Lane #	EB1	EB 2	WB 1	WB 2	NB 1	SB 1			1	12		
Volume Total	93	85	14	26	341	114						
Volume Left	93	0	14	0	0	5						
Volume Right	0	79	0	26	12	0						
cSH	475	893	412	707	1700	1218						
Volume to Capacity	0.20	0.09	0.03	0.04	0.20	0.00						
Queue Length 95th (ft)	18	8	3	3	0	0						
Control Delay (s)	14.4	9.5	14.1	10.3	0.0	0.4						
Lane LOS	В	Α	В	В		Α						
Approach Delay (s)	12.1		11.6		0.0	0.4						
Approach LOS	В		В									
ntersection Summary												
Average Delay			4.0									
ntersection Capacity Utilization			Err%	IC	U Level o	of Service			Н			
Analysis Period (min)			15	7.25								

	•	\rightarrow	1	—	1	1	†	1	↓	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Configurations	19	1	M	^	7	ħ	朴	14	44	
Volume (vph)	32	7	5	10	21	54	208	25	127	
Turn Type	Prot	NA	Prot	NA	Perm	Prot	NA	Prot	NA	
Protected Phases	7	4	3	8		5	2	1	6	
Permitted Phases					8					
Detector Phase	7	4	3	8	8	5	2	1	6	
Switch Phase										
Minimum Initial (s)	4.0	4.0	6.0	6.0	6.0	4.0	4.0	4.0	4.0	
Minimum Split (s)	8.8	30.0	10.8	36.0	36.0	7.5	8.6	7.5	36.6	
Total Split (s)	19.0	41.0	15.0	37.0	37.0	23.0	55.0	16.0	48.0	
Total Split (%)	15.0%	32.3%	11.8%	29.1%	29.1%	18.1%	43.3%	12.6%	37.8%	
Yellow Time (s)	4.3	5.0	4.3	5.0	5.0	3.0	3.6	3.0	3.6	
All-Red Time (s)	0.5	1.0	0.5	1.0	1.0	0.5	1.0	0.5	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.8	6.0	4.8	6.0	6.0	3.5	4.6	3.5	4.6	
Lead/Lag	Lead	Lead	Lag	Lag	Lag	Lead	Lag	Lead	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	None	Min	None	Min	

Intersection Summary
Cycle Length: 127
Actuated Cycle Length: 41.6
Natural Cycle: 90

Control Type: Actuated-Uncoordinated

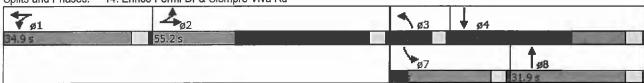


	*	-	*	1	-	*	1	1	-	1	Ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	7	↑ ↑		4	4	7	ħ	44	7	7	1	
Volume (vph)	32	7	20	5	10	21	54	208	12	25	127	92
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.8	6.0		4.8	6.0	6.0	3.5	4.6		3.5	4.6	
Lane Util. Factor	1.00	0.95		1.00	1.00	1.00	1.00	0.95		1.00	0.95	
Frt	1.00	0.89		1.00	1.00	0.85	1.00	0.99		1.00	0.94	
Fit Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1770	3150		1770	1863	1583	1770	3510		1770	3316	
Flt Permitted	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (perm)	1770	3150		1770	1863	1583	1770	3510		1770	3316	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	35	8	22	5	11	23	59	226	13	27	138	100
RTOR Reduction (vph)	0	21	0	0	0	21	0	2	0	0	51	0
Lane Group Flow (vph)	35	9	0	5	11	2	59	237	0	27	187	0
Turn Type	Prot	NA		Prot	NA	Perm	Prot	NA		Prot	NA	
Protected Phases	7	4		3	8	1 01111	5	2		1	6	
Permitted Phases		7				8		-		•	-	
Actuated Green, G (s)	0.7	3.5		1.2	4.0	4.0	2.5	27.3		0.7	25.5	
Effective Green, g (s)	0.7	3.5		1.2	4.0	4.0	2.5	27.3		0.7	25.5	
Actuated g/C Ratio	0.01	0.07		0.02	0.08	0.08	0.05	0.53		0.01	0.49	
Clearance Time (s)	4.8	6.0		4.8	6.0	6.0	3.5	4.6		3.5	4.6	
Vehicle Extension (s)	2.0	3.5		3.0	3.5	3.5	2.0	3.0		2.0	3.0	
Lane Grp Cap (vph)	24	213		41	144	122	85	1857		24	1638	
v/s Ratio Prot	c0.02	0.00		c0.00	c0.01	166	c0.03	c0.07		0.02	0.06	
v/s Ratio Perm	00.02	0.00		00.00	00.01	0.00	00.00	00.07		0.02	0.00	
v/c Ratio	1.46	0.04	2000	0.12	0.08	0.01	0.69	0.13		1.12	0.11	
Uniform Delay, d1	25.4	22.5		24.7	22.1	22.0	24.2	6.1		25.4	7.0	
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	347.8	0.1		1.3	0.3	0.1	17.9	0.0		225.0	0.0	
Delay (s)	373.2	22.6		26.0	22.4	22.0	42.1	6.2		250.4	7.0	
Level of Service	F	C		C	C	C	D	A		F	A	
Approach Delay (s)		211.4			22.6			13.3			31.8	
Approach LOS		F			C			В			С	
Intersection Summary										200		-
HCM 2000 Control Delay			40.5	Н	CM 2000	Level of S	Service		D			
HCM 2000 Volume to Capa	city ratio		0.18									
Actuated Cycle Length (s)			51.6	S	um of lost	time (s)			18.9			
Intersection Capacity Utiliza	ation		30.4%	IC	U Level o	of Service			Α			
Analysis Period (min) C Critical Lane Group			15									

	•	-	1	←	*	1	†	1	↓	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Configurations	7	44	7	4	7	7	1	N.	^	
Volume (vph)	66	5	8	10	32	58	213	21	77	
Turn Type	Prot	NA	Prot	NA	Perm	Prot	NA	Prot	NA	
Protected Phases	7	4	3	8		5	2	1	6	
Permitted Phases					8					
Detector Phase	7	4	3	8	8	5	2	1	6	
Switch Phase										
Minimum Initial (s)	4.0	4.0	6.0	6.0	6.0	4.0	4.0	4.0	4.0	
Minimum Split (s)	8.8	30.0	10.8	36.0	36.0	7.5	8.6	7.5	36.6	
Total Split (s)	19.0	41.0	15.0	37.0	37.0	23.0	55.0	16.0	48.0	
Total Split (%)	15.0%	32.3%	11.8%	29.1%	29.1%	18.1%	43.3%	12.6%	37.8%	
Yellow Time (s)	4.3	5.0	4.3	5.0	5.0	3.0	3.6	3.0	3.6	
All-Red Time (s)	0.5	1.0	0.5	1.0	1.0	0.5	1.0	0.5	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.8	6.0	4.8	6.0	6.0	3.5	4.6	3.5	4.6	
Lead/Lag	Lead	Lead	Lag	Lag	Lag	Lead	Lag	Lead	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes							
Recall Mode	None	None	None	None	None	None	Min	None	Min	

Cycle Length: 127
Actuated Cycle Length: 47.1
Natural Cycle: 90

Control Type: Actuated-Uncoordinated

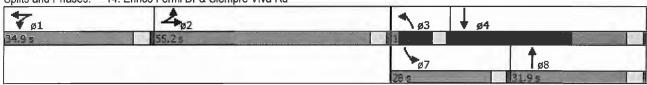

	1	→	7	1	+	4	4	†	-	-	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	1		ሻ	4	7	1	1		7	朴	
Volume (vph)	66	5	15	8	10	32	58	213	17	21	77	86
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.8	6.0		4.8	6.0	6.0	3.5	4.6		3.5	4.6	
Lane Util. Factor	1.00	0.95		1.00	1.00	1.00	1.00	0.95		1.00	0.95	
Frt	1.00	0.89		1.00	1.00	0.85	1.00	0.99		1.00	0.92	
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1770	3135		1770	1863	1583	1770	3501		1770	3260	
Flt Permitted	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (perm)	1770	3135		1770	1863	1583	1770	3501		1770	3260	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	72	5	16	9	11	35	63	232	18	23	84	93
RTOR Reduction (vph)	0	14	0	0	0	32	0	4	0	0	54	0
Lane Group Flow (vph)	72	7	0	9	11	3	63	246	0	23	123	.0
Turn Type	Prot	NA		Prot	NA	Perm	Prot	NA		Prot	NA	
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases						8						
Actuated Green, G (s)	4.6	7.6		1.6	4.6	4.6	4.2	26.9		0.7	23.4	
Effective Green, g (s)	4.6	7.6		1.6	4.6	4.6	4.2	26.9		0.7	23.4	
Actuated g/C Ratio	0.08	0.14		0.03	0.08	0.08	0.08	0.48		0.01	0.42	
Clearance Time (s)	4.8	6.0		4.8	6.0	6.0	3.5	4.6		3.5	4.6	
Vehicle Extension (s)	2.0	3.5		3.0	3.5	3.5	2.0	3.0		2.0	3.0	
Lane Grp Cap (vph)	146	427		50	153	130	133	1690		22	1369	
v/s Ratio Prot	c0.04	0.00		c0.01	c0.01		c0.04	c0.07		0.01	0.04	
v/s Ratio Perm		20-000				0.00	7.0000000	3300				
v/c Ratio	0.49	0.02		0.18	0.07	0.02	0.47	0.15		1.05	0.09	
Uniform Delay, d1	24.4	20.8		26.4	23.6	23.5	24.7	8.0		27.5	9.7	
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	1.0	0.0		1.7	0.2	0.1	1.0	0.0		206.7	0.0	
Delay (s)	25.4	20.8		28.1	23.8	23.6	25.7	8.0		234.2	9.8	-
Level of Service	С	С		C	С	С	С	Α		F	Α	
Approach Delay (s)		24.4			24.4			11.6			35.6	
Approach LOS		С			С			В			D	
Intersection Summary												
HCM 2000 Control Delay			21.7	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	city ratio		0.20									
Actuated Cycle Length (s)			55.7		um of lost				18.9			
Intersection Capacity Utiliza	ation		32.3%	IC	U Level o	of Service	1		A			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	-	1	←	1	†	1	+	
Lane Group	EBL	FBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	77	1>	19	1	7	1	7	44	
Volume (vph)	46	7	7	18	61	209	21	84	
Turn Type	Split	NA	Split	NA	Prot	NA	Prot	NA	
Protected Phases	2	2	1	1	3	8	7	4	
Permitted Phases									
Detector Phase	2	2	1	1	3	8	7	4	
Switch Phase									
Minimum Initial (s)	10.0	10.0	10.0	10.0	4.0	10.0	4.0	10.0	
Minimum Split (s)	31.9	31.9	34.9	34.9	8.5	31.9	8.5	31.9	
Total Split (s)	55.2	55.2	34.9	34.9	14.0	31.9	28.0	45.9	
Total Split (%)	36.8%	36.8%	23.3%	23.3%	9.3%	21.3%	18.7%	30.6%	
Yellow Time (s)	3.9	3.9	3.9	3.9	3.4	3.9	3.4	3.9	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.9	4.9	4.9	4.9	4.4	4.9	4.4	4.9	
Lead/Lag	Lag	Lag	Lead	Lead	Lead	Lag	Lead	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	Max	None	Max	
1.1.									

Intersection Summary
Cycle Length: 150
Actuated Cycle Length: 87.3
Natural Cycle: 110

Control Type: Actuated-Uncoordinated

Splits and Phases: 14: Enrico Fermi Dr & Siempre Viva Rd



	*	→	*	1	-	4	4	†	-	-	.↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻሻ	1>		7	44		7	44		7	↑ ↑	
Volume (vph)	46	7	19	7	18	21	61	209	4	21	84	31
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.9	4.9		4.9	4.9	-	4.4	4.9		4.4	4.9	
Lane Util. Factor	0.97	1.00		1.00	0.95		1.00	0.95		1.00	0.95	
Frt	1.00	0.89		1.00	0.92		1.00	1.00		1.00	0.96	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	3433	1660		1770	3255		1770	3530		1770	3395	
Flt Permitted	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (perm)	3433	1660		1770	3255		1770	3530		1770	3395	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	50	8	21	8	20	23	66	227	4	23	91	34
RTOR Reduction (vph)	0	19	0	0	21	0	0	0	0	0	16	0
Lane Group Flow (vph)	50	10	0	8	22	Ó	66	231	0	23	109	0
Tum Type	Split	NA		Split	NA		Prot	NA		Prot	NA	
Protected Phases	2	2	-	1	1		3	8		7	4	
Permitted Phases	-	>77		-	-		~ ~					
Actuated Green, G (s)	10.2	10.2		8.1	8.1		6.2	53.6		2.3	49.7	
Effective Green, g (s)	10.2	10.2		8.1	8.1		6.2	53.6		2.3	49.7	
Actuated g/C Ratio	0.11	0.11		0.09	0.09		0.07	0.57		0.02	0.53	
Clearance Time (s)	4.9	4.9		4.9	4.9		4.4	4.9		4.4	4.9	
Vehicle Extension (s)	6.2	6.2		5.4	5.4		2.0	2.5		2.0	5.9	
Lane Grp Cap (vph)	375	181		153	282		117	2027		43	1808	
v/s Ratio Prot	c0.01	0.01		0.00	c0.01		c0.04	c0.07		0.01	0.03	
v/s Ratio Perm	00.01	9,01					20.0			0.0.1	0.00	
v/c Ratio	0.13	0.06		0.05	0.08		0.56	0.11		0.53	0.06	
Uniform Delay, d1	37.6	37.2		39.1	39.2		42.2	9.0		45.0	10.5	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	0.5	0.4		0.3	0.3		3.7	0.1		6.3	0.1	
Delay (s)	38.0	37.6		39.4	39.4		45.9	9.2		51.2	10.6	
Level of Service	D	D		D	D		D	Α		D	В	
Approach Delay (s)		37.9			39.4			17.3			16.9	
Approach LOS		D			D			В			В	
Intersection Summary							-5					
HCM 2000 Control Delay			22.0	H	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capa	city ratio		0.14	11	<u>-</u> 000	_5,5, 6, 6						
Actuated Cycle Length (s)	oj iduo		93.3	Sı	um of lost	time (s)			19.1			
ntersection Capacity Utiliza	tion		31.9%			f Service			A			
Analysis Period (min)			15		2 201010	, our noo			71			
Critical Lane Group			10									

	•	-	1	—	1	†	1	. ↓	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	1/1/	4	4	† î»	7	1	7	1	
Volume (vph)	44	4	9	19	101	226	6	52	
Turn Type	Split	NA	Split	NA	Prot	NA	Prot	NA	
Protected Phases	2	2	1	1	3	8	7	4	
Permitted Phases									
Detector Phase	2	2	1	1	3	8	7	4	
Switch Phase									
Minimum Initial (s)	10.0	10.0	10.0	10.0	4.0	10.0	4.0	10.0	
Minimum Split (s)	31.9	31.9	34.9	34.9	8.5	31.9	8.5	31.9	
Total Split (s)	55.2	55.2	34.9	34.9	14.0	31.9	28.0	45.9	
Total Split (%)	36.8%	36.8%	23.3%	23.3%	9.3%	21.3%	18.7%	30.6%	
Yellow Time (s)	3.9	3.9	3.9	3.9	3.4	3.9	3.4	3.9	1000000
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.9	4.9	4.9	4.9	4.4	4.9	4.4	4.9	
Lead/Lag	Lag	Lag	Lead	Lead	Lead	Lag	Lead	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	Max	None	Max	

Cycle Length: 150
Actuated Cycle Length: 91.2
Natural Cycle: 110
Control Type: Actuated-Uncoordinated

Splits and Phases: 14: Enrico Fermi Dr & Siempre Viva Rd

	•	-	•	1	-	4	4	†	-	-	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	77	1>		ħ	^		M	44		7	1	
Volume (vph)	44	4	11	9	19	20	101	226	0	6	52	37
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.9	4.9		4.9	4.9		4.4	4.9		4.4	4.9	
Lane Util. Factor	0.97	1.00		1.00	0.95		1.00	0.95		1.00	0.95	
Frt	1.00	0.89		1.00	0.92		1.00	1.00		1.00	0.94	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	3433	1653		1770	3268		1770	3539		1770	3320	
Flt Permitted	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (perm)	3433	1653		1770	3268		1770	3539		1770	3320	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	48	4	12	10	21	22	110	246	0	7	57	40
RTOR Reduction (vph)	0	11	0	0	20	0	0	0	0	0	20	0
Lane Group Flow (vph)	48	5	0	10	23	0	110	246	0	7	77	0
Turn Type	Split	NA		Split	NA		Prot	NA		Prot	NA	
Protected Phases	2	2		1	1		3	8		7	4	
Permitted Phases		-					•	-				
Actuated Green, G (s)	10.4	10.4		8.4	8.4		10.0	59.2	-	0.9	50.1	
Effective Green, g (s)	10.4	10.4		8.4	8.4		10.0	59.2		0.9	50.1	_
Actuated g/C Ratio	0.11	0.11		0.09	0.09		0.10	0.60		0.01	0.51	
Clearance Time (s)	4.9	4.9		4.9	4.9		4.4	4.9		4.4	4.9	
Vehicle Extension (s)	6.2	6.2		5.4	5.4		2.0	2.5		2.0	5.9	
Lane Grp Cap (vph)	364	175	-	151	280		180	2137		16	1697	
v/s Ratio Prot	c0.01	0.00	- 0	0.01	c0.01		c0.06	c0.07		0.00	0.02	
v/s Ratio Perm	60.01	0.00		0.01	00.01		60.00	60.07		0.00	0.02	
v/c Ratio	0.13	0.03		0.07	0.08		0.61	0.12		0.44	0.05	
Uniform Delay, d1	39.7	39.3		41.2	41.2		42.1	8.3		48.3	12.0	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	0.5	0.2		0.4	0.3		4.3	0.1		6.8	0.1	-
Delay (s)	40.2	39.5		41.6	41.5		46.4	8.4		55.1	12.0	
Level of Service	D	D		D	D		D	A		E	В	
Approach Delay (s)		40.0			41.6			20.1			14.9	
Approach LOS		D			D			C			В	
Intersection Summary												
HCM 2000 Control Delay			23.4	Н	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capa	city ratio		0.18									
Actuated Cycle Length (s)	NO. W. (10.10.10.10.10.10.10.10.10.10.10.10.10.1		98.0	Sı	um of lost	time (s)			19.1			
Intersection Capacity Utiliza	ation		28.8%	100	U Level o	-			Α			
Analysis Period (min)	96,000		15			TOTAL STATE OF						
c Critical Lane Group												

> Existing + Project Phases 1& 2 Conditions - Synchro Analysis

	1	*	†	-	1	↓	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	¥		^	797	7	4	
Volume (veh/h)	89	3	601	170	0	64	
Sign Control	Stop		Free	11-1-1-		Free	
Grade	0%		0%		1000	0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	97	3	653	185	0	70	
Pedestrians		OF 1	2002	TAT OF			
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			None			None	
Median storage veh)			0.00,00				
Upstream signal (ft)			684				
pX, platoon unblocked	0.87	0.87	Tomor		0.87		
vC, conflicting volume	723	653		-	838		
vC1, stage 1 conf vol		••••					
vC2, stage 2 conf vol							
vCu, unblocked vol	610	530			742		
tC, single (s)	6.4	6.2			4.1		
tC, 2 stage (s)	*****				119.207		
F (s)	3.5	3.3			2.2		*
00 queue free %	76	99			100		
cM capacity (veh/h)	400	479			755		
Direction, Lane #	WB 1	NB 1	NB 2	SB 1	SB 2	4	
/olume Total	100	653	185	0	70		
/olume Left	97	0	0	0	0		
/olume Right	3	0	185	0	0		
SH	402	1700	1700	1700	1700		
/olume to Capacity	0.25	0.38	0.11	0.00	0.04		
Queue Length 95th (ft)	24	0	0	0	0		
Control Delay (s)	16.9	0.0	0.0	0.0	0.0		
ane LOS	С				- Charles		
Approach Delay (s)	16.9	0.0		0.0			
Approach LOS	С						
ntersection Summary				- 31	-1-		
Average Delay			1.7				
ntersection Capacity Utiliza Analysis Period (min)	ition		43.4% 15	IC	U Level o	of Service	Α

	1	*	†	-	1	↓
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	W		4	7	7	A
Volume (veh/h)	160	0	84	83	2	418
Sign Control	Stop		Free	11.00		Free
Grade	0%		0%			0%
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	174	0	91	90	2	454
Pedestrians	7.17		- AMERICA	1,000		3550 941
Lane Width (ft)		1000				
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	-		None			None
Median storage veh)						
Upstream signal (ft)			684			
pX, platoon unblocked						
vC, conflicting volume	550	91			182	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	550	91			182	
tC, single (s)	6.4	6.2	7 -		4.1	
tC, 2 stage (s)						
tF (s)	3.5	3.3			2.2	
p0 queue free %	65	100			100	
cM capacity (veh/h)	495	966			1394	
Direction, Lane #	WB 1	NB1	NB 2	SB 1	SB 2	
Volume Total	174	91	90	2	454	
Volume Left	174	0	0	2	0	
Volume Right	0	0	90	0	0	
cSH	495	1700	1700	1394	1700	
Volume to Capacity	0.35	0.05	0.05	0.00	0.27	
Queue Length 95th (ft)	39	0	0	0	0	
Control Delay (s)	16.2	0.0	0.0	7.6	0.0	
Lane LOS	С			Α		
Approach Delay (s)	16.2	0.0		0.0		
Approach LOS	С					
nterrection Summary	_ \$			3.4	Serie.	-
Average Delay			3.5			
Intersection Capacity Utiliza	tion		37.5%	IC	U Level o	of Service
Analysis Period (min)			15			

EXP1-2PM.syn

	•	-	1	←	*	1	†	-	↓	1	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Configurations	*	7	7	4	7	7	4	19	1	7	
Volume (vph)	3	0	16	1	4	1	764	2	148	3	
Turn Type	Perm	NA	Perm	NA	Perm	Perm	NA	Perm	NA	Perm	
Protected Phases		4		8			2		6		
Permitted Phases	4		8		8	2		6		6	
Detector Phase	4	4	8	8	8	2	2	6	6	6	
Switch Phase											
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
Minimum Split (s)	20.5	20.5	20.5	20.5	20.5	20.5	20.5	20.5	20.5	20.5	
Total Split (s)	20.6	20.6	20.6	20.6	20.6	39.4	39.4	39.4	39.4	39.4	
Total Split (%)	34.3%	34.3%	34.3%	34.3%	34.3%	65.7%	65.7%	65.7%	65.7%	65.7%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	
Lead/Lag									-		
Lead-Lag Optimize?											
Recall Mode	None	None	None	None	None	Min	Min	Min	Min	Min	

Cycle Length: 60
Actuated Cycle Length: 42
Natural Cycle: 60
Control Type: Actuated-Uncoordinated

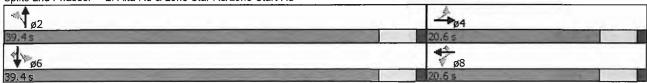
Splits and Phases: 2: Alta Rd & Lone Star Rd/Lone Start Rd

	•	→	*	1	-	*	1	†	-	-	↓	1
Movement	EBL	POT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	7	7>		7	4	7	7	4		7	4	ř
Volume (vph)	3	0	2	16	1	4	1	764	19	2	148	3
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.5	4.5		4.5	4.5	4.5	4.5	4.5		4.5	4.5	4.5
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
Frt	1.00	0.85		1.00	1.00	0.85	1.00	1.00		1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1770	1583		1770	1863	1583	1770	1856		1770	1863	1583
Flt Permitted	1.00	1.00		1.00	1.00	1.00	0.66	1.00		0.29	1.00	1.00
Satd. Flow (perm)	1863	1583		1863	1863	1583	1220	1856		539	1863	1583
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	3	0.02	2	17	1	4	1	830	21	2	161	3
RTOR Reduction (vph)	0	2	0	0	0	4	0	1	0	0	0	1
Lane Group Flow (vph)	3	0	Ö	17	1	0	1	850	0	2	161	2
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA		Perm	NA	Perm
Protected Phases	1 Cilli	4		1 01111	8	Cili	TOTAL	2		TOTAL	6	1 01111
Permitted Phases	4			8	•	8	2	-		6		6
Actuated Green, G (s)	2.2	2.2		2.2	2.2	2.2	33.6	33.6		33.6	33.6	33.6
Effective Green, g (s)	2.2	2.2		2.2	2.2	2.2	33.6	33.6		33.6	33.6	33.6
Actuated g/C Ratio	0.05	0.05		0.05	0.05	0.05	0.75	0.75		0.75	0.75	0.75
Clearance Time (s)	4.5	4.5		4.5	4.5	4.5	4.5	4.5		4.5	4.5	4.5
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	91	77		91	91	77	915	1392		404	1397	1187
v/s Ratio Prot	31	0.00		91	0.00	- ' '	310	c0.46		דטד	0.09	1107
v/s Ratio Perm	0.00	0.00		c0.01	0.00	0.00	0.00	00.40		0.00	0.00	0.00
v/c Ratio	0.03	0.00		0.19	0.01	0.00	0.00	0.61		0.00	0.12	0.00
Uniform Delay, d1	20.3	20.3		20.4	20.3	20.3	1.4	2.6		1.4	1.5	1.4
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	0.1	0.0		1.00	0.0	0.0	0.0	0.8		0.0	0.0	0.0
Delay (s)	20.4	20.3		21.4	20.3	20.3	1.4	3.4		1.4	1.6	1.4
Level of Service	C	C		C	C	C	A	A		A	A	A
Approach Delay (s)		20.4			21.2			3.4			1.6	
Approach LOS		C			C			Α.4			Α	
		U						^				
Intersection Summary												
HCM 2000 Control Delay			3.5	H	CM 2000	Level of S	Service		Α			
HCM 2000 Volume to Capa	city ratio		0.58									
Actuated Cycle Length (s)	7015		44.8		m of lost				9.0			
Intersection Capacity Utiliza	ition		59.3%	IC	U Level c	of Service			В			
Analysis Period (min)			15									
c Critical Lane Group												

EXP1-2AM.syn

Synchro 8 Report Page 3

2: Alta Rd & Lone Star Rd/Lone Start Rd


	•	→		-	*	†	1	Ţ	1	
Lane Group	ERI	PRT	WBL	WBT	WBR	NBT	SBL	SBT	SBR	
Lane Configurations	7	1>	ħ	†	7	1	7		7	
Volume (vph)	2	0	9	1	3	162	3	580	3	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	Perm	
Protected Phases		4		8		2		6		
Permitted Phases	4		8		8		6		6	
Detector Phase	4	4	8	8	8	2	6	6	6	
Switch Phase						2411				
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
Minimum Split (s)	20.5	20.5	20.5	20.5	20.5	20.5	20.5	20.5	20.5	
Total Split (s)	20.6	20.6	20.6	20.6	20.6	39.4	39.4	39.4	39.4	T
Total Split (%)	34.3%	34.3%	34.3%	34.3%	34.3%	65.7%	65.7%	65.7%	65.7%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	
Lead/Lag										
Lead-Lag Optimize?							100			
Recall Mode	None	None	None	None	None	Min	Min	Min	Min	

Intersection Summary

Cycle Length: 60
Actuated Cycle Length: 35.3
Natural Cycle: 50

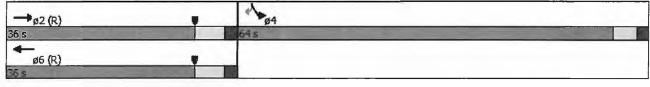
Control Type: Actuated-Uncoordinated

Splits and Phases: 2: Alta Rd & Lone Star Rd/Lone Start Rd

	•	→	*	1	←		4	†	1	-	1	1
Movement	EBI:	FBI	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	f >		N	4	7	ħ	1>		7		7
Volume (vph)	2	0	1	9	1	3	0	162	6	3	580	3
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.5	4.5		4.5	4.5	4.5		4.5		4.5	4.5	4.5
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00		1.00		1.00	1.00	1.00
Frt	1.00	0.85		1.00	1.00	0.85		0.99		1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00	1.00		1.00		0.95	1.00	1.00
Satd. Flow (prot)	1770	1583		1770	1863	1583		1852		1770	1863	1583
Flt Permitted	1.00	1.00		1.00	1.00	1.00		1.00		0.64	1.00	1.00
Satd. Flow (perm)	1863	1583		1863	1863	1583		1852		1196	1863	1583
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	2	0	1	10	1	3	0	176	7	3	630	3
RTOR Reduction (vph)	0	1	0	0	0	3	Ö	2	0	0	0	1
Lane Group Flow (vph)	2	0	0	10	1	0	. 0	181	0	3	630	2
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA		Perm	NA	Perm
Protected Phases		4			8			2			6	
Permitted Phases	4			8		8	2	_		6		6
Actuated Green, G (s)	0.9	0.9		0.9	0.9	0.9		29.0		29.0	29.0	29.0
Effective Green, g (s)	0.9	0.9		0.9	0.9	0.9		29.0		29.0	29.0	29.0
Actuated g/C Ratio	0.02	0.02		0.02	0.02	0.02		0.75		0.75	0.75	0.75
Clearance Time (s)	4.5	4.5		4.5	4.5	4.5		4.5		4.5	4.5	4.5
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0		3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	43	36		43	43	36		1380		891	1388	1180
v/s Ratio Prot		0.00			0.00			0.10			c0.34	
v/s Ratio Perm	0.00			c0.01	2000	0.00		200		0.00		0.00
v/c Ratio	0.05	0.00	200	0.23	0.02	0.00		0.13		0.00	0.45	0.00
Uniform Delay, d1	18.6	18.6		18.7	18.6	18.6		1.4		1.3	1.9	1.3
Progression Factor	1.00	1.00	500	1.00	1.00	1.00		1.00		1.00	1.00	1.00
Incremental Delay, d2	0.4	0.0		2.8	0.2	0.0		0.0		0.0	0.2	0.0
Delay (s)	19.0	18.6		21.4	18.8	18.6		1.4		1.3	2.1	1.3
Level of Service	В	В		С	В	В		Α		Α	Α	Α
Approach Delay (s)		18.9			20.6			1.4			2.1	0.000
Approach LOS		В			С			A			Α	
Intersection Summary					TENT						3,0	
HCM 2000 Control Delay			2.4	H	CM 2000	Level of S	Service		Α			
HCM 2000 Volume to Capa	city ratio		0.45									
Actuated Cycle Length (s)			38.9	Sı	ım of lost	time (s)			9.0			
Intersection Capacity Utiliza	ition		45.2%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									
c Critical Lane Group												

EXP1-2PM.syn

	\rightarrow	-	-	4	
Lane Group	EBT	WBT	SBL	SBR	
Lane Configurations	ተተተ	ተ ተተ	ሻሻ	7	
Volume (vph)	336	121	485	401	
Turn Type	NA	NA	Prot	Perm	
Protected Phases	2	6	4		
Permitted Phases				4	
Detector Phase	2	6	4	4	
Switch Phase					
Minimum Initial (s)	5.0	5.0	5.0	5.0	
Minimum Split (s)	27.0	31.7	21.7	21.7	
Total Split (s)	36.0	36.0	64.0	64.0	
Total Split (%)	36.0%	36.0%	64.0%	64.0%	
Yellow Time (s)	4.7	4.7	3.6	3.6	
All-Red Time (s)	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.7	6.7	5.6	5.6	-
Lead/Lag					
Lead-Lag Optimize?					
Recall Mode	C-Max	C-Max	Max	Max	
Intersection Summary	-33	WE TO	2000		


Cycle Length: 100
Actuated Cycle Length: 100

Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of Yellow

Natural Cycle: 55

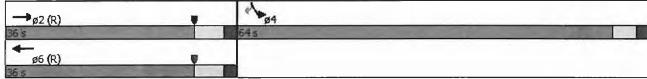
Control Type: Actuated-Coordinated

Splits and Phases: 4: Otay Mesa Rd & SR-125 SB Ramp

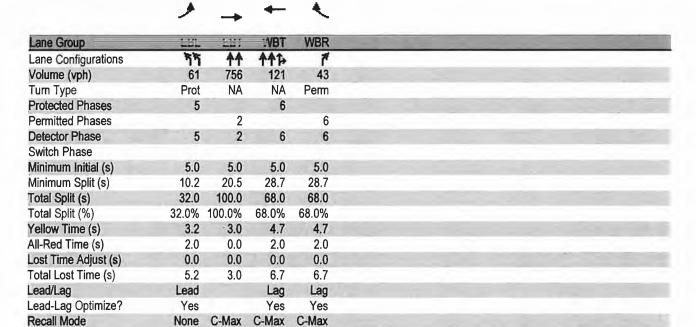
	۶	→	—	*	1	4			
Movement	EBL	EBT	WBT	WBR	SBL	SBR			
Lane Configurations		444	ተተተ		ሻሻ	7			
Volume (vph)	0	336	121	0	485	401			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Total Lost time (s)		6.7	6.7		5.6	5.6			
Lane Util. Factor		0.91	0.91		0.97	1.00			
Frt		1.00	1.00		1.00	0.85			
Flt Protected		1.00	1.00		0.95	1.00			
Satd. Flow (prot)		5085	5085		3433	1583			
Flt Permitted		1.00	1.00		0.95	1.00			
Satd. Flow (perm)		5085	5085		3433	1583			
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92			
Adj. Flow (vph)	0	365	132	0	527	436			
RTOR Reduction (vph)	0	0	0	0	0	181			
Lane Group Flow (vph)	0	365	132	0	527	255			
Turn Type		NA	NA		Prot	Perm			
Protected Phases		2	6		4				
Permitted Phases						4			
Actuated Green, G (s)		29.3	29.3		58.4	58.4			
Effective Green, g (s)		29.3	29.3		58.4	58.4			
Actuated g/C Ratio		0.29	0.29		0.58	0.58			
Clearance Time (s)		6.7	6.7		5.6	5.6			
Vehicle Extension (s)		3.0	3.0		3.0	3.0			
Lane Grp Cap (vph)		1489	1489		2004	924			
v/s Ratio Prot		c0.07	0.03		0.15				
v/s Ratio Perm						c0.16			
v/c Ratio		0.25	0.09		0.26	0.28			
Uniform Delay, d1		26.9	25.7		10.2	10.3			
Progression Factor		0.66	0.92		1.00	1.00			
Incremental Delay, d2		0.4	0.1		0.3	0.7			
Delay (s)		18.3	23.8		10.5	11.1			
Level of Service		В	С		В	В			
Approach Delay (s)		18.3	23.8		10.8				
Approach LOS		В	С		В				
Intersection Summary				d-111					
HCM 2000 Control Delay			13.8	HC	CM 2000	Level of Service	ce	В	
HCM 2000 Volume to Capacity	ratio		0.27						
Actuated Cycle Length (s)			100.0	Su	ım of lost	time (s)		12.3	
Intersection Capacity Utilization			39.2%	IC	U Level o	of Service		Α	
Analysis Period (min)			15						
c Critical Lane Group									

EXP1-2AM.syn

	-	-	1	4
Lane Group	EBT	WBT	SBL	SBR
Lane Configurations	ተተተ	ተተተ	N'N	7
Volume (vph)	316	277	121	236
Turn Type	NA	NA	Prot	Perm
Protected Phases	2	6	4	
Permitted Phases				4
Detector Phase	2	6	4	4
Switch Phase				
Minimum Initial (s)	5.0	5.0	5.0	5.0
Minimum Split (s)	27.0	31.7	21.7	21.7
Total Split (s)	36.0	36.0	64.0	64.0
Total Split (%)	36.0%	36.0%	64.0%	64.0%
Yellow Time (s)	4.7	4.7	3.6	3.6
All-Red Time (s)	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.7	6.7	5.6	5.6
Lead/Lag				
Lead-Lag Optimize?				
Recall Mode	C-Max	C-Max	Max	Max


Cycle Length: 100
Actuated Cycle Length: 100

Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of Yellow


Natural Cycle: 55

Control Type: Actuated-Coordinated

Splits and Phases: 4: Otay Mesa Rd & SR-125 SB Ramp

	۶	→	-	1	-	4	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	The second second
Lane Configurations		ተተተ	^ ^		ሻሻ	7	
Volume (vph)	0	316	277	0	121	236	
	1900	1900	1900	1900	1900	1900	
Total Lost time (s)		6.7	6.7		5.6	5.6	
Lane Util. Factor		0.91	0.91		0.97	1.00	
Frt		1.00	1.00		1.00	0.85	
Flt Protected		1.00	1.00		0.95	1.00	
Satd. Flow (prot)		5085	5085		3433	1583	ALC: NO CONTRACTOR OF THE PARTY
Flt Permitted		1.00	1.00		0.95	1.00	
Satd. Flow (perm)		5085	5085		3433	1583	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	0	343	301	0	132	257	
RTOR Reduction (vph)	0	0	0	0	0	107	
Lane Group Flow (vph)	0	343	301	0	132	150	
Turn Type		NA	NA		Prot	Perm	
Protected Phases		2	6		4		+
Permitted Phases						4	
Actuated Green, G (s)		29.3	29.3		58.4	58.4	
Effective Green, g (s)		29.3	29.3		58.4	58.4	
Actuated g/C Ratio		0.29	0.29		0.58	0.58	
Clearance Time (s)		6.7	6.7		5.6	5.6	
Vehicle Extension (s)		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)		1489	1489		2004	924	
v/s Ratio Prot		c0.07	0.06		0.04		
v/s Ratio Perm						c0.09	
v/c Ratio		0.23	0.20		0.07	0.16	
Uniform Delay, d1		26.8	26.6		9.0	9.6	
Progression Factor		0.72	0.92		1.00	1.00	
Incremental Delay, d2		0.4	0.3		0.1	0.4	
Delay (s)		19.7	24.7		9.1	9.9	
Level of Service		В	С		Α	Α	
Approach Delay (s)		19.7	24.7		9.6		
Approach LOS		В	С		Α		
Intersection Summary	100	25.5					
HCM 2000 Control Delay			17.4	HC	CM 2000	Level of Service	е В
HCM 2000 Volume to Capacity ra	atio		0.19				
Actuated Cycle Length (s)			100.0	Su	m of lost	time (s)	12.3
ntersection Capacity Utilization			30.2%	IC	U Level o	of Service	A
Analysis Period (min)			15				
Critical Lane Group							


Cycle Length: 100
Actuated Cycle Length: 100

Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of Yellow, Master Intersection

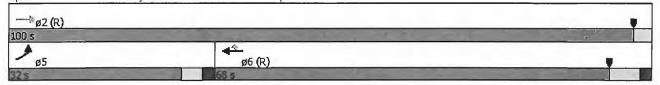
Natural Cycle: 40

Control Type: Actuated-Coordinated

Splits and Phases: 5: Otay Mesa Rd & SR-125 NB Ramp

	•	→	-		-	1		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations	ሻሻ	个个	个个分	7				
Volume (vph)	61	756	121	43	0	0		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	5.2	3.0	6.7	6.7	- 3			
Lane Util. Factor	0.97	0.95	0.86	0.86				
Frt	1.00	1.00	0.99	0.85				
Flt Protected	0.95	1.00	1.00	1.00				
Satd. Flow (prot)	3433	3539	4770	1362	- 20			
Flt Permitted	0.95	1.00	1.00	1.00				
Satd. Flow (perm)	3433	3539	4770	1362	7 - 1			
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92		
Adj. Flow (vph)	66	822	132	47	0	0		
RTOR Reduction (vph)	0	0	1	7	0	0		
Lane Group Flow (vph)	66	822	138	33	0	0		
Turn Type	Prot	NA	NA	Perm				
Protected Phases	5		6					- 1800-
Permitted Phases		2		6				
Actuated Green, G (s)	6.2	100.0	81.9	81.9				
Effective Green, g (s)	6.2	100.0	81.9	81.9				
Actuated g/C Ratio	0.06	1.00	0.82	0.82				
Clearance Time (s)	5.2	3.0	6.7	6.7				
Vehicle Extension (s)	3.0	3.0	3.0	3.0				
Lane Grp Cap (vph)	212	3539	3906	1115				
v/s Ratio Prot	0.02		0.03		1			
v/s Ratio Perm		c0.23		0.02				
v/c Ratio	0.31	0.23	0.04	0.03				
Uniform Delay, d1	44.9	0.0	1.7	1.7				
Progression Factor	1.21	1.00	1.00	1.00				
ncremental Delay, d2	0.8	0.2	0.0	0.0				
Delay (s)	55.2	0.2	1.7	1.7				
Level of Service	Е	Α	Α	Α				
Approach Delay (s)		4.2	1.7	5 3 4	0.0			
Approach LOS		Α	Α		Α			
Intersection Summary		8		200	23	3/200		
HCM 2000 Control Delay			3.8	HC	CM 2000 I	_evel of Service	Α	
HCM 2000 Volume to Capa	city ratio		0.26	- 12		- Av		
Actuated Cycle Length (s)			100.0		m of lost		11.9	
Intersection Capacity Utiliza	tion		39.2%	ICI	U Level o	f Service	Α	
Analysis Period (min)			15					
c Critical Lane Group								

Lane Group	EBL	EBT	WBT	WBR	
Lane Configurations	77	个个	ተተጉ	7	
Volume (vph)	158	268	272	205	
Turn Type	Prot	NA	NA	Perm	
Protected Phases	5		6		
Permitted Phases		2		6	
Detector Phase	5	2	6	6	
Switch Phase					
Minimum Initial (s)	5.0	5.0	5.0	5.0	
Minimum Split (s)	10.2	20.5	28.7	28.7	
Total Split (s)	32.0	100.0	68.0	68.0	
Total Split (%)	32.0%	100.0%	68.0%	68.0%	
Yellow Time (s)	3.2	3.0	4.7	4.7	
All-Red Time (s)	2.0	0.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	
Total Lost Time (s)	5.2	3.0	6.7	6.7	
Lead/Lag	Lead		Lag	Lag	
Lead-Lag Optimize?	Yes		Yes	Yes	
Recall Mode	None	C-Max	C-Max	C-Max	


Cycle Length: 100
Actuated Cycle Length: 100

Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of Yellow, Master Intersection

