This page intentionally left blank
Table of Contents

1. Introduction ...1

1.1. Background ...1
1.2. Purpose ...2
1.3. Objectives ...3
1.4. CEQA vs. Non-CEQA Transportation Analysis ...3
1.5. Process Overview ..5

2. Transportation Study Initiation ..8

2.1. Types of Transportation Studies ...8
2.2. Transportation Study Screening Criteria ..8
2.3. Completing the Scoping Agreement Form ..10
2.4. Submittal Instructions ...11

3. CEQA Requirements for Transportation VMT ..13

3.1. Overview ..13
3.2. Metrics and Methodology for Calculating VMT ..14
3.3. VMT Analysis for Land Use Projects ..17
 3.3.1. Screening Criteria for CEQA VMT Analysis ..17
 3.3.2. VMT Thresholds of Significance ..19
 3.3.3. VMT Analysis Procedures ...20
3.4. VMT Analysis for Transportation Projects ...22
3.5. VMT Reduction and Mitigation Measures ..22
3.6. Cumulative VMT Impacts ...23

4. Local Mobility Analysis ..25

4.1. Local Mobility Analysis Overview ..25
4.2. LMA and General Plan Consistency ...25
4.3. Determining Study Requirements ..26
 4.3.1. Screening Criteria ..26
4.4. Analysis Requirements ..28
 4.4.1. Study Area ..28
 4.4.2. Site Access and Circulation Evaluation Criteria ...29
 4.4.3. Data Collection and Study Periods ..29
 4.4.4. Other Data Collection Considerations ..30
 4.4.5. Study Scenarios ..31
 4.4.6. Trip Generation ..31
 4.4.7. Trip Reductions ..32
 4.4.8. Trip Distribution ..32
4.5. LMA Methodology ..35
 4.5.1. Signalized Intersections Methodology ..35
 4.5.2. Unsignalized Intersections Methodology ..37
 4.5.3. Intersection Control Evaluation (ICE) ..38
 4.5.4. Roadway Segments Methodology ..39
 4.5.5. Site Access, Safety, and Other Analyses ...39
Tables
Table 1 – CEQA VMT Screening .. 8
Table 2 – Type of LMA by Daily Project Trips .. 9
Table 3 – Trip Distances Outside San Diego County for Entering and Exiting Trips 16
Table 4 - Determining Local Mobility Analysis Type ... 26
Table 5 - Extent of Study for Vehicle (Intersection) Analysis ... 28
Table 6 - Signalized Intersections Parameters .. 35
Table 7 - Safety Treatments by Facility Type ... 40

Figures
Figure 1 – Scoping Framework for Transportation Studies ... 6
Figure 2 – Transportation Study Process Overview (Project Planning Review) 12
Figure 3 - Determining Local Mobility Analysis Type ... 27
Figure 4 - Project Trip Generation Flow Chart ... 34

Appendices
Appendix A – Scoping Agreement for Transportation Studies
Appendix B – Transportation Study Format
Appendix C – VMT Efficient Areas Screening Map Options
Appendix D – Project Types Grouped by Land Use Category
Appendix E – Transportation Projects That Do Not Require VMT Analysis
Appendix F – Justification/Rationale for Screening Criteria and Threshold Justification
Appendix G – County General Plan Goals and Climate Action Plan Strategies Related to Transportation
List of Abbreviated Terms

ATP Active Transportation Plan
Caltrans California Department of Transportation
CAPCOA California Air Pollution Control Officers Association
CEQA California Environmental Quality Act
County County of San Diego
CSTDM California Statewide Travel Demand Model
CTMP Community Trails Master Plan
DER Design Exception Request
DOT Department of Transportation
DPW Department of Public Works
EIR Environmental Impact Report
FHWA Federal Highway Administration
FLMA Focused Local Mobility Analysis
GHG greenhouse gas
GPA General Plan Amendment
HCM Highway Capacity Manual
ICE intersection control evaluation
ITE Institute of Transportation Engineers
IX internal-to-external
LMA Local Mobility Analysis
LOS Level of Service
MTS Metropolitan Transit System
MUTCD Manual on Uniform Traffic Control Devices
MXD mixed-use development
NCTD North County Transit District
O-D origin-destination
OPR Governor’s Office of Planning and Research
PCE passenger car equivalent
PDS County Planning & Development Services
PHF peak hour factor
RTP Regional Transportation Plan
SANDAG San Diego Association of Governments
SB senate bill
SCS Sustainable Communities Strategy
TAZ transportation analysis zone
TDM transportation demand management
TSG Transportation Study Guidelines
TSM transportation system management
XI external-to-internal
XX external-to-external
Definitions

Average Daily Traffic - The average 24-hour traffic volume at a given location.