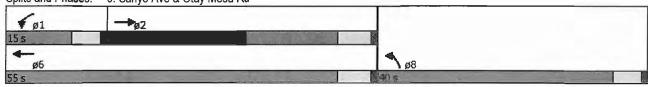
Natural Cycle: 40

Control Type: Actuated-Coordinated

Splits and Phases: 5: Otay Mesa Rd & SR-125 NB Ramp

Laisung	Г	ius Filases I & Z
		Timing Plan: PM Peak

	•	-	-	•	1	1			
Movement	EBL	EBT	WBT	WBR	SBL	SBR	755		
Lane Configurations	44	个个	ተተጉ	7					
Volume (vph)	158	268	272	205	0	0			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Total Lost time (s)	5.2	3.0	6.7	6.7			- 11		
Lane Util. Factor	0.97	0.95	0.86	0.86					
Frt	1.00	1.00	0.96	0.85					
Flt Protected	0.95	1.00	1.00	1.00					
Satd. Flow (prot)	3433	3539	4617	1362					
FIt Permitted	0.95	1.00	1.00	1.00					
Satd. Flow (perm)	3433	3539	4617	1362	- 11	-			
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92			
Adj. Flow (vph)	172	291	296	223	0	0			
RTOR Reduction (vph)	0	0	23	26	0	0			
Lane Group Flow (vph)	172	291	378	92	0	0		100	
Turn Type	Prot	NA	NA	Perm					
Protected Phases	5		6						
Permitted Phases		2		6					
Actuated Green, G (s)	10.4	100.0	77.7	77.7					
Effective Green, g (s)	10.4	100.0	77.7	77.7					
Actuated g/C Ratio	0.10	1.00	0.78	0.78					
Clearance Time (s)	5.2	3.0	6.7	6.7					
Vehicle Extension (s)	3.0	3.0	3.0	3.0					
Lane Grp Cap (vph)	357	3539	3587	1058					
v/s Ratio Prot	c0.05		c0.08						
//s Ratio Perm		0.08		0.07					
v/c Ratio	0.48	0.08	0.11	0.09	-1-				
Uniform Delay, d1	42.3	0.0	2.7	2.7					
Progression Factor	0.69	1.00	1.00	1.00					
ncremental Delay, d2	1.0	0.0	0.1	0.2					
Delay (s)	30.2	0.0	2.8	2.8					
_evel of Service	С	Α	Α	Α					
Approach Delay (s)		11.3	2.8	1-5	0.0				
Approach LOS		В	Α		Α				
Intersection Summary									1000
HCM 2000 Control Delay			6.8	НС	M 2000 I	_evel of Serv	ice	Α	
HCM 2000 Volume to Capa	city ratio		0.15						
Actuated Cycle Length (s)			100.0	Su	m of lost	time (s)		11.9	
ntersection Capacity Utiliza	ation		30.2%		J Level o			A	
Analysis Period (min)			15						
Critical Lane Group									


Timing Plan: AM Peak

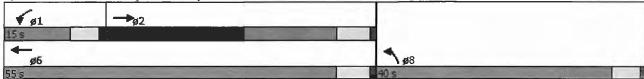
		1	-	1		
Lane Group	EBT	WBL	WBT	NBL	2	
Lane Configurations	A \$	٦	4	TY		
Volume (vph)	393	6	99	63		
Turn Type	NA	Prot	NA	Prot		
Protected Phases	2	1	6	8		
Permitted Phases						
Detector Phase	2	1	6	8		
Switch Phase						
Minimum Initial (s)	6.0	4.0	6.0	4.0		
Minimum Split (s)	24.0	9.3	24.0	23.3		
Total Split (s)	40.0	15.0	55.0	40.0		
Total Split (%)	42.1%	15.8%	57.9%	42.1%		
Yellow Time (s)	5.0	4.3	5.0	4.3		
All-Red Time (s)	1.0	1.0	1.0	1.0		
Lost Time Adjust (s)	0.0	0.0	0.0	0.0		
Total Lost Time (s)	6.0	5.3	6.0	5.3		
Lead/Lag	Lag	Lead				
Lead-Lag Optimize?	Yes	Yes				
Recall Mode	None	None	None	None		

Cycle Length: 95 Actuated Cycle Length: 32.1 Natural Cycle: 60

Control Type: Actuated-Uncoordinated

311119	•	ido i lidoco i d Z	
		Timing Plan: AM Peak	

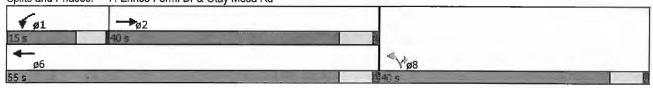
	-	•	1	-	4	*		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	1		7	4	ካላ*			
Volume (vph)	393	350	6	99	63	10		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	6.0		5.3	6.0	5.3			
Lane Util. Factor	0.95		1.00	1.00	0.97			
Frt	0.93		1.00	1.00	0.98			
Flt Protected	1.00		0.95	1.00	0.96			
Satd. Flow (prot)	3289		1770	1863	3392			
Flt Permitted	1.00		0.95	1.00	0.96			
Satd. Flow (perm)	3289		1770	1863	3392			
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92		
Adj. Flow (vph)	427	380	7	108	68	11		
RTOR Reduction (vph)	147	0	0	0	10	0		
Lane Group Flow (vph)	660	0	7	108	69	0		
Turn Type	NA	•	Prot	NA	Prot			
Protected Phases	2		1	6	8			
Permitted Phases	_							
Actuated Green, G (s)	16.7		0.6	22.6	3.9			
Effective Green, g (s)	16.7		0.6	22.6	3.9			
Actuated g/C Ratio	0.44		0.02	0.60	0.10			
Clearance Time (s)	6.0		5.3	6.0	5.3			
Vehicle Extension (s)	3.5	- 1	2.0	3.5	2.0			
Lane Grp Cap (vph)	1453		28	1113	349			
v/s Ratio Prot	c0.20		0.00	c0.06	c0.02			
v/s Ratio Perm								
v/c Ratio	0.45		0.25	0.10	0.20			
Uniform Delay, d1	7.4		18.4	3.2	15.5			
Progression Factor	1.00	1	1.00	1.00	1.00			
Incremental Delay, d2	0.3		1.7	0.0	0.1			
Delay (s)	7.6	30.75	20.1	3.3	15.6			
Level of Service	Α		С	Α	В			
Approach Delay (s)	7.6			4.3	15.6			
Approach LOS	Α			Α	В			
ntersection Summary					7000			-
HCM 2000 Control Delay			7.9	Н	CM 2000 I	Level of Service	ce A	
HCM 2000 Control Belay	city ratio		0.41	11	O. F. 2000 I	LOTOL OF OCIVIC	~ ^	
Actuated Cycle Length (s)	iony radio		37.8	Si	um of lost	time (s)	16.6	
Intersection Capacity Utiliza	ation		34.9%		U Level o		A.	
Analysis Period (min)	20011		15	10	C LUTOI O	COLVICE	, A.	
			10					
c Critical Lane Group								


6: Sanyo Ave & Otay Mesa Rd

	-	1	+	1
Lane Group	EBT	WBL	WBT	NBL
Lane Configurations	1	7	†	THE
Volume (vph)	154	25	303	177
Turn Type	NA	Prot	NA	Prot
Protected Phases	2	1	6	8
Permitted Phases				
Detector Phase	2	1	6	8
Switch Phase				
Minimum Initial (s)	6.0	4.0	6.0	4.0
Minimum Split (s)	24.0	9.3	24.0	23.3
Total Split (s)	40.0	15.0	55.0	40.0
Total Split (%)	42.1%	15.8%	57.9%	42.1%
Yellow Time (s)	5.0	4.3	5.0	4.3
All-Red Time (s)	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.0	5.3	6.0	5.3
Lead/Lag	Lag	Lead		
Lead-Lag Optimize?	Yes	Yes		
Recall Mode	None	None	None	None

Intersection Summary

Cycle Length: 95
Actuated Cycle Length: 31.6
Natural Cycle: 60
Control Type: Actuated-Uncoordinated



	→	*	1	-	1	-		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	A \$		19	4	77			
Volume (vph)	154	122	25	303	177	26		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	6.0		5.3	6.0	5.3			
Lane Util. Factor	0.95		1.00	1.00	0.97			
Frt	0.93		1.00	1.00	0.98			
Flt Protected	1.00		0.95	1.00	0.96			
Satd. Flow (prot)	3304		1770	1863	3397			
Flt Permitted	1.00		0.95	1.00	0.96			
Satd. Flow (perm)	3304		1770	1863	3397	100		
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92		
Adj. Flow (vph)	167	133	27	329	192	28		
RTOR Reduction (vph)	86	0	0	0	17	0		
Lane Group Flow (vph)	214	0	27	329	203	0		
Turn Type	NA		Prot	NA	Prot			
Protected Phases	2		1	6	8	100		
Permitted Phases	=			-				
Actuated Green, G (s)	12.7		0.7	18.7	6.2			
Effective Green, g (s)	12.7		0.7	18.7	6.2	-		
Actuated g/C Ratio	0.35		0.02	0.52	0.17			
Clearance Time (s)	6.0		5.3	6.0	5.3			
Vehicle Extension (s)	3.5		2.0	3.5	2.0			
Lane Grp Cap (vph)	1159		34	962	581			
v/s Ratio Prot	0.06		0.02	c0.18	c0.06		700	
v/s Ratio Perm	152200		929/59/24	1252105	39/2017/2019			
v/c Ratio	0.18		0.79	0.34	0.35			
Uniform Delay, d1	8.2		17.7	5.1	13.2			
Progression Factor	1.00		1.00	1.00	1.00			
Incremental Delay, d2	0.1		71.5	0.3	0.1			
Delay (s)	8.2		89.1	5.4	13.4			
Level of Service	Α		F	Α	В			
Approach Delay (s)	8.2			11.7	13.4			
Approach LOS	Α			В	В			
Intersection Summary								
HCM 2000 Control Delay		-	11.0	U	CM 2000	Level of Service	e B	
HCM 2000 Control Delay	city ratio		0.44	1)	OIVI 2000	FEACI OI OCIAICI		
Actuated Cycle Length (s)	ony rauo		36.2	C.	um of lost	time (e)	16.6	-
Actuated Cycle Length (s) Intersection Capacity Utiliza	ition		31.2%		U Level o	- ' '	10.0 A	
Intersection Capacity Otiliza Analysis Period (min)	IUOI1		15	10	O Level 0	Service	A	
c Critical Lane Group			10					
Cilical Lane Group								

	\rightarrow	1	-	1		
Lane Group	EBT	WBL	WBT	NBL	NBR	
Lane Configurations	}	ሻ		M	7	
Volume (vph)	381	104	76	19	385	
Turn Type	NA	Prot	NA	Perm	Perm	
Protected Phases	2	1	6			
Permitted Phases				8	8	
Detector Phase	2	1	6	8	8	
Switch Phase						
Minimum Initial (s)	6.0	4.0	6.0	4.0	4.0	
Minimum Split (s)	40.0	15.0	40.0	40.0	40.0	
Total Split (s)	40.0	15.0	55.0	40.0	40.0	
Total Split (%)	42.1%	15.8%	57.9%	42.1%	42.1%	
Yellow Time (s)	5.0	4.3	5.0	5.0	5.0	
All-Red Time (s)	1.0	0.5	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	4.8	6.0	6.0	6.0	
Lead/Lag	Lag	Lead				
Lead-Lag Optimize?	Yes	Yes				
Recall Mode	Min	None	Min	None	None	

Cycle Length: 95
Actuated Cycle Length: 49.6
Natural Cycle: 95
Control Type: Actuated-Uncoordinated

Splits and Phases: 7: Enrico Fermi Dr & Otay Mesa Rd

	-	7	1	←	4	-
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1		7	4	ሻ	7
Volume (vph)	381	25	104	76	19	385
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0		4.8	6.0	6.0	6.0
Lane Util. Factor	1.00		1.00	1.00	1.00	1.00
Frt	0.99		1.00	1.00	1.00	0.85
Flt Protected	1.00		0.95	1.00	0.95	1.00
Satd. Flow (prot)	1847		1770	1863	1770	1583
Flt Permitted	1.00		0.95	1.00	0.95	1.00
Satd. Flow (perm)	1847		1770	1863	1770	1583
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	414	27	113	83	21	418
RTOR Reduction (vph)	2	0	0	0	0	355
Lane Group Flow (vph)	439	0	113	83	21	63
Turn Type	NA		Prot	NA	Perm	Perm
Protected Phases	2		1	6	Cilli	1 CIIII
Permitted Phases				•	8	8
Actuated Green, G (s)	18.8		6.4	30.0	7.5	7.5
Effective Green, g (s)	18.8		6.4	30.0	7.5	7.5
Actuated g/C Ratio	0.38		0.13	0.61	0.15	0.15
Clearance Time (s)	6.0		4.8	6.0	6.0	6.0
Vehicle Extension (s)	3.5		2.0	3.5	2.0	2.0
	701		228	1129	268	239
Lane Grp Cap (vph) v/s Ratio Prot	c0.24		c0.06	0.04	200	239
v/s Ratio Prot v/s Ratio Perm	CU.24		60.00	0.04	0.01	c0.04
and the contraction	0.63		0.50	0.07	0.01	0.26
v/c Ratio				2000		
Uniform Delay, d1	12.5 1.00		20.0	4.0 1.00	18.0	18.6 1.00
Progression Factor		H	1.00		1.00	Part Section
Incremental Delay, d2	1.8	-	0.6	0.0	0.0	0.2
Delay (s)	14.3		20.7	4.1	18.1	18.8
Level of Service	В		С	A	В	В
Approach Delay (s)	14.3			13.6	18.7	
Approach LOS	В			В	В	
Intersection Summary					= -	+
HCM 2000 Control Delay			16.0	H	CM 2000	Level of So
HCM 2000 Volume to Capa	acity ratio		0.52			
Actuated Cycle Length (s)			49.5	Su	ım of lost	time (s)
Intersection Capacity Utiliz	ation		55.4%	IC	U Level o	of Service
Analysis Period (min)			15			
c Critical Lane Group						

	-	1	4	1	1
Lane Group	1.181	VVISI	WBT	NBL	NBR
Lane Configurations	1>	7	†	M	7
Volume (vph)	123	435	316	18	131
Turn Type	NA	Prot	NA	Perm	Perm
Protected Phases	2	1	6		
Permitted Phases				8	8
Detector Phase	2	1	6	8	8
Switch Phase					
Minimum Initial (s)	6.0	4.0	6.0	4.0	4.0
Minimum Split (s)	40.0	15.0	40.0	40.0	40.0
Total Split (s)	40.0	20.0	60.0	40.0	40.0
Total Split (%)	40.0%	20.0%	60.0%	40.0%	40.0%
Yellow Time (s)	5.0	4.3	5.0	5.0	5.0
All-Red Time (s)	1.0	0.5	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.0	4.8	6.0	6.0	6.0
Lead/Lag	Lag	Lead			
Lead-Lag Optimize?	Yes	Yes			
Recall Mode	Min	None	Min	None	None

Cycle Length: 100 Actuated Cycle Length: 48.2 Natural Cycle: 105

Control Type: Actuated-Uncoordinated

Splits and Phases: 7: Enrico Fermi Dr & Otay Mesa Rd

	-	*	1	←	1	1		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	1>		7	†	7	7"		
Volume (vph)	123	37	435	316	18	131		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	6.0		4.8	6.0	6.0	6.0		
Lane Util. Factor	1.00		1.00	1.00	1.00	1.00		
Frt	0.97		1.00	1.00	1.00	0.85		
Flt Protected	1.00		0.95	1.00	0.95	1.00		
Satd. Flow (prot)	1805		1770	1863	1770	1583		
Flt Permitted	1.00		0.95	1.00	0.95	1.00		
Satd. Flow (perm)	1805		1770	1863	1770	1583		
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92		
Adj. Flow (vph)	134	40	473	343	20	142		
RTOR Reduction (vph)	12	0	0	0	0	126		
Lane Group Flow (vph)	162	0	473	343	20	16		
Turn Type	NA NA		Prot	NA	Perm	Perm		
Protected Phases	2	2.0	1	6		1 01111		101000
Permitted Phases					8	8		
Actuated Green, G (s)	11.0		16.0	31.8	5.6	5.6		
Effective Green, g (s)	11.0	-	16.0	31.8	5.6	5.6		
Actuated g/C Ratio	0.22		0.32	0.64	0.11	0.11		
Clearance Time (s)	6.0		4.8	6.0	6.0	6.0		
Vehicle Extension (s)	3.5		2.0	3.5	2.0	2.0		
Lane Grp Cap (vph)	401		573	1199	200	179		
v/s Ratio Prot	c0.09	-	c0.27	0.02504020				
v/s Ratio Perm				100,000	c0.01	0.01		
//c Ratio	0.40		0.83	0.29	0.10	0.09		
Uniform Delay, d1	16.4		15.4	3.8	19.6	19.6		
Progression Factor	1.00		1.00	1.00	1.00	1.00		
Incremental Delay, d2	0.8	-	9.0	0.2	0.1	0.1		
Delay (s)	17.2		24.4	4.0	19.7	19.7		BY AND
Level of Service	В		С	Α	В	В		
Approach Delay (s)	17.2	3330	10072	15.8	19.7			
Approach LOS	В			В	В			
Intersection Summary HCM 2000 Control Delay			16.6	Ш	CM 2000	Level of Service	e B	-
	alk castle			П	CIVI ZUUU	reveror service	D D	
HCM 2000 Volume to Capa	icity ratio		0.56 49.4	0.	um of lock	time (a)	16.8	
Actuated Cycle Length (s)	dia.				um of lost	and the second second second		
ntersection Capacity Utiliza	uon		50.2%	IC	U Level o	of Service	A	
Analysis Period (min)			15					
c Critical Lane Group								

EXP1-2PM.syn Synchro 8 Report Page 2

B-60

	۶	*	4	†	↓	1			
Movement	EBL	EBR	NBL	NBT	SBT	SBR			
Lane Configurations	W			र्स	1→				
Sign Control	Stop			Stop	Stop				
Volume (vph)	774	0	0	5	2	166			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92			
Hourly flow rate (vph)	841	0	0	5	2	180			
Direction, Lane #	EB 1	NB 1	SB 1		-				
Volume Total (vph)	841	5	183						
Volume Left (vph)	841	0	0						
Volume Right (vph)	0	0	180						
Hadj (s)	0.23	0.03	-0.56						
Departure Headway (s)	4.7	6.1	5.2						
Degree Utilization, x	1.0	0.01	0.27						
Capacity (veh/h)	767	572	685						
Control Delay (s)	79.5	9.2	10.1						
Approach Delay (s)	79.5	9.2	10.1						
Approach LOS	F	A	В						
Intersection Summary		3 10	47.50				200		State .
Delay			66.8						
Level of Service			F						
Intersection Capacity Utilization			59.9%	IC	U Level o	f Service		В	
Analysis Period (min)			15						

Synchro 8 Report Page 14 EXP1-2AM.syn

8: Otay Mesa Rd & Alta Rd

	*	*	4	†	ļ	4		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		100
Lane Configurations	W			4	1>			
Sign Control	Stop	7		Stop	Stop			
Volume (vph)	164	0	2	2	3	591		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Hourly flow rate (vph)	178	0	2	2	3	642		
Direction, Lane #	EB 1	NB 1	SB 1				100	
Volume Total (vph)	178	4	646					
Volume Left (vph)	178	2	0	73.00				
Volume Right (vph)	0	0	642					
Hadj (s)	0.23	0.13	-0.56					-
Departure Headway (s)	5.5	5.2	3.9					
Degree Utilization, x	0.27	0.01	0.69					
Capacity (veh/h)	601	638	907					
Control Delay (s)	10.5	8.2	15.1					
Approach Delay (s)	10.5	8.2	15.1					
Approach LOS	В	A	C		3			
ntersection Summary				100				
Delay			14.1					
_evel of Service			В					
ntersection Capacity Utiliza	tion		52.5%	IC	U Level o	f Service	Α	
Analysis Period (min)			15					

	۶	*	1	†	1	4	
Movement	EBL	EBR	NBL	. NBT	SBT	SBR	
Lane Configurations				स	1>		
Volume (veh/h)	0	0	157	425	36	85	
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	0	0	171	462	39	92	
Pedestrians			120		-	(84)=	
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type				None	None		
Median storage veh)				25000000			
Upstream signal (ft)	2.75				791		
pX, platoon unblocked					7.50		
vC, conflicting volume	889	85	132				
vC1, stage 1 conf vol	3,500		7:3:F3.				
vC2, stage 2 conf vol							
vCu, unblocked vol	889	85	132				
tC, single (s)	6.4	6.2	4.1				
tC, 2 stage (s)	510		0.70701				
tF (s)	3.5	3.3	2.2				
p0 queue free %	100	100	88				
cM capacity (veh/h)	277	974	1454				
Direction, Lane #	NB 1	SB 1	1000	1	100		
Volume Total	633	132					the surface and the surface an
Volume Left	171	0					
Volume Right	0	92					
SH	1454	1700					
Volume to Capacity	0.12	0.08					
Queue Length 95th (ft)	10	0					
Control Delay (s)	3.0	0.0					
ane LOS	Α						
Approach Delay (s)	3.0	0.0					
Approach LOS							
ntersection Summary				- To-			
			2.5				
Intersection Capacity Utilization			44.8%	IC	U Level o	f Service	A
Analysis Period (min)			15				

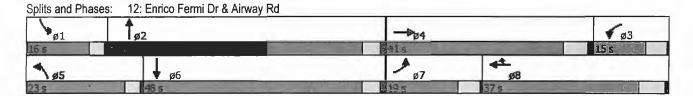
Otay Hills 9: Enrico Fermi Dr & SR-905 WB Ramp

*	*			↓	1
EBL	EBR	NBL	NBT	SBT	SBR
0	0	210			392
		A STATE OF THE STA	Free	Free	7895
	130		0%	0%	
	0.92	0.92			0.92
		228		107	426
		THE STATE OF THE S			5470.50
		_			
			None	None	
				3.52.57	
				791	
975	320	533			
20.2	0.55				
975	320	533			
		4.1			
	350.00				
3.5	3.3	2.2			
217	721	1035	•	39 33	
2150115		MASSES A	275	-	
	4-2-4				
	-	2 6			
	0.0				
	0.0	1			
19,2	0.0				
					4
ation			IC	U Level of	Service
		15			
	975 975 6.4	0 0 Stop 0% 0.92 0.92 0 0 0 975 320 975 320 6.4 6.2 3.5 3.3 100 100 217 721 NB 1 SB 1 427 533 228 0 0 426 1035 1700 0.22 0.31 21 0 6.2 0.0 A 6.2 0.0	0 0 210 Stop 0% 0.92 0.92 0.92 0 0 228 975 320 533 975 320 533 6.4 6.2 4.1 3.5 3.3 2.2 100 100 78 217 721 1035 NB 1 SB 1 427 533 228 0 0 426 1035 1700 0.22 0.31 21 0 6.2 0.0 A 6.2 0.0	BBL EBR NBL NBT 0 0 210 183 Stop Free 0% 0% 0.92 0.92 0.92 0.92 0 0 228 199 None None 975 320 533 6.4 6.2 4.1 3.5 3.3 2.2 100 100 78 217 721 1035 NB 1 SB 1 427 533 228 0 0 426 1035 1700 0.22 0.31 21 0 6.2 0.0 A 6.2 0.0 A 6.2 0.0	BBL BBR NBL NBT SBT

10: Enrico Fermi Dr & SR-905 EB Ramp

	۶	→	•	1	-	4	1	†	-	-	Ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NR1	NBR	SBL	SBT	SBR
Lane Configurations	7		7	7		7		1>			4	
Volume (veh/h)	318	14	209	13	0	11	0	216	22	3	42	0
Sign Control		Stop	2000		Stop	7.9		Free	17472	150	Free	
Grade		0%			0%			0%	3730		0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	346	15	227	14	0	12	0	235	24	3	46	0
Pedestrians Lane Width (ft)				-		¥-XT-		23.70	-==-1			
Walking Speed (ft/s)			-			-9-						
Percent Blockage		_			- 1	-						
Right turn flare (veh)		-										
Median type	-1	-				11		None			None	
Median storage veh)	-						-	NONE			None	-
Upstream signal (ft)								1318				-
pX, platoon unblocked								1010			_	
vC, conflicting volume	311	311	46	534	299	247	46		-	259		
vC1, stage 1 conf vol		011	-10	001	200	211	-10			200		
vC2, stage 2 conf vol												
vCu, unblocked vol	311	311	46	534	299	247	46			259		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1		8	4.1		
tC, 2 stage (s)	2/2/		7.75	1.00	7.7		76.7					
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	45	97	78	96	100	98	100			100		
cM capacity (veh/h)	631	602	1024	348	612	792	1562			1306		
Direction, Lane #	EB 1	EB 2	WB1	WB 2	NB 1	SB 1						
Volume Total	346	242	14	12	259	49						
Volume Left	346	0	14	0	0	3						
Volume Right	0	227	0	12	24	0						
cSH	631	981	348	792	1700	1306						
Volume to Capacity	0.55	0.25	0.04	0.02	0.15	0.00						
Queue Length 95th (ft)	83	24	3	1	0	0						
Control Delay (s)	17.4	9.9	15.8	9.6	0.0	0.5						
Lane LOS	С	Α	С	Α		Α						
Approach Delay (s)	14.3		13.0		0.0	0.5						
Approach LOS	В		В									
ntersection Summary			- 16					100	100			
Average Delay			9.5									
ntersection Capacity Utilization			Err%	IC	U Level o	f Service			Н			
Analysis Period (min)			15									

Timing Plan: PM Peak

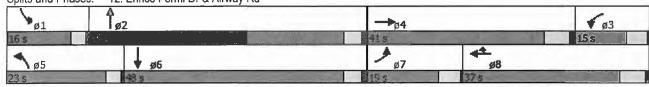

	*	→	•	1	←	4	1	†	-	1	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7		74	M		7		1>			र्स	
Volume (veh/h)	108	5	73	13	0	24	0	312	11	5	112	0
Sign Control	ANG C	Stop			Stop			Free			Free	
Grade		0%			0%		-	0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	117	5	79	14	0	26	0	339	12	5	122	0
Pedestrians Lane Width (ft)	-											
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)			-									
Upstream signal (ft)								1318				
pX, platoon unblocked												
vC, conflicting volume	504	484	122	560	478	345	122			351		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	504	484	122	560	478	345	122			351		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	74	99	91	96	100	96	100			100		
cM capacity (veh/h)	459	481	929	397	484	698	1466			1208		
Direction, Lane #	EB1	EB 2	WB1	WB 2	NB 1	SB 1	100	-			-	
Volume Total	117	85	14	26	351	127						
Volume Left	117	0	14	0	0	5						
Volume Right	0	79	0	26	12	0						
cSH	459	877	397	698	1700	1208						
Volume to Capacity	0.26	0.10	0.04	0.04	0.21	0.00						
Queue Length 95th (ft)	25	8	3	3	0	0						
Control Delay (s)	15.5	9.5	14.4	10.4	0.0	0.4						
Lane LOS	С	Α	В	В		Α						
Approach Delay (s)	13.0		11.8		0.0	0.4						
Approach LOS	В		В									
intersection Summary				- 254		-						
Average Delay			4.4									
Intersection Capacity Utilizal	tion		Err%	IC	U Level o	of Service			H			
Analysis Period (min)			15									

EXP1-2PM.syn

	•	-	1	4-	*	1	1	1	1	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Configurations	1	1	15	4	7	7	1	M	^	
Volume (vph)	39	7	5	10	21	54	214	25	130	
Turn Type	Prot	NA	Prot	NA	Perm	Prot	NA	Prot	NA	
Protected Phases	7	4	3	8		5	2	1	6	
Permitted Phases					8					
Detector Phase	7	4	3	8	8	5	. 2	1	6	
Switch Phase										
Minimum Initial (s)	4.0	4.0	6.0	6.0	6.0	4.0	4.0	4.0	4.0	
Minimum Split (s)	8.8	30.0	10.8	36.0	36.0	7.5	8.6	7.5	36.6	
Total Split (s)	19.0	41.0	15.0	37.0	37.0	23.0	55.0	16.0	48.0	
Total Split (%)	15.0%	32.3%	11.8%	29.1%	29.1%	18.1%	43.3%	12.6%	37.8%	
Yellow Time (s)	4.3	5.0	4.3	5.0	5.0	3.0	3.6	3.0	3.6	
All-Red Time (s)	0.5	1.0	0.5	1.0	1.0	0.5	1.0	0.5	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.8	6.0	4.8	6.0	6.0	3.5	4.6	3.5	4.6	
Lead/Lag	Lead	Lead	Lag	Lag	Lag	Lead	Lag	Lead	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes							
Recall Mode	None	None	None	None	None	None	Min	None	Min	

Cycle Length: 127
Actuated Cycle Length: 44.1
Natural Cycle: 90

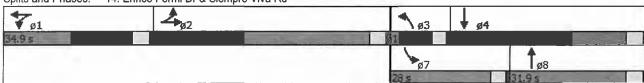
Control Type: Actuated-Uncoordinated


	1	→	*	1	-	*	4	†	1	-	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	1		M	1	7	19	↑ \$		7	1	
Volume (vph)	39	7	20	5	10	21	54	214	12	25	130	96
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.8	6.0		4.8	6.0	6.0	3.5	4.6		3.5	4.6	
Lane Util. Factor	1.00	0.95		1.00	1.00	1.00	1.00	0.95		1.00	0.95	
Frt	1.00	0.89		1.00	1.00	0.85	1.00	0.99		1.00	0.94	
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1770	3150		1770	1863	1583	1770	3511		1770	3314	
Flt Permitted	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (perm)	1770	3150		1770	1863	1583	1770	3511		1770	3314	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	42	8	22	5	11	23	59	233	13	27	141	104
RTOR Reduction (vph)	0	20	0	0	0	21	0	2	0	0	58	0
Lane Group Flow (vph)	42	10	0	5	11	2	59	244	0	27	187	0
Turn Type	Prot	NA		Prot	NA	Perm	Prot	NA		Prot	NA	
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases						8						
Actuated Green, G (s)	2.0	5.4		1.3	4.7	4.7	4.7	28.0		0.7	24.0	
Effective Green, g (s)	2.0	5.4		1.3	4.7	4.7	4.7	28.0		0.7	24.0	
Actuated g/C Ratio	0.04	0.10		0.02	0.09	0.09	0.09	0.52		0.01	0.44	
Clearance Time (s)	4.8	6.0		4.8	6.0	6.0	3.5	4.6		3.5	4.6	
Vehicle Extension (s)	2.0	3.5		3.0	3.5	3.5	2.0	3.0		2.0	3.0	
Lane Grp Cap (vph)	65	313		42	161	137	153	1810		22	1464	
v/s Ratio Prot	c0.02	0.00		0.00	c0.01		c0.03	c0.07		c0.02	0.06	
v/s Ratio Perm						0.00						
v/c Ratio	0.65	0.03		0.12	0.07	0.01	0.39	0.13		1.23	0.13	
Uniform Delay, d1	25.8	22.1		25.9	22.8	22.7	23.4	6.8		26.8	9.0	
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	15.3	0.1		1.3	0.2	0.1	0.6	0.0		269.8	0.0	
Delay (s)	41.1	22.1		27.2	23.0	22.7	24.0	6.9		296.6	9.0	
Level of Service	D	C		C	C	С	С	Α		F	Α	
Approach Delay (s)		33.2			23.4			10.2			37.5	
Approach LOS		С			С			В			D	
Intersection Summary						27.00	-	225	3 3			
HCM 2000 Control Delay			24.2	H	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capa	acity ratio		0.20									
Actuated Cycle Length (s)			54.3	Si	um of lost	time (s)			18.9			
Intersection Capacity Utiliza	ation		31.0%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									
c Critical Lane Group												

EXP1-2AM.syn

	•	\rightarrow	1	-	*	1	1	1	↓	
Lane Group	FRI	FRT	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Configurations	*	朴	T	1	7	ሻ	1	ħ	1	
Volume (vph)	71	5	8	10	32	58	217	21	83	
Turn Type	Prot	NA	Prot	NA	Perm	Prot	NA	Prot	NA	
Protected Phases	7	4	3	8		5	2	1	6	
Permitted Phases					8		-			
Detector Phase	7	4	3	8	8	5	2	1	6	
Switch Phase										
Minimum Initial (s)	4.0	4.0	6.0	6.0	6.0	4.0	4.0	4.0	4.0	
Minimum Split (s)	8.8	30.0	10.8	36.0	36.0	7.5	8.6	7.5	36.6	
Total Split (s)	19.0	41.0	15.0	37.0	37.0	23.0	55.0	16.0	48.0	
Total Split (%)	15.0%	32.3%	11.8%	29.1%	29.1%	18.1%	43.3%	12.6%	37.8%	
Yellow Time (s)	4.3	5.0	4.3	5.0	5.0	3.0	3.6	3.0	3.6	
All-Red Time (s)	0.5	1.0	0.5	1.0	1.0	0.5	1.0	0.5	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.8	6.0	4.8	6.0	6.0	3.5	4.6	3.5	4.6	
Lead/Lag	Lead	Lead	Lag	Lag	Lag	Lead	Lag	Lead	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	None	Min	None	Min	

Cycle Length: 127
Actuated Cycle Length: 47.2
Natural Cycle: 90
Control Type: Actuated-Uncoordinated

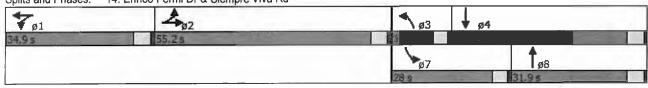


	*	→	•	•	-	*	4	†	1	-	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	1		7	†	7	7	1		7	A	
Volume (vph)	71	5	15	8	10	32	58	217	17	21	83	93
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.8	6.0		4.8	6.0	6.0	3.5	4.6		3.5	4.6	
Lane Util. Factor	1.00	0.95		1.00	1.00	1.00	1.00	0.95		1.00	0.95	
Frt	1.00	0.89		1.00	1.00	0.85	1.00	0.99		1.00	0.92	
Fit Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1770	3135		1770	1863	1583	1770	3502		1770	3258	
Flt Permitted	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (perm)	1770	3135		1770	1863	1583	1770	3502	-	1770	3258	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	77	5	16	9	11	35	63	236	18	23	90	101
RTOR Reduction (vph)	0	14	0	0	0	32	0	4	0	0	59	0
Lane Group Flow (vph)	77	7	0	9	11	3	63	250	0	23	132	0
Turn Type	Prot	NA		Prot	NA	Perm	Prot	NA		Prot	NA	
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases						8						
Actuated Green, G (s)	4.7	7.6		1.7	4.6	4.6	4.2	27.0		0.7	23.5	
Effective Green, g (s)	4.7	7.6		1.7	4.6	4.6	4.2	27.0		0.7	23.5	
Actuated g/C Ratio	0.08	0.14		0.03	0.08	0.08	0.08	0.48		0.01	0.42	
Clearance Time (s)	4.8	6.0		4.8	6.0	6.0	3.5	4.6		3.5	4.6	
Vehicle Extension (s)	2.0	3.5		3.0	3.5	3.5	2.0	3.0		2.0	3.0	
Lane Grp Cap (vph)	148	426		53	153	130	132	1691		22	1369	
v/s Ratio Prot	c0.04	0.00		c0.01	c0.01		c0.04	c0.07		0.01	0.04	
v/s Ratio Perm	252.0	7.00		10000	22277	0.00	OF COURSE	590.000		72.5	4002	
v/c Ratio	0.52	0.02		0.17	0.07	0.02	0.48	0.15		1.05	0.10	
Uniform Delay, d1	24.5	20.9		26.4	23.7	23.6	24.8	8.0		27.6	9.8	
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	1.5	0.0		1.5	0.2	0.1	1.0	0.0		206.7	0.0	
Delay (s)	26.0	20.9		27.9	23.9	23.7	25.8	8.1		234.3	9.8	
Level of Service	С	С		С	С	С	С	Α		F	Α	
Approach Delay (s)		24.9			24.4			11.6			33.9	
Approach LOS		С			С			В			С	
Intersection Summary						-						
HCM 2000 Control Delay			21.5	Н	CM 2000	Level of	Service		С			_
HCM 2000 Volume to Capa	city ratio		0.21									
Actuated Cycle Length (s)	,		55.9	Si	um of lost	time (s)			18.9			
Intersection Capacity Utiliza	tion		32.6%		U Level o	. ,			A			
Analysis Period (min)			15	,10	2 201010				7.1			
Critical Lane Group												

	•	→	1	-	1	†	-	Ţ		
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT		150000
Lane Configurations	ሻሻ	4	7	朴	7	44	7	1		
Volume (vph)	49	7	7	18	61	209	23	84		
Turn Type	Split	NA	Split	NA	Prot	NA	Prot	NA		
Protected Phases	2	2	1	1	3	8	7	4		
Permitted Phases										
Detector Phase	2	2	1	1	3	8	7	4	3 3 3	
Switch Phase						-				
Minimum Initial (s)	10.0	10.0	10.0	10.0	4.0	10.0	4.0	10.0		
Minimum Split (s)	31.9	31.9	34.9	34.9	8.5	31.9	8.5	31.9		
Total Split (s)	55.2	55.2	34.9	34.9	14.0	31.9	28.0	45.9		
Total Split (%)	36.8%	36.8%	23.3%	23.3%	9.3%	21.3%	18.7%	30.6%		
Yellow Time (s)	3.9	3.9	3.9	3.9	3.4	3.9	3.4	3.9	. 4	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Total Lost Time (s)	4.9	4.9	4.9	4.9	4.4	4.9	4.4	4.9		
Lead/Lag	Lag	Lag	Lead	Lead	Lead	Lag	Lead	Lag		
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
Recall Mode	None	None	None	None	None	Max	None	Max		

Cycle Length: 150
Actuated Cycle Length: 87.3
Natural Cycle: 110
Control Type: Actuated-Uncoordinated

Splits and Phases: 14: Enrico Fermi Dr & Siempre Viva Rd


	*	→	*	1	-	*	4	†	-	-	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	75	1		7	↑ ↑		T	1		7	1	
Volume (vph)	49	7	19	7	18	24	61	209	4	23	84	33
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.9	4.9		4.9	4.9		4.4	4.9		4.4	4.9	
Lane Util. Factor	0.97	1.00		1.00	0.95		1.00	0.95		1.00	0.95	
Frt	1.00	0.89		1.00	0.92		1.00	1.00		1.00	0.96	1
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	3433	1660		1770	3239		1770	3530		1770	3389	
Flt Permitted	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (perm)	3433	1660		1770	3239		1770	3530		1770	3389	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	53	8	21	8	20	26	66	227	4	25	91	36
RTOR Reduction (vph)	0	19	0	0	24	0	0	0	0	0	17	0
Lane Group Flow (vph)	53	10	0	8	22	0	66	231	0	25	110	0
Turn Type	Split	NA	•	Split	NA	-	Prot	NA		Prot	NA	
Protected Phases	2	2		1	1		3	8		7	4	
Permitted Phases	_	_										
Actuated Green, G (s)	10.2	10.2		8.1	8.1		6.2	53.6		2.4	49.8	
Effective Green, g (s)	10.2	10.2		8.1	8.1		6.2	53.6		2.4	49.8	
Actuated g/C Ratio	0.11	0.11		0.09	0.09		0.07	0.57		0.03	0.53	
Clearance Time (s)	4.9	4.9		4.9	4.9		4.4	4.9		4.4	4.9	
Vehicle Extension (s)	6.2	6.2		5.4	5.4		2.0	2.5		2.0	5.9	
Lane Grp Cap (vph)	374	181		153	280		117	2025		45	1806	
v/s Ratio Prot	c0.02	0.01		0.00	c0.01		c0.04	c0.07		0.01	0.03	
v/s Ratio Perm	00.02			0.00							0.00	
v/c Ratio	0.14	0.06		0.05	0.08		0.56	0.11		0.56	0.06	
Uniform Delay, d1	37.6	37.3		39.1	39.2		42.3	9.1		45.0	10.5	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	0.5	0.4		0.3	0.3		3.7	0.1		8.2	0.1	
Delay (s)	38.2	37.7		39.5	39.5		46.0	9.2		53.1	10.6	
Level of Service	D	D		D	D		D	A		D	В	
Approach Delay (s)		38.0			39.5		-	17.4			17.6	
Approach LOS		D			D			В			В	
Intersection Summary												
HCM 2000 Control Delay			22.4	Н	CM 2000	l evel of S	Service		С			
HCM 2000 Volume to Capa	city ratio		0.14		OM 2000	20101010	301 1100					
Actuated Cycle Length (s)	only ratio	-	93.4	Sı	ım of lost	time (s)			19.1			-
Intersection Capacity Utiliza	ation		31.9%		U Level o				A			
Analysis Period (min)			15			. 50, 1,50			17.00			
c Critical Lane Group			10									

EXP1-2AM.syn

	*	-	1	←	1	1	1	↓	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	75	7>	7	朴	ħ	† 1>	7	A	
Volume (vph)	46	4	9	19	101	226	9	52	
Turn Type	Split	NA	Split	NA	Prot	NA	Prot	NA	
Protected Phases	2	2	1	1	3	8	7	4	
Permitted Phases									
Detector Phase	2	2	1	1	3	8	7	4	
Switch Phase									
Minimum Initial (s)	10.0	10.0	10.0	10.0	4.0	10.0	4.0	10.0	
Minimum Split (s)	31.9	31.9	34.9	34.9	8.5	31.9	8.5	31.9	
Total Split (s)	55.2	55.2	34.9	34.9	14.0	31.9	28.0	45.9	
Total Split (%)	36.8%	36.8%	23.3%	23.3%	9.3%	21.3%	18.7%	30.6%	
Yellow Time (s)	3.9	3.9	3.9	3.9	3.4	3.9	3.4	3.9	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.9	4.9	4.9	4.9	4.4	4.9	4.4	4.9	
Lead/Lag	Lag	Lag	Lead	Lead	Lead	Lag	Lead	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	Max	None	Max	

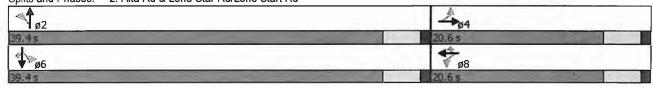
Cycle Length: 150
Actuated Cycle Length: 91.2
Natural Cycle: 110
Control Type: Actuated-Uncoordinated

Splits and Phases: 14: Enrico Fermi Dr & Siempre Viva Rd

	•	→	*	1	—	*	4	†	-	1	↓	1
Movement	EBL	EBI	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	77	1≽		19	44		7	44		7	1	
Volume (vph)	46	4	11	9	19	22	101	226	0	9	52	40
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.9	4.9		4.9	4.9	11 - 5	4.4	4.9		4.4	4.9	
Lane Util. Factor	0.97	1.00		1.00	0.95		1.00	0.95		1.00	0.95	
Frt	1.00	0.89		1.00	0.92		1.00	1.00		1.00	0.94	
Fit Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	3433	1653		1770	3256		1770	3539	1300	1770	3311	
Flt Permitted	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (perm)	3433	1653		1770	3256		1770	3539		1770	3311	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	50	4	12	10	21	24	110	246	0	10	57	43
RTOR Reduction (vph)	0	11	0	0	22	0	0	0	0	0	21	0
Lane Group Flow (vph)	50	5	0	10	23	0	110	246	0	10	79	0
Turn Type	Split	NA		Split	NA		Prot	NA	•	Prot	NA	
Protected Phases	2	2		1	1		3	8		7	4	
Permitted Phases		_				-						
Actuated Green, G (s)	10.4	10.4	-	8.4	8.4		10.0	59.1		1.0	50.1	100
Effective Green, g (s)	10.4	10.4		8.4	8.4		10.0	59.1		1.0	50.1	
Actuated g/C Ratio	0.11	0.11		0.09	0.09		0.10	0.60		0.01	0.51	
Clearance Time (s)	4.9	4.9		4.9	4.9		4.4	4.9		4.4	4.9	
Vehicle Extension (s)	6.2	6.2		5.4	5.4		2.0	2.5		2.0	5.9	
Lane Grp Cap (vph)	364	175		151	279		180	2134		18	1692	
v/s Ratio Prot	c0.01	0.00		0.01	c0.01	-	c0.06	c0.07		0.01	0.02	
v/s Ratio Perm	00.01	0.00		0.01	00.01		00.00	00.07		0.01	0.02	
v/c Ratio	0.14	0.03	0.0351	0.07	0.08		0.61	0.12		0.56	0.05	
Uniform Delay, d1	39.7	39.3		41.2	41.3		42.1	8.3		48.3	12.0	
Progression Factor	1.00	1.00		1.00	1.00	100	1.00	1.00		1.00	1.00	
Incremental Delay, d2	0.5	0.2		0.4	0.3		4.3	0.1		19.4	0.1	-
Delay (s)	40.2	39.5		41.6	41.6		46.4	8.4		67.7	12.0	
Level of Service	D	D		D	D		D	A		E	В	
Approach Delay (s)		40.1	-		41.6			20.1	DOM:		17.1	
Approach LOS		D			D			C			В	
Intersection Summary					-		211		150	2720		
HCM 2000 Control Delay			23.8	H	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capa	city ratio		0.18									
Actuated Cycle Length (s)			98.0	Si	um of lost	time (s)			19.1			
Intersection Capacity Utiliza	ation		28.8%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									
c Critical Lane Group												

Existing + Project Phases 1-3 Conditions - Synchro Analysis

1	*	†	1	1	Ţ		
WBL	WBR	NBT		SBL	SBT		-
W		^	7	19	4		
142	3	601	244	0	64		
Stop		Free			Free		
		0%			0%		
	0.92		0.92	0.92	0.92		
154	3	653	265	0	70		
2550				7	3005		
	-		- 199				
	10-7	None			None	The state of the s	
				_	(totalist)		
	1993	684					
0.89	0.89			0.89			
723	653			918			
2 - 10	-00			- 11-2			
622	544			843			
6.4				4.1	70		
	5746						
3.5	3.3			2.2			
61	99			100			
399	477			702			
WB 1	NB1	NB 2	SB 1	SB 2			
158	653	265	0	70			
154	0	0	0	0			
3	0	265	0	0			
400	1700	1700	1700	1700			
0.39	0.38	0.16	0.00	0.04			
46	0	0	0	0			
19.7	0.0	0.0	0.0	0.0			
С							
19.7	0.0		0.0				
С							
				-			
		2.7					
ition		46.3%	IC	U Level o	f Service	A	
		15		112015		79.20	
	0.89 723 0.89 723 622 6.4 3.5 61 399 WB 1 158 154 3 400 0.39 46 19.7 C 19.7 C	WBL WBR 142 3 Stop 0% 0.92 0.92 154 3 0.89 0.89 723 653 622 544 6.4 6.2 3.5 3.3 61 99 399 477 WB 1 NB 1 158 653 154 0 3 0 400 1700 0.39 0.38 46 0 19.7 0.0 C 19.7 0.0 C	WBL WBR NBT 142 3 601 Stop Free 0% 0% 0.92 0.92 0.92 154 3 653 None 684 0.89 0.89 723 653 622 544 6.4 6.2 3.5 3.3 61 99 399 477 WB 1 NB 1 NB 2 158 653 265 154 0 0 3 0 265 400 1700 1700 0.39 0.38 0.16 46 0 0 19.7 0.0 0.0 C 19.7 0.0 0.0 C 19.7 0.0 0.0 C 2.7 tion 2.7	WBL WBR NBT NBR 142 3 601 244 Stop Free 0% 0% 0.92 0.92 0.92 0.92 154 3 653 265 None 684 684 684 0.89 0.89 723 653 622 544 6.4 6.2 3.5 3.3 61 99 399 477 WB 1 NB 2 SB 1 158 653 265 0 400 1700 1700 1700 0.39 0.38 0.16 0.00 46 0 0 0 19.7 0.0 0.0 0.0 C 19.7 0.0 0.0 19.7 0.0 0.0 0.0 19.7 0.0 0.0 0.0 19.7 0.0 0.0 0.0 10 0.0 <td< td=""><td>WBL WBR NBT NBR SBL Y A Y <td< td=""><td>WBL WBR NBT NBR SBL SBT Y 142 3 601 244 0 64 Stop Free Free Free Free 0% 0% 0% 0% 0.92 0.92 0.92 0.92 0.92 154 3 653 265 0 70 None None None None None None None None None 843 644 644 645 644 645 645 645 6</td><td>WBL WBR NBT NBR SBL SBT YF A YF A 142 3 601 244 0 64 Stop Free Free O% 0% 0.92 0.92 0.92 0.92 0.92 154 3 653 265 0 70 None None None None None None None None 843 843 644 644 644 644 644 644</td></td<></td></td<>	WBL WBR NBT NBR SBL Y A Y <td< td=""><td>WBL WBR NBT NBR SBL SBT Y 142 3 601 244 0 64 Stop Free Free Free Free 0% 0% 0% 0% 0.92 0.92 0.92 0.92 0.92 154 3 653 265 0 70 None None None None None None None None None 843 644 644 645 644 645 645 645 6</td><td>WBL WBR NBT NBR SBL SBT YF A YF A 142 3 601 244 0 64 Stop Free Free O% 0% 0.92 0.92 0.92 0.92 0.92 154 3 653 265 0 70 None None None None None None None None 843 843 644 644 644 644 644 644</td></td<>	WBL WBR NBT NBR SBL SBT Y 142 3 601 244 0 64 Stop Free Free Free Free 0% 0% 0% 0% 0.92 0.92 0.92 0.92 0.92 154 3 653 265 0 70 None None None None None None None None None 843 644 644 645 644 645 645 645 6	WBL WBR NBT NBR SBL SBT YF A YF A 142 3 601 244 0 64 Stop Free Free O% 0% 0.92 0.92 0.92 0.92 0.92 154 3 653 265 0 70 None None None None None None None None 843 843 644 644 644 644 644 644

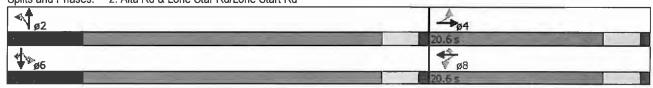

Otay Hills 1: Alta Rd & Calzada De La Fuente

	•	*	†	-	-	Ţ			
Movement	WBL	WBR	NBT	NBR	SBL	SBT			20
Lane Configurations	M		4	7	ሻ	^			
Volume (veh/h)	234	0	84	150	2	418			4 5
Sign Control	Stop		Free			Free			
Grade	0%		0%			0%			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92			
Hourly flow rate (vph)	254	0	91	163	2	454		1	
Pedestrians	1997 1991								
Lane Width (ft)									
Walking Speed (ft/s)									
Percent Blockage						- 8			
Right turn flare (veh)									
Median type			None			None			
Median storage veh)									
Upstream signal (ft)			684	3. 3		- mi			
pX, platoon unblocked									
vC, conflicting volume	550	91			254	7.			
vC1, stage 1 conf vol					20.				
vC2, stage 2 conf vol									
vCu, unblocked vol	550	91			254				
tC, single (s)	6.4	6.2			4.1				
tC, 2 stage (s)		-,-			4				
tF (s)	3.5	3.3			2.2			-	
p0 queue free %	49	100			100				
cM capacity (veh/h)	495	966			1311				
Direction, Lane #	WB 1	NB 1	NB 2	SB 1	SB 2				
			163		454				
Volume Total Volume Left	254 254	91	0	2 2			49 4-1		-, 6
Contract to the second	204	0	163	0	0				
Volume Right	495		1700		1700	12			
SH Volume to Capacity	0.51	1700 0.05	0.10	1311	0.27				
	72		- well-						-
Queue Length 95th (ft)	19.7	0	0.0	7.8	0.0				
Control Delay (s)		0.0	0.0		0.0		00		
Lane LOS	C 19.7	0.0		0.0				-	
Approach Delay (s)	45550	0.0		0.0	- 3			3-3-3-1	= -
Approach LOS	С								
ntersection Summary									30
Average Delay	****		5.2						
ntersection Capacity Utiliza	ation		41.6%	IC	U Level o	f Service		A	
Analysis Period (min)			15						

	•	→	1	-	*	1	†	1	1	4	
Lane Group	EBL	1881	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Configurations	7	7>	7	1	A	4	1>	N	4	7	
Volume (vph)	5	0	16	1	6	1	834	3	197	4	
Tum Type	Perm	NA	Perm	NA	Perm	Perm	NA	Perm	NA	Perm	
Protected Phases		4		8			2		6		
Permitted Phases	4		8		8	2		6		6	
Detector Phase	4	4	8	8	8	2	2	6	6	6	
Switch Phase											
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
Minimum Split (s)	20.5	20.5	20.5	20.5	20.5	20.5	20.5	20.5	20.5	20.5	
Total Split (s)	20.6	20.6	20.6	20.6	20.6	39.4	39.4	39.4	39.4	39.4	
Total Split (%)	34.3%	34.3%	34.3%	34.3%	34.3%	65.7%	65.7%	65.7%	65.7%	65.7%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	
Lead/Lag				- 200		1000					
Lead-Lag Optimize?							- 5.5		- 1		
Recall Mode	None	None	None	None	None	Min	Min	Min	Min	Min	

Cycle Length: 60
Actuated Cycle Length: 46.6
Natural Cycle: 60
Control Type: Actuated-Uncoordinated

Splits and Phases: 2: Alta Rd & Lone Star Rd/Lone Start Rd



	•	→	*	1	←	*	1	†	1	1	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	1>		7	4	7	T	1>		7	4	7
Volume (vph)	5	0	2	16	1	6	1	834	19	3	197	4
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.5	4.5		4.5	4.5	4.5	4.5	4.5		4.5	4.5	4.5
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
Frt	1.00	0.85		1.00	1.00	0.85	1.00	1.00		1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1770	1583		1770	1863	1583	1770	1856		1770	1863	1583
Flt Permitted	1.00	1.00		1.00	1.00	1.00	0.62	1.00		0.26	1.00	1.00
Satd. Flow (perm)	1863	1583		1863	1863	1583	1163	1856		484	1863	1583
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	5	0	2	17	1	7	1	907	21	3	214	4
RTOR Reduction (vph)	0	2	0	0	0	7	0	1	0	0	0	1
Lane Group Flow (vph)	5	0	0	17	1	0	1	927	0	3	214	3
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA	-	Perm	NA	Perm
Protected Phases	TOTAL	4	-	7 01111	8	7 0/111	TOTAL	2		1 01111	6	7 01111
Permitted Phases	4	- 4		8	•	8	2	-		6	-	6
Actuated Green, G (s)	2.2	2.2		2.2	2.2	2.2	38.2	38.2		38.2	38.2	38.2
Effective Green, g (s)	2.2	2.2		2.2	2.2	2.2	38.2	38.2		38.2	38.2	38.2
Actuated g/C Ratio	0.04	0.04		0.04	0.04	0.04	0.77	0.77		0.77	0.77	0.77
Clearance Time (s)	4.5	4.5		4.5	4.5	4.5	4.5	4.5		4.5	4.5	4.5
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	82	70		82	82	70	899	1435		374	1440	1224
v/s Ratio Prot	02	0.00	THE STREET	- 02	0.00	,,,	000	c0.50		0,1	0.11	1227
v/s Ratio Perm	0.00	0.00		c0.01	0.00	0.00	0.00	00.00		0.01	0.11	0.00
v/c Ratio	0.06	0.00		0.21	0.01	0.00	0.00	0.65		0.01	0.15	0.00
Uniform Delay, d1	22.6	22.6		22.8	22.6	22.6	1.3	2.5		1.3	1.4	1.3
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	0.3	0.0		1.3	0.1	0.0	0.0	1.0		0.0	0.0	0.0
Delay (s)	22.9	22.6		24.0	22.6	22.6	1.3	3.5		1.3	1.5	1.3
Level of Service	C	C		С	С	C	A	A		A	A	A
Approach Delay (s)		22.8	100		23.6			3.5			1.5	
Approach LOS		С			С			A			A	
Intersection Summary				7			75			300	31.00	
HCM 2000 Control Delay			3.7	Н	CM 2000	Level of S	Service		Α			
HCM 2000 Volume to Capa	city ratio		0.62		2000	2010.010						
Actuated Cycle Length (s)	,		49.4	Si	ım of lost	time (s)			9.0			
Intersection Capacity Utiliza	tion		63.0%			of Service			В			
Analysis Period (min)			15									
C Critical Lane Group			,,									-

	•	-		-	*	†	1	1	1	
Lane Group	FRI	FRT	WBL	WBT	WBR	NBT	SBL	SBT	SBR	
Lane Configurations	75	1>	ħ	4	7	1>	*	4	77	
Volume (vph)	4	0	9	1	5	225	5	650	5	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	Perm	
Protected Phases		4		8		2		6		
Permitted Phases	4		8	7	8		6		6	
Detector Phase	4	4	8	8	8	2	6	6	6	
Switch Phase										
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
Minimum Split (s)	20.5	20.5	20.5	20.5	20.5	20.5	20.5	20.5	20.5	
Total Split (s)	20.6	20.6	20.6	20.6	20.6	39.4	39.4	39.4	39.4	
Total Split (%)	34.3%	34.3%	34.3%	34.3%	34.3%	65.7%	65.7%	65.7%	65.7%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	
Lead/Lag										
Lead-Lag Optimize?										
Recall Mode	None	None	None	None	None	Min	Min	Min	Min	

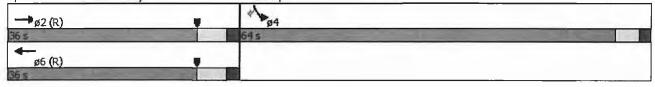
Cycle Length: 60
Actuated Cycle Length: 36.4
Natural Cycle: 55
Control Type: Actuated-Uncoordinated

Splits and Phases: 2: Alta Rd & Lone Star Rd/Lone Start Rd

	1	→	*	-	-	*	4	†	-	-	Ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	7	1		7	1	7	ħ	4		N.	4	ř
Volume (vph)	4	0	1	9	1	5	0	225	6	5	650	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.5	4.5		4.5	4.5	4.5		4.5		4.5	4.5	4.5
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00		1.00		1.00	1.00	1.00
Frt	1.00	0.85		1.00	1.00	0.85		1.00		1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00	1.00		1.00		0.95	1.00	1.00
Satd. Flow (prot)	1770	1583		1770	1863	1583		1855		1770	1863	1583
Flt Permitted	1.00	1.00		1.00	1.00	1.00		1.00		0.60	1.00	1.00
Satd. Flow (perm)	1863	1583		1863	1863	1583		1855		1123	1863	1583
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	4	0	1	10	4	5	0	245	7	5	707	5
RTOR Reduction (vph)	0	1	0	0	0	5	0	1	0	0	0	1
Lane Group Flow (vph)	4	0	0	10	1	0	0	251	0	5	707	4
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA	*****	Perm	NA	Perm
Protected Phases		4			8			2			6	
Permitted Phases	4			8		8	2	_		6		6
Actuated Green, G (s)	0.9	0.9		0.9	0.9	0.9		30.1		30.1	30.1	30.1
Effective Green, g (s)	0.9	0.9		0.9	0.9	0.9		30.1		30.1	30.1	30.1
Actuated g/C Ratio	0.02	0.02	-	0.02	0.02	0.02	100	0.75		0.75	0.75	0.75
Clearance Time (s)	4.5	4.5		4.5	4.5	4.5		4.5		4.5	4.5	4.5
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0		3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	41	35		41	41	35		1395		845	1401	1191
v/s Ratio Prot		0.00			0.00	F		0.14	1 75		c0.38	
v/s Ratio Perm	0.00			c0.01		0.00				0.00	4145	0.00
v/c Ratio	0.10	0.00		0.24	0.02	0.00		0.18		0.01	0.50	0.00
Uniform Delay, d1	19.2	19.1		19.2	19.1	19.1		1.4		1.2	2.0	1.2
Progression Factor	1.00	1.00		1.00	1.00	1.00		1.00		1.00	1.00	1.00
Incremental Delay, d2	1.0	0.0		3.1	0.2	0.0		0.1		0.0	0.3	0.0
Delay (s)	20.2	19.1		22.3	19.4	19.1		1.5		1.2	2.3	1.2
Level of Service	С	В		С	В	В		Α		Α	Α	Α
Approach Delay (s)		20.0			21.1			1.5	398		2.2	1
Approach LOS		В			С			Α			Α	
Intersection Summary				78.00	7	200		100				
HCM 2000 Control Delay			2.4	Н	CM 2000	Level of S	Service		Α			
HCM 2000 Volume to Capa	city ratio		0.50									
Actuated Cycle Length (s)			40.0		ım of lost				9.0			
Intersection Capacity Utiliza	ition		48.9%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									
Critical Lane Group												

_,	•		•	• • • •		_	_	•	•••	_
		Ti	mi	ng	PI	an	: /	MΑ	Pe	ak

	-	•	-	*	
Lane Group	EBT	WBT	SBL	SBR	
Lane Configurations	ተተተ	ተተተ	44	7	
Volume (vph)	360	139	494	401	
Turn Type	NA	NA	Prot	Perm	
Protected Phases	2	6	4		
Permitted Phases				4	
Detector Phase	2	6	4	4	
Switch Phase					
Minimum Initial (s)	5.0	5.0	5.0	5.0	
Minimum Split (s)	27.0	31.7	21.7	21.7	
Total Split (s)	36.0	36.0	64.0	64.0	
Total Split (%)	36.0%	36.0%	64.0%	64.0%	
Yellow Time (s)	4.7	4.7	3.6	3.6	
All-Red Time (s)	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.7	6.7	5.6	5.6	
Lead/Lag					
Lead-Lag Optimize?					
Recall Mode	C-Max	C-Max	Max	Max	


Cycle Length: 100
Actuated Cycle Length: 100

Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of Yellow

Natural Cycle: 55

Control Type: Actuated-Coordinated

Splits and Phases: 4: Otay Mesa Rd & SR-125 SB Ramp

	۶	-	-	*	-	4		
Movement	FRI	FRT	WBT	WBR	SBL	SBR		
Lane Configurations		ተተተ	ተተተ		ሻሻ	*		
Volume (vph)	0	360	139	0	494	401		
	1900	1900	1900	1900	1900	1900		
Total Lost time (s)		6.7	6.7		5.6	5.6		
Lane Util. Factor		0.91	0.91		0.97	1.00		
Frt		1.00	1.00		1.00	0.85		1
Flt Protected		1.00	1.00		0.95	1.00		
Satd. Flow (prot)		5085	5085		3433	1583		
Flt Permitted		1.00	1.00		0.95	1.00		
Satd. Flow (perm)		5085	5085		3433	1583		
	0.92	0.92	0.92	0.92	0.92	0.92		
Adj. Flow (vph)	0	391	151	0	537	436		
RTOR Reduction (vph)	0	0	0	0	0	181		
Lane Group Flow (vph)	0	391	151	0	537	255		
Turn Type		NA	NA		Prot	Perm		
Protected Phases		2	6		4			
Permitted Phases						4		
Actuated Green, G (s)		29.3	29.3		58.4	58.4		
Effective Green, g (s)		29.3	29.3		58.4	58.4		
Actuated g/C Ratio		0.29	0.29		0.58	0.58		
Clearance Time (s)		6.7	6.7		5.6	5.6		
Vehicle Extension (s)		3.0	3.0		3.0	3.0		
Lane Grp Cap (vph)		1489	1489		2004	924		
v/s Ratio Prot		c0.08	0.03		0.16	100		
v/s Ratio Perm						c0.16		
v/c Ratio		0.26	0.10		0.27	0.28		
Uniform Delay, d1		27.1	25.8		10.3	10.3		
Progression Factor		0.66	0.92		1.00	1.00		
Incremental Delay, d2		0.4	0.1		0.3	0.7		
Delay (s)		18.3	23.9		10.6	11.1		
Level of Service		В	С		В	В		
Approach Delay (s)		18.3	23.9		10.8			
Approach LOS		В	С		В			
Intersection Summary								
HCM 2000 Control Delay			14.0	HC	CM 2000	Level of Serv	rice B	
HCM 2000 Volume to Capacity ra	itio		0.27					
Actuated Cycle Length (s)			100.0	Su	m of lost	time (s)	12.3	
ntersection Capacity Utilization			39.2%	IC	U Level o	of Service	A	
Analysis Period (min)			15					
c Critical Lane Group								

	\rightarrow	4-	1	4
Lane Group	EBT	WBT	SBL	SBR
Lane Configurations	ተተተ	ተተተ	77	7
Volume (vph)	338	301	129	236
Turn Type	NA	NA	Prot	Perm
Protected Phases	2	6	4	
Permitted Phases				4
Detector Phase	2	6	4	4
Switch Phase				
Minimum Initial (s)	5.0	5.0	5.0	5.0
Minimum Split (s)	27.0	31.7	21.7	21.7
Total Split (s)	36.0	36.0	64.0	64.0
Total Split (%)	36.0%	36.0%	64.0%	64.0%
Yellow Time (s)	4.7	4.7	3.6	3.6
All-Red Time (s)	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.7	6.7	5.6	5.6
Lead/Lag				
Lead-Lag Optimize?				
Recall Mode	C-Max	C-Max	Max	Max
A				

Cycle Length: 100

Actuated Cycle Length: 100

Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of Yellow

Natural Cycle: 55

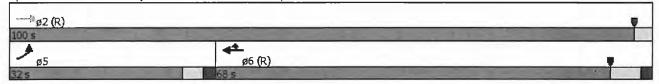
Control Type: Actuated-Coordinated

Splits and Phases: 4: Otay Mesa Rd & SR-125 SB Ramp

	•	→	-		-	4	
Movement	FBL	FBT	WBT	WBR	SBL	SBR	THE RESERVE OF THE PARTY OF THE
Lane Configurations		ተተተ	ተተተ		ሻሻ	7	
Volume (vph)	0	338	301	0	129	236	
	900	1900	1900	1900	1900	1900	
Total Lost time (s)	-3	6.7	6.7	3123	5.6	5.6	
Lane Util. Factor	-	0.91	0.91	-	0.97	1.00	
Frt		1.00	1.00		1.00	0.85	The second secon
Flt Protected		1.00	1.00		0.95	1.00	
Satd. Flow (prot)		5085	5085		3433	1583	
Flt Permitted		1.00	1.00		0.95	1.00	
Satd. Flow (perm)	720	5085	5085		3433	1583	
	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	0	367	327	0.02	140	257	
RTOR Reduction (vph)	0	0	0	0	0	106	
Lane Group Flow (vph)	0	367	327	0	140	151	
Tum Type		NA	NA		Prot	Perm	
Protected Phases		2	6	111	4		
Permitted Phases						4	
Actuated Green, G (s)		29.3	29.3		58.4	58.4	
Effective Green, g (s)		29.3	29.3		58.4	58.4	
Actuated g/C Ratio		0.29	0.29		0.58	0.58	
Clearance Time (s)		6.7	6.7		5.6	5.6	
Vehicle Extension (s)	7	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)		1489	1489		2004	924	
v/s Ratio Prot		c0.07	0.06		0.04		
v/s Ratio Perm						c0.10	
v/c Ratio		0.25	0.22		0.07	0.16	
Uniform Delay, d1		26.9	26.7		9.0	9.6	
Progression Factor		0.71	0.92		1.00	1.00	
Incremental Delay, d2		0.4	0.3		0.1	0.4	
Delay (s)		19.6	24.9		9.1	9.9	
Level of Service		В	С		Α	Α	
Approach Delay (s)		19.6	24.9		9.6		
Approach LOS		В	С		Α		
Intersection Summary	1						
HCM 2000 Control Delay			17.6	НС	CM 2000	Level of Service	В
HCM 2000 Volume to Capacity ra	tio		0.19				
Actuated Cycle Length (s)			100.0	Su	m of lost	time (s)	12.3
Intersection Capacity Utilization			30.7%			f Service	A
Analysis Period (min)			15	7.7			
Critical Lane Group							

Lane Group	EBL	EBT	WBT	WBR
Lane Configurations	ሻሻ	44	ተተጉ	7
Volume (vph)	61	790	139	49
Turn Type	Prot	NA	NA	Perm
Protected Phases	5		6	
Permitted Phases		2		6
Detector Phase	5	2	6	6
Switch Phase				
Minimum Initial (s)	5.0	5.0	5.0	5.0
Minimum Split (s)	10.2	20.5	28.7	28.7
Total Split (s)	32.0	100.0	68.0	68.0
Total Split (%)	32.0%	100.0%	68.0%	68.0%
Yellow Time (s)	3.2	3.0	4.7	4.7
All-Red Time (s)	2.0	0.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.2	3.0	6.7	6.7
Lead/Lag	Lead		Lag	Lag
Lead-Lag Optimize?	Yes		Yes	Yes
Recall Mode	None	C-Max	C-Max	C-Max

Cycle Length: 100


Actuated Cycle Length: 100

Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of Yellow, Master Intersection

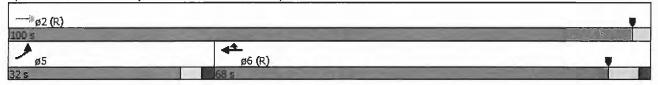
Natural Cycle: 40

Control Type: Actuated-Coordinated

Splits and Phases: 5: Otay Mesa Rd & SR-125 NB Ramp

	٦	→	-	•	-	4		
Movement	FRI	FRT	WBT	WBR	SBL	SBR		
Lane Configurations	ሻሻ	44	ተ ተጉ	7				
Volume (vph)	61	790	139	49	0	0		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	5.2	3.0	6.7	6.7				
Lane Util. Factor	0.97	0.95	0.86	0.86				
Frt	1.00	1.00	0.99	0.85				
Flt Protected	0.95	1.00	1.00	1.00				
Satd. Flow (prot)	3433	3539	4774	1362				
Flt Permitted	0.95	1.00	1.00	1.00				
Satd. Flow (perm)	3433	3539	4774	1362				
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92		
Adj. Flow (vph)	66	859	151	53	0.02	0.02		
RTOR Reduction (vph)	0	0	1	8	0	0		
Lane Group Flow (vph)	66	859	157	38	0	0		-
Turn Type	Prot	NA	NA.	Perm				
Protected Phases	5	14/1	6	1 01111				
Permitted Phases		2	= 0	6				
Actuated Green, G (s)	6.2	100.0	81.9	81.9				1
Effective Green, g (s)	6.2	100.0	81.9	81.9				
Actuated g/C Ratio	0.06	1.00	0.82	0.82				
Clearance Time (s)	5.2	3.0	6.7	6.7				
Vehicle Extension (s)	3.0	3.0	3.0	3.0				
Lane Grp Cap (vph)	212	3539	3909	1115				
v/s Ratio Prot	0.02	0000	0.03	, , , ,				
v/s Ratio Perm	0.02	c0.24	0.00	0.03				
v/c Ratio	0.31	0.24	0.04	0.03				
Uniform Delay, d1	44.9	0.0	1.7	1.7				
Progression Factor	1.20	1.00	1.00	1.00				
Incremental Delay, d2	0.8	0.2	0.0	0.1				
Delay (s)	54.6	0.2	1.7	1.7				
Level of Service	D	A	A	Α				
Approach Delay (s)		4.0	1.7		0.0			
Approach LOS		Α	Α		Α			
Intersection Summary						-1/-		200
HCM 2000 Control Delay			3.6	НС	M 2000 I	Level of Servi	ce	Α
HCM 2000 Volume to Capa	city ratio		0.28					
Actuated Cycle Length (s)			100.0	Su	m of lost	time (s)		11.9
Intersection Capacity Utiliza	ation		39.2%	and the same of the same of	U Level o			Α
Analysis Period (min)			15					19.04
c Critical Lane Group								

Lane Group	EBL	EBT	WBT	WBR
Lane Configurations	ሻሻ	44	ተተሱ	7
Volume (vph)	158	299	296	214
Turn Type	Prot	NA	NA	Perm
Protected Phases	5		6	
Permitted Phases		2		6
Detector Phase	5	2	6	6
Switch Phase				
Minimum Initial (s)	5.0	5.0	5.0	5.0
Minimum Split (s)	10.2	20.5	28.7	28.7
Total Split (s)	32.0	100.0	68.0	68.0
Total Split (%)	32.0%	100.0%	68.0%	68.0%
Yellow Time (s)	3.2	3.0	4.7	4.7
All-Red Time (s)	2.0	0.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.2	3.0	6.7	6.7
Lead/Lag	Lead		Lag	Lag
Lead-Lag Optimize?	Yes		Yes	Yes
Recall Mode	None	C-Max	C-Max	C-Max


Cycle Length: 100

Actuated Cycle Length: 100
Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of Yellow, Master Intersection

Natural Cycle: 40

Control Type: Actuated-Coordinated

Splits and Phases: 5: Otay Mesa Rd & SR-125 NB Ramp

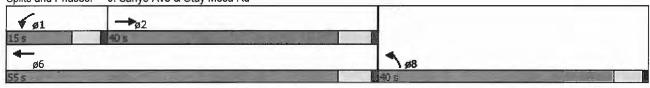
Existing	Plus Phases 1 to 3	
	Timing Plan: PM Peak	

	*	→	-	*	1	4		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations	77	个个	个个个	7				
Volume (vph)	158	299	296	214	0	0		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	5.2	3.0	6.7	6.7		- 100		
Lane Util. Factor	0.97	0.95	0.86	0.86				
Frt	1.00	1.00	0.96	0.85	-			
Flt Protected	0.95	1.00	1.00	1.00				
Satd. Flow (prot)	3433	3539	4626	1362	0.04			
Flt Permitted	0.95	1.00	1.00	1.00				
Satd. Flow (perm)	3433	3539	4626	1362		5		
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92		
Adj. Flow (vph)	172	325	322	233	0	0		
RTOR Reduction (vph)	0	0	24	28	0	0		
Lane Group Flow (vph)	172	325	405	98	0	0		
Turn Type	Prot	NA	NA	Perm				
Protected Phases	5		6	100000	Sesti 1			
Permitted Phases		2		6				
Actuated Green, G (s)	10.4	100.0	77.7	77.7				1000
Effective Green, g (s)	10.4	100.0	77.7	77.7				
Actuated g/C Ratio	0.10	1.00	0.78	0.78				
Clearance Time (s)	5.2	3.0	6.7	6.7				
Vehicle Extension (s)	3.0	3.0	3.0	3.0	-1.3			
Lane Grp Cap (vph)	357	3539	3594	1058				
v/s Ratio Prot	c0.05		c0.09	1/1-				
v/s Ratio Perm	2.0,000	0.09		0.07				
v/c Ratio	0.48	0.09	0.11	0.09				
Uniform Delay, d1	42.3	0.0	2.7	2.7				
Progression Factor	0.69	1.00	1.00	1.00	300			
ncremental Delay, d2	1.0	0.1	0.1	0.2				
Delay (s)	30.1	0.1	2.8	2.9				
_evel of Service	С	Α	Α	Α				
Approach Delay (s)		10.5	2.8		0.0			
Approach LOS		В	Α		Α			
Intersection Summary				100	20	- 4		
		6.4	HC	M 2000 I	evel of Service	Α		
ICM 2000 Volume to Capa	city ratio		0.16	NAME OF				
Actuated Cycle Length (s)			100.0	Su	m of lost	time (s)	11.9	
ntersection Capacity Utiliza	ition		30.7%	ICI	J Level o	f Service	Α	
Analysis Period (min)			15					
Critical Lane Group								

	-	1	-	1	
Lane Group	EBT	WBL	WBT	NBL	
Lane Configurations	1	7	↑	74	
Volume (vph)	427	7	123	63	
Turn Type	NA	Prot	NA	Prot	
Protected Phases	2	1	6	8	
Permitted Phases					
Detector Phase	2	1	6	8	
Switch Phase					
Minimum Initial (s)	6.0	4.0	6.0	4.0	
Minimum Split (s)	24.0	9.3	24.0	23.3	
Total Split (s)	40.0	15.0	55.0	40.0	
Total Split (%)	42.1%	15.8%	57.9%	42.1%	
Yellow Time (s)	5.0	4.3	5.0	4.3	
All-Red Time (s)	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0 -	0.0	0.0	0.0	
Total Lost Time (s)	6.0	5.3	6.0	5.3	
Lead/Lag	Lag	Lead			
Lead-Lag Optimize?	Yes	Yes			
Recall Mode	None	None	None	None	

Cycle Length: 95
Actuated Cycle Length: 33.4
Natural Cycle: 60
Control Type: Actuated-Uncoordinated

Splits and Phases: 6: Sanyo Ave & Otay Mesa Rd


	-	*	1	-	1			
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	1		7	4	de			
Volume (vph)	427	350	7	123	63	12		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	6.0		5.3	6.0	5.3			
Lane Util. Factor	0.95		1.00	1.00	0.97			
Frt	0.93		1.00	1.00	0.98			
Flt Protected	1.00		0.95	1.00	0.96			
Satd. Flow (prot)	3300		1770	1863	3385			11.33
Flt Permitted	1.00		0.95	1.00	0.96			
Satd. Flow (perm)	3300		1770	1863	3385			2500
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92		
Adj. Flow (vph)	464	380	8	134	68	13		
RTOR Reduction (vph)	132	0	0	0	12	0		
Lane Group Flow (vph)	712	Ö	8	134	69	0		
Turn Type	NA		Prot	NA	Prot			
Protected Phases	2		1	6	8			-
Permitted Phases		-						
Actuated Green, G (s)	17.9		0.6	23.8	3.9			
Effective Green, g (s)	17.9		0.6	23.8	3.9			
Actuated g/C Ratio	0.46		0.02	0.61	0.10			-19
Clearance Time (s)	6.0		5.3	6.0	5.3			
Vehicle Extension (s)	3.5	1000	2.0	3.5	2.0			
ane Grp Cap (vph)	1514		27	1136	338			
//s Ratio Prot	c0.22		0.00	c0.07	c0.02			
//s Ratio Perm					77.65(2)			
//c Ratio	0.47		0.30	0.12	0.21			
Jniform Delay, d1	7.3		19.0	3.2	16.1			
Progression Factor	1.00		1.00	1.00	1.00			
ncremental Delay, d2	0.3		2.2	0.1	0.1			
Delay (s)	7.6		21.2	3.2	16.2			
evel of Service	Α		С	Α	В			
Approach Delay (s)	7.6		7 7	4.3	16.2			
Approach LOS	Α			Α	В			
ntersection Summary								
HCM 2000 Control Delay			7.8	Н	CM 2000 I	Level of Service	e A	
ICM 2000 Volume to Capa	city ratio	1000	0.43			-510101001110		
Actuated Cycle Length (s)	Tuy Lung		39.0	.Sı	um of lost	time (s)	16.6	
ntersection Capacity Utiliza	ition		35.8%		U Level o	Name of Street, Street	A A	
Analysis Period (min)	area)		15				(A)V	
Critical Lane Group								

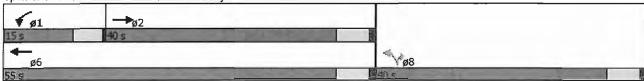
	\rightarrow	1	_	1	
Lane Group	EBT	WBL	WBT	NBL	
Lane Configurations	†	7	4	AM	
Volume (vph)	185	27	337	177	
Turn Type	NA	Prot	NA	Prot	
Protected Phases	2	1	6	8	
Permitted Phases					
Detector Phase	2	1	6	8	
Switch Phase					
Minimum Initial (s)	6.0	4.0	6.0	4.0	
Minimum Split (s)	24.0	9.3	24.0	23.3	
Total Split (s)	40.0	15.0	55.0	40.0	
Total Split (%)	42.1%	15.8%	57.9%	42.1%	
Yellow Time (s)	5.0	4.3	5.0	4.3	
All-Red Time (s)	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	5.3	6.0	5.3	
Lead/Lag	Lag	Lead			
Lead-Lag Optimize?	Yes	Yes			
Recall Mode	None	None	None	None	

Cycle Length: 95 Actuated Cycle Length: 34.3 Natural Cycle: 60

Control Type: Actuated-Uncoordinated

Splits and Phases: 6: Sanyo Ave & Otay Mesa Rd

Existing	Plus Phases 1 to 3	
	Timing Plan: PM Peak	


	-	-	1	←	4	-		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	A \$		19	A	ሻ ሻ			
Volume (vph)	185	122	27	337	177	28		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	6.0		5.3	6.0	5.3			165 C C C
Lane Util. Factor	0.95		1.00	1.00	0.97			
Frt	0.94	- 11	1.00	1.00	0.98			
Flt Protected	1.00		0.95	1.00	0.96			
Satd. Flow (prot)	3328		1770	1863	3394	VA -		
Flt Permitted	1.00		0.95	1.00	0.96			
Satd. Flow (perm)	3328		1770	1863	3394			1000
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92		
Adj. Flow (vph)	201	133	29	366	192	30		
RTOR Reduction (vph)	89	0	0	0	17	0		
Lane Group Flow (vph)	245	0	29	366	205	0		12.00
Turn Type	NA		Prot	NA	Prot			
Protected Phases	2		1	6	8			E. B. 711.
Permitted Phases								
Actuated Green, G (s)	12.5		0.8	18.6	8.0			
Effective Green, g (s)	12.5		0.8	18.6	8.0			
Actuated g/C Ratio	0.33		0.02	0.49	0.21			
Clearance Time (s)	6.0		5.3	6.0	5.3			
Vehicle Extension (s)	3.5		2.0	3.5	2.0			
Lane Grp Cap (vph)	1097		37	914	716			
v/s Ratio Prot	0.07		0.02	c0.20	c0.06			
v/s Ratio Perm				210711				
v/c Ratio	0.22		0.78	0.40	0.29			
Uniform Delay, d1	9.2		18.5	6.1	12.6			
Progression Factor	1.00		1.00	1.00	1.00			
Incremental Delay, d2	0.1		63.9	0.3	0.1			
Delay (s)	9.3		82.3	6.5	12.6			
Level of Service	Α		F	Α	В			
Approach Delay (s)	9.3			12.0	12.6			
Approach LOS	Α			В	В			
Intersection Summary						- 11/2		- 12
HCM 2000 Control Delay			11.2	H	CM 2000 I	Level of Service	е В	
HCM 2000 Volume to Capa	city ratio		0.46					
Actuated Cycle Length (s)			37.9	Si	um of lost	time (s)	16.6	
ntersection Capacity Utiliza	ation		33.1%	IC	U Level o	f Service	Α	
Analysis Period (min)			15					
Critical Lane Group								

	-	1	4-	1		
Lane Group	EBT	WBL	WBT	NBL	NBR	
Lane Configurations	1>	N.	^	7	7	
Volume (vph)	417	127	101	19	417	
Turn Type	NA	Prot	NA	Perm	Perm	
Protected Phases	2	1	6	- William	755	
Permitted Phases				8	8	
Detector Phase	2	1	6	8	8	
Switch Phase						
Minimum Initial (s)	6.0	4.0	6.0	4.0	4.0	
Minimum Split (s)	40.0	15.0	40.0	40.0	40.0	
Total Split (s)	40.0	15.0	55.0	40.0	40.0	
Total Split (%)	42.1%	15.8%	57.9%	42.1%	42.1%	
Yellow Time (s)	5.0	4.3	5.0	5.0	5.0	
All-Red Time (s)	1.0	0.5	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	4.8	6.0	6.0	6.0	
Lead/Lag	Lag	Lead			300	
Lead-Lag Optimize?	Yes	Yes				
Recall Mode	Min	None	Min	None	None	

Cycle Length: 95
Actuated Cycle Length: 55.6
Natural Cycle: 95

Control Type: Actuated-Uncoordinated

Splits and Phases: 7: Enrico Fermi Dr & Otay Mesa Rd

	→	*	1	-	4	-
Movement			VBL	WBT	NBL	NBR
Lane Configurations	4		7	4	19	7
Volume (vph)	417	25	127	101	19	417
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	77	4.8	6.0	6.0	6.0
Lane Util. Factor	1.00		1.00	1.00	1.00	1.00
Frt	0.99		1.00	1.00	1.00	0.85
Flt Protected	1.00		0.95	1.00	0.95	1.00
Satd. Flow (prot)	1849		1770	1863	1770	1583
Flt Permitted	1.00		0.95	1.00	0.95	1.00
Satd. Flow (perm)	1849		1770	1863	1770	1583
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	453	27	138	110	21	453
RTOR Reduction (vph)	2	0	0	0	0	350
Lane Group Flow (vph)	478	0	138	110	21	103
	NA	V	Prot	NA	Perm	Perm
Turn Type	NA 2		Prot 1	NA 6	remi	reiiii
Protected Phases Permitted Phases	2		- 1	0	8	8
	20.8		9.0	34.6	8.3	8.3
Actuated Green, G (s)	20000000		9.0		8.3	8.3
Effective Green, g (s)	20.8			34.6	0.15	
Actuated g/C Ratio	0.38		0.16	0.63	1,740	0.15
Clearance Time (s)	6.0		4.8	6.0	6.0	6.0
Vehicle Extension (s)	3.5		2.0	3.5	2.0	2.0
Lane Grp Cap (vph)	700		290	1174	267	239
v/s Ratio Prot	c0.26		c0.08	0.06		
v/s Ratio Perm	- Interview		-200000	12 12 12 12	0.01	c0.07
v/c Ratio	0.68		0.48	0.09	0.08	0.43
Uniform Delay, d1	14.3		20.8	4.0	20.0	21.2
Progression Factor	1.00		1.00	1.00	1.00	1.00
Incremental Delay, d2	2.9		0.4	0.0	0.0	0.5
Delay (s)	17.1		21.3	4.0	20.1	21.6
Level of Service	В		С	Α	С	С
Approach Delay (s)	17.1			13.6	21.5	
Approach LOS	В			В	С	
Intersection Summary				- 75		
HCM 2000 Control Delay			18.2	H	CM 2000	Level of S
HCM 2000 Volume to Capa	city ratio		0.58			
Actuated Cycle Length (s)			54.9	Su	ım of lost	t time (s)
Intersection Capacity Utiliza	tion		59.3%	IC	U Level o	of Service
Analysis Period (min)			15			
c Critical Lane Group						

EXP1-3AM.syn

	-	1	4-	1	1	
Lane Group	FBT	WBI	WBT	NBL	NBR	
Lane Configurations	1>	K	A	7	7	
Volume (vph)	155	467	352	18	160	
Turn Type	NA	Prot	NA	Perm	Perm	
Protected Phases	2	1	6			
Permitted Phases				8	8	
Detector Phase	2	1	6	8	8	
Switch Phase						
Minimum Initial (s)	6.0	4.0	6.0	4.0	4.0	
Minimum Split (s)	40.0	15.0	40.0	40.0	40.0	
Total Split (s)	40.0	20.0	60.0	40.0	40.0	
Total Split (%)	40.0%	20.0%	60.0%	40.0%	40.0%	
Yellow Time (s)	5.0	4.3	5.0	5.0	5.0	
All-Red Time (s)	1.0	0.5	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	4.8	6.0	6.0	6.0	
Lead/Lag	Lag	Lead				
Lead-Lag Optimize?	Yes	Yes				
Recall Mode	Min	None	Min	None	None	