Active Transportation Plan - The County’s Active Transportation Plan (2018) supports efforts to promote active transportation through pedestrian and bicycle improvements in the unincorporated county.

Capacity - The maximum sustainable hourly flow rate at which persons or vehicles reasonably can be expected to traverse a point or a uniform section of a lane or roadway during a given time period under prevailing roadway, environmental, traffic, and control conditions.

Climate Action Plan - The County’s Climate Action Plan sets forth strategies and measures to reduce greenhouse gas emissions in the county’s unincorporated areas and from County operations.

California Environmental Quality Act - The California Environmental Quality Act requires state and local government agencies to inform decision makers and the public about the potential environmental impacts of proposed projects, and to reduce those environmental impacts to the extent feasible.

Community Trails Master Plan - The County Trails Program facilitates the development of a system of interconnected regional and community trails and pathways.

Greenhouse Gas - Greenhouse gases are those gases in the atmosphere that have an influence on the earth’s energy balance by trapping heat.

General Plan Amendment - General Plan Amendments are required for development projects with a land use or density that is not permitted by the General Plan.

Induced Travel - Induced travel or the VMT attributable to a transportation capacity increase is the increased amount of vehicle travel that is caused by the highway capacity increase.

Local Mobility Analysis – An evaluation that takes place outside of CEQA to assess the effects of a proposed development project on traffic operations and safety for the roadway network in the proximate area of the project.

Level of Service – Level of Service is used to analyze roadways and intersections by categorizing traffic flow and assigning quality levels of traffic based on delay or density.

Regional Transportation Plan – The RTP is produced by SANDAG and serves as the blueprint for a regional transportation system that further enhances our quality of life, promotes sustainability, and offers more mobility options for people and goods.

Transportation Analysis Zone – TAZs are units of geography used in the Travel Demand Model and contain critical information; such as, the number of automobiles per household, household income, and employment that is utilized to further understand of trips that are produced and attracted within the zone.

Transportation Demand Management – Various strategies that result in more efficient use of transportation resources with the goal of reducing VMT.

Travel Demand Model - A travel demand model is any relatively complex computerized set of procedures for predicting future trip making as a function of land use, demographics, travel costs, the road system, and the transit system.

Vehicle Miles Traveled - The number of miles traveled by motor vehicles on roadways in a given area over a given time period.
1. Introduction

1.1. Background

The County of San Diego previously adopted “Guidelines for Determining Significance and Report Format and Content Requirements for Transportation and Traffic” in 2006, with revisions and modifications approved in 2007, 2009, 2010 and 2011. Revisions and modifications focused primarily on metrics related to vehicle delay through Level of Service (LOS). These Guidelines presented an evaluation of quantitative and qualitative analyses and objective and predictable evaluation criteria and performance measures for determining whether a land development project or a public project like a community plan has a significant traffic impact on the environment pursuant to the State California Environmental Quality Act (CEQA), as well as a determination of the required level of CEQA analysis.

CEQA Changes

Senate Bill 743 (SB 743) was signed into law on September 27, 2013 and changed the way that public agencies evaluate transportation impact under CEQA. A key element of this law is the elimination of using auto delay, LOS, and other similar measures of vehicular capacity or traffic congestion as a basis for determining significant transportation impacts under CEQA. The legislative intent of SB 743 was to “more appropriately balance the needs of congestion management with statewide goals related to infill development, promotion of public health through active transportation, and reduction of greenhouse gas (GHG) emissions.” According to the law, “traffic congestion shall not be considered a significant impact on the environment” within CEQA transportation analysis.

In response, the Governor’s Office of Planning and Research (OPR) updated CEQA Guidelines to establish new criteria for determining the significance of transportation impacts. Based on input from the public, public agencies, and various organizations, OPR recommended that Vehicle Miles Traveled (VMT) be the primary metric for evaluating transportation impacts under CEQA. VMT measures the number of vehicle trips generated and the length or distance of those trips. For instance, if one vehicle drives ten miles from home to the grocery store, that trip generated ten VMT. If three vehicles each drive ten miles to the grocery store, then they collectively generate 30 VMT. VMT is generally expressed as VMT per capita for a typical weekday. Typically, projects that are farther from other complementary land uses, such as jobs and commercial activities and in areas without transit or active transportation infrastructure (bike lanes, sidewalks, etc.) generate more driving than development near complementary land uses with more robust transportation options.