Cycle Length: 100
Actuated Cycle Length: 51.1
Natural Cycle: 115
Control Type: Actuated-Uncoordinated

Splits and Phases: 7: Enrico Fermi Dr & Otay Mesa Rd

	-	*	1	←	4	-	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	1>		7	4	ሻ	7	
Volume (vph)	155	37	467	352	18	160	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	6.0		4.8	6.0	6.0	6.0	
Lane Util. Factor	1.00		1.00	1.00	1.00	1.00	
Frt	0.97		1.00	1.00	1.00	0.85	310
Flt Protected	1.00		0.95	1.00	0.95	1.00	
Satd. Flow (prot)	1814		1770	1863	1770	1583	
Flt Permitted	1.00		0.95	1.00	0.95	1.00	
Satd. Flow (perm)	1814		1770	1863	1770	1583	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	168	40	508	383	20	174	
RTOR Reduction (vph)	10	0	0	0	0	150	
Lane Group Flow (vph)	198	0	508	383	20	24	
Turn Type	NA		Prot	NA	Perm	Perm	
Protected Phases	2		1	6		7	the state of the s
Permitted Phases					8	8	
Actuated Green, G (s)	11.6		15.5	31.9	6.9	6.9	
Effective Green, g (s)	11.6		15.5	31.9	6.9	6.9	
Actuated g/C Ratio	0.23		0.31	0.63	0.14	0.14	
Clearance Time (s)	6.0		4.8	6.0	6.0	6.0	
Vehicle Extension (s)	3.5		2.0	3.5	2.0	2.0	The second second
Lane Grp Cap (vph)	414		540	1169	240	215	
v/s Ratio Prot	c0.11		c0.29	0.21			
v/s Ratio Perm				200	0.01	c0.01	
v/c Ratio	0.48		0.94	0.33	0.08	0.11	
Uniform Delay, d1	17.0		17.2	4.4	19.2	19.3	
Progression Factor	1.00		1.00	1.00	1.00	1.00	
Incremental Delay, d2	1.0		24.6	0.2	0.1	0.1	
Delay (s)	18.0	1	41.8	4.6	19.2	19.3	
Level of Service	В		D	Α	В	В	
Approach Delay (s)	18.0			25.8	19.3		
Approach LOS	В			С	В		
Intersection Summary	1	2 - 1				8 . 3 9	
HCM 2000 Control Delay			23.6	H	CM 2000	Level of Serv	vice C
HCM 2000 Volume to Capa	city ratio		0.61				
Actuated Cycle Length (s)			50.8	Sı	um of lost	time (s)	16.8
ntersection Capacity Utiliza	ation		53.6%	IC	U Level o	of Service	Ä
Analysis Period (min)			15				
Critical Lane Group							

Otay Hills 8: Otay Mesa Rd & Alta Rd

	*	*	1	†	↓	4			
Movement	EBL	EBR	NBL	NBT	SBT	SBR			
Lane Configurations	W			4	1>				
Sign Control	Stop			Stop	Stop				
Volume (vph)	841	0	0	7	3	214			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92			
Hourly flow rate (vph)	914	0	0	8	3	233			
Direction, Lane #	EB 1	NB 1	SB 1						
Volume Total (vph)	914	8	236						
Volume Left (vph)	914	0	0						
Volume Right (vph)	0	0	233						
Hadj (s)	0.23	0.03	-0.56						
Departure Headway (s)	4.8	6.2	5.2						
Degree Utilization, x	1.0	0.01	0.34						
Capacity (veh/h)	743	562	675						
Control Delay (s)	129.8	9.3	10.9						
Approach Delay (s)	129.8	9.3	10.9						
Approach LOS	F	A	В						
Intersection Summary	7						×11-35	10 C 10	- 10
Delay			104.8						
Level of Service			F						
Intersection Capacity Utiliz	ation		66.7%	IC	U Level o	f Service		C	
Analysis Period (min)			15						

Movement EBL EBR NBL NBT SBR	
MOVEMENT LDL LDN 140L 1401 OD1	
Lane Configurations Y	
Sign Control Stop Stop Stop	
Volume (vph) 224 0 2 4 5 658	
Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 0.92	
Hourly flow rate (vph) 243 0 2 4 5 715	
Direction, Lane # EB 1 NB 1 SB 1	
Volume Total (vph) 243 7 721	
Volume Left (vph) 243 2 0	
Volume Right (vph) 0 0 715	
Hadj (s) 0.23 0.10 -0.56	
Departure Headway (s) 5.7 5.6 4.1	
Degree Utilization, x 0.39 0.01 0.82	
Capacity (veh/h) 592 601 861	
Control Delay (s) 12.3 8.6 22.9	
Approach Delay (s) 12.3 8.6 22.9	
Approach LOS B A C	
Intersection Summary	
Delay 20.1	
Level of Service C	
Intersection Capacity Utilization 60.1% ICU Level of Service	
Analysis Period (min) 15	

.xistiliy	rius riiases	1 10 3
	Timing Plan:	AM Peak

	۶	7	•	†	ļ	4	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations				सी	1>		
Volume (veh/h)	0	0	157	457	42	101	
Sign Control	Stop		11000	Free	Free	~~~	
Grade	0%			0%	0%	1 11	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	0	0	171	497	46	110	
Pedestrians	-				Mick		
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type				None	None		
Median storage veh)					-upper and and a		
Upstream signal (ft)	30.00				791		
pX, platoon unblocked							
vC, conflicting volume	939	101	155				
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	939	101	155				
tC, single (s)	6.4	6.2	4.1				
tC, 2 stage (s)							
tF (s)	3.5	3.3	2.2				
p0 queue free %	100	100	88				
cM capacity (veh/h)	258	955	1425				
Direction, Lane #	NB 1	SB 1		300	3.5		
Volume Total	667	155					
Volume Left	171	0					
Volume Right	0	110					
cSH	1425	1700					
Volume to Capacity	0.12	0.09					
Queue Length 95th (ft)	10	0					
Control Delay (s)	3.0	0.0					
Lane LOS	Α						
Approach Delay (s)	3.0	0.0					
Approach LOS							
nersection Summary							
Average Delay			2.4				
ntersection Capacity Utilizatio	n		47.8%	IC	U Level of S	Service	
Analysis Period (min)			15				
141							

9: Enrico Fermi Dr & SR-905 WB Ramp

	•	*	1	†	↓	4		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations				4	^}			
Volume (veh/h)	0	0	210	212	108	414	THE RESERVE	
Sign Control	Stop	200	9339	Free	Free			
Grade	0%	1.03	- 101=	0%	0%	William To The State of the Sta		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Hourly flow rate (vph)	0	0	228	230	117	450		
Pedestrians								
Lane Width (ft)		75.7	1		150	3 10 1		
Walking Speed (ft/s)								
Percent Blockage	109		1000	- TI				9 10
Right turn flare (veh)								
Median type		1010		None	None		A Little of the	
Median storage veh)					100000			
Upstream signal (ft)					791			
pX, platoon unblocked								
vC, conflicting volume	1029	342	567		105	1		
vC1, stage 1 conf vol								
vC2, stage 2 conf vol				10-1		35-8-3-3-0		13.0
vCu, unblocked vol	1029	342	567					
tC, single (s)	6.4	6.2	4.1	7 7 7				
tC, 2 stage (s)		2011/02/02	- C-0/H					
tF (s)	3.5	3.3	2.2	3.30	1133			
p0 queue free %	100	100	77					
cM capacity (veh/h)	200	700	1005			J. 30. B.		2
Direction, Lane #	NB 1	SB 1			-		- 1 Ly 30	100
Volume Total	459	567						
Volume Left	228	0						
Volume Right	0	450						
cSH	1005	1700						
Volume to Capacity	0.23	0.33						
Queue Length 95th (ft)	22	0						
Control Delay (s)	6.1	0.0					12.71	
Lane LOS	Α							
Approach Delay (s)	6.1	0.0			3333			
Approach LOS	_							
Intersection Summary	3 3 5			3 - 3		20 10 10	STATE OF	B. DUS
Average Delay			2.7					
Intersection Capacity Utilizati	on		60.6%	IC	U Level of	f Service	В	
Analysis Period (min)			15					

	*	-	*	1	-	*	4	†	-	1	Ţ	1
Movement	EBL	EBI	EBR	WBL	WBT	WBR	NBL:	NBT	NBR	SBL	SBT	SBF
Lane Configurations	7		7	7		7		4			र्स	
Volume (veh/h)	340	14	209	13	0	11	0	226	22	3	48	(
Sign Control		Stop	5-4(1-54)	-	Stop			Free			Free	
Grade		0%			0%			0%			0%	200
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	370	15	227	14	0	12	0	246	24	3	52	(
Pedestrians			- Investor		197					2.	02/4/4_	
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)						-		307707			3,800,000	-
Upstream signal (ft)								1318				
pX, platoon unblocked								1-1-				
vC, conflicting volume	328	328	52	551	316	258	52			270		
vC1, stage 1 conf vol		02000	-940	2-10-17			2.00			3500.5		
vC2, stage 2 conf vol												
vCu, unblocked vol	328	328	52	551	316	258	52			270		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)	26.024		60.903	0.000	10.55%	1000	140					
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	40	97	78	96	100	98	100			100		
cM capacity (veh/h)	614	589	1015	338	598	781	1554			1294		
Direction, Lane #	EB 1	EB 2	WB1	WB 2	NB 1	SB 1					4.3500	1
Volume Total	370	242	14	12	270	55						
Volume Left	370	0	14	0	0	3						
Volume Right	0	227	0	12	24	0						
cSH	614	971	338	781	1700	1294						
Volume to Capacity	0.60	0.25	0.04	0.02	0.16	0.00						
Queue Length 95th (ft)	100	25	3	1	0	0						
Control Delay (s)	19.3	9.9	16.1	9.7	0.0	0.5						
Lane LOS	С	Α	С	Α		Α						
Approach Delay (s)	15.6		13.2		0.0	0.5						
Approach LOS	С		В									
Intersection Summary			1	450	150					7	-	-
Average Delay			10.3									
Intersection Capacity Utiliza	tion		Err%	IC	U Level o	f Service			Н			
Analysis Period (min)			15									

	•	→	•	1	-	4	4	†	-	-	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7		7	7		7		1			4	
Volume (veh/h)	128	5	73	13	0	24	0	321	11	5	122	0
Sign Control		Stop			Stop	22.00		Free	1694)		Free	-
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	139	5	79	14	0	26	0	349	12	5	133	0
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage				9100	t						1	
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)								1318				
pX, platoon unblocked												
vC, conflicting volume	524	504	133	580	498	355	133			361		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	524	504	133	580	498	355	133			361		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)	Name of the last o	de contra		-		1000						
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	69	99	91	96	100	96	100			100		
cM capacity (veh/h)	444	468	917	384	472	689	1452			1198		
Direction, Lane#	EB 1	EB 2	WB1	WB 2	NB 1	SB 1						-
Volume Total	139	85	14	26	361	138						
Volume Left	139	0	14	0	0	5						
Volume Right	0	79	0	26	12	0						
cSH	444	864	384	689	1700	1198						
Volume to Capacity	0.31	0.10	0.04	0.04	0.21	0.00						
Queue Length 95th (ft)	33	8	3	3	0	0						
Control Delay (s)	16.7	9.6	14.7	10.4	0.0	0.4						
Lane LOS	С	Α	В	В		Α						
Approach Delay (s)	14.1		11.9		0.0	0.4						
Approach LOS	В		В									
Intersection Summary											-	
Average Delay			4.8									
Intersection Capacity Utiliza	tion		Err%	IC	U Level o	f Service			Н			
Analysis Period (min)			15									

Timina	Plan.	AΜ	Peak

	•	-	1	←	*	1	†	1	↓	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Configurations	7	44	7	1	7	7	♠	7	A \$	
Volume (vph)	44	7	5	10	21	54	218	25	134	
Turn Type	Prot	NA	Prot	NA	Perm	Prot	NA	Prot	NA	
Protected Phases	7	4	3	8		5	2	1	6	
Permitted Phases					8					
Detector Phase	7	4	3	8	8	5	2	1	6	
Switch Phase										
Minimum Initial (s)	4.0	4.0	6.0	6.0	6.0	4.0	4.0	4.0	4.0	
Minimum Split (s)	8.8	30.0	10.8	36.0	36.0	7.5	8.6	7.5	36.6	
Total Split (s)	20.0	41.0	16.0	37.0	37.0	23.0	56.0	17.0	50.0	
Total Split (%)	15.4%	31.5%	12.3%	28.5%	28.5%	17.7%	43.1%	13.1%	38.5%	
Yellow Time (s)	4.3	5.0	4.3	5.0	5.0	3.0	3.6	3.0	3.6	
All-Red Time (s)	0.5	1.0	0.5	1.0	1.0	0.5	1.0	0.5	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.8	6.0	4.8	6.0	6.0	3.5	4.6	3.5	4.6	
Lead/Lag	Lead	Lead	Lag	Lag	Lag	Lead	Lag	Lead	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	None	Min	None	Min	

Intersection Summary

Cycle Length: 130
Actuated Cycle Length: 44.4
Natural Cycle: 90
Control Type: Actuated-Uncoordinated

Existing Plus Phases 1 to 3
Timing Plan: AM Peak

	۶	→	*	1	4-	•	4	†	~	-		4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SAT	(Jak
Lane Configurations	4	朴		7	↑	7	ሻ	1		N.	♠ ĵ≽	
Volume (vph)	44	7	20	5	10	21	54	218	12	25	134	100
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.8	6.0		4.8	6.0	6.0	3.5	4.6		3.5	4.6	0
Lane Util. Factor	1.00	0.95		1.00	1.00	1.00	1.00	0.95		1.00	0.95	
Frt	1.00	0.89		1.00	1.00	0.85	1.00	0.99		1.00	0.94	
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1770	3150		1770	1863	1583	1770	3512		1770	3312	
FIt Permitted	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (perm)	1770	3150		1770	1863	1583	1770	3512		1770	3312	- 1
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	48	8	22	5	11	23	59	237	13	27	146	109
RTOR Reduction (vph)	0	20	0	0	0	21	0	2	0	0	61	0
Lane Group Flow (vph)	48	10	0	5	11	2	59	248	0	27	194	0
Turn Type	Prot	NA		Prot	NA	Perm	Prot	NA		Prot	NA	
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases						8	_ = =					
Actuated Green, G (s)	2.1	5.4		1.4	4.7	4.7	4.7	28.1		0.7	24.1	- 41
Effective Green, g (s)	2.1	5.4		1.4	4.7	4.7	4.7	28.1		0.7	24.1	
Actuated g/C Ratio	0.04	0.10		0.03	0.09	0.09	0.09	0.52	-	0.01	0.44	
Clearance Time (s)	4.8	6.0		4.8	6.0	6.0	3.5	4.6		3.5	4.6	
Vehicle Extension (s)	2.0	3.5		3.0	3.5	3.5	2.0	3.0		2.0	3.0	
Lane Grp Cap (vph)	68	312		45	160	136	152	1810		22	1464	
v/s Ratio Prot	c0.03	0.00		0.00	c0.01		c0.03	c0.07		c0.02	0.06	
v/s Ratio Perm	New York	275.704		3000	104.30	0.00		1000000				
v/c Ratio	0.71	0.03		0.11	0.07	0.01	0.39	0.14	-	1.23	0.13	560
Uniform Delay, d1	25.9	22.2		25.9	22.9	22.8	23.5	6.9		26.9	9.0	
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	23.7	0.1		1.1	0.2	0.1	0.6	0.0		269.8	0.0	
Delay (s)	49.6	22.2		27.0	23.1	22.8	24.1	6.9		296.7	9.0	
Level of Service	D	С		С	С	С	С	Α		F	Α	
Approach Delay (s)		39.1			23.4			10.2			36.6	
Approach LOS		D			С			В			D	
Intersection Summary						Paris				- 1	100	
HCM 2000 Control Delay			24.6	Н	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capa	acity ratio		0.21									
Actuated Cycle Length (s)	- Andrew		54.5	S	um of lost	time (s)			18.9			
Intersection Capacity Utiliza	ation		31.5%		mind commence	f Service			Α			
Analysis Period (min)	United St.		15									
c Critical Lane Group												

EXP1-3AM.syn

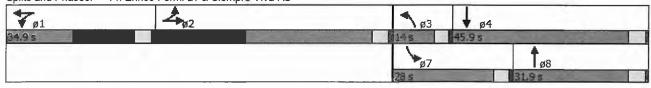
	*	-	1	←	*	1	1	1			
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT		
Lane Configurations	7	4 \$	7	1	7	7	朴	N.	1		
Volume (vph)	76	5	8	10	32	58	221	21	87		
Turn Type	Prot	NA	Prot	NA	Perm	Prot	NA	Prot	NA		
Protected Phases	7	4	3	8		5	2	1	6		
Permitted Phases	2.54				8				. 50		
Detector Phase	7	4	3	8	. 8	5	2	1	6		
Switch Phase											
Minimum Initial (s)	4.0	4.0	6.0	6.0	6.0	4.0	4.0	4.0	4.0		
Minimum Split (s)	8.8	30.0	10.8	36.0	36.0	7.5	8.6	7.5	36.6		
Total Split (s)	19.0	41.0	15.0	37.0	37.0	23.0	55.0	16.0	48.0		
Total Split (%)	15.0%	32.3%	11.8%	29.1%	29.1%	18.1%	43.3%	12.6%	37.8%		
Yellow Time (s)	4.3	5.0	4.3	5.0	5.0	3.0	3.6	3.0	3.6		
All-Red Time (s)	0.5	1.0	0.5	1.0	1.0	0.5	1.0	0.5	1.0		
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Total Lost Time (s)	4.8	6.0	4.8	6.0	6.0	3.5	4.6	3.5	4.6		
Lead/Lag	Lead	Lead	Lag	Lag	Lag	Lead	Lag	Lead	Lag		
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
Recall Mode	None	None	None	None	None	None	Min	None	Min		

Intersection Summary

Cycle Length: 127
Actuated Cycle Length: 49.6
Natural Cycle: 90
Control Type: Actuated-Uncoordinated

LXISHIIY	Plus Plia				
_	Timing	Plan:	PM	Pea	aĸ

	*	-	*	1	-	*	1	†	-	-	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	47>		7	4	7	7	1		*	↑ ↑	
Volume (vph)	76	5	15	8	10	32	58	221	17	21	87	98
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.8	6.0		4.8	6.0	6.0	3.5	4.6		3.5	4.6	700
Lane Util. Factor	1.00	0.95		1.00	1.00	1.00	1.00	0.95		1.00	0.95	
Frt	1.00	0.89		1.00	1.00	0.85	1.00	0.99		1.00	0.92	
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1770	3135		1770	1863	1583	1770	3502		1770	3258	
Flt Permitted	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (perm)	1770	3135		1770	1863	1583	1770	3502		1770	3258	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	83	5	16	9	11	35	63	240	18	23	95	107
RTOR Reduction (vph)	0	13	0	0	0	30	0	4	0	0	63	0
Lane Group Flow (vph)	83	8	0	9	11	5	63	254	0	23	139	0
Turn Type	Prot	NA		Prot	NA	Perm	Prot	NA		Prot	NA	
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases						8		_		-		_
Actuated Green, G (s)	4.3	10.1		1.8	7.6	7.6	3.9	27.0		0.7	23.8	
Effective Green, g (s)	4.3	10.1		1.8	7.6	7.6	3.9	27.0		0.7	23.8	
Actuated g/C Ratio	0.07	0.17		0.03	0.13	0.13	0.07	0.46		0.01	0.41	
Clearance Time (s)	4.8	6.0		4.8	6.0	6.0	3.5	4.6		3.5	4.6	
Vehicle Extension (s)	2.0	3.5		3.0	3.5	3.5	2.0	3.0		2.0	3.0	
Lane Grp Cap (vph)	130	541		54	242	205	118	1616		21	1325	
v/s Ratio Prot	c0.05	0.00		c0.01	c0.01		c0.04	c0.07		0.01	0.04	
v/s Ratio Perm	725315	3,745				0.00	F F S F S F					
v/c Ratio	0.64	0.01		0.17	0.05	0.02	0.53	0.16		1.10	0.10	
Uniform Delay, d1	26.3	20.1		27.6	22.3	22.2	26.4	9.1		28.9	10.7	
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	7.3	0.0		1.5	0.1	0.1	2.3	0.0		228.1	0.0	
Delay (s)	33.7	20.1		29.1	22.4	22.3	28.7	9.2		257.0	10.8	
Level of Service	С	С		С	С	С	С	Α		F	В	
Approach Delay (s)		30.9			23.4			13.0			36.0	
Approach LOS		С			С			В			D	
Intersection Summary				-			-					
HCM 2000 Control Delay			23.8	H	CM 2000	Level of S	Service		С		_	
HCM 2000 Volume to Capa	city ratio		0.21				5011100				93	
Actuated Cycle Length (s)	only rous		58.5	Sı	ım of lost	time (s)			18.9			
ntersection Capacity Utiliza	tion		33.0%		U Level o				Α.			
Analysis Period (min)			15	.0					- (4.4)			
Critical Lane Group												


	→	→	1	+	1	†	1	↓	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	77	1	M	47>	35	1	7	A	
Volume (vph)	51	7	7	18	61	209	24	84	
Turn Type	Split	NA	Split	NA	Prot	NA	Prot	NA	
Protected Phases	2	2	1	1	3	8	7	4	
Permitted Phases									
Detector Phase	2	2	1	1	3	8	7	4	
Switch Phase									
Minimum Initial (s)	10.0	10.0	10.0	10.0	4.0	10.0	4.0	10.0	
Minimum Split (s)	31.9	31.9	34.9	34.9	8.5	31.9	8.5	31.9	
Total Split (s)	55.2	55.2	34.9	34.9	14.0	31.9	28.0	45.9	
Total Split (%)	36.8%	36.8%	23.3%	23.3%	9.3%	21.3%	18.7%	30.6%	
Yellow Time (s)	3.9	3.9	3.9	3.9	3.4	3.9	3.4	3.9	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.9	4.9	4.9	4.9	4.4	4.9	4.4	4.9	
Lead/Lag	Lag	Lag	Lead	Lead	Lead	Lag	Lead	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	Max	None	Max	

Intersection Summary

Cycle Length: 150
Actuated Cycle Length: 90.3
Natural Cycle: 110

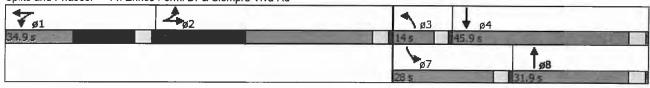
Control Type: Actuated-Uncoordinated

Splits and Phases: 14: Enrico Fermi Dr & Siempre Viva Rd

14: Enrico Fermi Dr & Siempre Viva Rd

	۶	-	*	1	-	*	4	†	1	1	↓	1
Movement	ESL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	77	(4	14		٦	14		7	14	
Volume (vph)	51	7	19	7	18	26	61	209	4	24	84	34
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.9	4.9		4.9	4.9		4.4	4.9		4.4	4.9	
Lane Util. Factor	0.97	1.00		1.00	0.95		1.00	0.95		1.00	0.95	
Frt	1.00	0.89		1.00	0.91		1.00	1.00	500	1.00	0.96	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	3433	1660		1770	3230		1770	3530		1770	3386	
Flt Permitted	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (perm)	3433	1660		1770	3230		1770	3530		1770	3386	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	55	8	21	8	20	28	66	227	4	26	91	37
RTOR Reduction (vph)	0	19	0	0	25	0	0	0	0	0	18	0
Lane Group Flow (vph)	55	10	0	8	23	0	66	231	0	26	110	0
Turn Type	Split	NA		Split	NA		Prot	NA		Prot	NA	
Protected Phases	2	2		1	1		3	8		7	4	
Permitted Phases												
Actuated Green, G (s)	10.1	10.1		10.4	10.4		6.1	53.2		2.5	49.6	
Effective Green, g (s)	10.1	10.1		10.4	10.4		6.1	53.2		2.5	49.6	
Actuated g/C Ratio	0.11	0.11		0.11	0.11		0.06	0.56		0.03	0.52	
Clearance Time (s)	4.9	4.9		4.9	4.9		4.4	4.9		4.4	4.9	
Vehicle Extension (s)	6.2	6.2		5.4	5.4		2.0	2.5		2.0	5.9	
Lane Grp Cap (vph)	363	175		193	352		113	1970		46	1762	
v/s Ratio Prot	c0.02	0.01	10955	0.00	c0.01		c0.04	c0.07		0.01	0.03	
v/s Ratio Perm												
v/c Ratio	0.15	0.06		0.04	0.07		0.58	0.12		0.57	0.06	
Uniform Delay, d1	38.7	38.3		38.0	38.1		43.4	9.9		45.9	11.3	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	0.6	0.4		0.2	0.2		4.9	0.1		9.1	0.1	
Delay (s)	39.3	38.7		38.2	38.3		48.2	10.1		55.0	11.4	
Level of Service	D	D		D	D		D	В		D	В	
Approach Delay (s)		39.1			38.3			18.6			18.8	
Approach LOS		D			D			В			В	
Intersection Summary						-VE 63						
HCM 2000 Control Delay			23.4	H	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capa	city ratio		0.14									
Actuated Cycle Length (s)	•		95.3	Si	um of lost	time (s)			19.1			
Intersection Capacity Utiliza	ation		31.9%		U Level o				Α			
Analysis Period (min)			15		The state of the s							
Critical Lane Group												

	•	\rightarrow	1	←	1	†	1	↓	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	44	1>	7	44	7	1	4	A \$	
Volume (vph)	48	4	9	19	101	226	11	52	
Turn Type	Split	NA	Split	NA	Prot	NA	Prot	NA	
Protected Phases	2	2	1	1	3	8	7	4	The second second
Permitted Phases									
Detector Pnase	2	2	1	1	3	8	7	4	
Switch Phase								-	
Minimum Initial (s)	10.0	10.0	10.0	10.0	4.0	10.0	4.0	10.0	
Minimum Split (s)	31.9	31.9	34.9	34.9	8.5	31.9	8.5	31.9	
Total Split (s)	55.2	55.2	34.9	34.9	14.0	31.9	28.0	45.9	
Total Split (%)	36.8%	36.8%	23.3%	23.3%	9.3%	21.3%	18.7%	30.6%	
Yellow Time (s)	3.9	3.9	3.9	3.9	3.4	3.9	3.4	3.9	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.9	4.9	4.9	4.9	4.4	4.9	4.4	4.9	
Lead/Lag	Lag	Lag	Lead	Lead	Lead	Lag	Lead	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	Max	None	Max	


Intersection Summary

Cycle Length: 150 Actuated Cycle Length: 94.2

Natural Cycle: 110

Control Type: Actuated-Uncoordinated

Splits and Phases: 14: Enrico Fermi Dr & Siempre Viva Rd

	1	-	*	1	-	*	1	†	-	-	Ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	77	1>		٦	1		7	1		7	^	
Volume (vph)	48	4	11	9	19	24	101	226	0	11	52	42
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.9	4.9		4.9	4.9		4.4	4.9		4.4	4.9	227
Lane Util. Factor	0.97	1.00		1.00	0.95		1.00	0.95		1.00	0.95	
Frt	1.00	0.89		1.00	0.92		1.00	1.00		1.00	0.93	
FIt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	3433	1653	-	1770	3246		1770	3539		1770	3302	2007
Flt Permitted	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (perm)	3433	1653		1770	3246		1770	3539		1770	3302	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	52	4	12	10	21	26	110	246	0	12	57	46
RTOR Reduction (vph)	0	11	0	0	23	0	0	0	0	0	23	0
Lane Group Flow (vph)	52	5	0	10	24	0	110	246	0	12	80	0
Tum Type	Split	NA		Split	NA		Prot	NA	<u>*</u>	Prot	NA	
Protected Phases	2	2	-	1	1	2000	3	8	1.5	7	4	
Permitted Phases		_			-						= 10	
Actuated Green, G (s)	10.4	10.4	-	10.8	10.8		9.9	58.7		1.0	49.8	
Effective Green, g (s)	10.4	10.4		10.8	10.8		9.9	58.7		1.0	49.8	
Actuated g/C Ratio	0.10	0.10		0.11	0.11		0.10	0.59		0.01	0.50	
Clearance Time (s)	4.9	4.9		4.9	4.9		4.4	4.9		4.4	4.9	_
Vehicle Extension (s)	6.2	6.2		5.4	5.4		2.0	2.5		2.0	5.9	
Lane Grp Cap (vph)	357	171		191	350		175	2077		17	1644	
v/s Ratio Prot	c0.02	0.00		0.01	c0.01	- 1	c0.06	c0.07		0.01	0.02	8
v/s Ratio Perm		2100		0.01	55.01		00.00	00.07		0.01	0.02	
v/c Ratio	0.15	0.03		0.05	0.07		0.63	0.12	1	0.71	0.05	
Uniform Delay, d1	40.8	40.3		40.0	40.1		43.3	9.2		49.4	12.9	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	0.6	0.2		0.3	0.2		5.0	0.1		72.3	0.1	
Delay (s)	41.3	40.5		40.3	40.3		48.3	9.3		121.7	13.0	
Level of Service	D	D		D	D		D	Α		F	В	-
Approach Delay (s)		41.1		133	40.3		-	21.3	-		24.3	
Approach LOS		D		_	D			С			C	
Intersection Summary												
HCM 2000 Control Delay			26.0	H	CM 2000 I	evel of S	Service		С	_		
HCM 2000 Volume to Capa	city ratio	-	0.18	, , ,	JIVI 2000 I	LOVOI OI C	JCI VICC		U			
Actuated Cycle Length (s)	ony rado		100.0	Ç,	ım of lost	time (e)	-		19.1			3
ntersection Capacity Utiliza	tion		28.8%		U Level o				Α.			
Analysis Period (min)	0011		15	10	C LEVEI U	OCIVICE			^			
Critical Lane Group			10									

APPENDIX C

Opening Year 2019 Conditions - Synchro Analysis
 Opening Year 2019 Plus Phases 1 & 2

> Opening Year 2019 Conditions - Synchro Analysis

1: Alta Rd & Calzada De La Fuente

	•	4	†	~	-	↓
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations) yr		↑	7	ሻ	4
Volume (veh/h)	34	3	661	84	0	70
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	37	3	718	91	0	76
Pedestrians						
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)						
Upstream signal (ft)			684			
pX, platoon unblocked	0.85	0.85			0.85	
vC, conflicting volume	795	718			810	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	665	575			683	
tC, single (s)	6.4	6.2			4.1	
tC, 2 stage (s)						
tF (s)	3.5	3.3			2.2	
p0 queue free %	90	99			100	
cM capacity (veh/h)	359	437			769	
Direction, Lane #	WB 1	NB 1	NB 2	SB 1	SB 2	
Volume Total	40	718	91	0	76	
Volume Left	37	0	0	0	0	
Volume Right	3	0	91	0	0	
cSH	364	1700	1700	1700	1700	
Volume to Capacity	0.11	0.42	0.05	0.00	0.04	
Queue Length 95th (ft)	9	0	0	0	0	
Control Delay (s)	16.1	0.0	0.0	0.0	0.0	
Lane LOS	С					
Approach Delay (s)	16.1	0.0		0.0		
Approach LOS	С					
Intersection Summary						
Average Delay			0.7			
Intersection Capacity Utilizat	tion		44.8%	IC	U Level o	f Service
Analysis Period (min)			15			
,						

OYAM.syn

	•	*	†	1	-	ļ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	A		1	7	T.	4
Volume (veh/h)	73	0	92	12	2	460
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	79	0	100	13	2	500
Pedestrians						
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)						
Upstream signal (ft)			684			
pX, platoon unblocked						
vC, conflicting volume	604	100			113	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	604	100			113	
tC, single (s)	6.4	6.2			4.1	
tC, 2 stage (s)						
tF (s)	3.5	3.3			2.2	
p0 queue free %	83	100			100	
cM capacity (veh/h)	461	956			1476	
Direction, Lane #	WB 1	NB 1	NB 2	SB 1	SB 2	
Volume Total	79	100	13	2	500	
Volume Left	79	0	0	2	0	
Volume Right	0	0	13	0	0	
cSH	461	1700	1700	1476	1700	
Volume to Capacity	0.17	0.06	0.01	0.00	0.29	
Queue Length 95th (ft)	15	0	0	0	0	
Control Delay (s)	14.4	0.0	0.0	7.4	0.0	
Lane LOS	В			Α		
Approach Delay (s)	14.4	0.0		0.0		
Approach LOS	В					
Intersection Summary						
Average Delay			1.7			
Intersection Capacity Utiliza	ation		34.9%	ICI	J Level of	Service
Analysis Period (min)			15			

Lane Group Lane Configurations Volume (vph) Turn Type **Protected Phases** Permitted Phases **Detector Phase** Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag

2: Alta Rd & Lone Star Rd/Lone Start Rd

 olar Ru	/Lone	Start r	tu			Timing Plan. PM Peak
-	•	+	•	†	ļ	
EBT	WBL	WBT	WBR	NBT	SBT	
4	7	1	7	4	4	
0	10	1	1	103	541	
NA	Perm	NA	Perm	NA	NA	
4		8		2	6	
	8		8			
4	8	8	8	2	6	
4.0	4.0	4.0	4.0	4.0	4.0	
20.5	20.5	20.5	20.5	20.5	20.5	
20.6	20.6	20.6	20.6	39.4	39.4	
34.3%	34.3%	34.3%	34.3%	65.7%	65.7%	
3.5	3.5	3.5	3.5	3.5	3.5	
1.0	1.0	1.0	1.0	1.0	1.0	
0.0	0.0	0.0	0.0	0.0	0.0	
4.5	4.5	4.5	4.5	4.5	4.5	

Min

Min

Intersection Summary

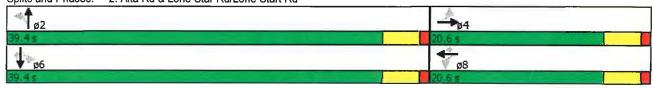
Lead-Lag Optimize?
Recall Mode

Cycle Length: 60

Actuated Cycle Length: 34.3

Natural Cycle: 50

Control Type: Actuated-Uncoordinated


Splits and Phases: 2: Alta Rd & Lone Star Rd/Lone Start Rd

None

None

None

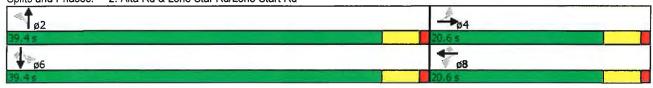
None

2: Alta Rd & Lone Star Rd/Lone Start Rd

	۶	→	•	•	—	•	•	†	~	1	+	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SER
Lane Configurations	7	F		ħ	1	F	ħ	7+	70 - 20	7	4	F
Volume (vph)	0	0	2	18	1	1	1	744	21	0	102	1
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.5		4.5	4.5	4.5	4.5	4.5			4.5	4.5
Lane Util. Factor		1.00		1.00	1.00	1.00	1.00	1.00			1.00	1.00
Frt		0.85		1.00	1.00	0.85	1.00	1.00			1.00	0.85
Flt Protected		1.00		0.95	1.00	1.00	0.95	1.00			1.00	1.00
Satd. Flow (prot)		1583		1770	1863	1583	1770	1855			1863	1583
Flt Permitted		1.00		1.00	1.00	1.00	0.69	1.00			1.00	1.00
Satd. Flow (perm)		1583		1863	1863	1583	1277	1855			1863	1583
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	0	2	20	1	1	1	809	23	0	111	1
RTOR Reduction (vph)	0	2	0	0	0	1	0	1	0	0	0	0
Lane Group Flow (vph)	0	0	0	20	1	0	1	831	0	0	111	1
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA		Perm	NA	Perm
Protected Phases		4			8			2			6	
Permitted Phases	4			8		8	2			6		6
Actuated Green, G (s)		1.0		1.0	1.0	1.0	34.0	34.0			34.0	34.0
Effective Green, g (s)		1.0		1.0	1.0	1.0	34.0	34.0			34.0	34.0
Actuated g/C Ratio		0.02		0.02	0.02	0.02	0.77	0.77			0.77	0.77
Clearance Time (s)		4.5		4.5	4.5	4.5	4.5	4.5			4.5	4.5
Vehicle Extension (s)		3.0		3.0	3.0	3.0	3.0	3.0			3.0	3.0
Lane Grp Cap (vph)		35		42	42	35	986	1433			1439	1223
v/s Ratio Prot		0.00			0.00			c0.45			0.06	
v/s Ratio Perm				c0.01		0.00	0.00					0.00
v/c Ratio		0.00		0.48	0.02	0.00	0.00	0.58			0.08	0.00
Uniform Delay, d1		21.0		21.2	21.0	21.0	1.1	2.1			1.2	1.1
Progression Factor		1.00		1.00	1.00	1.00	1.00	1.00			1.00	1.00
Incremental Delay, d2		0.0		8.3	0.2	0.0	0.0	0.6			0.0	0.0
Delay (s)		21.0		29.5	21.3	21.0	1.1	2.6			1.2	1.1
Level of Service		С		С	С	С	Α	Α			Α	Α
Approach Delay (s)		21.0			28.8			2.6			1.2	
Approach LOS		С			С			Α			Α	
Intersection Summary												
HCM 2000 Control Delay			3.1	HO	CM 2000	Level of S	Service		Α			
HCM 2000 Volume to Capaci	ty ratio		0.58									
Actuated Cycle Length (s)			44.0	Su	m of lost	time (s)			9.0			
Intersection Capacity Utilization	on		55.6%	IC	U Level o	f Service			В			
Analysis Period (min)			15									
c Critical Lane Group												

OYAM.syn Synchro 8 Report Page 3

2: Alta Rd & Lone Star Rd/Lone Start Rd

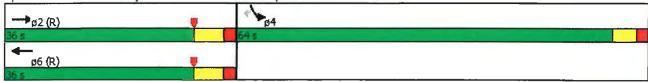

	-	1	—	•	1	†	Ţ	1	
Lane Group	EBT	WBL	WBT	WBR	NBL	NBT	SBT	SBR	
Lane Configurations	4	7	†	7	P.	f)	4	7	
Volume (vph)	0	18	1	1	1	744	102	1	
Turn Type	NA	Perm	NA	Perm	Perm	NA	NA	Perm	
Protected Phases	4		8			2	6		
Permitted Phases		8		8	2			6	
Detector Phase	4	8	8	8	2	2	6	6	
Switch Phase									
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
Minimum Split (s)	20.5	20.5	20.5	20.5	20.5	20.5	20.5	20.5	
Total Split (s)	20.6	20.6	20.6	20.6	39.4	39.4	39.4	39.4	
Total Split (%)	34.3%	34.3%	34.3%	34.3%	65.7%	65.7%	65.7%	65.7%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	
Lead/Lag									
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	Min	Min	Min	Min	
Intersection Summary									

Cycle Length: 60 Actuated Cycle Length: 40.4

Natural Cycle: 60

Control Type: Actuated-Uncoordinated

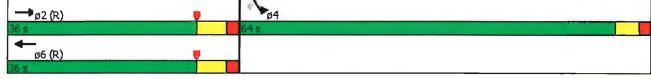
Splits and Phases: 2: Alta Rd & Lone Star Rd/Lone Start Rd



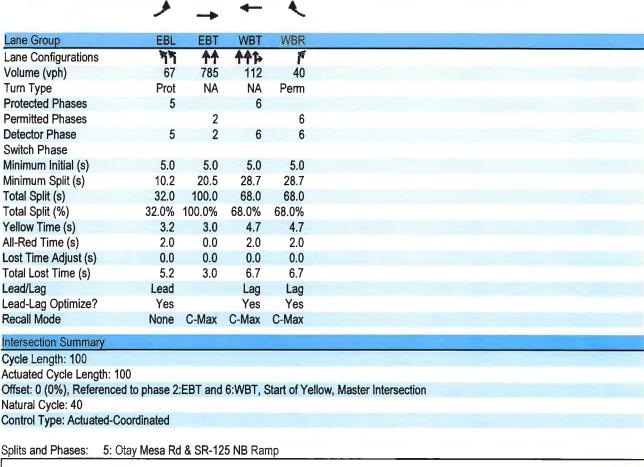
Otay Hills 2: Alta Rd & Lone Star Rd/Lone Start Rd

	۶	→	•	•	-	*	4	†	~	-	Ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	1		T	4	7	7	1>		M	A	7
Volume (vph)	0	0	1	10	1	1	0	103	7	0	541	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.5		4.5	4.5	4.5		4.5			4.5	
Lane Util. Factor		1.00		1.00	1.00	1.00		1.00			1.00	
Frt		0.85		1.00	1.00	0.85		0.99			1.00	
Flt Protected		1.00		0.95	1.00	1.00		1.00			1.00	
Satd. Flow (prot)		1583	1	1770	1863	1583		1844			1863	
Flt Permitted		1.00		1.00	1.00	1.00		1.00			1.00	
Satd. Flow (perm)		1583		1863	1863	1583		1844			1863	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	0	1	11	1	1	0	112	8	0	588	0
RTOR Reduction (vph)	0	1	0	0	0	1	0	2	0	0	0	0
Lane Group Flow (vph)	0	0	0	11	1	0	0	118	0	0	588	0
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA		Perm	NA	Perm
Protected Phases		4			8			2			6	
Permitted Phases	4			8		8	2			6		6
Actuated Green, G (s)		0.9		0.9	0.9	0.9		28.0			28.0	
Effective Green, g (s)		0.9		0.9	0.9	0.9		28.0			28.0	
Actuated g/C Ratio		0.02		0.02	0.02	0.02		0.74			0.74	
Clearance Time (s)		4.5		4.5	4.5	4.5		4.5			4.5	
Vehicle Extension (s)		3.0		3.0	3.0	3.0		3.0			3.0	
Lane Grp Cap (vph)		37		44	44	37		1362			1376	
v/s Ratio Prot		0.00			0.00			0.06			c0.32	
v/s Ratio Perm				c0.01		0.00						
v/c Ratio		0.00		0.25	0.02	0.00		0.09			0.43	
Uniform Delay, d1		18.1		18.2	18.1	18.1		1.4			1.9	
Progression Factor		1.00		1.00	1.00	1.00		1.00			1.00	
Incremental Delay, d2		0.0		3.0	0.2	0.0		0.0			0.2	
Delay (s)		18.1		21.1	18.3	18.1		1.4			2.1	
Level of Service		В		С	В	В		Α			Α	
Approach Delay (s)		18.1			20.7			1.4			2.1	
Approach LOS		В			С			Α			Α	
Intersection Summary												
HCM 2000 Control Delay			2.3	Н	CM 2000	Level of S	Service		Α			
HCM 2000 Volume to Capacit	y ratio		0.42									
Actuated Cycle Length (s)			37.9	Su	m of lost	time (s)			9.0			
Intersection Capacity Utilization	n		43.2%	IC	U Level c	f Service			Α			
Analysis Period (min)			15									
c Critical Lane Group												

4: Otay Mesa Rd & SR-125 SB Ramp


	-	—	1	1
Lane Group	EBT	WBT	SBL	SBR
Lane Configurations	ተተተ	个个个	青年	7
Volume (vph)	336	112	521	441
Turn Type	NA	NA	Prot	Perm
Protected Phases	2	6	4	
Permitted Phases				4
Detector Phase	2	6	4	4
Switch Phase				
Minimum Initial (s)	5.0	5.0	5.0	5.0
Minimum Split (s)	27.0	31.7	21.7	21.7
Total Split (s)	36.0	36.0	64.0	64.0
Total Split (%)	36.0%	36.0%	64.0%	64.0%
Yellow Time (s)	4.7	4.7	3.6	3.6
All-Red Time (s)	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.7	6.7	5.6	5.6
Lead/Lag				
Lead-Lag Optimize?				
Recall Mode	C-Max	C-Max	Max	Max
Intersection Summary				
Cycle Length: 100				
Actuated Cycle Length: 100)			
Offset: 0 (0%), Referenced		EBT and	6:WBT. S	Start of Ye
Natural Cycle: 55	to pridoo E	LP I WIIG	0,1101,1	J. 101 1 C
Control Type: Actuated-Coo	ordinated			
Splits and Phases: 4: Ota	ay Mesa Ro	& SR-12	5 SB Rar	np

	۶	-	←	•	1	4			
Movement	EBL	EBT	WBT	WBR	SBL	SBR			
Lane Configurations	*	ተተተ	ተተተ		77	#			
Volume (vph)	0	336	112	0	521	441			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Total Lost time (s)		6.7	6.7		5.6	5.6			
Lane Util. Factor		0.91	0.91		0.97	1.00			
Frt		1.00	1.00		1.00	0.85			
Flt Protected		1.00	1.00		0.95	1.00			
Satd. Flow (prot)		5085	5085		3433	1583			
Flt Permitted		1.00	1.00		0.95	1.00			
Satd. Flow (perm)		5085	5085		3433	1583			
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92			
Adj. Flow (vph)	0	365	122	0	566	479			
RTOR Reduction (vph)	0	0	0	0	0	199			
Lane Group Flow (vph)	0	365	122	0	566	280			
Turn Type		NA	NA		Prot	Perm			
Protected Phases		2	6		4				
Permitted Phases						4			
Actuated Green, G (s)		29.3	29.3		58.4	58.4			
Effective Green, g (s)		29.3	29.3		58.4	58.4			
Actuated g/C Ratio		0.29	0.29		0.58	0.58			
Clearance Time (s)		6.7	6.7		5.6	5.6			
Vehicle Extension (s)		3.0	3.0		3.0	3.0			
Lane Grp Cap (vph)		1489	1489		2004	924			
v/s Ratio Prot		c0.07	0.02		0.16				
v/s Ratio Perm						c0.18			
v/c Ratio		0.25	0.08		0.28	0.30			
Uniform Delay, d1		26.9	25.6		10.4	10.5			
Progression Factor		0.67	0.92		1.00	1.00			
ncremental Delay, d2		0.4	0.1		0.4	8.0			
Delay (s)		18.4	23.6		10.7	11.4			
_evel of Service		В	С		В	В			
Approach Delay (s)		18.4	23.6		11.0				
Approach LOS		В	С		В				
ntersection Summary									
HCM 2000 Control Delay			13.8	HC	CM 2000	Level of Service	e	В	
HCM 2000 Volume to Capacity	ratio		0.28						
Actuated Cycle Length (s)			100.0	Su	m of lost	time (s)		12.3	
ntersection Capacity Utilization			41.7%	ICI	U Level o	of Service		Α	
Analysis Period (min)			15						
Critical Lane Group									


4: Otay Mesa Rd & SR-125 SB Ramp

	-	—	1	1
Lane Group	EBT	WBT	SBL	SBR
Lane Configurations	ት ተት	^	1/4	7
Volume (vph)	321	271	123	260
Turn Type	NA	NA	Prot	Perm
Protected Phases	2	6	4	
Permitted Phases				4
Detector Phase	2	6	4	4
Switch Phase				
Minimum Initial (s)	5.0	5.0	5.0	5.0
Minimum Split (s)	27.0	31.7	21.7	21.7
Total Split (s)	36.0	36.0	64.0	64.0
Total Split (%)	36.0%	36.0%	64.0%	64.0%
Yellow Time (s)	4.7	4.7	3.6	3.6
All-Red Time (s)	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.7	6.7	5.6	5.6
Lead/Lag				
Lead-Lag Optimize?				
Recall Mode	C-Max	C-Max	Max	Max
Intersection Summary				
Cycle Length: 100				
Actuated Cycle Length: 10	00			
Offset: 0 (0%), Reference		:EBT and	6:WBT, 5	Start of Ye
Natural Cycle: 55	•		·	
Control Type: Actuated-C	oordinated			
,,				
Splits and Phases: 4: C	tay Mesa Ro	8 SR-12	25 SB Rar	mp
	•		1.3	

•	•	→	—	4	-	4	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		ት	ተተተ		77	7	
Volume (vph)	0	321	271	0	123	260	
Ideal Flow (vphpl) 1	900	1900	1900	1900	1900	1900	
Total Lost time (s)		6.7	6.7		5.6	5.6	
Lane Util. Factor		0.91	0.91		0.97	1.00	
Frt		1.00	1.00		1.00	0.85	
Flt Protected		1.00	1.00		0.95	1.00	
Satd. Flow (prot)		5085	5085		3433	1583	
Flt Permitted		1.00	1.00		0.95	1.00	
Satd. Flow (perm)		5085	5085		3433	1583	
	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	0	349	295	0	134	283	
RTOR Reduction (vph)	Ō	0	0	0	0	118	
Lane Group Flow (vph)	0	349	295	0	134	165	
Turn Type		NA	NA		Prot	Perm	
Protected Phases		2	6		4		
Permitted Phases		_			•	4	
Actuated Green, G (s)		29.3	29.3		58.4	58.4	
Effective Green, g (s)		29.3	29.3		58.4	58.4	
Actuated g/C Ratio		0.29	0.29		0.58	0.58	
Clearance Time (s)		6.7	6.7		5.6	5.6	
Vehicle Extension (s)		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)		1489	1489		2004	924	
v/s Ratio Prot		c0.07	0.06		0.04	V2 .	
v/s Ratio Perm		00.01	0.00		Q10 I	c0.10	
v/c Ratio		0.23	0.20		0.07	0.18	
Uniform Delay, d1		26.8	26.5		9.0	9.7	
Progression Factor		0.73	0.92		1.00	1.00	
Incremental Delay, d2		0.4	0.3		0.1	0.4	
Delay (s)		19.9	24.7		9.1	10.1	
Level of Service		В	C		A	В	
Approach Delay (s)		19.9	24.7		9.8		
Approach LOS		В	C		A		
Intersection Summary			17.0	110	284 2000	Laval of C	
HCM 2000 Control Delay	4 ! ~		17.3	HC	JN 2000	Level of Se	,
HCM 2000 Volume to Capacity ra	นอ		0.20	0		Alma /->	
Actuated Cycle Length (s)			100.0		m of lost	. ,	
Intersection Capacity Utilization			31.6%	101	U Level o	of Service	
Analysis Period (min)			15				
c Critical Lane Group							

5: Otay Mesa Rd & SR-125 NB Ramp

	*	→	+	4	1	1		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations	44	ተተ	ተተጉ	7				
Volume (vph)	67	785	112	40	0	0		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	5.2	3.0	6.7	6.7				
Lane Util. Factor	0.97	0.95	0.86	0.86				
Frt	1.00	1.00	0.99	0.85				
Flt Protected	0.95	1.00	1.00	1.00				
Satd. Flow (prot)	3433	3539	4772	1362				
FIt Permitted	0.95	1.00	1.00	1.00				
Satd. Flow (perm)	3433	3539	4772	1362				
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92		
Adj. Flow (vph)	73	853	122	43	0	0		
RTOR Reduction (vph)	0	0	1	7	0	0		
Lane Group Flow (vph)	73	853	127	30	0	0		
Turn Type	Prot	NA	NA	Perm				
Protected Phases	5		6					
Permitted Phases		2		6				
Actuated Green, G (s)	6.4	100.0	81.7	81.7				
Effective Green, g (s)	6.4	100.0	81.7	81.7				
Actuated g/C Ratio	0.06	1.00	0.82	0.82				
Clearance Time (s)	5.2	3.0	6.7	6.7				
Vehicle Extension (s)	3.0	3.0	3.0	3.0				
Lane Grp Cap (vph)	219	3539	3898	1112				
v/s Ratio Prot	0.02		0.03					
v/s Ratio Perm		c0.24		0.02				
v/c Ratio	0.33	0.24	0.03	0.03				
Uniform Delay, d1	44.8	0.0	1.7	1.7				
Progression Factor	1.23	1.00	1.00	1.00				
Incremental Delay, d2	0.9	0.2	0.0	0.0				
Delay (s)	55.9	0.2	1.7	1.8				
Level of Service	Е	Α	Α	Α				
Approach Delay (s)		4.6	1.7		0.0			
Approach LOS		Α	Α		Α			
ntersection Summary								
HCM 2000 Control Delay			4.1	НС	CM 2000 L	_evel of Servi	e	
ICM 2000 Volume to Capaci	ty ratio		0.27					
Actuated Cycle Length (s)			100.0		m of lost	. ,		
ntersection Capacity Utilization	on		41.7%	ICI	J Level of	Service		
Analysis Period (min)			15					
Critical Lane Group								

5: Otay Mesa Rd & SR-125 NB Ramp

		→			
Lane Group	EBL	EBT	WBT	WBR	
Lane Configurations	44	^	个个分	7	
Volume (vph)	174	260	265	213	
Turn Type	Prot	NA	NA	Pem	
Protected Phases	5		6		
Permitted Phases		2		6	
Detector Phase	5	2	6	6	
Switch Phase					
Minimum Initial (s)	5.0	5.0	5.0	5.0	
Minimum Split (s)	10.2	20.5	28.7	28.7	
Total Split (s)	32.0	100.0	68.0	68.0	
Total Split (%)	32.0%	100.0%	68.0%	68.0%	
Yellow Time (s)	3.2	3.0	4.7	4.7	
All-Red Time (s)	2.0	0.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	
Total Lost Time (s)	5.2	3.0	6.7	6.7	
Lead/Lag	Lead		Lag	Lag	
Lead-Lag Optimize?	Yes		Yes	Yes	
Recall Mode	None	C-Max	C-Max	C-Max	
Intersection Summary					
Cycle Length: 100					
Actuated Cycle Length: 10					
Offset: 0 (0%), Referenced	to phase 2	:EBT and	6:WBT, \$	Start of Ye	ellow, Master Intersection

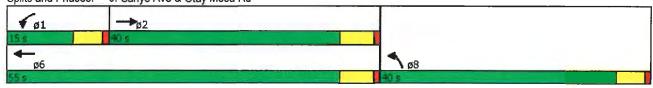
Natural Cycle: 40

Control Type: Actuated-Coordinated

Splits and Phases: 5: Otay Mesa Rd & SR-125 NB Ramp

	۶	→	+	•	-	4		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations	19	个 个	11	7				
Volume (vph)	174	260	265	213	0	0		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	5.2	3.0	6.7	6.7				
Lane Util. Factor	0.97	0.95	0.86	0.86				
Frt	1.00	1.00	0.96	0.85				
Flt Protected	0.95	1.00	1.00	1.00				
Satd. Flow (prot)	3433	3539	4601	1362				
Flt Permitted	0.95	1.00	1.00	1.00				
Satd. Flow (perm)	3433	3539	4601	1362				
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92		
Adj. Flow (vph)	189	283	288	232	0	0		
RTOR Reduction (vph)	0	0	26	27	0	0		
Lane Group Flow (vph)	189	283	376	91	0	0		
Turn Type	Prot	NA	NA	Perm				
Protected Phases	5		6					
Permitted Phases		2		6				
Actuated Green, G (s)	10.8	100.0	77.3	77.3				
Effective Green, g (s)	10.8	100.0	77.3	77.3				
Actuated g/C Ratio	0.11	1.00	0.77	0.77				
Clearance Time (s)	5.2	3.0	6.7	6.7				
Vehicle Extension (s)	3.0	3.0	3.0	3.0				
Lane Grp Cap (vph)	370	3539	3556	1052				_
v/s Ratio Prot	c0.06		c0.08					
v/s Ratio Perm		0.08		0.07				
v/c Ratio	0.51	0.08	0.11	0.09				
Uniform Delay, d1	42.1	0.0	2.8	2.8				
Progression Factor	0.69	1.00	1.00	1.00				
Incremental Delay, d2	1.2	0.0	0.1	0.2				
Delay (s)	30.1	0.0	2.9	2.9				
Level of Service	С	Α	Α	Α				
Approach Delay (s)		12.1	2.9		0.0			
Approach LOS		В	Α		Α			
Intersection Summary						1		
HCM 2000 Control Delay			7.3	Н	ж 2000 l	Level of Servic	9	Α
HCM 2000 Volume to Capa	city ratio		0.16					44.0
Actuated Cycle Length (s)	11		100.0		m of lost	· /		11.9
Intersection Capacity Utiliza	tion		31.6%	IC	U Level of	Service		Α
Analysis Period (min)			15					
c Critical Lane Group								

Timing Plan: AM Peak 6: Sanyo Ave & Otay Mesa Rd


	-	-		7
Lane Group	EBT	WBL	WBT	NBL
Lane Configurations	†	7	1	77
Volume (vph)	386	4	80	69
Turn Type	NA	Prot	NA	Prot
Protected Phases	2	1	6	8
Permitted Phases				
Detector Phase	2	1	6	8
Switch Phase				
Minimum Initial (s)	6.0	4.0	6.0	4.0
Minimum Split (s)	24.0	9.3	24.0	23.3
Total Split (s)	40.0	15.0	55.0	40.0
Total Split (%)	42.1%	15.8%	57.9%	42.1%
Yellow Time (s)	5.0	4.3	5.0	4.3
All-Red Time (s)	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.0	5.3	6.0	5.3
Lead/Lag	Lag	Lead		
Lead-Lag Optimize?	Yes	Yes		
Recall Mode	None	None	None	None
Intersection Summary				
Cycle Length: 95				

Cycle Length: 95 Actuated Cycle Length: 32.9

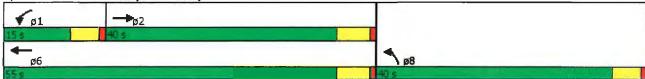
Natural Cycle: 60

Control Type: Actuated-Uncoordinated

Splits and Phases: 6: Sanyo Ave & Otay Mesa Rd

	-	*	1	-	1	-		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	1		7	^	TY			
Volume (vph)	386	385	4	80	69	8		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	6.0		5.3	6.0	5.3			
Lane Util. Factor	0.95		1.00	1.00	0.97			
Frt	0.93		1.00	1.00	0.98			
Flt Protected	1.00		0.95	1.00	0.96			
Satd. Flow (prot)	3274		1770	1863	3404			
It Permitted	1.00		0.95	1.00	0.96			
atd. Flow (perm)	3274		1770	1863	3404			
eak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92		
dj. Flow (vph)	420	418	4	87	75	9		
RTOR Reduction (vph)	161	0	0	0	8	0		
ane Group Flow (vph)	677	0	4	87	76	0		
um Type	NA		Prot	NA	Prot			
Protected Phases	2		1	6	8			
ermitted Phases								
ctuated Green, G (s)	17.4		0.5	23.2	3.9			
ffective Green, g (s)	17.4		0.5	23.2	3.9			
ctuated g/C Ratio	0.45		0.01	0.60	0.10			
learance Time (s)	6.0		5.3	6.0	5.3			
ehicle Extension (s)	3.5		2.0	3.5	2.0			
ane Grp Cap (vph)	1483		23	1125	345			
/s Ratio Prot	c0.21		0.00	c0.05	c0.02			
/s Ratio Perm								
c Ratio	0.46		0.17	0.08	0.22			
niform Delay, d1	7.2		18.7	3.2	15.9			
rogression Factor	1.00		1.00	1.00	1.00			
ncremental Delay, d2	0.3		1.3	0.0	0.1			
elay (s)	7.5		20.1	3.2	16.0			
evel of Service	Α		С	Α	В			
Approach Delay (s)	7.5			3.9	16.0			
pproach LOS	Α			Α	В			
ntersection Summary								
CM 2000 Control Delay			7.9	H	CM 2000 l	Level of Service	Α	
ICM 2000 Volume to Capa	city ratio		0.42					
ctuated Cycle Length (s)			38.4	Sı	um of lost	time (s)	16.6	
ntersection Capacity Utiliza	ation		35.8%	IC	U Level of	f Service	Α	
Analysis Period (min)			15					
Critical Lane Group								

6: Sanyo Ave & Otay Mesa Rd


	-	1	-	1
Lane Group	EBT	WBL	WBT	NBL
Lane Configurations	† }	7	1	MA
Volume (vph)	134	24	287	195
Turn Type	NA	Prot	NA	Prot
Protected Phases	2	1	6	8
Permitted Phases				
Detector Phase	2	1	6	8
Switch Phase				
Minimum Initial (s)	6.0	4.0	6.0	4.0
Minimum Split (s)	24.0	9.3	24.0	23.3
Total Split (s)	40.0	15.0	55.0	40.0
Total Split (%)	42.1%	15.8%	57.9%	42.1%
Yellow Time (s)	5.0	4.3	5.0	4.3
All-Red Time (s)	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.0	5.3	6.0	5.3
Lead/Lag	Lag	Lead		
Lead-Lag Optimize?	Yes	Yes		
Recall Mode	None	None	None	None
Intersection Summary				
Cycle Length: 95				
Actuated Cycle Length: 33.6				

Actuated Cycle Length: 33.6

Natural Cycle: 60

Control Type: Actuated-Uncoordinated

Splits and Phases: 6: Sanyo Ave & Otay Mesa Rd

	→	*	1	+	4	*	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	44		*	1	N. W.		
Volume (vph)	134	134	24	287	195	26	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	6.0		5.3	6.0	5.3		
Lane Util. Factor	0.95		1.00	1.00	0.97		
Frt	0.93		1.00	1.00	0.98		
Flt Protected	1.00		0.95	1.00	0.96		
Satd. Flow (prot)	3274		1770	1863	3400		
Flt Permitted	1.00		0.95	1.00	0.96		
Satd. Flow (perm)	3274		1770	1863	3400		
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	146	146	26	312	212	28	
RTOR Reduction (vph)	100	0	0	0	13	0	
Lane Group Flow (vph)	192	0	26	312	227	0	
Turn Type	NA		Prot	NA	Prot		
Protected Phases	2		1	6	8		
Permitted Phases							
Actuated Green, G (s)	11.7		0.8	17.8	8.1		
Effective Green, g (s)	11.7		0.8	17.8	8.1		
Actuated g/C Ratio	0.31		0.02	0.48	0.22		
Clearance Time (s)	6.0		5.3	6.0	5.3		
Vehicle Extension (s)	3.5		2.0	3.5	2.0		
Lane Grp Cap (vph)	1029		38	891	740		
v/s Ratio Prot	0.06		0.01	c0.17	c0.07		
v/s Ratio Perm							
v/c Ratio	0.19		0.68	0.35	0.31		
Uniform Delay, d1	9.3		18.1	6.1	12.2		
Progression Factor	1.00		1.00	1.00	1.00		
Incremental Delay, d2	0.1		33.5	0.3	0.1		
Delay (s)	9.4		51.6	6.4	12.3		
Level of Service	Α		D	Α	В		
Approach Delay (s)	9.4			9.8	12.3		
Approach LOS	Α			Α	В		
Intersection Summary							
HCM 2000 Control Delay			10.4	H	CM 2000	Level of Service	Э
HCM 2000 Volume to Capac	city ratio		0.42				
Actuated Cycle Length (s)			37.2		um of lost	` '	
Intersection Capacity Utiliza	tion		31.6%	IC	U Level o	f Service	
Analysis Period (min)			15				
c Critical Lane Group							

7: Enrico Fermi Dr & Otay Mesa Rd

	\rightarrow	1	+	1	
Lane Group	EBT	WBL	WBT	NBL	NBR
Lane Configurations	4	T	1	W.	7
Volume (vph)	370	87	53	21	380
Turn Type	NA	Prot	NA	Perm	Perm
Protected Phases	2	1	6		
Permitted Phases				8	8
Detector Phase	2	1	6	8	8
Switch Phase					
Minimum Initial (s)	6.0	4.0	6.0	4.0	4.0
Minimum Split (s)	40.0	15.0	40.0	40.0	40.0
Total Split (s)	40.0	15.0	55.0	40.0	40.0
Total Split (%)	42.1%	15.8%	57.9%	42.1%	42.1%
Yellow Time (s)	5.0	4.3	5.0	5.0	5.0
All-Red Time (s)	1.0	0.5	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.0	4.8	6.0	6.0	6.0
Lead/Lag	Lag	Lead			
Lead-Lag Optimize?	Yes	Yes			
Recall Mode	Min	None	Min	None	None
Intersection Summary					

Cycle Length: 95
Actuated Cycle Length: 48.4
Natural Cycle: 95

Control Type: Actuated-Uncoordinated

Splits and Phases: 7: Enrico Fermi Dr & Otay Mesa Rd

7: Enrico Fermi Dr & Otay Mesa Rd

	-	*	1	-	4	<i>*</i>		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	A		ħ	†	7	7		
Volume (vph)	370	28	87	53	21	380		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	6.0		4.8	6.0	6.0	6.0		
Lane Util. Factor	1.00	•	1.00	1.00	1.00	1.00		
Frt	0.99		1.00	1.00	1.00	0.85		
Flt Protected	1.00		0.95	1.00	0.95	1.00		
Satd. Flow (prot)	1845		1770	1863	1770	1583		
Flt Permitted	1.00		0.95	1.00	0.95	1.00		
Satd. Flow (perm)	1845		1770	1863	1770	1583		
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92		
Adj. Flow (vph)	402	30	95	58	23	413		
RTOR Reduction (vph)	3	0	0	0	0	348		
Lane Group Flow (vph)	429	0	95	58	23	65		
Turn Type	NA		Prot	NA	Perm	Perm	 	
Protected Phases	2		1	6				
Permitted Phases					8	8		
Actuated Green, G (s)	17.8		5.9	28.5	7.5	7.5		
Effective Green, g (s)	17.8		5.9	28.5	7.5	7.5		
Actuated g/C Ratio	0.37		0.12	0.59	0.16	0.16		
Clearance Time (s)	6.0		4.8	6.0	6.0	6.0		
Vehicle Extension (s)	3.5		2.0	3.5	2.0	2.0		
Lane Grp Cap (vph)	684		217	1106	276	247		
//s Ratio Prot	c0.23		c0.05	0.03				
//s Ratio Perm					0.01	c0.04		
//c Ratio	0.63		0.44	0.05	0.08	0.26		
Jniform Delay, d1	12.4		19.5	4.1	17.3	17.8		
Progression Factor	1.00		1.00	1.00	1.00	1.00		
ncremental Delay, d2	1.9		0.5	0.0	0.0	0.2		
Delay (s)	14.3		20.0	4.1	17.4	18.0		
evel of Service	В		С	Α	В	В		
Approach Delay (s)	14.3			14.0	18.0			
Approach LOS	В			В	В			
ntersection Summary								
HCM 2000 Control Delay			15.8	Н	CM 2000	Level of Service	В	
ICM 2000 Volume to Capa	city ratio		0.50					
Actuated Cycle Length (s)	•		48.0	Su	m of lost	time (s)	16.8	
ntersection Capacity Utiliza	tion		54.7%			of Service	Α	
Analysis Period (min)			15					
: Critical Lane Group								

7: Enrico Fermi Dr & Otay Mesa Rd

	\rightarrow	1	+	1	
Lane Group	EBT	WBL	WBT	NBL	NBR
Lane Configurations	4	M	†	7	7
Volume (vph)	97	435	298	20	110
Turn Type	NA	Prot	NA	Perm	Perm
Protected Phases	2	1	6		
Permitted Phases				8	8
Detector Phase	2	1	6	8	8
Switch Phase					
Minimum Initial (s)	6.0	4.0	6.0	4.0	4.0
Minimum Split (s)	40.0	15.0	40.0	40.0	40.0
Total Split (s)	40.0	20.0	60.0	40.0	40.0
Total Split (%)	40.0%	20.0%	60.0%	40.0%	40.0%
Yellow Time (s)	5.0	4.3	5.0	5.0	5.0
All-Red Time (s)	1.0	0.5	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.0	4.8	6.0	6.0	6.0
Lead/Lag	Lag	Lead			
Lead-Lag Optimize?	Yes	Yes			
Recall Mode	Min	None	Min	None	None
Intersection Summary					

Cycle Length: 100
Actuated Cycle Length: 47.6
Natural Cycle: 105

Control Type: Actuated-Uncoordinated

Splits and Phases: 7: Enrico Fermi Dr & Otay Mesa Rd

Movement EBT EBR WBL WBT Lane Configurations ♣ ♣ ♣ ♠ Volume (vph) 97 41 435 298 Ideal Flow (vphpl) 1900 1900 1900 1900 Total Lost time (s) 6.0 4.8 6.0 Lane Util. Factor 1.00 1.00 1.00 Frt 0.96 1.00 1.00 Fit Protected 1.00 0.95 1.00 Satd. Flow (prot) 1787 1770 1863 Fit Permitted 1.00 0.95 1.00 Satd. Flow (perm) 1787 1770 1863 Peak-hour factor, PHF 0.92 0.92 0.92 0.92 Adj. Flow (vph) 105 45 473 324 RTOR Reduction (vph) 18 0 0 0 Lane Group Flow (vph) 132 0 473 324 Turn Type NA Prot NA Permitt	20 1900 6.0 1.00 1.00 0.95 1770 0.95 1770 0.92 22 0	NBR 110 1900 6.0 1.00 0.85 1.00 1583 1.00 1583 0.92 120		
Volume (vph) 97 41 435 298 Ideal Flow (vphpl) 1900 1900 1900 1900 Total Lost time (s) 6.0 4.8 6.0 Lane Util. Factor 1.00 1.00 1.00 Frt 0.96 1.00 1.00 Flt Protected 1.00 0.95 1.00 Satd. Flow (prot) 1787 1770 1863 Flt Permitted 1.00 0.95 1.00 Satd. Flow (perm) 1787 1770 1863 Peak-hour factor, PHF 0.92 0.92 0.92 0.92 Adj. Flow (vph) 105 45 473 324 RTOR Reduction (vph) 18 0 0 0 Lane Group Flow (vph) 132 0 473 324 Turn Type NA Prot NA Permitted Phases 2 1 6 Actuated Green, G (s) 10.3 16.0 31.1 Effective Green, g (s)	20 1900 6.0 1.00 1.00 0.95 1770 0.95 1770 0.92 22 0	110 1900 6.0 1.00 0.85 1.00 1583 1.00 1583 0.92 120		
Ideal Flow (vphpl) 1900 1900 1900 1900 Total Lost time (s) 6.0 4.8 6.0 Lane Util. Factor 1.00 1.00 1.00 Frt 0.96 1.00 1.00 Flt Protected 1.00 0.95 1.00 Satd. Flow (prot) 1787 1770 1863 Flt Permitted 1.00 0.95 1.00 Satd. Flow (perm) 1787 1770 1863 Peak-hour factor, PHF 0.92 0.92 0.92 0.92 Adj. Flow (vph) 105 45 473 324 RTOR Reduction (vph) 18 0 0 0 Lane Group Flow (vph) 132 0 473 324 Turn Type NA Prot NA Permitted Phases 2 1 6 Permitted Phases 2 1 6 Actuated Green, G (s) 10.3 16.0 31.1 Actuated g/C Ratio 0.21 <t< td=""><td>1900 6.0 1.00 1.00 0.95 1770 0.95 1770 0.92 22 0</td><td>1900 6.0 1.00 0.85 1.00 1583 1.00 1583 0.92</td><td></td><td></td></t<>	1900 6.0 1.00 1.00 0.95 1770 0.95 1770 0.92 22 0	1900 6.0 1.00 0.85 1.00 1583 1.00 1583 0.92		
Total Lost time (s) 6.0 4.8 6.0 Lane Util. Factor 1.00 1.00 1.00 Frt 0.96 1.00 1.00 Flt Protected 1.00 0.95 1.00 Satd. Flow (prot) 1787 1770 1863 Flt Permitted 1.00 0.95 1.00 Satd. Flow (perm) 1787 1770 1863 Peak-hour factor, PHF 0.92 0.92 0.92 0.92 Adj. Flow (vph) 105 45 473 324 RTOR Reduction (vph) 18 0 0 0 Lane Group Flow (vph) 132 0 473 324 Turn Type NA Prot NA Permitted Phases 2 1 6 Permitted Phases 2 1 6 Actuated Green, G (s) 10.3 16.0 31.1 Actuated g/C Ratio 0.21 0.33 0.64	6.0 1.00 1.00 0.95 1770 0.95 1770 0.92 22 0	6.0 1.00 0.85 1.00 1583 1.00 1583 0.92		
Total Lost time (s) 6.0 4.8 6.0 Lane Util. Factor 1.00 1.00 1.00 Frt 0.96 1.00 1.00 Flt Protected 1.00 0.95 1.00 Satd. Flow (prot) 1787 1770 1863 Flt Permitted 1.00 0.95 1.00 Satd. Flow (perm) 1787 1770 1863 Peak-hour factor, PHF 0.92 0.92 0.92 0.92 Adj. Flow (vph) 105 45 473 324 RTOR Reduction (vph) 18 0 0 0 Lane Group Flow (vph) 132 0 473 324 Turn Type NA Prot NA Permitted Phases 2 1 6 Permitted Phases 2 1 6 Actuated Green, G (s) 10.3 16.0 31.1 Effective Green, g (s) 10.3 16.0 31.1 Actuated g/C Ratio 0.21 0.33	1.00 1.00 0.95 1770 0.95 1770 0.92 22 0	1.00 0.85 1.00 1583 1.00 1583 0.92		
Frt 0.96 1.00 1.00 Flt Protected 1.00 0.95 1.00 Satd. Flow (prot) 1787 1770 1863 Flt Permitted 1.00 0.95 1.00 Satd. Flow (perm) 1787 1770 1863 Peak-hour factor, PHF 0.92 0.92 0.92 0.92 Adj. Flow (vph) 105 45 473 324 RTOR Reduction (vph) 18 0 0 0 Lane Group Flow (vph) 132 0 473 324 Turn Type NA Prot NA Protected Phases 2 1 6 Permitted Phases Actuated Green, G (s) 10.3 16.0 31.1 Effective Green, g (s) 10.3 16.0 31.1 Actuated g/C Ratio 0.21 0.33 0.64	1.00 0.95 1770 0.95 1770 0.92 22 0	0.85 1.00 1583 1.00 1583 0.92 120		
Fit Protected 1.00 0.95 1.00 Satd. Flow (prot) 1787 1770 1863 Fit Permitted 1.00 0.95 1.00 Satd. Flow (perm) 1787 1770 1863 Peak-hour factor, PHF 0.92 0.92 0.92 0.92 Adj. Flow (vph) 105 45 473 324 RTOR Reduction (vph) 18 0 0 0 Lane Group Flow (vph) 132 0 473 324 Turn Type NA Prot NA Protected Phases 2 1 6 Permitted Phases Actuated Green, G (s) 10.3 16.0 31.1 Effective Green, g (s) 10.3 16.0 31.1 Actuated g/C Ratio 0.21 0.33 0.64	0.95 1770 0.95 1770 0.92 22 0	1.00 1583 1.00 1583 0.92 120		
Satd. Flow (prot) 1787 1770 1863 Fit Permitted 1.00 0.95 1.00 Satd. Flow (perm) 1787 1770 1863 Peak-hour factor, PHF 0.92 0.92 0.92 0.92 Adj. Flow (vph) 105 45 473 324 RTOR Reduction (vph) 18 0 0 0 Lane Group Flow (vph) 132 0 473 324 Turn Type NA Prot NA Protected Phases 2 1 6 Permitted Phases Actuated Green, G (s) 10.3 16.0 31.1 Effective Green, g (s) 10.3 16.0 31.1 Actuated g/C Ratio 0.21 0.33 0.64	1770 0.95 1770 0.92 22 0 22	1583 1.00 1583 0.92 120		
Fit Permitted 1.00 0.95 1.00 Satd. Flow (perm) 1787 1770 1863 Peak-hour factor, PHF 0.92 0.92 0.92 0.92 Adj. Flow (vph) 105 45 473 324 RTOR Reduction (vph) 18 0 0 0 Lane Group Flow (vph) 132 0 473 324 Turn Type NA Prot NA Protected Phases 2 1 6 Permitted Phases Actuated Green, G (s) 10.3 16.0 31.1 Effective Green, g (s) 10.3 16.0 31.1 Actuated g/C Ratio 0.21 0.33 0.64	0.95 1770 0.92 22 0 22	1.00 1583 0.92 120		
Satd. Flow (perm) 1787 1770 1863 Peak-hour factor, PHF 0.92 0.92 0.92 0.92 Adj. Flow (vph) 105 45 473 324 RTOR Reduction (vph) 18 0 0 0 Lane Group Flow (vph) 132 0 473 324 Turn Type NA Prot NA Protected Phases 2 1 6 Permitted Phases Actuated Green, G (s) 10.3 16.0 31.1 Effective Green, g (s) 10.3 16.0 31.1 Actuated g/C Ratio 0.21 0.33 0.64	1770 0.92 22 0 22	1583 0.92 120		
Peak-hour factor, PHF 0.92 0.92 0.92 0.92 Adj. Flow (vph) 105 45 473 324 RTOR Reduction (vph) 18 0 0 0 Lane Group Flow (vph) 132 0 473 324 Turn Type NA Prot NA Protected Phases 2 1 6 Permitted Phases Actuated Green, G (s) 10.3 16.0 31.1 Effective Green, g (s) 10.3 16.0 31.1 Actuated g/C Ratio 0.21 0.33 0.64	0.92 22 0 22	0.92 120		
Peak-hour factor, PHF 0.92 0.92 0.92 0.92 Adj. Flow (vph) 105 45 473 324 RTOR Reduction (vph) 18 0 0 0 Lane Group Flow (vph) 132 0 473 324 Turn Type NA Prot NA Protected Phases 2 1 6 Permitted Phases Actuated Green, G (s) 10.3 16.0 31.1 Effective Green, g (s) 10.3 16.0 31.1 Actuated g/C Ratio 0.21 0.33 0.64	22 0 22	120		
Adj. Flow (vph) 105 45 473 324 RTOR Reduction (vph) 18 0 0 0 Lane Group Flow (vph) 132 0 473 324 Turn Type NA Prot NA Protected Phases 2 1 6 Permitted Phases Actuated Green, G (s) 10.3 16.0 31.1 Effective Green, g (s) 10.3 16.0 31.1 Actuated g/C Ratio 0.21 0.33 0.64	22 0 22	120		
RTOR Reduction (vph) 18 0 0 0 Lane Group Flow (vph) 132 0 473 324 Turn Type NA Prot NA Protected Phases 2 1 6 Permitted Phases Actuated Green, G (s) 10.3 16.0 31.1 Effective Green, g (s) 10.3 16.0 31.1 Actuated g/C Ratio 0.21 0.33 0.64	22	400		
Lane Group Flow (vph) 132 0 473 324 Turn Type NA Prot NA Protected Phases 2 1 6 Permitted Phases Actuated Green, G (s) 10.3 16.0 31.1 Effective Green, g (s) 10.3 16.0 31.1 Actuated g/C Ratio 0.21 0.33 0.64	•	106		
Turn Type NA Prot NA Protected Phases 2 1 6 Permitted Phases 3 16.0 31.1 Actuated Green, G (s) 10.3 16.0 31.1 Effective Green, g (s) 10.3 16.0 31.1 Actuated g/C Ratio 0.21 0.33 0.64	•	14		
Protected Phases 2 1 6 Permitted Phases 8 6 Actuated Green, G (s) 10.3 16.0 31.1 Effective Green, g (s) 10.3 16.0 31.1 Actuated g/C Ratio 0.21 0.33 0.64	Perm	Perm		
Permitted Phases Actuated Green, G (s) 10.3 16.0 31.1 Effective Green, g (s) 10.3 16.0 31.1 Actuated g/C Ratio 0.21 0.33 0.64				
Effective Green, g (s) 10.3 16.0 31.1 Actuated g/C Ratio 0.21 0.33 0.64	8	8		
Effective Green, g (s) 10.3 16.0 31.1 Actuated g/C Ratio 0.21 0.33 0.64	5.5	5.5		
Actuated g/C Ratio 0.21 0.33 0.64	5.5	5.5		
	0.11	0.11		
Clearance Time (s) 6.0 4.8 6.0	6.0	6.0		
Vehicle Extension (s) 3.5 2.0 3.5	2.0	2.0		
_ane Grp Cap (vph) 378 582 1192	200	179		
//s Ratio Prot c0.07 c0.27 0.17				
//s Ratio Perm	c0.01	0.01		
//c Ratio 0.35 0.81 0.27	0.11	0.08		
Jniform Delay, d1 16.3 14.9 3.8	19.4	19.3		
Progression Factor 1.00 1.00 1.00	1.00	1.00		
ncremental Delay, d2 0.7 8.1 0.1	0.1	0.1		
Delay (s) 17.0 23.0 4.0	19.4	19.3		
Level of Service B C A	В	В		
Approach Delay (s) 17.0 15.3	19.4			
Approach LOS B B	В			
ntersection Summary				
	CM 2000 L	evel of Service	В	
ICM 2000 Volume to Capacity ratio 0.54		+		
	ım of lost t	time (s)	16.8	
	U Level of	' '	A	
Analysis Period (min) 15				
Critical Lane Group				

	۶	*	4	1	ţ	4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			र्स		7
Sign Control	Stop			Stop	Stop	- 7
Volume (vph)	757	0	0	2	0	124
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	823	0	0	2	0	135
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total (vph)	823	2	135			
Volume Left (vph)	823	0	0			
Volume Right (vph)	0	0	135			
Hadj (s)	0.23	0.03	-0.57			
Departure Headway (s)	4.5	6.0	5.2			
Degree Utilization, x	1.0	0.00	0.20			
Capacity (veh/h)	790	582	687			
Control Delay (s)	61.5	9.1	9.5			
Approach Delay (s)	61.5	9.1	9.5			
Approach LOS	F	Α	Α			
Intersection Summary						
Delay			54.1			
Level of Service			F			
Intersection Capacity Utiliza	ation		51.9%	IC	U Level o	f Service
Analysis Period (min)			15			

8: Otay Mesa Rd & Alta Rd

	۶	*	4	†	+	4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W			ન	1>	
Sign Control	Stop			Stop	Stop	
Volume (vph)	108	0	2	Ö	Ö	556
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	117	0	2	0	0	604
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total (vph)	117	2	604			
Volume Left (vph)	117	2	0			
Volume Right (vph)	0	0	604			
Hadj (s)	0.23	0.23	-0.57			
Departure Headway (s)	5.3	5.0	3.7			
Degree Utilization, x	0.17	0.00	0.62			
Capacity (veh/h)	613	672	956			
Control Delay (s)	9.4	8.0	12.4			
Approach Delay (s)	9.4	8.0	12.4			
Approach LOS	Α	Α	В			
Intersection Summary						
Delay			11.9			
Level of Service			В			
Intersection Capacity Utiliza	tion		47.1%	IC	U Level o	f Service
Analysis Period (min)			15			

9: Enrico Fermi Dr & SR-905 WB Ramp

EBL	EBR					
		NBL	NBT	SBT	SBR	
			र्स	P		
0	0	173	424	31	75	
Stop			Free	Free		
	0.92	0.92			0.92	
	-					
			None	None		
			, 10110	110110		
				791		
911	74	115				
• • • • • • • • • • • • • • • • • • • •	, .					
911	74	115				
3.5	3.3	2.2				
		87				
265	987	1474				
NB 1	SB 1					
3.2	0.0					
		2.7				
tion		41.9%	IC	U Level of	Service	A
		15				
	911 911 911 6.4 3.5 100 265 NB 1 649 188 0 1474 0.13 11 3.2 A 3.2	0% 0.92 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	911 74 115 911 74 115 911 74 115 6.4 6.2 4.1 3.5 3.3 2.2 100 100 87 265 987 1474 NB 1 SB 1 649 115 188 0 0 82 1474 1700 0.13 0.07 11 0 3.2 0.0 A 3.2 0.0 tion 2.7 2.7 41.9%	0% 0.92 0.92 0.92 0.92 0.92 0 0 0 188 461 None None 911 74 115 6.4 6.2 4.1 3.5 3.3 2.2 100 100 87 265 987 1474 NB 1 SB 1 649 115 188 0 0 82 1474 1700 0.13 0.07 11 0 3.2 0.0 A 3.2 0.0 Stion 2.7 41.9% IC	0% 0.92 0.92 0.92 0.92 0.92 0.92 0 0 0 188 461 34 None None 791 911 74 115 911 74 115 6.4 6.2 4.1 3.5 3.3 2.2 100 100 87 265 987 1474 NB 1 SB 1 649 115 188 0 0 82 1474 1700 0.13 0.07 11 0 3.2 0.0 A 3.2 0.0 A 3.2 0.0 Stion 41.9% ICU Level of	0% 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0 0 0 188 461 34 82 None None 791 911 74 115 911 74 115 6.4 6.2 4.1 3.5 3.3 2.2 100 100 87 265 987 1474 NB 1 SB 1 649 115 188 0 0 82 1474 1700 0.13 0.07 11 0 3.2 0.0 A 3.2 0.0 A 3.2 0.0 tion 2.7 41.9% ICU Level of Service

9: Enrico Fermi Dr & SR-905 WB Ramp

	*	*	1	†	↓	4	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations			40	र्स	4		
Volume (veh/h)	0	0	231	167	95	400	
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	0	0	251	182	103	435	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type				None	None		
Median storage veh)							
Upstream signal (ft)					791		
pX, platoon unblocked							
vC, conflicting volume	1004	321	538				
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	1004	321	538				
tC, single (s)	6.4	6.2	4.1				
tC, 2 stage (s)	•						
tF (s)	3.5	3.3	2.2				
00 queue free %	100	100	76				
cM capacity (veh/h)	203	720	1030				
			-				
Direction, Lane #	NB 1	SB 1	_	_			
Volume Total	433	538					
Volume Left	251	0					
Volume Right	0	435					
cSH	1030	1700					
Volume to Capacity	0.24	0.32					
Queue Length 95th (ft)	24	0					
Control Delay (s)	6.7	0.0					
ane LOS	A	0.0					
Approach Delay (s)	6.7	0.0					
Approach LOS							
ntersection Summary							
Average Delay			3.0				
Intersection Capacity Utiliza	ition		57.9%	IC	U Level of S	Service	В
Analysis Period (min)			15				

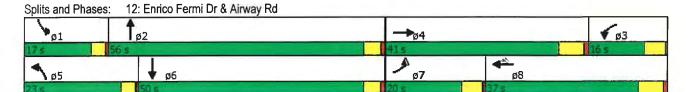
10: Enrico Fermi Dr & SR-905 EB Ramp

	•	→	•	1	—	•	4	†	-	-	Ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7		F	-		7		1>			4	
Volume (veh/h)	319	15	230	14	0	12	0	224	24	3	37	0
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	347	16	250	15	0	13	0	243	26	3	40	0
Pedestrians	• 17					,,,				•		
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)								110110			110110	
Upstream signal (ft)								1318				
pX, platoon unblocked								1010				
vC, conflicting volume	316	316	40	561	303	257	40			270		
vC1, stage 1 conf vol	310	310	70	301	000	201	70			210		
vC2, stage 2 conf vol												
vCu, unblocked vol	316	316	40	561	303	257	40			270		
	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, single (s)	1.1	0.0	0.2	1.1	0.5	0.2	4.1			4.1		
tC, 2 stage (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
F (s)	44	97	76	95	100	98	100			100		
p0 queue free %												
cM capacity (veh/h)	625	598	1031	324	608	782	1569			1294		
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	NB 1	SB 1						
Volume Total	347	266	15	13	270	43						
Volume Left	347	0	15	0	0	3						
Volume Right	0	250	0	13	26	0						
SH	625	987	324	782	1700	1294						
Volume to Capacity	0.56	0.27	0.05	0.02	0.16	0.00						
Queue Length 95th (ft)	85	27	4	1	0	0						
Control Delay (s)	17.7	10.0	16.6	9.7	0.0	0.6						
Lane LOS	С	Α	С	Α		Α						
Approach Delay (s)	14.4		13.4		0.0	0.6						
Approach LOS	В		В									
ntersection Summary												
Average Delay			9.6									
ntersection Capacity Utilizati	ion		Err%	IC	U Level c	f Service			Н			
Analysis Period (min)			15									

10: Enrico Fermi Dr & SR-905 EB Ramp

	•	*	1	†	↓ .	4		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	*	7		†	1			
Volume (veh/h)	95	80	0	333	110	0		
Sign Control	Stop			Free	Free			
Grade	0%			0%	0%			
Peak Hour Factor	0.92	0.92	0.92	0.92		0.92		
Hourly flow rate (vph)	103	87	0	362	120	0		
Pedestrians								
Lane Width (ft)								
Walking Speed (ft/s)								
Percent Blockage								
Right turn flare (veh)								
Median type				None	None			
Median storage veh)				.,,,,,,,	, , , , ,			
Jpstream signal (ft)				1318				
X, platoon unblocked				1010				
C, conflicting volume	482	120	120					
C1, stage 1 conf vol	402	120	120					
C2, stage 2 conf vol								
Cu, unblocked vol	482	120	120					
C, single (s)	6.4	6.2	4.1					
C, 2 stage (s)	0,4	0.2	4.1					
5, 2 stage (s) = (s)	3.5	3.3	2.2					
0 queue free %	81	91	100					
M capacity (veh/h)	544	932	1468					
Pirection, Lane #	EB 1	EB 2	NB 1	SB 1				
olume Total	103	87	362	120				
olume Left	103	0	0	0				
olume Right	0	87	0	0				
SH	544	932	1700	1700				
olume to Capacity	0.19	0.09	0.21	0.07				
Queue Length 95th (ft)	17	8	0	0				
Control Delay (s)	13.2	9.3	0.0	0.0				
ane LOS	В	Α						
approach Delay (s)	11.4		0.0	0.0				
pproach LOS	В							
ntersection Summary								
verage Delay			3.2					
ntersection Capacity Utiliza	ition		29.5%	IC	U Level of S	ervice	-	Α
Analysis Period (min)			15					

	•	→	1	+	4	1	†	1	↓
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT
Lane Configurations	K	作	K	4	7	M	1	M	44
Volume (vph)	35	8	6	11	23	59	229	28	140
Turn Type	Prot	NA	Prot	NA	Perm	Prot	NA	Prot	NA
Protected Phases	7	4	3	8		5	2	1	6
Permitted Phases					8				
Detector Phase	7	4	3	8	8	5	2	1	6
Switch Phase									
Vinimum Initial (s)	4.0	4.0	6.0	6.0	6.0	4.0	4.0	4.0	4.0
/linimum Split (s)	8.8	30.0	10.8	36.0	36.0	7.5	8.6	7.5	36.6
otal Split (s)	20.0	41.0	16.0	37.0	37.0	23.0	56.0	17.0	50.0
Total Split (%)	15.4%	31.5%	12.3%	28.5%	28.5%	17.7%	43.1%	13.1%	38.5%
'ellow Time (s)	4.3	5.0	4.3	5.0	5.0	3.0	3.6	3.0	3.6
All-Red Time (s)	0.5	1.0	0.5	1.0	1.0	0.5	1.0	0.5	1.0
ost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
otal Lost Time (s)	4.8	6.0	4.8	6.0	6.0	3.5	4.6	3.5	4.6
ead/Lag	Lead	Lead	Lag	Lag	Lag	Lead	Lag	Lead	Lag
ead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	None	None	None	None	None	None	Min	None	Min


Intersection Summary

Cycle Length: 130

Actuated Cycle Length: 44.2

Natural Cycle: 90

Control Type: Actuated-Uncoordinated

	۶	→	*	1	←	4	•	†	1	-	Ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	M	作		7	1	7	14	44		T	朴	
Volume (vph)	35	8	22	6	11	23	59	229	13	28	140	101
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.8	6.0		4.8	6.0	6.0	3.5	4.6		3.5	4.6	
Lane Util. Factor	1.00	0.95		1.00	1.00	1.00	1.00	0.95		1.00	0.95	
Frt	1.00	0.89		1.00	1.00	0.85	1.00	0.99		1.00	0.94	
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1770	3153		1770	1863	1583	1770	3511		1770	3316	
Flt Permitted	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (perm)	1770	3153		1770	1863	1583	1770	3511		1770	3316	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	38	9	24	7	12	25	64	249	14	30	152	110
RTOR Reduction (vph)	0	22	0	0	0	23	0	2	0	0	61	0
Lane Group Flow (vph)	38	11	0	7	12	2	64	261	0	30	201	0
Turn Type	Prot	NA		Prot	NA	Perm	Prot	NA		Prot	NA	
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases						8						
Actuated Green, G (s)	1.9	5.4		1.3	4.8	4.8	4.7	28.1		0.7	24.1	
Effective Green, g (s)	1.9	5.4		1.3	4.8	4.8	4.7	28.1		0.7	24.1	
Actuated g/C Ratio	0.03	0.10		0.02	0.09	0.09	0.09	0.52		0.01	0.44	
Clearance Time (s)	4.8	6.0		4.8	6.0	6.0	3.5	4.6		3.5	4.6	
Vehicle Extension (s)	2.0	3.5		3.0	3.5	3.5	2.0	3.0		2.0	3.0	
Lane Grp Cap (vph)	61	312		42	164	139	152	1813		22	1469	
v/s Ratio Prot	c0.02	0.00		c0.00	c0.01		c0.04	c0.07		c0.02	0.06	
v/s Ratio Perm		-				0.00						
v/c Ratio	0.62	0.04		0.17	0.07	0.02	0.42	0.14		1.36	0.14	
Uniform Delay, d1	25.9	22.1		26.0	22.8	22.6	23.6	6.9		26.8	9.0	
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	13.4	0.1		1.9	0.2	0.1	0.7	0.0		320.4	0.0	
Delay (s)	39.3	22.2		27.9	23.0	22.7	24.2	6.9		347.2	9.0	
Level of Service	D	С		С	С	С	С	Α		F	Α	
Approach Delay (s)		31.3			23.6			10.3			43.8	
Approach LOS		С			С			В			D	
Intersection Summary												
HCM 2000 Control Delay			26.4	Н	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capa	city ratio		0.21									
Actuated Cycle Length (s)			54.4	S	um of lost	time (s)			18.9			
Intersection Capacity Utiliza	ntion		31.2%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									
c Critical Lane Group												

OYAM.syn Synchro 8 Report Page 22

12: Enrico Fermi Dr & Airway Rd

Lane Group EBL EBT WBL WBT WBR NBL NBT SBL SBT Lane Configurations 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		*	→	1	←	*	4	†	1	↓	
Volume (vph) 73 6 9 11 35 64 234 23 85 Turn Type Prot NA Prot NA Perm Prot NA Prot NA Permitted Phases 7 4 3 8 5 2 1 6 Permitted Phases 8 8 5 2 1 6 Permitted Phases 7 4 3 8 8 5 2 1 6 Permitted Phases 8 8 5 2 1 6 6 6 6 6 4 4 6 6 6 6 4 0 4.0 <td< th=""><th>Lane Group</th><th>EBL</th><th>EBT</th><th>WBL</th><th>WBT</th><th>WBR</th><th>NBL</th><th>NBT</th><th>SBL</th><th>SBT</th><th></th></td<>	Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Volume (vph) 73 6 9 11 35 64 234 23 85 Turn Type Prot NA Prot NA Perm Prot NA Prot NA Permitted Phases 7 4 3 8 5 2 1 6 Permitted Phases 8 8 5 2 1 6 Permitted Phases 7 4 3 8 8 5 2 1 6 Permitted Phases 8 8 5 2 1 6 6 6 6 6 4 4 6 6 6 6 4 0 4.0 <td< td=""><td>Lane Configurations</td><td>7</td><td>1</td><td>-</td><td>†</td><td>7</td><td>M</td><td>1</td><td>N.</td><td>44</td><td></td></td<>	Lane Configurations	7	1	-	†	7	M	1	N.	44	
Protected Phases 7 4 3 8 5 2 1 6 Permitted Phases Detector Phase 7 4 3 8 8 5 2 1 6 Switch Phase Minimum Initial (s) 4.0 4.0 6.0 6.0 6.0 4.0 4.0 4.0 4.0 Minimum Split (s) 8.8 30.0 10.8 36.0 36.0 7.5 8.6 7.5 36.6 Total Split (s) 19.0 41.0 15.0 37.0 37.0 23.0 55.0 16.0 48.0 Total Split (%) 15.0% 32.3% 11.8% 29.1% 29.1% 18.1% 43.3% 12.6% 37.8% Yellow Time (s) 4.3 5.0 4.3 5.0 5.0 3.0 3.6 3.0 3.6 All-Red Time (s) 0.5 1.0 0.5 1.0 1.0 0.5 1.0 0.5 1.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 4.8 6.0 4.8 6.0 6.0 3.5 4.6 3.5 4.6 Lead/Lag Lead Lead Lag Lag Lag Lead Lag Lead Lag Lead Lag Lead Lag Lead-Lag Optimize? Yes		73		9	11	35	64		23		
Detector Phases 7	Turn Type	Prot	NA	Prot	NA	Perm	Prot	NA	Prot	NA	
Detector Phase 7 4 3 8 8 5 2 1 6 Switch Phase Minimum Initial (s) 4.0 4.0 6.0 6.0 6.0 4.0 4.0 4.0 4.0 Minimum Split (s) 8.8 30.0 10.8 36.0 36.0 7.5 8.6 7.5 36.6 Total Split (s) 19.0 41.0 15.0 37.0 37.0 23.0 55.0 16.0 48.0 Total Split (%) 15.0% 32.3% 11.8% 29.1% 29.1% 18.1% 43.3% 12.6% 37.8% Yellow Time (s) 4.3 5.0 4.3 5.0 5.0 3.0 3.6 3.0 3.6 All-Red Time (s) 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 <t< td=""><td>Protected Phases</td><td>7</td><td>4</td><td>3</td><td>8</td><td></td><td>5</td><td>2</td><td>1</td><td>6</td><td></td></t<>	Protected Phases	7	4	3	8		5	2	1	6	
Switch Phase Minimum Initial (s) 4.0 4.0 6.0 6.0 6.0 4.0 4.0 4.0 4.0 Minimum Split (s) 8.8 30.0 10.8 36.0 36.0 7.5 8.6 7.5 36.6 Total Split (s) 19.0 41.0 15.0 37.0 37.0 23.0 55.0 16.0 48.0 Total Split (%) 15.0% 32.3% 11.8% 29.1% 29.1% 18.1% 43.3% 12.6% 37.8% Yellow Time (s) 4.3 5.0 4.3 5.0 5.0 3.0 3.6 3.0 3.6 All-Red Time (s) 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 Lost Time Adjust (s) 0.0	Permitted Phases					8					
Minimum Initial (s) 4.0 4.0 6.0 6.0 6.0 4.0 4.0 4.0 4.0 Minimum Split (s) 8.8 30.0 10.8 36.0 36.0 7.5 8.6 7.5 36.6 Total Split (s) 19.0 41.0 15.0 37.0 37.0 23.0 55.0 16.0 48.0 Total Split (%) 15.0% 32.3% 11.8% 29.1% 29.1% 18.1% 43.3% 12.6% 37.8% Yellow Time (s) 4.3 5.0 4.3 5.0 5.0 3.0 3.6 3.0 3.6 All-Red Time (s) 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.0<	Detector Phase	7	4	3	8	8	5	2	1	6	
Minimum Split (s) 8.8 30.0 10.8 36.0 36.0 7.5 8.6 7.5 36.6 Total Split (s) 19.0 41.0 15.0 37.0 37.0 23.0 55.0 16.0 48.0 Total Split (%) 15.0% 32.3% 11.8% 29.1% 29.1% 18.1% 43.3% 12.6% 37.8% Yellow Time (s) 4.3 5.0 4.3 5.0 5.0 3.0 3.6 3.0 3.6 All-Red Time (s) 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0	Switch Phase										
Total Split (s) 19.0 41.0 15.0 37.0 37.0 23.0 55.0 16.0 48.0 Total Split (%) 15.0% 32.3% 11.8% 29.1% 29.1% 18.1% 43.3% 12.6% 37.8% Yellow Time (s) 4.3 5.0 4.3 5.0 5.0 3.0 3.6 3.0 3.6 All-Red Time (s) 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.0	Minimum Initial (s)	4.0	4.0	6.0	6.0	6.0	4.0	4.0	4.0	4.0	
Total Split (%) 15.0% 32.3% 11.8% 29.1% 29.1% 18.1% 43.3% 12.6% 37.8% Yellow Time (s) 4.3 5.0 4.3 5.0 5.0 3.0 3.6 3.0 3.6 All-Red Time (s) 0.5 1.0 0.5 1.0 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Minimum Split (s)	8.8	30.0	10.8	36.0	36.0	7.5	8.6	7.5	36.6	
Yellow Time (s) 4.3 5.0 4.3 5.0 3.0 3.6 3.0 3.6 All-Red Time (s) 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 Lost Time Adjust (s) 0.0 <	Total Split (s)	19.0	41.0	15.0	37.0	37.0	23.0	55.0	16.0	48.0	
All-Red Time (s) 0.5 1.0 0.5 1.0 1.0 0.5 1.0 0.5 1.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 4.8 6.0 4.8 6.0 6.0 3.5 4.6 3.5 4.6 Lead/Lag Lead Lead Lag Lag Lead Lag Lead Lag Lead-Lag Optimize? Yes Yes Yes Yes Yes Yes Yes Yes Yes	Total Split (%)	15.0%	32.3%	11.8%	29.1%	29.1%	18.1%	43.3%	12.6%	37.8%	
Lost Time Adjust (s) 0.0	Yellow Time (s)	4.3	5.0	4.3	5.0	5.0	3.0	3.6	3.0	3.6	
Total Lost Time (s) 4.8 6.0 4.8 6.0 6.0 3.5 4.6 3.5 4.6 Lead/Lag Lead Lag Lag Lead Lag Lead Lag Lead-Lag Optimize? Yes Yes Yes Yes Yes Yes Yes Yes Yes	All-Red Time (s)	0.5	1.0	0.5	1.0	1.0	0.5	1.0	0.5	1.0	
Lead/LagLeadLagLagLagLeadLagLeadLagLead-LagOptimize?YesYesYesYesYesYes	Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Lead-Lag Optimize? Yes Yes Yes Yes Yes Yes Yes Yes	Total Lost Time (s)	4.8	6.0	4.8	6.0	6.0	3.5	4.6	3.5	4.6	
	Lead/Lag	Lead	Lead	Lag	Lag	Lag	Lead	Lag	Lead	Lag	
Recall Mode None None None None None Min None Min	Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
	Recall Mode	None	None	None	None	None	None	Min	None	Min	

Intersection Summary

Cycle Length: 127 Actuated Cycle Length: 49.5 Natural Cycle: 90

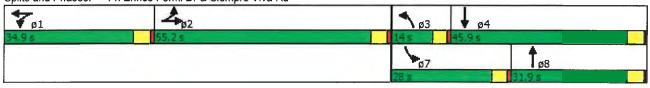
Control Type: Actuated-Uncoordinated

12: Enrico Fermi Dr & Airway Rd

Lane Configurations		٦	→	*	•	←	*	4	†	-	-	↓	4
Volume (vph)	Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Ideal Flow (vphpl) 1900	Lane Configurations	7	1		7	1	7	M	41		M	1	40
Total Lost time (s)	Volume (vph)	73	6	17	9	11	35	64	234	19	23	85	95
Lane Util. Factor 1.00 0.95 1.00 1.00 1.00 1.00 0.95 1.00 0.95 1.00 0.95 Frit 1.00 0.89 1.00 1.00 1.00 1.00 0.95 1.00 0.99 1.00 0.92 Filt Protected 0.95 1.00 0.95 1.00 1.00 0.95 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Fit Protected 0.95 1.00 0.89 1.00 1.00 0.85 1.00 0.99 1.00 0.95 1.	Total Lost time (s)	4.8	6.0		4.8	6.0	6.0	3.5	4.6		3.5	4.6	
File Protected	Lane Util. Factor	1.00	0.95		1.00	1.00	1.00	1.00	0.95		1.00	0.95	
Satd. Flow (prot)	Frt	1.00	0.89		1.00	1.00	0.85	1.00	0.99		1.00	0.92	
Fit Permitted 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 Satd. Flow (perm) 1770 3157 1770 1863 1583 1770 3499 1770 3259 1770 3259 1770 3157 1770 1863 1583 1770 3499 1770 3259 1770 3259 1770 3259 1770 3157 1770 3157 1770 1863 1583 1770 3499 1770 3259	Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95			0.95	1.00	
Satd. Flow (perm) 1770 3157 1770 1863 1583 1770 3499 1770 3259	Satd. Flow (prot)	1770	3157		1770	1863	1583	1770	3499		1770	3259	
Peak-hour factor, PHF	Flt Permitted	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Adj. Flow (vph) 79 7 18 10 12 38 70 254 21 25 92 103 RTOR Reduction (vph) 0 15 0 0 0 0 33 0 4 0 0 61 0 Lane Group Flow (vph) 79 10 0 10 12 5 70 271 0 25 134 0 10 11 12 13 12 13 13 10 12 13 13 10 13 10 13 13 10	Satd. Flow (perm)	1770	3157		1770	1863	1583	1770	3499		1770	3259	
RTOR Reduction (vph)	Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
RTOR Reduction (vph)	Adj. Flow (vph)	79	7	18	10	12	38	70	254	21	25	92	103
Lane Group Flow (vph) 79 10 0 10 12 5 70 271 0 25 134 0		0	15	0	0	0	33	0	4	0	0	61	0
Turn Type		79	10	0	10	12	5	70	271	0	25	134	0
Protected Phases 7 4 3 8 5 2 1 6 Permitted Phases 8 Actuated Green, G (s) 4.2 10.0 1.8 7.6 7.6 4.0 26.9 0.8 23.7 Effective Green, g (s) 4.2 10.0 1.8 7.6 7.6 4.0 26.9 0.8 23.7 Actuated Green, G (s) 4.2 10.0 1.8 7.6 7.6 4.0 26.9 0.8 23.7 Actuated Green, g (s) 4.2 10.0 1.8 7.6 7.6 4.0 26.9 0.8 23.7 Actuated Green, G (s) 4.2 10.0 1.8 7.6 7.6 4.0 26.9 0.8 23.7 Actuated Green, G (s) 4.2 10.0 1.8 7.6 7.6 4.0 26.9 0.8 23.7 Actuated Green, G (s) 4.2 10.0 1.8 7.6 7.6 4.0 26.9 0.8 23.7 Actuated Grote Green, G (s) 4.2 10.0 1.8 7.6 7.6 4.0 26.9 0.8 23.7 Actuated Green, G (s) 4.2 10.0 1.8 7.6 7.6 4.0 26.9 0.8 23.7 Actuated Green, G (s) 4.2 10.0 1.8 7.6 7.6 4.0 26.9 0.8 23.7 Actuated Green, G (s) 4.2 10.0 1.8 7.6 7.6 4.0 26.9 0.8 23.7 Actuated Green, G (s) 4.2 10.0 1.8 7.6 7.6 4.0 26.9 0.8 23.7 Actuated Green, G (s) 4.2 10.0 1.8 7.6 7.6 4.0 26.9 0.8 23.7 Actuated Green, G (s) 4.2 10.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.		Prot	NA		Prot	NA	Perm	Prot	NA		Prot	NA	
Permitted Phases						8		5	2			6	
Effective Green, g (s)							8						
Effective Green, g (s)	Actuated Green, G (s)	4.2	10.0		1.8	7.6	7.6	4.0	26.9		0.8	23.7	
Actuated g/C Ratio 0.07 0.17 0.03 0.13 0.13 0.07 0.46 0.01 0.41 Clearance Time (s) 4.8 6.0 4.8 6.0 6.0 3.5 4.6 3.5 4.6 Vehicle Extension (s) 2.0 3.5 3.0 3.5 3.5 2.0 3.0 2.0 3.0 Lane Grp Cap (vph) 127 540 54 242 206 121 1611 24 1322 W/s Ratio Prot c0.04 0.00 c0.01 c0.01 c0.04 c0.08 0.01 0.04 W/s Ratio Perm 0.00 Color		4.2	10.0		1.8	7.6	7.6	4.0	26.9		0.8	23.7	
Clearance Time (s)		0.07	0.17		0.03	0.13	0.13	0.07	0.46		0.01	0.41	
Vehicle Extension (s) 2.0 3.5 3.0 3.5 3.5 2.0 3.0 2.0 3.0 Lane Grp Cap (vph) 127 540 54 242 206 121 1611 24 1322 w/s Ratio Prot c0.04 0.00 c0.01 c0.01 c0.04 c0.08 0.01 0.04 w/s Ratio Perm 0.00 0.00 0.01 c0.04 c0.08 0.01 0.04 Uniform Delay, d1 26.3 20.1 27.6 22.2 22.2 26.4 9.2 28.8 10.8 Progression Factor 1.00		4.8	6.0		4.8	6.0	6.0	3.5	4.6		3.5	4.6	
v/s Ratio Prot c0.04 0.00 c0.01 c0.01 c0.04 c0.08 0.01 0.04 v/s Ratio Perm 0.00 1.00	Vehicle Extension (s)	2.0	3.5		3.0	3.5	3.5	2.0	3.0		2.0	3.0	
\(\text{V/s Ratio Prot} \) \(\text{V/s Ratio Prot} \) \(\text{V/s Ratio Perm} \) \(\text{V/s Ratio} \) \(\text{Perm} \) \(\text{V/s Ratio} \) \(V/s	Lane Grp Cap (vph)	127	540		54	242	206	121	1611		24	1322	
Wc Ratio 0.62 0.02 0.19 0.05 0.02 0.58 0.17 1.04 0.10 Uniform Delay, d1 26.3 20.1 27.6 22.2 22.2 26.4 9.2 28.8 10.8 Progression Factor 1.00 <td></td> <td>c0.04</td> <td>0.00</td> <td></td> <td>c0.01</td> <td>c0.01</td> <td></td> <td>c0.04</td> <td>c0.08</td> <td></td> <td>0.01</td> <td>0.04</td> <td></td>		c0.04	0.00		c0.01	c0.01		c0.04	c0.08		0.01	0.04	
Uniform Delay, d1 26.3 20.1 27.6 22.2 22.2 26.4 9.2 28.8 10.8 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	v/s Ratio Perm						0.00						
Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	//c Ratio	0.62	0.02		0.19	0.05	0.02	0.58	0.17		1.04	0.10	
Delay Dela	Jniform Delay, d1	26.3	20.1		27.6	22.2	22.2	26.4	9.2		28.8	10.8	
Delay (s) 33.0 20.1 29.2 22.3 22.2 30.5 9.3 225.9 10.8 Level of Service	Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Level of Service C C C C C C A F B Approach Delay (s) 29.9 23.4 13.6 35.2 Approach LOS C C B D Intersection Summary HCM 2000 Control Delay 23.2 HCM 2000 Level of Service C HCM 2000 Volume to Capacity ratio 0.22 C A Actuated Cycle Length (s) 58.4 Sum of lost time (s) 18.9 Intersection Capacity Utilization 33.3% ICU Level of Service A Analysis Period (min) 15	ncremental Delay, d2	6.6	0.0		1.7	0.1	0.1	4.1	0.0		197.1	0.0	
Approach Delay (s) 29.9 23.4 13.6 35.2 Approach LOS C C B D Intersection Summary HCM 2000 Control Delay 23.2 HCM 2000 Level of Service C HCM 2000 Volume to Capacity ratio 0.22 C Actuated Cycle Length (s) 58.4 Sum of lost time (s) 18.9 Intersection Capacity Utilization 33.3% ICU Level of Service A Analysis Period (min) 15	Delay (s)	33.0	20.1		29.2	22.3	22.2	30.5	9.3		225.9	10.8	
Approach LOS C C B D Intersection Summary HCM 2000 Control Delay 23.2 HCM 2000 Level of Service C HCM 2000 Volume to Capacity ratio 0.22 Actuated Cycle Length (s) 58.4 Sum of lost time (s) 18.9 Intersection Capacity Utilization 33.3% ICU Level of Service A Analysis Period (min) 15	Level of Service	С	С		С	С	С	С			F		
ntersection Summary HCM 2000 Control Delay 23.2 HCM 2000 Level of Service C HCM 2000 Volume to Capacity ratio 0.22 Actuated Cycle Length (s) 58.4 Sum of lost time (s) 18.9 Intersection Capacity Utilization 33.3% ICU Level of Service A Analysis Period (min) 15	Approach Delay (s)		29.9			23.4			13.6			35.2	
HCM 2000 Control Delay 23.2 HCM 2000 Level of Service C HCM 2000 Volume to Capacity ratio 0.22 Actuated Cycle Length (s) 58.4 Sum of lost time (s) 18.9 Intersection Capacity Utilization 33.3% ICU Level of Service A Analysis Period (min) 15	Approach LOS		С			С			В			D	
HCM 2000 Volume to Capacity ratio Actuated Cycle Length (s) Security 18.9 Actuated Cycle Length (s) Security 18.9 Actuated Cycle Length (s) Sum of lost time (s) ICU Level of Service A Analysis Period (min) Analysis Period (min)	ntersection Summary												
Actuated Cycle Length (s) 58.4 Sum of lost time (s) 18.9 ICU Level of Service A Analysis Period (min) 15	HCM 2000 Control Delay				H	CM 2000	Level of S	Service		С			
ntersection Capacity Utilization 33.3% ICU Level of Service A Analysis Period (min) 15	HCM 2000 Volume to Capa	city ratio		0.22									
ntersection Capacity Utilization 33.3% ICU Level of Service A Analysis Period (min) 15					St	um of lost	time (s)			18.9			
Analysis Period (min) 15		ation		33.3%						Α			
				15									
	Critical Lane Group												

OYPM.syn Synchro 8 Report Page 22

14: Enrico Fermi Dr & Siempre Viva Rd


	•	-	1	•	1	†	1	Ţ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	14.14	₽	N.	44	7	1	ħ	44	
Volume (vph)	51	8	8	20	67	230	23	92	
Turn Type	Split	NA	Split	NA	Prot	NA	Prot	NA	
Protected Phases	2	2	1	1	3	8	7	4	
Permitted Phases									
Detector Phase	2	2	1	1	3	8	7	4	
Switch Phase									
Minimum Initial (s)	10.0	10.0	10.0	10.0	4.0	10.0	4.0	10.0	
Minimum Split (s)	31.9	31.9	34.9	34.9	8.5	31.9	8.5	31.9	
Total Split (s)	55.2	55.2	34.9	34.9	14.0	31.9	28.0	45.9	
Total Split (%)	36.8%	36.8%	23.3%	23.3%	9.3%	21.3%	18.7%	30.6%	
Yellow Time (s)	3.9	3.9	3.9	3.9	3.4	3.9	3.4	3.9	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.9	4.9	4.9	4.9	4.4	4.9	4.4	4.9	
Lead/Lag	Lag	Lag	Lead	Lead	Lead	Lag	Lead	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	Max	None	Max	

Intersection Summary

Cycle Length: 150
Actuated Cycle Length: 87.7
Natural Cycle: 110

Control Type: Actuated-Uncoordinated

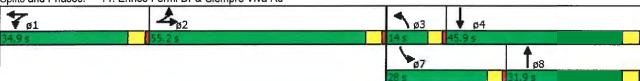
Splits and Phases: 14: Enrico Fermi Dr & Siempre Viva Rd

14: Enrico Fermi Dr & Siempre Viva Rd

	۶	→	>	1	+	4	1	†	~	1	+	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1/4	1		7	1		Jan Jan	44		7	1	
Volume (vph)	51	8	21	8	20	23	67	230	4	23	92	34
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.9	4.9		4.9	4.9		4.4	4.9		4.4	4.9	
Lane Util. Factor	0.97	1.00		1.00	0.95		1.00	0.95		1.00	0.95	
Frt	1.00	0.89		1.00	0.92		1.00	1.00		1.00	0.96	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	3433	1662		1770	3257		1770	3531		1770	3396	
Flt Permitted	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (perm)	3433	1662		1770	3257		1770	3531		1770	3396	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	55	9	23	9	22	25	73	250	4	25	100	37
RTOR Reduction (vph)	0	20	0	0	23	0	0	0	0	0	16	0
Lane Group Flow (vph)	55	12	0	9	24	0	73	254	0	25	121	0
Turn Type	Split	NA		Split	NA		Prot	NA		Prot	NA	
Protected Phases	2	2		1	1		3	8		7	4	
Permitted Phases												
Actuated Green, G (s)	10.2	10.2		8.1	8.1		6.6	54.0		2.4	49.8	
Effective Green, g (s)	10.2	10.2		8.1	8.1		6.6	54.0		2.4	49.8	
Actuated g/C Ratio	0.11	0.11		0.09	0.09		0.07	0.58		0.03	0.53	
Clearance Time (s)	4.9	4.9		4.9	4.9		4.4	4.9		4.4	4.9	
Vehicle Extension (s)	6.2	6.2		5.4	5.4		2.0	2.5		2.0	5.9	
Lane Grp Cap (vph)	373	180		152	281		124	2032		45	1802	
v/s Ratio Prot	c0.02	0.01		0.01	c0.01		c0.04	c0.07		0.01	0.04	
v/s Ratio Perm												
v/c Ratio	0.15	0.06		0.06	0.09		0.59	0.12		0.56	0.07	
Uniform Delay, d1	37.9	37.5		39.4	39.4		42.3	9.1		45.2	10.7	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	0.5	0.4		0.4	0.3		4.5	0.1		8.2	0.1	
Delay (s)	38.4	38.0		39.7	39.8		46.8	9.2		53.3	10.8	
Level of Service	D	D		D	D		D	Α		D	В	
Approach Delay (s)		38.2			39.8			17.6			17.3	
Approach LOS		D			D			В			В	
Intersection Summary												
HCM 2000 Control Delay			22.3	Н	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capa	city ratio		0.15									
Actuated Cycle Length (s)			93.8		um of lost	٠,			19.1			
Intersection Capacity Utiliza	ition		32.2%	IC	U Level o	f Service			Α			
Analysis Period (min)			15									
c Critical Lane Group												

14: Enrico Fermi Dr & Siempre Viva Rd

	•	→	6	+	4	†	-	1
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
Lane Configurations	Mala	1	1	41	*	17	*	41
Volume (vph)	48	4	10	21	111	249	7	57
Turn Type	Split	NA	Split	NA	Prot	NA	Prot	NA
Protected Phases	2	2	1	1	3	8	7	4
Permitted Phases								
Detector Phase	2	2	1	1	3	8	7	4
Switch Phase								
Minimum Initial (s)	10.0	10.0	10.0	10.0	4.0	10.0	4.0	10.0
Minimum Split (s)	31.9	31.9	34.9	34.9	8.5	31.9	8.5	31.9
Total Split (s)	55.2	55.2	34.9	34.9	14.0	31.9	28.0	45.9
Total Split (%)	36.8%	36.8%	23.3%	23.3%	9.3%	21.3%	18.7%	30.6%
Yellow Time (s)	3.9	3.9	3.9	3.9	3.4	3.9	3.4	3.9
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	4.9	4.9	4.9	4.9	4.4	4.9	4.4	4.9
Lead/Lag	Lag	Lag	Lead	Lead	Lead	Lag	Lead	Lag
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	None	None	None	None	None	Max	None	Max


Intersection Summary

Cycle Length: 150

Actuated Cycle Length: 94.2
Natural Cycle: 110

Control Type: Actuated-Uncoordinated

Splits and Phases: 14: Enrico Fermi Dr & Siempre Viva Rd

T 1. E. 11100 T O. 11111 D.											<u> </u>	
	•	\rightarrow	7	•	-	*	1	†		-	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	N. J.	4		7	17		7	44		1	A	
Volume (vph)	48	4	12	10	21	22	111	249	0	7	57	41
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.9	4.9		4.9	4.9		4.4	4.9		4.4	4.9	
Lane Util. Factor	0.97	1.00		1.00	0.95		1.00	0.95		1.00	0.95	
Frt	1.00	0.89		1.00	0.92		1.00	1.00		1.00	0.94	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	3433	1649		1770	3268		1770	3539		1770	3316	
Flt Permitted	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (perm)	3433	1649		1770	3268		1770	3539		1770	3316	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	52	4	13	11	23	24	121	271	0	8	62	45
RTOR Reduction (vph)	0	12	0	0	21	0	0	0	0	0	23	0
Lane Group Flow (vph)	52	5	0	11	26	0	121	271	0	8	84	0
Turn Type	Split	NA		Split	NA		Prot	NA		Prot	NA	
Protected Phases	2	2		1	1		3	8		7	4	
Permitted Phases												
Actuated Green, G (s)	10.4	10.4		10.8	10.8		9.9	58.8		0.9	49.8	
Effective Green, g (s)	10.4	10.4		10.8	10.8		9.9	58.8		0.9	49.8	
Actuated g/C Ratio	0.10	0.10		0.11	0.11		0.10	0.59		0.01	0.50	
Clearance Time (s)	4.9	4.9		4.9	4.9		4.4	4.9		4.4	4.9	
Vehicle Extension (s)	6.2	6.2		5.4	5.4		2.0	2.5		2.0	5.9	
Lane Grp Cap (vph)	357	171		191	352		175	2080		15	1651	
v/s Ratio Prot	c0.02	0.00		0.01	c0.01		c0.07	c0.08		0.00	0.03	
v/s Ratio Perm												
v/c Ratio	0.15	0.03		0.06	0.07		0.69	0.13		0.53	0.05	
Uniform Delay, d1	40.8	40.3		40.0	40.1		43.6	9.2		49.3	12.9	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	0.6	0.2		0.3	0.2		9.1	0.1		17.0	0.1	
Delay (s)	41.3	40.5		40.3	40.3		52.7	9.3		66.3	13.0	
Level of Service	D	D		D	D		D	Α		Е	В	
Approach Delay (s)		41.1			40.3			22.7			16.7	
Approach LOS		D			D			С			В	
Intersection Summary												
HCM 2000 Control Delay			25.2	Н	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capac	ity ratio		0.20									
Actuated Cycle Length (s)			100.0	S	um of lost	time (s)			19.1			
Intersection Capacity Utilizati	ion		29.3%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									
c Critical Lane Group												

➤ Opening Year 2019 Plus Phases 1 & 2

	1	*	†	-	-	↓
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	W		1	7	M	1
Volume (veh/h)	92	3	661	178	0	70
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	100	3	718	193	0	76
Pedestrians						
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)						
Upstream signal (ft)			684			
pX, platoon unblocked	0.83	0.83			0.83	
vC, conflicting volume	795	718			912	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	645	553			787	
tC, single (s)	6.4	6.2			4.1	
tC, 2 stage (s)						
tF (s)	3.5	3.3			2.2	
p0 queue free %	72	99			100	
cM capacity (veh/h)	360	440			686	
Direction, Lane #	WB 1	NB 1	NB 2	SB 1	SB 2	
Volume Total	103	718	193	0	76	
Volume Left	100	0	0	0	0	
Volume Right	3	0	193	0	0	
cSH	362	1700	1700	1700	1700	
Volume to Capacity	0.28	0.42	0.11	0.00	0.04	
Queue Length 95th (ft)	29	0.12	0	0.00	0.01	
Control Delay (s)	18.8	0.0	0.0	0.0	0.0	
Lane LOS	C	0.0	0,0	0.0	0,0	
Approach Delay (s)	18.8	0.0		0.0		
Approach LOS	C	0.0		0.0		
Intersection Summary			1.8			
Average Delay	tion		46.7%	10	U Level o	f Conice
Intersection Capacity Utilizat	uon			10	O Level C	Service
Analysis Period (min)			15			

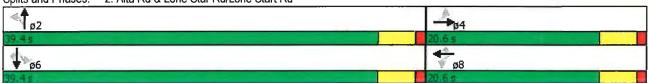
Synchro 8 Report Page 1 OYP1-2AM.syn

	•	4	†	-	-	↓
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	W			7	M	4
Volume (veh/h)	167	0	92	84	2	460
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	182	0	100	91	2	500
Pedestrians						
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)						
Upstream signal (ft)			684			
pX, platoon unblocked						
vC, conflicting volume	604	100			191	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	604	100			191	
tC, single (s)	6.4	6.2			4.1	
tC, 2 stage (s)						
tF (s)	3.5	3.3			2.2	
p0 queue free %	61	100			100	
cM capacity (veh/h)	460	956			1382	
Direction, Lane #	WB 1	NB 1	NB 2	SB 1	SB 2	
Volume Total	182	100	91	2	500	
Volume Left	182	0	0	2	0	
Volume Right	0	0	91	0	0	
cSH	460	1700	1700	1382	1700	
Volume to Capacity	0.39	0.06	0.05	0.00	0.29	
Queue Length 95th (ft)	46	0	0	0	0	
Control Delay (s)	17.8	0.0	0.0	7.6	0.0	
Lane LOS	С			Α		
Approach Delay (s)	17.8	0.0		0.0		
Approach LOS	С					
Intersection Summary						
Average Delay			3.7			
Intersection Capacity Utiliza	tion		40.1%	IC	U Level o	f Service
Analysis Period (min)			15			

2: Alta Rd & Lone Star Rd/Lone Start Rd

Timing Plan: AM Peak

	→	→	1	—	*	4	†	1	Ţ	1	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Configurations	*	f)	1	1	7	7	4		+	75	
Volume (vph)	3	0	18	1	4	1	832	2	157	3	
Turn Type	Perm	NA	Perm	NA	Perm	Perm	NA	Perm	NA	Perm	
Protected Phases		4		8			2		6		
Permitted Phases	4		8		8	2		6		6	
Detector Phase	4	4	8	8	8	2	2	6	6	6	
Switch Phase											
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
Minimum Split (s)	20.5	20.5	20.5	20.5	20.5	20.5	20.5	20.5	20.5	20.5	
Total Split (s)	20.6	20.6	20.6	20.6	20.6	39.4	39.4	39.4	39.4	39.4	
Total Split (%)	34.3%	34.3%	34.3%	34.3%	34.3%	65.7%	65.7%	65.7%	65.7%	65.7%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	
Lead/Lag											
Lead-Lag Optimize?											
Recall Mode	None	None	None	None	None	Min	Min	Min	Min	Min	


Intersection Summary

Cycle Length: 60

Actuated Cycle Length: 47
Natural Cycle: 60

Control Type: Actuated-Uncoordinated

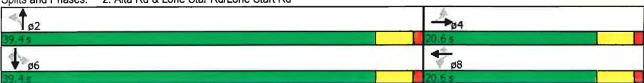
Splits and Phases: 2: Alta Rd & Lone Star Rd/Lone Start Rd

	۶	→	*	1	+	4	4	†	~	1		1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	1		M	1	7	F	1		M	†	7
Volume (vph)	3	0	2	18	1	4	1	832	21	2	157	3
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.5	4.5		4.5	4.5	4.5	4.5	4.5		4.5	4.5	4.5
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
Frt	1.00	0.85		1.00	1.00	0.85	1.00	1.00		1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1770	1583		1770	1863	1583	1770	1856		1770	1863	1583
Flt Permitted	1.00	1.00		1.00	1.00	1.00	0.65	1.00		0.26	1.00	1.00
Satd. Flow (perm)	1863	1583		1863	1863	1583	1209	1856		484	1863	1583
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	3	0	2	20	1	4	1	904	23	2	171	3
RTOR Reduction (vph)	0	2	0	0	0	4	0	1	0	0	0	1
Lane Group Flow (vph)	3	0	0	20	1	0	1	926	0	2	171	2
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA		Perm	NA	Perm
Protected Phases		4			8			2			6	
Permitted Phases	4			8		8	2			6		6
Actuated Green, G (s)	2.3	2.3		2.3	2.3	2.3	38.5	38.5		38.5	38.5	38.5
Effective Green, g (s)	2.3	2.3		2.3	2.3	2.3	38.5	38.5		38.5	38.5	38.5
Actuated g/C Ratio	0.05	0.05		0.05	0.05	0.05	0.77	0.77		0.77	0.77	0.77
Clearance Time (s)	4.5	4.5		4.5	4.5	4.5	4.5	4.5		4.5	4.5	4.5
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	86	73		86	86	73	934	1434		374	1440	1223
v/s Ratio Prot		0.00			0.00			c0.50			0.09	
v/s Ratio Perm	0.00			c0.01		0.00	0.00			0.00		0.00
v/c Ratio	0.03	0.00		0.23	0.01	0.00	0.00	0.65		0.01	0.12	0.00
Uniform Delay, d1	22.7	22.7		22.9	22.7	22.7	1.3	2.6		1.3	1.4	1.3
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	0.2	0.0		1.4	0.1	0.0	0.0	1.0		0.0	0.0	0.0
Delay (s)	22.9	22.7		24.3	22.7	22.7	1.3	3.6		1.3	1.4	1.3
Level of Service	С	С		С	С	С	Α	Α		Α	Α	Α
Approach Delay (s)		22.8			24.0			3.6			1.4	
Approach LOS		С			С			Α			Α	
Intersection Summary												
HCM 2000 Control Delay			3.8	H	CM 2000	Level of S	Service		Α			
HCM 2000 Volume to Capa	city ratio		0.62									
Actuated Cycle Length (s)			49.8		ım of lost				9.0			
Intersection Capacity Utiliza	tion		63.0%	IC	U Level c	of Service			В			
Analysis Period (min)			15									
c Critical Lane Group												

Synchro 8 Report Page 3 OYP1-2AM.syn

Timing Plan: PM Peak

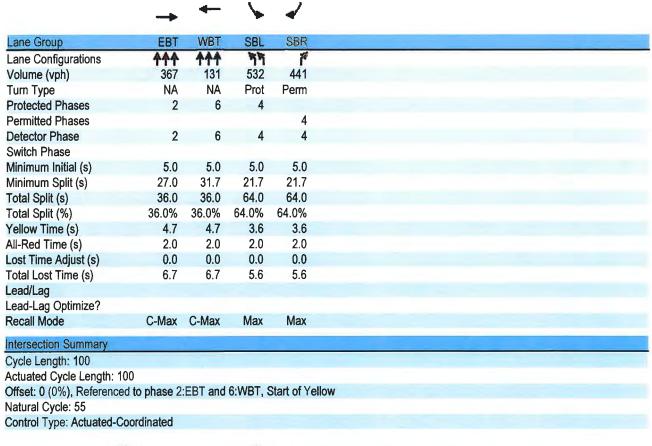
	•	→	1	←	*	†	-	↓	1
Lane Group	EBL	EBT	WBL	WBT	WBR	NBT	SBL	SBT	SBR
Lane Configurations	*	f)	M	1	7	1>	7	1	7
Volume (vph)	2	0	10	1	3	171	3	629	3
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	Perm
Protected Phases		4		8		2		6	
Permitted Phases	4		8		8		6		6
Detector Phase	4	4	8	8	8	2	6	6	6
Switch Phase									
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Minimum Split (s)	20.5	20.5	20.5	20.5	20.5	20.5	20.5	20.5	20.5
Total Split (s)	20.6	20.6	20.6	20.6	20.6	39.4	39.4	39.4	39.4
Total Split (%)	34.3%	34.3%	34.3%	34.3%	34.3%	65.7%	65.7%	65.7%	65.7%
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
Lead/Lag									
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	None	Min	Min	Min	Min
1.1									

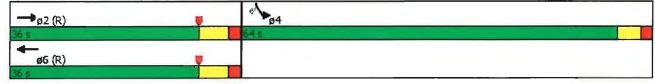

Intersection Summary

Cycle Length: 60

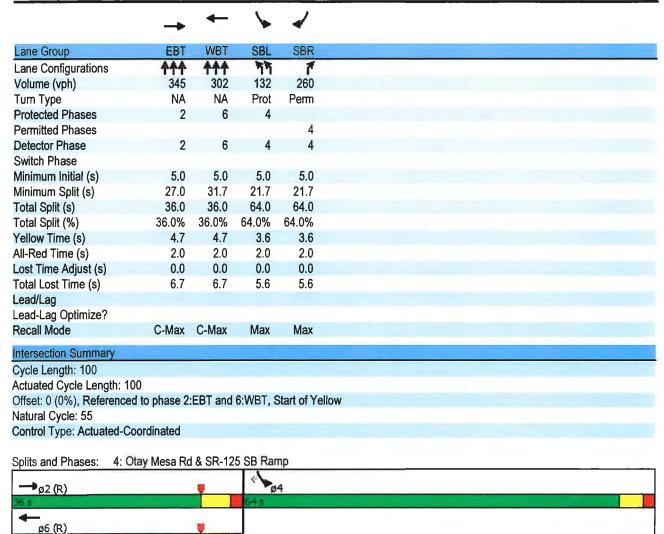
Actuated Cycle Length: 36.4
Natural Cycle: 55

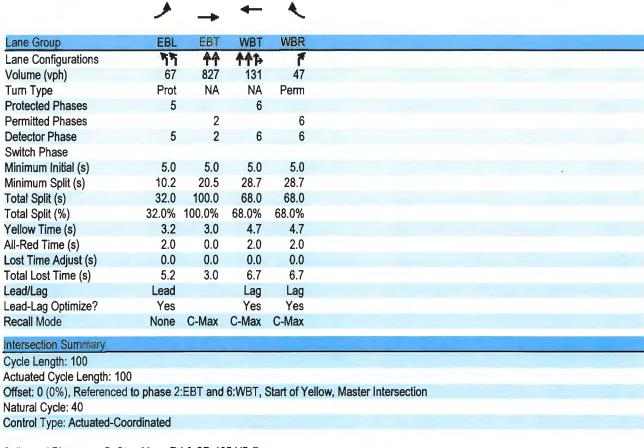
Control Type: Actuated-Uncoordinated


Splits and Phases: 2: Alta Rd & Lone Star Rd/Lone Start Rd


Z. / III I I G LONG	J	→	•	6	4-	4	4	†	<i>></i>	-	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	fə		7	4	7	7	1>		N.	4	7
Volume (vph)	2	0	1	10	1	3	0	171	7	3	629	3
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.5	4.5		4.5	4.5	4.5		4.5		4.5	4.5	4.5
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00		1.00		1.00	1.00	1.00
Frt	1.00	0.85		1.00	1.00	0.85		0.99		1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00	1.00		1.00		0.95	1.00	1.00
Satd. Flow (prot)	1770	1583		1770	1863	1583		1851		1770	1863	1583
Flt Permitted	1.00	1.00		1.00	1.00	1.00		1.00		0.64	1.00	1.00
Satd. Flow (perm)	1863	1583		1863	1863	1583		1851		1184	1863	1583
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	2	0	1	11	1	3	0	186	8	3	684	3
RTOR Reduction (vph)	0	1	0	0	0	3	0	1	0	0	0	1
Lane Group Flow (vph)	2	0	0	11	1	0	0	193	0	3	684	2
Tum Type	Perm	NA		Perm	NA	Perm	Perm	NA		Perm	NA	Perm
Protected Phases		4			8			2			6	
Permitted Phases	4	•		8		8	2			6		6
Actuated Green, G (s)	0.9	0.9		0.9	0.9	0.9		30.1		30.1	30.1	30.1
Effective Green, g (s)	0.9	0.9		0.9	0.9	0.9		30.1		30.1	30.1	30.1
Actuated g/C Ratio	0.02	0.02		0.02	0.02	0.02		0.75		0.75	0.75	0.75
Clearance Time (s)	4.5	4.5		4.5	4.5	4.5		4.5		4.5	4.5	4.5
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0		3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	41	35		41	41	35		1392		890	1401	1191
v/s Ratio Prot		0.00			0.00			0.10			c0.37	
v/s Ratio Perm	0.00			c0.01		0.00				0.00		0.00
v/c Ratio	0.05	0.00		0.27	0.02	0.00		0.14		0.00	0.49	0.00
Uniform Delay, d1	19.1	19.1		19.2	19.1	19.1		1.4		1.2	1.9	1.2
Progression Factor	1.00	1.00		1.00	1.00	1.00		1.00		1.00	1.00	1.00
Incremental Delay, d2	0.5	0.0		3.5	0.2	0.0		0.0		0.0	0.3	0.0
Delay (s)	19.6	19.1		22.7	19.4	19.1		1.4		1.2	2.2	1.2
Level of Service	В	В		С	В	В		Α		Α	Α	Α
Approach Delay (s)		19.5			21.8			1.4			2.2	
Approach LOS		В			С			Α			Α	
Intersection Summary												
HCM 2000 Control Delay			2.4	H	CM 2000	Level of S	Service		Α			
HCM 2000 Volume to Capa	city ratio		0.48									
Actuated Cycle Length (s)			40.0	Sı	ım of lost	time (s)			9.0			
Intersection Capacity Utiliza	tion		47.8%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									
c Critical Lane Group												

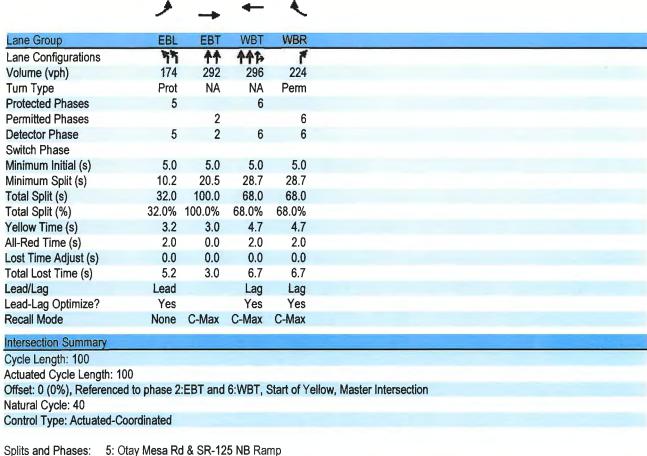
OYP1-2PM.syn


Timing Plan: AM Peak


Splits and Phases: 4: Otay Mesa Rd & SR-125 SB Ramp

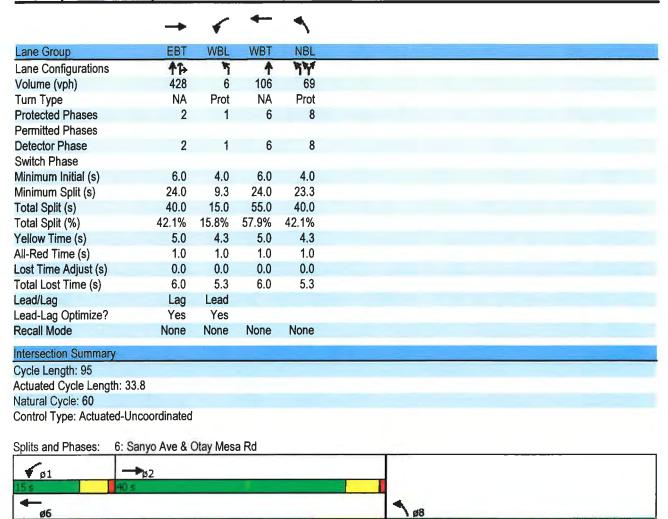
	۶	-	•	*	-	4	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		ት ተተ	ተቀተ		77	7	
Volume (vph)	0	367	131	0	532	441	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)		6.7	6.7		5.6	5.6	
Lane Util. Factor		0.91	0.91		0.97	1.00	
Frt		1.00	1.00		1.00	0.85	
Flt Protected		1.00	1.00		0.95	1.00	
Satd. Flow (prot)		5085	5085		3433	1583	
Flt Permitted		1.00	1.00		0.95	1.00	
Satd. Flow (perm)		5085	5085		3433	1583	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	0	399	142	0	578	479	
RTOR Reduction (vph)	0	0	0	0	0	199	
Lane Group Flow (vph)	0	399	142	0	578	280	
Turn Type		NA	NA		Prot	Perm	
Protected Phases		2	6		4		
Permitted Phases						4	
Actuated Green, G (s)		29.3	29.3		58.4	58.4	
Effective Green, g (s)		29.3	29.3		58.4	58.4	
Actuated g/C Ratio		0.29	0.29		0.58	0.58	
Clearance Time (s)		6.7	6.7		5.6	5.6	
Vehicle Extension (s)		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)		1489	1489		2004	924	
v/s Ratio Prot		c0.08	0.03		0.17		
v/s Ratio Perm						c0.18	
v/c Ratio		0.27	0.10		0.29	0.30	
Uniform Delay, d1		27.1	25.7		10.4	10.5	
Progression Factor		0.67	0.92		1.00	1.00	
Incremental Delay, d2		0.4	0.1		0.4	8.0	
Delay (s)		18.5	23.8		10.8	11.4	
Level of Service		В	С		В	В	
Approach Delay (s)		18.5	23.8		11.0		
Approach LOS		В	С		В		
Intersection Summary							
HCM 2000 Control Delay			14.0	HC	CM 2000	Level of Servi	е
HCM 2000 Volume to Capacity r	atio		0.29				
Actuated Cycle Length (s)			100.0		m of lost		
Intersection Capacity Utilization			41.7%	IC	U Level c	of Service	
Analysis Period (min)			15				
c Critical Lane Group							

	ø	→	←	*	-	4			
Movement	EBL	EBT	WBT	WBR	SBL	SBR			
Lane Configurations		ተተተ	ተተተ		1/4	7			
Volume (vph)	0	345	302	0	132	260			
	900	1900	1900	1900	1900	1900			
Total Lost time (s)		6.7	6.7		5.6	5.6			
Lane Util. Factor		0.91	0.91		0.97	1.00			
Frt		1.00	1.00		1.00	0.85			
FIt Protected		1.00	1.00		0.95	1.00			
Satd. Flow (prot)		5085	5085		3433	1583			
FIt Permitted		1.00	1.00		0.95	1.00			
Satd. Flow (perm)		5085	5085		3433	1583			
	0.92	0.92	0.92	0.92	0.92	0.92			
Adj. Flow (vph)	0	375	328	0	143	283			
RTOR Reduction (vph)	0	0	0	0	0	106			
Lane Group Flow (vph)	0	375	328	0	143	177			
Tum Type		NA	NA		Prot	Perm			
Protected Phases		2	6		4				
Permitted Phases		_	•		•	4			
Actuated Green, G (s)		29.3	29.3		58.4	58.4			
Effective Green, g (s)		29.3	29.3		58.4	58.4			
Actuated g/C Ratio		0.29	0.29		0.58	0.58			
Clearance Time (s)		6.7	6.7		5.6	5.6			
Vehicle Extension (s)		3.0	3.0		3.0	3.0			
Lane Grp Cap (vph)		1489	1489		2004	924			
//s Ratio Prot		c0.07	0.06		0.04				
//s Ratio Perm						c0.11			
//c Ratio		0.25	0.22		0.07	0.19			
Uniform Delay, d1		27.0	26.7		9.0	9.7			
Progression Factor		0.72	0.92		1.00	1.00			
Incremental Delay, d2		0.4	0.3		0.1	0.5			
Delay (s)		19.8	24.8		9.1	10.2			
evel of Service		В	С		Α	В			
Approach Delay (s)		19.8	24.8		9.8				
Approach LOS		В	С		Α				
ntersection Summary									
HCM 2000 Control Delay			17.5	НС	CM 2000	Level of Serv	ice	В	
HCM 2000 Volume to Capacity ra	itio		0.21						
Actuated Cycle Length (s)			100.0	Su	m of lost	time (s)		12.3	
ntersection Capacity Utilization			32.2%			of Service		A	
Analysis Period (min)			15						
C Critical Lane Group									



Splits and Phases: 5: Otay Mesa Rd & SR-125 NB Ramp

	۶	→	—	4	-	4			
Movement	EBL	EBT	WBT	WBR	SBL	SBR			
Lane Configurations	1/4	44	444	7					
Volume (vph)	67	827	131	47	0	0			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Total Lost time (s)	5.2	3.0	6.7	6.7					
Lane Util. Factor	0.97	0.95	0.86	0.86					
Frt	1.00	1.00	0.99	0.85					
FIt Protected	0.95	1.00	1.00	1.00					
Satd. Flow (prot)	3433	3539	4767	1362					
FIt Permitted	0.95	1.00	1.00	1.00					
Satd. Flow (perm)	3433	3539	4767	1362					
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92			
Adj. Flow (vph)	73	899	142	51	0	0			
RTOR Reduction (vph)	0	0	1	8	0	0			
ane Group Flow (vph)	73	899	149	35	0	0			
Turn Type	Prot	NA	NA	Perm					
Protected Phases	5		6						
Permitted Phases		2		6					
Actuated Green, G (s)	6.4	100.0	81.7	81.7					
Effective Green, g (s)	6.4	100.0	81.7	81.7					
Actuated g/C Ratio	0.06	1.00	0.82	0.82					
Clearance Time (s)	5.2	3.0	6.7	6.7					
/ehicle Extension (s)	3.0	3.0	3.0	3.0					
ane Grp Cap (vph)	219	3539	3894	1112					
/s Ratio Prot	0.02		0.03						
/s Ratio Perm		c0.25		0.03					
/c Ratio	0.33	0.25	0.04	0.03					
Jniform Delay, d1	44.8	0.0	1.7	1.7					
Progression Factor	1.21	1.00	1.00	1.00					
ncremental Delay, d2	0.9	0.2	0.0	0.1					
Delay (s)	55.0	0.2	1.7	1.8					
evel of Service	D	Α	Α	Α					
Approach Delay (s)		4.3	1.8		0.0				
Approach LOS		Α	Α		Α				
ntersection Summary									
ICM 2000 Control Delay			3.9	НС	M 2000	Level of Service)	Α	
ICM 2000 Volume to Capacity	y ratio		0.29						
Actuated Cycle Length (s)			100.0	Su	m of lost	time (s)		11.9	
ntersection Capacity Utilizatio	ח		41.7%	ICI	J Level o	f Service		Α	
nalysis Period (min)			15						
Critical Lane Group									


Synchro 8 Report Page 9 OYP1-2AM.syn

	۶	→	+	4	/	4			
Movement	EBL	EBT	WBT	WBR	SBL	SBR			
Lane Configurations	10	^	1	7					
Volume (vph)	174	292	296	224	0	0			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Total Lost time (s)	5.2	3.0	6.7	6.7					
Lane Util. Factor	0.97	0.95	0.86	0.86					
Frt	1.00	1.00	0.96	0.85					
Flt Protected	0.95	1.00	1.00	1.00					
Satd. Flow (prot)	3433	3539	4617	1362					
Flt Permitted	0.95	1.00	1.00	1.00					
Satd. Flow (perm)	3433	3539	4617	1362					
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92			
Adj. Flow (vph)	189	317	322	243	0	0			
RTOR Reduction (vph)	0	0	26	29	0	0			
Lane Group Flow (vph)	189	317	410	100	0	0			
Turn Type	Prot	NA	NA	Perm					
Protected Phases	5		6						
Permitted Phases		2		6					
Actuated Green, G (s)	10.8	100.0	77.3	77.3					
Effective Green, g (s)	10.8	100.0	77.3	77.3					
Actuated g/C Ratio	0.11	1.00	0.77	0.77					
Clearance Time (s)	5.2	3.0	6.7	6.7					
Vehicle Extension (s)	3.0	3.0	3.0	3.0					
Lane Grp Cap (vph)	370	3539	3568	1052					
v/s Ratio Prot	c0.06		c 0.09						
v/s Ratio Perm		0.09		0.07					
v/c Ratio	0.51	0.09	0.11	0.09					
Uniform Delay, d1	42.1	0.0	2.8	2.8					
Progression Factor	0.68	1.00	1.00	1.00					
Incremental Delay, d2	1.2	0.0	0.1	0.2					
Delay (s)	29.9	0.0	2.9	3.0					
Level of Service	С	Α	Α	Α					
Approach Delay (s)		11.2	2.9		0.0				
Approach LOS		В	Α		Α				
Intersection Summary									
HCM 2000 Control Delay			6.8	H	CM 2000	Level of Servic	9	Α	
HCM 2000 Volume to Capa	city ratio		0.16						
Actuated Cycle Length (s)			100.0		ım of lost	\ /		11.9	
Intersection Capacity Utiliza	ation		32.2%	IC	U Level o	f Service		Α	
Analysis Period (min)			15						
c Critical Lane Group									

Synchro 8 Report Page 9 OYP1-2PM.syn

OYP1-2AM.syn

Care Configurations		-	*	1	•	4	*		
Care Configurations	Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Volume (vyh)	Lane Configurations	47>		ħ	↑	44			
deal Flow (vphpl) 1900 1	•		385	_			11		
Total Lost time (s) 6.0 5.3 6.0 5.3 ane Util. Factor 0.95 1.00 1.00 0.97 rit 0.93 1.00 1.00 0.98 rit Protected 1.00 0.95 1.00 0.96 said. Flow (prot) 3288 1770 1863 3393 rit Permitted 1.00 0.95 1.00 0.96 said. Flow (perm) 3288 1770 1863 3393 reak-hour factor, PHF 0.92 0.92 0.92 0.92 0.92 0.92 rid, Flow (ph) 465 418 7 115 75 12 RTOR Reduction (vph) 143 0 0 0 11 0 ane Group Flow (vph) 740 0 7 115 76 0 rum Type NA Prot NA Prot Protected Phases 2 1 6 8 remitted Phases 2 1 6 8 retrieted Phases 3 8 retrieted Phases 3 8 retrieted Phases 4 8 retrieted Phases 6 8 retrieted Phases 9 8 retrieted Phases 9 9 retrieted Phases 9 retrieted Phases 9 9 retrieted Phases 9 retrieted Phase		1900	1900	1900	1900	1900	1900		
Cane Util. Factor 0.95		6.0		5.3	6.0	5.3			
The content of the	Lane Util. Factor	0.95		1.00	1.00	0.97			
Tell Protected 1.00 0.95 1.00 0.96 and Flow (prot) 3288 1770 1863 3393 and filt Permitted 1.00 0.95 1.00 0.96 and Flow (prot) 3288 1770 1863 3393 and filt Permitted 1.00 0.95 1.00 0.96 and Flow (perm) 3288 1770 1863 3393 and filt Protected Protected Protected Protected Protected Phases are protected Phases and Flow (protected Phases and Flow (protected Phases and Flow (protected Phases are protected Phases and Flow (protected Phases and Flow (protected Phases are protected Phases and Flow (protected Phases are protected Phases a	Frt	0.93		1.00	1.00	0.98			
Search S	FIt Protected			0.95	1.00	0.96			
Search S	Satd, Flow (prot)	3288		1770	1863	3393			
Said Flow (perm) 3288 1770 1863 3393 Peak-hour factor, PHF 0.92 0.92 0.92 0.92 0.92 0.92 Adj. Flow (yph) 465 418 7 115 75 12 ATTOR Reduction (vph) 143 0 0 0 11 0 Anne Group Flow (vph) 740 0 7 115 76 0 Imm Type	" ,					0.96			
Peak-hour factor, PHF	Satd. Flow (perm)								
Adj. Flow (vph)	Peak-hour factor, PHF		0.92	0.92	0.92	0.92	0.92		
ATOR Reduction (vph)	Adj. Flow (vph)		418	7	115	75	12		
ane Group Flow (vph) 740 0 7 115 76 0 furn Type NA Prot NA Prot Protected Phases 2 1 6 8 remitted Phases 2 1 6 9 remit	RTOR Reduction (vph)	143	0	0	0	11	0		
Turn Type NA Prot NA NA Prot NA NA Prot NA	Lane Group Flow (vph)			7	115	76	0		
Protected Phases Permitted Phases Permitted Phases Permitted Phases Permitted Phases Permitted Green, G (s) 18.2 0.6 24.1 4.0 Permitted Phases Permitted Green, g (s) 18.2 0.6 24.1 4.0 Permitted Phases Permitted	Turn Type	NA		Prot	NA	Prot			
Actuated Green, G (s) 18.2 0.6 24.1 4.0 Actuated Green, g (s) 18.2 0.6 24.1 4.0 Actuated g/C Ratio 0.46 0.02 0.61 0.10 Actuated g/C Ratio 0.46 0.02 0.53 0.00 0.05 0.00 Actuated g/C Ratio Prot 0.23 0.00 0.00 0.00 0.00 C0.00 C0.00 Actuated g/C Ratio Prot 0.23 0.00 0.00 0.00 C0.00 C0.00 Actuated g/C Ratio 0.49 0.27 0.10 0.22 Actuated g/C Ratio 0.49 0.27 0.10 0.22 Actuated g/C Ratio 0.49 0.27 0.10 0.22 Actuated g/C Ratio 0.49 0.27 0.10 0.00 0.00 Actuated g/C Ratio 0.49 0.3 0.0 0.1 Actuated g/C Ratio 0.40 0.3 0.0 0.1 Actuated g/C Ratio 0.40 0.3 0.0 0.1 Actuated g/C Ratio 0.40 Actuated g/C Ratio 0.40 Actuated g/C Ratio Capacity ratio 0.44 Actuated G/C Ratio 0.44 Cotuated Cycle Length (s) 0.44 Actuated G/C Ratio	Protected Phases	2		1	6	8			
Actuated g/C Ratio	Permitted Phases								
Effective Green, g (s) 18.2 0.6 24.1 4.0 Inctuated g/C Ratio 0.46 0.02 0.61 0.10 Elearance Time (s) 6.0 5.3 6.0 5.3 Vehicle Extension (s) 3.5 2.0 3.5 2.0 In an e Grp Cap (vph) 1518 26 1139 344 In an e Grp Cap (vph) 1518 26 1139 344 In an e Grp Cap (vph) 1518 26 1139 344 In an e Grp Cap (vph) 1518 26 1139 344 In an e Grp Cap (vph) 1518 26 1139 344 In an e Grp Cap (vph) 1518 26 1139 344 In an e Grp Cap (vph) 1518 26 1139 344 In an e Grp Cap (vph) 1518 26 1139 344 In an e Grp Cap (vph) 1518 26 1139 344 In an e Grp Cap (vph) 1518 26 1139 344 In an e Grp Cap (vph) 1518 26 1109 0.02 In an e Grp Cap (vph)	Actuated Green, G (s)	18.2		0.6	24.1	4.0			
Control of Control o		18.2		0.6	24.1	4.0			
Clearance Time (s)	Actuated g/C Ratio	0.46		0.02	0.61	0.10			
ane Grp Cap (vph) 1518 26 1139 344 /s Ratio Prot c0.23 0.00 c0.06 c0.02 /s Ratio Perm /c Ratio 0.49 0.27 0.10 0.22 Iniform Delay, d1 7.4 19.2 3.2 16.3 regression Factor 1.00 1.00 1.00 1.00 noremental Delay, d2 0.3 2.0 0.0 0.1 lelay (s) 7.7 21.2 3.2 16.4 evel of Service A C A B pproach Delay (s) 7.7 4.2 16.4 pproach LOS A A B Intersection Summary CM 2000 Control Delay 8.0 HCM 2000 Level of Service A CM 2000 Volume to Capacity ratio 0.44 ctuated Cycle Length (s) 39.4 Sum of lost time (s) 16.6 Intersection Capacity Utilization 36.9% ICU Level of Service A	Clearance Time (s)	6.0		5.3	6.0	5.3			
/s Ratio Prot c0.23 0.00 c0.06 c0.02 /s Ratio Perm /c Ratio 0.49 0.27 0.10 0.22 Iniform Delay, d1 7.4 19.2 3.2 16.3 Progression Factor 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.3 2.0 0.0 0.1 Itelay (s) 7.7 21.2 3.2 16.4 Itelay (s) 7.7 4.2 16.4 Itelay (s) 7.7 4.2 16.4 Itelay (s) 7.7 A B Itersection Summary ICM 2000 Control Delay 8.0 HCM 2000 Level of Service A ICM 2000 Volume to Capacity ratio 0.44 Ictuated Cycle Length (s) 39.4 Sum of lost time (s) 16.6 Itersection Capacity Utilization 36.9% ICU Level of Service A	/ehicle Extension (s)	3.5		2.0	3.5	2.0			
/s Ratio Prot c0.23 0.00 c0.06 c0.02 /s Ratio Perm /c Ratio 0.49 0.27 0.10 0.22 Iniform Delay, d1 7.4 19.2 3.2 16.3 Progression Factor 1.00 1.00 1.00 Incremental Delay, d2 0.3 2.0 0.0 0.1 Inelay (s) 7.7 21.2 3.2 16.4 Inevel of Service A C A B Inproach Delay (s) 7.7 4.2 16.4 Inproach LOS A B Intersection Summary Interse	ane Grp Cap (vph)	1518		26	1139	344			
I/c Ratio 0.49 0.27 0.10 0.22 Iniform Delay, d1 7.4 19.2 3.2 16.3 Irogression Factor 1.00 1.00 1.00 Incremental Delay, d2 0.3 2.0 0.0 0.1 Ivelay (s) 7.7 21.2 3.2 16.4 Ivelay (s) 7.7 21.2 3.2 16.4 Ivelay (s) 7.7 4.2 16.4 Inpercach Delay (s) 7.7 4.2 16.4 Inpercach LOS A A B Intersection Summary Intersection Summary Intersection Summary Intersection Sum of lost time (s) Intersection Summary Intersection Capacity (s) 39.4 Sum of lost time (s) 16.6 Intersection Capacity Utilization 36.9% ICU Level of Service A	//s Ratio Prot	c0.23		0.00	c0.06	c0.02			
Iniform Delay, d1 7.4 19.2 3.2 16.3 Progression Factor 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.3 2.0 0.0 0.1 Pelay (s) 7.7 21.2 3.2 16.4 Pevel of Service A C A B Perproach Delay (s) 7.7 4.2 16.4 Perproach LOS A B Intersection Summary ICM 2000 Control Delay 8.0 HCM 2000 Level of Service A ICM 2000 Volume to Capacity ratio Cuated Cycle Length (s) 39.4 Sum of lost time (s) 16.6 Intersection Capacity Utilization 36.9% ICU Level of Service A	//s Ratio Perm								
Trogression Factor 1.00	/c Ratio	0.49		0.27	0.10	0.22			
rogression Factor 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.3 2.0 0.0 0.1 Irelay (s) 7.7 21.2 3.2 16.4 Irevel of Service A C A B Improach Delay (s) 7.7 4.2 16.4 Incremental Delay (s) 7.7 A.2 16.4 Incremental Delay (s) 8.0 B.2 Incremental Delay (s) 9.0 B.	Jniform Delay, d1	7.4		19.2	3.2	16.3			
CM 2000 Control Delay	Progression Factor	1.00		1.00	1.00	1.00			
evel of Service A C A B pproach Delay (s) 7.7 4.2 16.4 pproach LOS A A B intersection Summary ICM 2000 Control Delay 8.0 HCM 2000 Level of Service A ICM 2000 Volume to Capacity ratio 0.44 ctuated Cycle Length (s) 39.4 Sum of lost time (s) 16.6 intersection Capacity Utilization 36.9% ICU Level of Service A	ncremental Delay, d2	0.3		2.0	0.0	0.1			
evel of Service A C A B pproach Delay (s) 7.7 4.2 16.4 pproach LOS A B tersection Summary ICM 2000 Control Delay 8.0 HCM 2000 Level of Service A ICM 2000 Volume to Capacity ratio 0.44 ctuated Cycle Length (s) 39.4 Sum of lost time (s) 16.6 tersection Capacity Utilization 36.9% ICU Level of Service A	Delay (s)	7.7			3.2	16.4			
pproach LOS A B Intersection Summary CM 2000 Control Delay 8.0 HCM 2000 Level of Service A CM 2000 Volume to Capacity ratio 0.44 ctuated Cycle Length (s) 39.4 Sum of lost time (s) 16.6 Intersection Capacity Utilization 36.9% ICU Level of Service A	evel of Service			С					
pproach LOS A A B Intersection Summary ICM 2000 Control Delay 8.0 HCM 2000 Level of Service A ICM 2000 Volume to Capacity ratio 0.44 Ictuated Cycle Length (s) 39.4 Sum of lost time (s) 16.6 Intersection Capacity Utilization 36.9% ICU Level of Service A	Approach Delay (s)	7.7			4.2	16.4			
CM 2000 Control Delay 8.0 HCM 2000 Level of Service A CM 2000 Volume to Capacity ratio 0.44 ctuated Cycle Length (s) 39.4 Sum of lost time (s) 16.6 tersection Capacity Utilization 36.9% ICU Level of Service A	Approach LOS	Α			Α	В			
CM 2000 Control Delay 8.0 HCM 2000 Level of Service A CM 2000 Volume to Capacity ratio 0.44 ctuated Cycle Length (s) 39.4 Sum of lost time (s) 16.6 tersection Capacity Utilization 36.9% ICU Level of Service A	ntersection Summary								
CM 2000 Volume to Capacity ratio ctuated Cycle Length (s) 39.4 Sum of lost time (s) 16.6 tersection Capacity Utilization 36.9% ICU Level of Service A	ICM 2000 Control Delay			8.0	H	CM 2000	Level of Service	Α	
ctuated Cycle Length (s) 39.4 Sum of lost time (s) 16.6 stersection Capacity Utilization 36.9% ICU Level of Service A	•	acity ratio		0.44					
stersection Capacity Utilization 36.9% ICU Level of Service A				39.4	Sı	um of lost	time (s)	16.6	
				36.9%			` '	Α	
nalysis Period (min) 15	Analysis Period (min)			15					
	Critical Lane Group								

Synchro 8 Report Page 11 OYP1-2AM.syn

	-	1	•	1
Lane Group	EBT	WBL	WBT	NBL
Lane Configurations	44	7	↑	Alaka
Volume (vph)	166	27	329	195
Turn Type	NA	Prot	NA	Prot
Protected Phases	2	1	6	8
Permitted Phases				
Detector Phase	2	1	6	8
Switch Phase				
Minimum Initial (s)	6.0	4.0	6.0	4.0
Minimum Split (s)	24.0	9.3	24.0	23.3
Total Split (s)	40.0	15.0	55.0	40.0
Total Split (%)	42.1%	15.8%	57.9%	42.1%
Yellow Time (s)	5.0	4.3	5.0	4.3
All-Red Time (s)	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.0	5.3	6.0	5.3
Lead/Lag	Lag	Lead		
Lead-Lag Optimize?	Yes	Yes		
Recall Mode	None	None	None	None

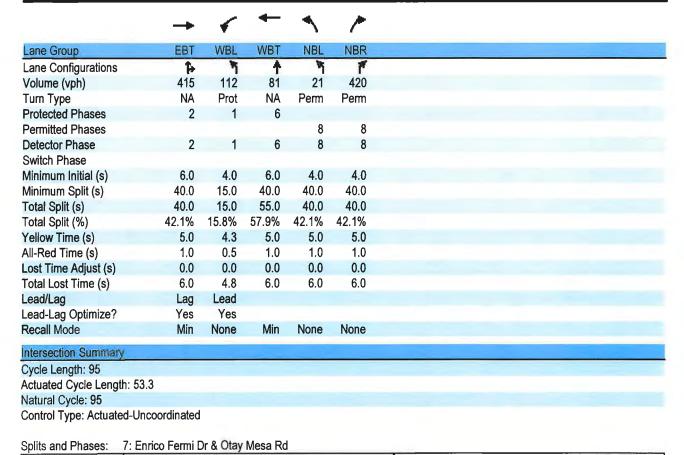
Intersection Summary

Cycle Length: 95

Actuated Cycle Length: 34.4

Natural Cycle: 60

Control Type: Actuated-Uncoordinated


Splits and Phases: 6: Sanyo Ave & Otay Mesa Rd

	→	*	1	—	4	P		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	44		ħ	A	ሻሻ			
Volume (vph)	166	134	27	329	195	28		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	6.0		5.3	6.0	5.3			
Lane Util. Factor	0.95		1.00	1.00	0.97			
Frt	0.93		1.00	1.00	0.98			
Flt Protected	1.00		0.95	1.00	0.96			
Satd. Flow (prot)	3301		1770	1863	3398			
Flt Permitted	1.00		0.95	1.00	0.96			
Satd. Flow (perm)	3301		1770	1863	3398			
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92		
Adj. Flow (vph)	180	146	29	358	212	30		
RTOR Reduction (vph)	98	0	0	0	15	0		
Lane Group Flow (vph)	228	0	29	358	227	0		
Turn Type	NA		Prot	NA	Prot			
Protected Phases	2		1	6	8			
Permitted Phases	_		•					
Actuated Green, G (s)	12.4		0.8	18.5	8.2			
Effective Green, g (s)	12.4		0.8	18.5	8.2			
Actuated g/C Ratio	0.33		0.02	0.49	0.22			
Clearance Time (s)	6.0		5.3	6.0	5.3			
Vehicle Extension (s)	3.5		2.0	3.5	2.0			
Lane Grp Cap (vph)	1077		37	906	733			
v/s Ratio Prot	0.07		0.02	c0.19	c0.07			
v/s Ratio Perm	0.07		0.02	00.10	00.01			
//c Ratio	0.21		0.78	0.40	0.31			
Uniform Delay, d1	9.3		18.5	6.2	12.5			
Progression Factor	1.00		1.00	1.00	1.00			
ncremental Delay, d2	0.1		63.9	0.3	0.1			
Delay (s)	9.4		82.4	6.5	12.6			
_evel of Service	A		F	A	В			
Approach Delay (s)	9.4			12.2	12.6			
Approach LOS	A			В	В			
ntersection Summary								
HCM 2000 Control Delay			11.3	Н	CM 2000	Level of Service	В	
HCM 2000 Volume to Capacity ratio			0.46					
Actuated Cycle Length (s)			38.0	Sı	ım of lost	time (s)	16.6	
ntersection Capacity Utiliza	tion		33.2%		U Level o		A	
Analysis Period (min)			15	10				
Critical Lane Group								

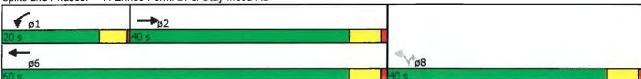
OYP1-2PM.syn

₽ø2

Ø8

OYP1-2AM.syn

₩ø1


	→	•	•	←	4	-
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1		J.	↑	M	7
Volume (vph)	415	28	112	81	21	420
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0		4.8	6.0	6.0	6.0
Lane Util. Factor	1.00		1.00	1.00	1.00	1.00
Frt	0.99		1.00	1.00	1.00	0.85
Flt Protected	1.00		0.95	1.00	0.95	1.00
Satd. Flow (prot)	1847		1770	1863	1770	1583
Flt Permitted	1.00		0.95	1.00	0.95	1.00
Satd. Flow (perm)	1847		1770	1863	1770	1583
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	451	30	122	88	23	457
RTOR Reduction (vph)	2	0	0	0	0	346
Lane Group Flow (vph)	479	0	122	88	23	111
Turn Type	NA		Prot	NA	Perm	Perm
Protected Phases	2		1	6		
Permitted Phases					8	8
Actuated Green, G (s)	20.9		6.7	32.4	8.6	8.6
Effective Green, g (s)	20.9		6.7	32.4	8.6	8.6
Actuated g/C Ratio	0.39		0.13	0.61	0.16	0.16
Clearance Time (s)	6.0		4.8	6.0	6.0	6.0
Vehicle Extension (s)	3.5		2.0	3.5	2.0	2.0
Lane Grp Cap (vph)	728		223	1138	287	256
v/s Ratio Prot	c0.26		c0.07	0.05		
v/s Ratio Perm					0.01	c0.07
v/c Ratio	0.66		0.55	0.08	0.08	0.43
Uniform Delay, d1	13.1		21.7	4.2	18.8	20.0
Progression Factor	1.00		1.00	1.00	1.00	1.00
Incremental Delay, d2	2.2		1.5	0.0	0.0	0.4
Delay (s)	15.4		23.2	4.2	18.9	20.4
Level of Service	В		С	Α	В	С
Approach Delay (s)	15.4			15.3	20.4	
Approach LOS	В			В	С	
Intersection Summary						
HCM 2000 Control Delay			17.4	Н	CM 2000	Level of Se
HCM 2000 Volume to Capa	city ratio		0.58			
Actuated Cycle Length (s)			53.0	Su	ım of lost	time (s)
Intersection Capacity Utiliza	ation		59.5%			of Service
Analysis Period (min)			15			
c Critical Lane Group						

	-	•	+	1	
Lane Group	EBT	WBL	WBT	NBL	NBR
Lane Configurations	1>	3	*	N.	7
Volume (vph)	132	475	343	20	141
Turn Type	NA	Prot	NA	Perm	Perm
Protected Phases	2	1	6		
Permitted Phases				8	8
Detector Phase	2	1	6	8	8
Switch Phase					
Minimum Initial (s)	6.0	4.0	6.0	4.0	4.0
Minimum Split (s)	40.0	15.0	40.0	40.0	40.0
Total Split (s)	40.0	20.0	60.0	40.0	40.0
Total Split (%)	40.0%	20.0%	60.0%	40.0%	40.0%
Yellow Time (s)	5.0	4.3	5.0	5.0	5.0
All-Red Time (s)	1.0	0.5	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.0	4.8	6.0	6.0	6.0
Lead/Lag	Lag	Lead			
Lead-Lag Optimize?	Yes	Yes			
Recall Mode	Min	None	Min	None	None
Intersection Summary					

Cycle Length: 100
Actuated Cycle Length: 48.5
Natural Cycle: 115

Control Type: Actuated-Uncoordinated

Splits and Phases: 7: Enrico Fermi Dr & Otay Mesa Rd

	-	•	1	+	1	<i>*</i>		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	4		7	A	7	78"		
Volume (vph)	132	41	475	343	20	141		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	6.0		4.8	6.0	6.0	6.0		
Lane Util. Factor	1.00		1.00	1.00	1.00	1.00		
Frt	0.97		1.00	1.00	1.00	0.85		
Fit Protected	1.00		0.95	1.00	0.95	1.00		
Satd. Flow (prot)	1803		1770	1863	1770	1583		
Flt Permitted	1.00		0.95	1.00	0.95	1.00		
Satd. Flow (perm)	1803		1770	1863	1770	1583		
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92		
Adj. Flow (vph)	143	45	516	373	22	153		
RTOR Reduction (vph)	13	0	0	0	0	136		
Lane Group Flow (vph)	175	0	516	373	22	17		
Tum Type	NA		Prot	NA	Perm	Perm		
Protected Phases	2		1	6				
Permitted Phases					8	8		
Actuated Green, G (s)	11.2		16.0	32.0	5.6	5.6		
Effective Green, g (s)	11.2		16.0	32.0	5.6	5.6		
Actuated g/C Ratio	0.23		0.32	0.65	0.11	0.11		
Clearance Time (s)	6.0		4.8	6.0	6.0	6.0		
Vehicle Extension (s)	3.5		2.0	3.5	2.0	2.0		
Lane Grp Cap (vph)	407		570	1201	199	178		
v/s Ratio Prot	c0.10		c 0.29	0.20				
v/s Ratio Perm					c0.01	0.01		
v/c Ratio	0.43		0.91	0.31	0.11	0.10		
Uniform Delay, d1	16.5		16.1	3.9	19.8	19.7		
Progression Factor	1.00		1.00	1.00	1.00	1.00		
Incremental Delay, d2	0.9		17.5	0.2	0.1	0.1		
Delay (s)	17.3		33.6	4.1	19.9	19.8		
Level of Service	В		С	Α	В	В		
Approach Delay (s)	17.3			21.2	19.8			
Approach LOS	В			С	В			
Intersection Summary								
HCM 2000 Control Delay			20.4	Н	CM 2000	Level of Service	e	
HCM 2000 Volume to Capa	city ratio		0.61					
Actuated Cycle Length (s)			49.6		ım of lost			
Intersection Capacity Utiliza	ation		53.1%	IC	U Level o	of Service		
Analysis Period (min)			15					
c Critical Lane Group								

OYP1-2PM.syn

_	۶	•	4	1	Ţ	4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W			र्स	f a	
Sign Control	Stop			Stop	Stop	
Volume (vph)	843	0	0	5	2	177
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	916	0	0	5	2	192
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total (vph)	916	5	195			
Volume Left (vph)	916	0	0			
Volume Right (vph)	0	0	192			
Hadj (s)	0.23	0.03	-0.56			
Departure Headway (s)	4.7	6.2	5.2			
Degree Utilization, x	1.0	0.01	0.28			
Capacity (veh/h)	762	570	685			
Control Delay (s)	118.1	9.2	10.3			
Approach Delay (s)	118.1	9.2	10.3			
Approach LOS	F	Α	В			
Intersection Summary						
Delay			98.8			
Level of Service			F			
Intersection Capacity Utiliza	ation		64.4%	IC	U Level o	f Service
Analysis Period (min)			15			

Synchro 8 Report Page 14 OYP1-2AM.syn

8: Otay Mesa Rd & Alta Rd

	•	*	4	†	↓	4	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	N/F			र्स	4		
Sign Control	Stop			Stop	Stop		
Volume (vph)	174	0	2	2	3	642	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	189	0	2	2	3	698	
Direction, Lane #	EB 1	NB 1	SB 1				
Volume Total (vph)	189	4	701				
Volume Left (vph)	189	2	0				
Volume Right (vph)	0	0	698				
Hadj (s)	0.23	0.13	-0.56				
Departure Headway (s)	5.6	5.3	3.9				
Degree Utilization, x	0.29	0.01	0.76				
Capacity (veh/h)	590	622	701				
Control Delay (s)	10.9	8.4	18.2				
Approach Delay (s)	10.9	8.4	18.2				
Approach LOS	В	Α	С				
Intersection Summary							
Delay			16.6				
Level of Service			С				
Intersection Capacity Utilization	n		56.2%	IC	U Level o	f Service	В
Analysis Period (min)			15				

	1	•	1	†	↓	4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations				स	Þ	
Volume (veh/h)	0	0	173	464	39	92
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	0	188	504	42	100
Pedestrians						
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)						
Upstream signal (ft)					791	
pX, platoon unblocked						
vC, conflicting volume	973	92	142			
vC1, stage 1 conf vol	0.0					
vC2, stage 2 conf vol						
vCu, unblocked vol	973	92	142			
tC, single (s)	6.4	6.2	4.1			
tC, 2 stage (s)		5				
tF (s)	3.5	3.3	2.2			
p0 queue free %	100	100	87			
cM capacity (veh/h)	243	965	1440			
			1110			
Direction, Lane #	NB 1	SB 1				-
Volume Total	692	142				
Volume Left	188	0				
Volume Right	0	100				
cSH	1440	1700				
Volume to Capacity	0.13	0.08				
Queue Length 95th (ft)	11	0				
Control Delay (s)	3.2	0.0				
Lane LOS	Α					
Approach Delay (s)	3.2	0.0				
Approach LOS						
Intersection Summary						
Average Delay			2.7			
Intersection Capacity Utiliza	ation		48.4%	IC	U Level of S	Service
Analysis Period (min)			15			

9: Enrico Fermi Dr & SR-905 WB Ramp

Timing Plan: PM Peak

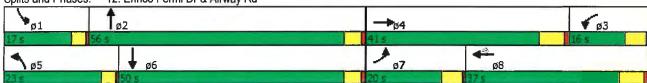
	۶	7	4	†	↓	4	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations		44		ની	\$		
Volume (veh/h)	0	0	231	198	107	428	
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	0	0	251	215	116	465	
Pedestrians				_,,,	,,,,	,	
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type				None	None		
Median storage veh)				110110	, 101.0		
Upstream signal (ft)					791		
pX, platoon unblocked					701		
vC, conflicting volume	1066	349	582				
vC1, stage 1 conf vol	1000	010	002				
vC2, stage 2 conf vol							
vCu, unblocked vol	1066	349	582				
tC, single (s)	6.4	6.2	4.1				
tC, 2 stage (s)	0.1	0.2					
tF (s)	3.5	3.3	2.2				
p0 queue free %	100	100	75				
cM capacity (veh/h)	184	694	993				
	NB 1	SB 1	000				
Direction, Lane #	The second second second						
Volume Total	466	582					
Volume Left	251	0					
Volume Right	0	465					
cSH	993	1700					
Volume to Capacity	0.25	0.34					
Queue Length 95th (ft)	25	0					
Control Delay (s)	6.6	0.0					
Lane LOS	Α						
Approach Delay (s) Approach LOS	6.6	0.0					
Intersection Summary							
Average Delay			2.9				
ntersection Capacity Utiliza	tion		61.9%	IC	U Level of	Service	В
Analysis Period (min)			15				

	•	-	-	1	—	•	4	†	-	-	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	M		7	M		7		1			र्स	
Volume (veh/h)	347	15	230	14	0	12	0	236	24	3	45	0
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	377	16	250	15	0	13	0	257	26	3	49	0
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)								1318				
pX, platoon unblocked												
vC, conflicting volume	338	338	49	583	325	270	49			283		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	338	338	49	583	325	270	49			283		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
C, 2 stage (s)												
tF(s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	38	97	75	95	100	98	100			100		
cM capacity (veh/h)	604	582	1020	312	591	769	1558			1280		
Direction, Lane#	EB 1	EB 2	WB 1	WB 2	NB 1	SB 1						
Volume Total	377	266	15	13	283	52						
Volume Left	377	0	15	0	0	3						
Volume Right	0	250	0	13	26	0						
SH	604	975	312	769	1700	1280						
Volume to Capacity	0.62	0.27	0.05	0.02	0.17	0.00						
Queue Length 95th (ft)	108	28	4	1	0	0						
Control Delay (s)	20.3	10.1	17.1	9.8	0.0	0.5						
Lane LOS	С	В	С	Α		Α						
Approach Delay (s)	16.1		13.7		0.0	0.5						
Approach LOS	С		В									
ntersection Summary												
Average Delay			10.7									
ntersection Capacity Utilizati	on		Err%	IC	U Level o	f Service			Н			
Analysis Period (min)			15									

OYP1-2AM.syn

	•	→	•	1	←	*	4	†	-	-	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	Ť		7	M		7		1>	-0		स	
Volume (veh/h)	117	6	80	14	0	26	0	342	12	6	122	0
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	127	7	87	15	0	28	0	372	13	7	133	0
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)								1318				
pX, platoon unblocked												
vC, conflicting volume	552	530	133	614	524	378	133			385		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	552	530	133	614	524	378	133			385		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)												
F(s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	70	99	91	96	100	96	100			99		
cM capacity (veh/h)	424	452	917	360	456	668	1452			1174		
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	NB 1	SB 1						
Volume Total	127	93	15	28	385	139						
Volume Left	127	0	15	0	0	7						
Volume Right	0	87	0	28	13	0						
cSH	424	855	360	668	1700	1174						
Volume to Capacity	0.30	0.11	0.04	0.04	0.23	0.01						
Queue Length 95th (ft)	31	9	3	3	0	0						
Control Delay (s)	17.1	9.7	15.4	10.6	0.0	0.4						
Lane LOS	С	Α	С	В		Α						
Approach Delay (s)	14.0		12.3		0.0	0.4						
Approach LOS	В		В									
ntersection Summary												
Average Delay			4.7									
ntersection Capacity Utiliza	ntion		Err%	IC	U Level o	of Service			Н			
Analysis Period (min)			15									
)												

	•	→	1	←	*	1	†	-	1
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT
Lane Configurations	*	44	7	1	1	10	^1	N.	44
Volume (vph)	42	8	6	11	23	59	235	28	143
Turn Type	Prot	NA	Prot	NA	Perm	Prot	NA	Prot	, NA
Protected Phases	7	4	3	8		5	2	1	6
Permitted Phases					8				
Detector Phase	7	4	3	8	8	5	2	1	6
Switch Phase									
Minimum Initial (s)	4.0	4.0	6.0	6.0	6.0	4.0	4.0	4.0	4.0
Minimum Split (s)	8.8	30.0	10.8	36.0	36.0	7.5	8.6	7.5	36.6
Total Split (s)	20.0	41.0	16.0	37.0	37.0	23.0	56.0	17.0	50.0
Total Split (%)	15.4%	31.5%	12.3%	28.5%	28.5%	17.7%	43.1%	13.1%	38.5%
Yellow Time (s)	4.3	5.0	4.3	5.0	5.0	3.0	3.6	3.0	3.6
All-Red Time (s)	0.5	1.0	0.5	1.0	1.0	0.5	1.0	0.5	1.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	4.8	6.0	4.8	6.0	6.0	3.5	4.6	3.5	4.6
Lead/Lag	Lead	Lead	Lag	Lag	Lag	Lead	Lag	Lead	Lag
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	None	None	None	None	None	None	Min	None	Min


Intersection Summary

Cycle Length: 130

Actuated Cycle Length: 44.6
Natural Cycle: 90

Control Type: Actuated-Uncoordinated

Frit 1.00 0.89 1.00 1.00 0.85 1.00 0.99 1.00 0.94 FIR Protected 0.95 1.00 0.		*	-	*	1	←	•	1	†	-	-	↓	4
Volume (vph)	Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Ideal Flow (vphpl)	Lane Configurations	*	41		N.	1	F	N.	46		M	1	
Total Lost time (s)	Volume (vph)	42		22	6	11	23	59	235	13	28	143	105
Lane Util. Factor 1.00 0.95 1.00 1.00 1.00 1.00 0.95 1.00 0.95 1.00 0.95 FtT 1.00 0.89 1.00 1.00 1.00 0.85 1.00 0.99 1.00 0.94 FtP 1.00 0.95 1.00	Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Fit	Total Lost time (s)	4.8	6.0		4.8	6.0	6.0	3.5	4.6		3.5	4.6	
Fit Protected 0.95 1.00 0.95 1.00 1.00 0.95 1.00 0.95 1.00 0.95 1.00 Satd. Flow (prot) 1770 3153 1770 1863 1583 1770 3512 1770 3314 Fit Permitted 0.95 1.00 0.95 1.00 1.00 0.95	Lane Util. Factor	1.00	0.95		1.00	1.00	1.00	1.00	0.95		1.00	0.95	
Satd. Flow (prot) 1770 3153 1770 1863 1583 1770 3512 1770 3314 FIF Permitted 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.92 0.	Frt	1.00	0.89		1.00	1.00	0.85	1.00	0.99		1.00	0.94	
Fit Permitted 0.95 1.00 0.95 1.00 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 3.00 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0	Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd, Flow (perm) 1770 3153 1770 1863 1583 1770 3512 1770 3314 Peak-hour factor, PHF 0.92 0.91 0.92 0.92 0.91 0.92 0.92	Satd. Flow (prot)	1770	3153		1770	1863	1583	1770	3512		1770	3314	
Peak-hour factor, PHF 0.92	Flt Permitted	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Adj. Flow (vph)	Satd. Flow (perm)	1770	3153		1770	1863	1583	1770	3512		1770	3314	
RTOR Reduction (vph)	Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
RTOR Reduction (vph)	Adj. Flow (vph)	46	9	24	7	12	25	64	255	14	30	155	114
Turn Type		0	22	0	0	0	23	0	2	0	0	64	0
Protected Phases 7 4 3 8 5 2 1 6 Permitted Phases 8 Actuated Green, G (s) 2.1 5.5 1.4 4.8 4.8 4.8 28.3 0.7 24.2 Effective Green, g (s) 2.1 5.5 1.4 4.8 4.8 4.8 28.3 0.7 24.2 Actuated g/C Ratio 0.04 0.10 0.03 0.09 0.09 0.09 0.52 0.01 0.44 Clearance Time (s) 4.8 6.0 4.8 6.0 6.0 3.5 4.6 3.5 4.6 3.5 4.6 Vehicle Extension (s) 2.0 3.5 3.0 3.5 3.5 2.0 3.0 2.0 3.0 Lane Grp Cap (vph) 67 316 45 163 138 155 1813 22 1463 v/s Ratio Prot c0.03 0.00 c0.00 c0.01 c0.04 c0.08 c0.02 0.06 v/s Ratio Perm 0.00 v/c Ratio Perm 0.00 v/c Ratio Perm 0.00 v/c Ratio Perm 0.00 v/c Ratio Perm 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Lane Group Flow (vph)	46	11	0	. 7	12	2	64	267	0	30	205	0
Protected Phases 7 4 3 8 5 2 1 6 Permitted Phases 8 Actuated Green, G (s) 2.1 5.5 1.4 4.8 4.8 4.8 28.3 0.7 24.2 Effective Green, g (s) 2.1 5.5 1.4 4.8 4.8 4.8 28.3 0.7 24.2 Effective Green, g (s) 2.1 5.5 1.4 4.8 4.8 4.8 28.3 0.7 24.2 Actuated g/C Ratio 0.04 0.10 0.03 0.09 0.09 0.09 0.52 0.01 0.44 Clearance Time (s) 4.8 6.0 4.8 6.0 6.0 3.5 4.6 3.5 4.6 3.5 4.6 Vehicle Extension (s) 2.0 3.5 3.0 3.5 3.5 2.0 3.0 2.0 3.0 Lane Grp Cap (vph) 67 316 45 163 138 155 1813 22 1463 v/s Ratio Prot c0.03 0.00 c0.00 c0.01 c0.04 c0.08 c0.02 0.06 v/s Ratio Perm 0.00 to 0.00 c0.01 c0.04 c0.08 c0.02 0.06 to 0.00 c0.01 c0.04 c0.08 c0.02 0.06 c/s Ratio Perm 0.00 to 0.00 c0.01 c0.04 c0.08 c0.02 0.06 c/s Ratio Perm 0.00 to 0.00 c0.00 c0.01 c0.04 c0.08 c0.02 0.06 c/s Ratio Perm 0.00 to 0.00 c0.00 c0.01 c0.04 c0.08 c0.02 0.06 c/s Ratio Perm 0.00 to 0.00 c0.01 c0.04 c0.08 c0.02 0.06 c/s Ratio Perm 0.00 to 0.00 c0.01 c0.04 c0.08 c0.02 0.06 c/s Ratio Perm 0.00 to 0.00 c0.01 c0.04 c0.08 c0.02 0.06 c/s Ratio Perm 0.00 to 0.00 c0.01 c0.04 c0.08 c0.02 0.06 c/s Ratio Perm 0.00 to	Turn Type	Prot	NA		Prot	NA	Perm	Prot	NA		Prot	NA	
Permitted Phases Actuated Green, G (s)								5					
Actuated Green, G (s) 2.1 5.5 1.4 4.8 4.8 4.8 28.3 0.7 24.2 Effective Green, g (s) 2.1 5.5 1.4 4.8 4.8 4.8 28.3 0.7 24.2 Actuated g/C Ratio 0.04 0.10 0.03 0.09 0.09 0.09 0.09 0.52 0.01 0.44 Clearance Time (s) 4.8 6.0 4.8 6.0 6.0 3.5 4.6 3.5 4.6 Vehicle Extension (s) 2.0 3.5 3.0 3.5 3.5 2.0 3.0 2.0 3.0 Lane Grp Cap (vph) 67 316 45 163 138 155 1813 22 1463 V/s Ratio Prot c0.03 0.00 c0.00 c0.01 c0.04 c0.08 c0.02 0.06 V/s Ratio Perm V/c Ratio Perm V/c Ratio Delay, d1 26.0 22.3 26.1 23.0 22.8 23.7 6.9 27.0 9.1 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Permitted Phases						8						
Effective Green, g (s) 2.1 5.5 1.4 4.8 4.8 4.8 28.3 0.7 24.2 Actuated g/C Ratio 0.04 0.10 0.03 0.09 0.09 0.09 0.52 0.01 0.44 Clearance Time (s) 4.8 6.0 4.8 6.0 6.0 3.5 4.6 3.5 4.6 Vehicle Extension (s) 2.0 3.5 3.0 3.5 3.5 2.0 3.0 2.0 3.0 Lane Grp Cap (vph) 67 316 45 163 138 155 1813 22 1463 v/s Ratio Prot c0.03 0.00 c0.00 c0.01 c0.04 c0.08 c0.02 0.06 v/s Ratio Perm 0.00 v/c Ratio 0.69 0.04 0.16 0.07 0.02 0.41 0.15 1.36 0.14 Uniform Delay, d1 26.0 22.3 26.1 23.0 22.8 23.7 6.9 27.0 9.1 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0		2.1	5.5		1.4	4.8	4.8	4.8	28.3		0.7	24.2	
Actuated g/C Ratio 0.04 0.10 0.03 0.09 0.09 0.09 0.52 0.01 0.44 Clearance Time (s) 4.8 6.0 4.8 6.0 6.0 3.5 4.6 3.5 4.6 Vehicle Extension (s) 2.0 3.5 3.0 3.5 3.5 2.0 3.0 2.0 3.0 Lane Grp Cap (vph) 67 316 45 163 138 155 1813 22 1463 v/s Ratio Prot c0.03 0.00 c0.00 c0.01 c0.04 c0.08 c0.02 0.06 v/s Ratio Perm 0.00 v/c Ratio Perm 0.00 v/c Ratio 0.69 0.04 0.16 0.07 0.02 0.41 0.15 1.36 0.14 Uniform Delay, d1 26.0 22.3 26.1 23.0 22.8 23.7 6.9 27.0 9.1 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0			5.5		1.4	4.8	4.8	4.8	28.3		0.7	24.2	
Clearance Time (s)		0.04	0.10		0.03	0.09	0.09	0.09	0.52		0.01	0.44	
Lane Grp Cap (vph) 67 316 45 163 138 155 1813 22 1463 v/s Ratio Prot co.03 0.00 co.00 co.01 co.04 co.08 co.02 0.06 v/s Ratio Perm		4.8	6.0		4.8	6.0	6.0	3.5	4.6		3.5	4.6	
v/s Ratio Prot c0.03 0.00 c0.00 c0.01 c0.04 c0.08 c0.02 0.06 v/s Ratio Perm 0.00 v/s Ratio 0.69 0.04 0.16 0.07 0.02 0.41 0.15 1.36 0.14 Uniform Delay, d1 26.0 22.3 26.1 23.0 22.8 23.7 6.9 27.0 9.1 Progression Factor 1.00	Vehicle Extension (s)	2.0	3.5		3.0	3.5	3.5	2.0	3.0		2.0	3.0	
v/s Ratio Prot c0.03 0.00 c0.00 c0.01 c0.04 c0.08 c0.02 0.06 v/s Ratio Perm 0.00 v/c Ratio 0.69 0.04 0.16 0.07 0.02 0.41 0.15 1.36 0.14 Uniform Delay, d1 26.0 22.3 26.1 23.0 22.8 23.7 6.9 27.0 9.1 Progression Factor 1.00	Lane Grp Cap (vph)	67	316		45	163	138	155	1813		22	1463	
v/c Ratio 0.00 v/c Ratio 0.69 0.04 0.16 0.07 0.02 0.41 0.15 1.36 0.14 Uniform Delay, d1 26.0 22.3 26.1 23.0 22.8 23.7 6.9 27.0 9.1 Progression Factor 1.00 2.00 2.00 2.00 2.00 2.0		c0.03			c0.00	c0.01		c0.04				0.06	
Uniform Delay, d1 26.0 22.3 26.1 23.0 22.8 23.7 6.9 27.0 9.1 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	v/s Ratio Perm						0.00						
Progression Factor 1.00 20.0 20.2 24.3 7.0 320.4 0.0 20.2 24.3 7.0 347.4 9.2 22.9 24.3 7.0 347.4 9.2 22.9 24.3 7.0 347.4 9.2 22.0 23.7 10.3 43.1	v/c Ratio	0.69	0.04		0.16	0.07	0.02	0.41	0.15		1.36	0.14	
Incremental Delay, d2	Uniform Delay, d1	26.0	22.3		26.1	23.0	22.8	23.7	6.9		27.0	9.1	
Incremental Delay, d2	Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Delay (s) 46.8 22.3 27.7 23.2 22.9 24.3 7.0 347.4 9.2 Level of Service D C C C C A F A Approach Delay (s) 36.5 23.7 10.3 43.1 Approach LOS D C B D Intersection Summary HCM 2000 Control Delay 26.8 HCM 2000 Level of Service C HCM 2000 Volume to Capacity ratio 0.22 Actuated Cycle Length (s) 54.8 Sum of lost time (s) 18.9		20.7	0.1		1.6	0.2	0.1	0.7	0.0		320.4	0.0	
Level of Service D C C C C C C A F A Approach Delay (s) 36.5 23.7 10.3 43.1 Approach LOS D C B D Intersection Summary B D D HCM 2000 Control Delay 26.8 HCM 2000 Level of Service C HCM 2000 Volume to Capacity ratio 0.22 C Actuated Cycle Length (s) 54.8 Sum of lost time (s) 18.9		46.8	22.3		27.7	23.2	22.9	24.3	7.0		347.4	9.2	
Approach LOS D C B D Intersection Summary HCM 2000 Control Delay 26.8 HCM 2000 Level of Service C HCM 2000 Volume to Capacity ratio 0.22 Actuated Cycle Length (s) 54.8 Sum of lost time (s) 18.9	*	D	С		С	С	С	С	Α		F	Α	
Intersection Summary HCM 2000 Control Delay 26.8 HCM 2000 Level of Service C HCM 2000 Volume to Capacity ratio 0.22 Actuated Cycle Length (s) 54.8 Sum of lost time (s) 18.9	Approach Delay (s)		36.5			23.7			10.3			43.1	
HCM 2000 Control Delay 26.8 HCM 2000 Level of Service C HCM 2000 Volume to Capacity ratio 0.22 Actuated Cycle Length (s) 54.8 Sum of lost time (s) 18.9	Approach LOS		D			С			В			D	
HCM 2000 Volume to Capacity ratio 0.22 Actuated Cycle Length (s) 54.8 Sum of lost time (s) 18.9		1											
Actuated Cycle Length (s) 54.8 Sum of lost time (s) 18.9					H	CM 2000	Level of S	Service		С			
, , , , , , , , , , , , , , , , , , , ,		city ratio											
the second of Compaths I little at least on the Compaths of Compat										18.9			
	ntersection Capacity Utiliza	ntion		31.8%	IC	U Level o	of Service			Α			
Analysis Period (min) 15				15									
Critical Lane Group	Critical Lane Group												

OYP1-2AM.syn

Configurations e (vph) 78 6 9 11 35 64 238 23 91 ype Prot NA Prot NA Prot NA Perm Prot NA NA So 1 6 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.		•	\rightarrow	1	+	*	1	†	1	Ţ	
e (vph) 78 6 9 11 35 64 238 23 91 Type Prot NA Prot NA Perm Prot NA Prot NA ted Phases 7 4 3 8 5 2 1 6 Thase Phase Im Initial (s) 4.0 4.0 6.0 6.0 6.0 4.0 4.0 4.0 4.0 Im Split (s) 8.8 30.0 10.8 36.0 36.0 7.5 8.6 7.5 36.6 Split (s) 19.0 41.0 15.0 37.0 37.0 23.0 55.0 16.0 48.0 Split (%) 15.0% 32.3% 11.8% 29.1% 29.1% 18.1% 43.3% 12.6% 37.8% Time (s) 4.3 5.0 4.3 5.0 5.0 3.0 3.6 3.0 3.6 Id Time (s) 0.5 1.0 0.5 1.0 1.0 0.5 1.0 me Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ost Time (s) 4.8 6.0 4.8 6.0 6.0 3.5 4.6 3.5 4.6 ag Lead Lead Lag Lag Lag Lag Lead Lag Lead Lag ag Optimize? Yes	Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
e (vph) 78 6 9 11 35 64 238 23 91 Type Prot NA Prot NA Perm Prot NA Prot NA ted Phases 7 4 3 8 5 2 1 6 Thase Phase Im Initial (s) 4.0 4.0 6.0 6.0 6.0 4.0 4.0 4.0 4.0 Im Split (s) 8.8 30.0 10.8 36.0 36.0 7.5 8.6 7.5 36.6 Split (s) 19.0 41.0 15.0 37.0 37.0 23.0 55.0 16.0 48.0 Split (%) 15.0% 32.3% 11.8% 29.1% 29.1% 18.1% 43.3% 12.6% 37.8% Time (s) 4.3 5.0 4.3 5.0 5.0 3.0 3.6 3.0 3.6 Id Time (s) 0.5 1.0 0.5 1.0 1.0 0.5 1.0 me Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ost Time (s) 4.8 6.0 4.8 6.0 6.0 3.5 4.6 3.5 4.6 ag Lead Lead Lag Lag Lag Lag Lead Lag Lead Lag ag Optimize? Yes	Lane Configurations	M	44	N	†	7	F	41	N.	43	
ted Phases 7 4 3 8 5 2 1 6 ted Phases 8 or Phase 7 4 3 8 8 5 2 1 6 Phase um Initial (s) 4.0 4.0 6.0 6.0 6.0 4.0 4.0 4.0 4.0 um Split (s) 8.8 30.0 10.8 36.0 36.0 7.5 8.6 7.5 36.6 Split (s) 19.0 41.0 15.0 37.0 37.0 23.0 55.0 16.0 48.0 Split (%) 15.0% 32.3% 11.8% 29.1% 29.1% 18.1% 43.3% 12.6% 37.8% Time (s) 4.3 5.0 4.3 5.0 5.0 3.0 3.6 3.0 3.6 d Time (s) 0.5 1.0 0.5 1.0 1.0 0.5 1.0 0.5 1.0 me Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ost Time (s) 4.8 6.0 4.8 6.0 6.0 3.5 4.6 3.5 4.6 ag Lead Lead Lag Lag Lag Lead Lag Lead Lag ag Optimize? Yes	Volume (vph)			9	11	35	64		-		
ted Phases or Phase 7	Turn Type	Prot	NA	Prot	NA	Perm	Prot	NA	Prot	NA	
Phase um Initial (s)	rotected Phases	7	4	3	8		5	2	1	6	
Phase um Initial (s)	Permitted Phases					8					
Jum Initial (s) 4.0 4.0 6.0 6.0 6.0 4.0 5.0 5.0 36.0 7.5 36.6 36.6 36.0 36.0 37.0 23.0 55.0 16.0 48.0 48.0 37.8% 48.0 43.3% 12.6% 37.8% 37.8% 37.8% 37.8% 37.8% 37.0 30.0 3.6 3.0 3.6 30.0 3.6 30.0 3.6 30.0 3.6 30.0 3.0 3.0 3.6	etector Phase	7	4	3	8	8	5	2	1	6	
sum Split (s) 8.8 30.0 10.8 36.0 36.0 7.5 8.6 7.5 36.6 Split (s) 19.0 41.0 15.0 37.0 37.0 23.0 55.0 16.0 48.0 Split (%) 15.0% 32.3% 11.8% 29.1% 29.1% 18.1% 43.3% 12.6% 37.8% Time (s) 4.3 5.0 4.3 5.0 5.0 3.0 3.6 3.0 3.6 d Time (s) 0.5 1.0 0.5 1.0 1.0 0.5 1.0 0.5 1.0 Image: Time (s) 0.0 <th< td=""><td>witch Phase</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	witch Phase										
Split (s) 19.0 41.0 15.0 37.0 23.0 55.0 16.0 48.0 Split (%) 15.0% 32.3% 11.8% 29.1% 29.1% 18.1% 43.3% 12.6% 37.8% Time (s) 4.3 5.0 4.3 5.0 3.0 3.6 3.0 3.6 d Time (s) 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 me Adjust (s) 0.0 <	inimum Initial (s)	4.0	4.0	6.0	6.0	6.0	4.0	4.0	4.0	4.0	
Split (%) 15.0% 32.3% 11.8% 29.1% 29.1% 18.1% 43.3% 12.6% 37.8% Time (s) 4.3 5.0 4.3 5.0 5.0 3.0 3.6 3.0 3.6 d Time (s) 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 me Adjust (s) 0.0	inimum Split (s)	8.8	30.0	10.8	36.0	36.0	7.5	8.6	7.5	36.6	
Time (s) 4.3 5.0 4.3 5.0 5.0 3.0 3.6 3.0 3.6 d Time (s) 0.5 1.0 0.5 1.0 1.0 0.5 1.0 0.5 1.0 me Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ost Time (s) 4.8 6.0 4.8 6.0 6.0 3.5 4.6 3.5 4.6 ag Lead Lead Lag Lag Lag Lead Lag Lead Lag ag Optimize? Yes Yes Yes Yes Yes Yes Yes Yes Yes	otal Split (s)	19.0	41.0	15.0	37.0	37.0	23.0	55.0	16.0	48.0	
d Time (s) 0.5 1.0 0.5 1.0 1.0 0.5 1.0 0.5 1.0 me Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	otal Split (%)	15.0%	32.3%	11.8%	29.1%	29.1%	18.1%	43.3%	12.6%	37.8%	
me Adjust (s) 0.0	ellow Time (s)	4.3	5.0	4.3	5.0	5.0	3.0	3.6	3.0	3.6	
ost Time (s) 4.8 6.0 4.8 6.0 6.0 3.5 4.6 3.5 4.6 ag Lead Lead Lag Lag Lead Lag Lead Lag ag Optimize? Yes Yes Yes Yes Yes Yes Yes Yes	II-Red Time (s)	0.5	1.0	0.5	1.0	1.0	0.5	1.0	0.5	1.0	
ag Lead Lead Lag Lag Lead Lag Lead Lag ag Optimize? Yes Yes Yes Yes Yes Yes Yes	ost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
ag Optimize? Yes Yes Yes Yes Yes Yes Yes Yes	otal Lost Time (s)	4.8	6.0	4.8	6.0	6.0	3.5	4.6	3.5	4.6	
	ead/Lag	Lead	Lead	Lag	Lag	Lag	Lead	Lag	Lead	Lag	
Mode None None None None Min None Min	ad-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
	ecall Mode	None	None	None	None	None	None	Min	None	Min	

Intersection Summary

Cycle Length: 127

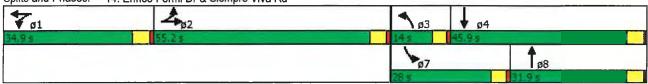
Actuated Cycle Length: 49.8

Natural Cycle: 90

Control Type: Actuated-Uncoordinated

	۶	→	*	1	←	4	1	†	~	-	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	^		M	4	7	7	A		16	1	
Volume (vph)	78	6	17	9	11	35	64	238	19	23	91	102
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.8	6.0		4.8	6.0	6.0	3.5	4.6		3.5	4.6	
Lane Util. Factor	1.00	0.95		1.00	1.00	1.00	1.00	0.95		1.00	0.95	
Frt	1.00	0.89		1.00	1.00	0.85	1.00	0.99		1.00	0.92	
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1770	3157		1770	1863	1583	1770	3499		1770	3259	
Flt Permitted	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (perm)	1770	3157		1770	1863	1583	1770	3499		1770	3259	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	85	7	18	10	12	38	70	259	21	25	99	111
RTOR Reduction (vph)	0	15	0	0	0	33	0	4	0	0	66	0
Lane Group Flow (vph)	85	10	0	10	12	5	70	276	0	25	144	0
Turn Type	Prot	NA		Prot	NA	Perm	Prot	NA		Prot	NA	
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases						8						
Actuated Green, G (s)	4.3	10.1		1.8	7.6	7.6	4.0	27.1		0.8	23.9	
Effective Green, g (s)	4.3	10.1		1.8	7.6	7.6	4.0	27.1		0.8	23.9	
Actuated g/C Ratio	0.07	0.17		0.03	0.13	0.13	0.07	0.46		0.01	0.41	
Clearance Time (s)	4.8	6.0		4.8	6.0	6.0	3.5	4.6		3.5	4.6	
Vehicle Extension (s)	2.0	3.5		3.0	3.5	3.5	2.0	3.0		2.0	3.0	
Lane Grp Cap (vph)	129	543		54	241	204	120	1615		24	1326	
v/s Ratio Prot	c0.05	0.00		c0.01	c0.01		c0.04	c0.08		0.01	0.04	
v/s Ratio Perm						0.00						
v/c Ratio	0.66	0.02		0.19	0.05	0.02	0.58	0.17		1.04	0.11	
Uniform Delay, d1	26.5	20.2		27.7	22.4	22.3	26.5	9.2		29.0	10.8	
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	8.9	0.0		1.7	0.1	0.1	4.6	0.1		197.1	0.0	
Delay (s)	35.4	20.2		29.4	22.5	22.4	31.1	9.3		226.1	10.8	
Level of Service	D	С		С	С	С	С	Α		F	В	
Approach Delay (s)		31.9			23.6			13.7			33.7	
Approach LOS		С			С			В			С	
Intersection Summary												
HCM 2000 Control Delay			23.4	H	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capa	city ratio		0.23									
Actuated Cycle Length (s)			58.7		um of lost	, ,			18.9			
Intersection Capacity Utiliza	ntion		33.7%	IC	U Level c	of Service			Α			
Analysis Period (min)			15									
c Critical Lane Group												

OYP1-2PM.syn


	•	-	1	-	1	†	-	↓	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	MA	þ	M	44	*	朴	Ť	41	
Volume (vph)	54	8	8	20	67	230	25	92	
Turn Type	Split	NA	Split	NA	Prot	NA	Prot	NA	
Protected Phases	2	2	1	1	3	8	7	4	
Permitted Phases									
Detector Phase	2	2	1	1	3	8	7	4	
Switch Phase									
Minimum Initial (s)	10.0	10.0	10.0	10.0	4.0	10.0	4.0	10.0	
Minimum Split (s)	31.9	31.9	34.9	34.9	8.5	31.9	8.5	31.9	
Total Split (s)	55.2	55.2	34.9	34.9	14.0	31.9	28.0	45.9	
Total Split (%)	36.8%	36.8%	23.3%	23.3%	9.3%	21.3%	18.7%	30.6%	
Yellow Time (s)	3.9	3.9	3.9	3.9	3.4	3.9	3.4	3.9	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.9	4.9	4.9	4.9	4.4	4.9	4.4	4.9	
Lead/Lag	Lag	Lag	Lead	Lead	Lead	Lag	Lead	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	Max	None	Max	

Intersection Summary

Cycle Length: 150 Actuated Cycle Length: 90.7 Natural Cycle: 110

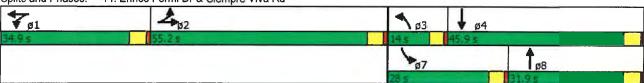
Control Type: Actuated-Uncoordinated

Splits and Phases: 14: Enrico Fermi Dr & Siempre Viva Rd

,	•	-	•	1	—	4	4	†	-	-	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	Mal	f a		7	44		N.	44		ሻ	1	
Volume (vph)	54	8	21	8	20	26	67	230	4	25	92	36
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.9	4.9		4.9	4.9		4.4	4.9		4.4	4.9	
Lane Util. Factor	0.97	1.00		1.00	0.95		1.00	0.95		1.00	0.95	
Frt	1.00	0.89		1.00	0.92		1.00	1.00		1.00	0.96	
Fit Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	3433	1662		1770	3242		1770	3531		1770	3390	
Flt Permitted	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (perm)	3433	1662		1770	3242		1770	3531		1770	3390	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	59	9	23	9	22	28	73	250	4	27	100	39
RTOR Reduction (vph)	0	21	0	0	25	0	0	0	0	0	18	0
Lane Group Flow (vph)	59	11	0	9	25	0	73	254	0	27	121	0
Turn Type	Split	NA		Split	NA		Prot	NA		Prot	NA	
Protected Phases	2	2		1	1		3	8		7	4	
Permitted Phases												
Actuated Green, G (s)	10.1	10.1		10.4	10.4		6.5	53.5		2.5	49.5	
Effective Green, g (s)	10.1	10.1		10.4	10.4		6.5	53.5		2.5	49.5	
Actuated g/C Ratio	0.11	0.11		0.11	0.11		0.07	0.56		0.03	0.52	
Clearance Time (s)	4.9	4.9		4.9	4.9		4.4	4.9		4.4	4.9	
Vehicle Extension (s)	6.2	6.2		5.4	5.4		2.0	2.5		2.0	5.9	
Lane Grp Cap (vph)	362	175	·····	192	352		120	1976	-	46	1755	
v/s Ratio Prot	c0.02	0.01		0.01	c0.01		c0.04	c0.07		0.02	0.04	
v/s Ratio Perm												
v/c Ratio	0.16	0.07		0.05	0.07		0.61	0.13		0.59	0.07	
Uniform Delay, d1	38.9	38.5		38.2	38.3		43.3	10.0		46.0	11.5	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	0.6	0.5		0.2	0.2		5.9	0.1		11.7	0.1	
Delay (s)	39.5	39.0		38.4	38.5		49.2	10.1		57.8	11.6	
Level of Service	D	D		D	D		D	В		Е	В	
Approach Delay (s)		39.3			38.5			18.8			19.1	
Approach LOS		D			D			В			В	
Intersection Summary												
HCM 2000 Control Delay			23.6	Н	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capa	city ratio		0.16									
Actuated Cycle Length (s)			95.6	Si	um of lost	time (s)			19.1			
Intersection Capacity Utiliza	ation		32.2%		U Level o				Α			
Analysis Period (min)			15									
c Critical Lane Group												

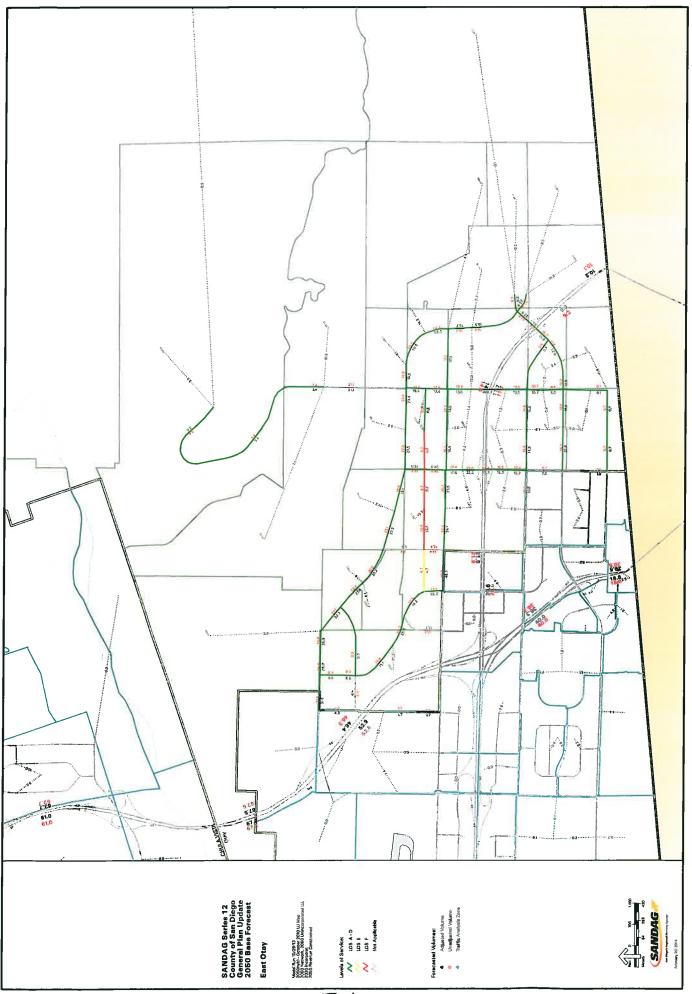
OYP1-2AM.syn

	•	\rightarrow	1	—	1	†	1	↓	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	44	f)	19	44	1	1	M	1	
Volume (vph)	50	4	10	21	111	249	10	57	
Turn Type	Split	NA	Split	NA	Prot	NA	Prot	NA	
Protected Phases	2	2	1	1	3	8	7	4	
Permitted Phases									
Detector Phase	2	2	1	1	3	8	7	4	
Switch Phase									
linimum Initial (s)	10.0	10.0	10.0	10.0	4.0	10.0	4.0	10.0	
finimum Split (s)	31.9	31.9	34.9	34.9	8.5	31.9	8.5	31.9	
otal Split (s)	55.2	55.2	34.9	34.9	14.0	31.9	28.0	45.9	
otal Split (%)	36.8%	36.8%	23.3%	23.3%	9.3%	21.3%	18.7%	30.6%	
ellow Time (s)	3.9	3.9	3.9	3.9	3.4	3.9	3.4	3.9	
II-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
ost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
otal Lost Time (s)	4.9	4.9	4.9	4.9	4.4	4.9	4.4	4.9	
ead/Lag	Lag	Lag	Lead	Lead	Lead	Lag	Lead	Lag	
ead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	Max	None	Max	


Intersection Summary

Cycle Length: 150 Actuated Cycle Length: 94.2

Natural Cycle: 110


Control Type: Actuated-Uncoordinated

Splits and Phases: 14: Enrico Fermi Dr & Siempre Viva Rd

	۶	→	•	•	←	*	4	†	~	1	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	44	P		M	47		7	44		N.	ት ጉ	
Volume (vph)	50	4	12	10	21	24	111	249	0	10	57	44
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.9	4.9		4.9	4.9		4.4	4.9		4.4	4.9	
Lane Util. Factor	0.97	1.00		1.00	0.95		1.00	0.95		1.00	0.95	
Frt	1.00	0.89		1.00	0.92		1.00	1.00		1.00	0.93	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	3433	1649		1770	3258		1770	3539		1770	3308	
Flt Permitted	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (perm)	3433	1649		1770	3258		1770	3539		1770	3308	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	54	4	13	11	23	26	121	271	0	11	62	48
RTOR Reduction (vph)	0	12	0	0	23	0	0	0	0	0	24	0
Lane Group Flow (vph)	54	5	0	11	26	0	121	271	0	11	86	0
Turn Type	Split	NA		Split	NA		Prot	NA		Prot	NA	
Protected Phases	2	2		1	1		3	8		7	4	
Permitted Phases												
Actuated Green, G (s)	10.4	10.4		10.8	10.8		9.9	58.8		1.0	49.9	
Effective Green, g (s)	10.4	10.4		10.8	10.8		9.9	58.8		1.0	49.9	
Actuated g/C Ratio	0.10	0.10		0.11	0.11		0.10	0.59		0.01	0.50	
Clearance Time (s)	4.9	4.9		4.9	4.9		4.4	4.9		4.4	4.9	
Vehicle Extension (s)	6.2	6.2		5.4	5.4		2.0	2.5		2.0	5.9	
Lane Grp Cap (vph)	356	171		190	351		175	2078		17	1649	
v/s Ratio Prot	c0.02	0.00		0.01	c0.01		c0.07	c0.08		0.01	0.03	
v/s Ratio Perm												
v/c Ratio	0.15	0.03		0.06	0.07		0.69	0.13		0.65	0.05	
Uniform Delay, d1	40.8	40.3		40.1	40.2		43.6	9.2		49.4	12.9	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
ncremental Delay, d2	0.6	0.2		0.3	0.2		9.1	0.1		49.2	0.1	
Delay (s)	41.4	40.5		40.4	40.4		52.7	9.4		98.6	13.0	
_evel of Service	D	D		D	D		D	Α		F	В	
Approach Delay (s)		41.2			40.4			22.8			20.8	
Approach LOS		D			D			С			С	
ntersection Summary												
HCM 2000 Control Delay			26.1	Н	CM 2000 I	evel of S	Service		С			
-ICM 2000 Volume to Capa	city ratio		0.20									
Actuated Cycle Length (s)			100.1	Sı	m of lost	time (s)			19.1			
ntersection Capacity Utiliza	tion		29.3%	IC	U Level of	Service			Α			
Analysis Period (min)			15									
Critical Lane Group												

ADDENDER	
APPENDIX E	
APPENDIX E ➤ SANDAG Series 12 Base Forecast Model for Otay Mesa 2050	

E-1