SB 743 does not prevent a city or county from continuing to analyze delay or LOS as part of other plans (i.e., General Plan), studies, congestion management and transportation improvements, but these metrics may no longer constitute the basis for transportation impacts under CEQA analysis as of July 1, 2020. For example, in the County, the General Plan identifies LOS as being a required analysis, and even though it will no longer be a requirement of CEQA, unless the General Plan is amended, LOS will continue to be analyzed as part of project review.
In response to changes in State law, the County has developed a Transportation Study Guide (TSG) to identify requirements for both CEQA VMT analysis and discretionary entitlement non-CEQA Local Mobility Analysis (LMA).

County General Plan Goals and Policies

The County’s General Plan was adopted in August of 2011, before the passage of SB 743. Therefore, the Mobility Element was developed and planned based on the previous LOS requirements under CEQA. In addition to text in the Mobility Element that relates to transportation, there are also related goals in the Land Use, Housing, and Conservation and Open Space elements. For a list of General Plan goals related to transportation and assessing transportation impacts, please see Appendix G.

While SB 743 requires that LOS no longer be used for transportation impact assessments under CEQA, the General Plan contains policy M-2.1, which requires development projects to achieve a LOS “D” or better on all Mobility Element roads. The TSG proposes a methodology to meet the County General Plan requirement for LOS “D”, outside of CEQA. The LMA provides a methodology to identify development-related circulation and access deficiencies, and specific operational, road safety, and adequate transportation infrastructure improvements to maintain LOS “D” with the addition of new projects.

Future actions by the County Board of Supervisors may include changes to the General Plan to complement the standards and methods of analysis contained in this TSG. In particular, changes to the Mobility and Land Use elements will most directly enhance the County’s desired application of both VMT and LOS in transportation planning.

County Climate Action Plan and Active Transportation Plan

The County Climate Action Plan (CAP), adopted in February 2018, and the County Active Transportation Plan (ATP), adopted in October 2018, also support the intent of SB 743. The CAP has two GHG emissions reduction strategies related to VMT. CAP Strategies T-1 and T-2 focus on reducing VMT and shifting towards alternative modes of transportation, focusing density in unincorporated villages, conserving open space and agricultural lands, and implementing infrastructure improvements to provide for active transportation. A transportation demand management (TDM) ordinance, being developed as a measure of the CAP, will be an important tool for non-residential projects to use when mitigating VMT impacts while also reducing GHG emissions. The CAP and ATP identify capital improvements related to pedestrian and bicycle infrastructure improvements that SB 743 mitigations could fund in the future.

1.2. Purpose

The TSG provides criteria on how projects should be evaluated for consistency related to the County’s transportation goals, policies and plans, and through procedures established under CEQA. The TSG establishes the contents and procedures for preparing a Transportation Study in the County of San Diego. The TSG aids in determining appropriate mitigation under CEQA, as well as site specific improvements to the transportation system to accommodate project traffic.
Reasons to perform a transportation study:

- Provide information to the public and decision-makers.
- Implement CEQA and County General Plan policies.
- Provide a method for analyzing the transportation effects of development projects.
- Provide applicants with transportation-related project and site planning recommendations.
- Establish a framework for transportation mitigation measures and project conditions for plans and projects.

1.3. Objectives

The following objectives are intended to provide consistency between local, regional and state policies in forecasting, describing and analyzing the effects of land development on transportation and circulation for all transportation modes and users:

- Provide clear direction to applicants and consultants to better meet expectations, increase the efficiency of the review process, and minimize delays.
- Provide scoping procedures and recommendations for early coordination during the planning/discretionary phases of a land development project.
- Provide guidance in determining when, what type, and how to prepare a Transportation Study.
- Help achieve consistency, uniformity and accuracy in the preparation of a Transportation Study.
- Promote quality assurance in transportation studies by agreeing to the assumptions, data requirements, study scenarios, and analysis methodologies.
- Provide consistency and equity in the identification of measures to mitigate the transportation impacts generated by land development.
- Assist County staff in developing objective recommendations and project conditions of approval as part of the land development discretionary review process.
- Help to ensure that County transportation studies are in conformance with all applicable County, region and state regulations, including legislative requirements as part of CEQA.

1.4. CEQA vs. Non-CEQA Transportation Analysis

The County TSG is a comprehensive manual for both CEQA VMT analysis and discretionary/entitlement non-CEQA LMA. The TSG provides guidance for the two elements of transportation analyses needed to comprehensively assess the potential effects from new development to the County’s roadway and mobility system.
CEQA Transportation Analysis (VMT Analysis)
CEQA requires VMT analysis for compliance with state policies to evaluate a project’s potential impacts related to VMT significance criteria. The VMT analysis will:

- Enable proposed development projects to comply with current CEQA requirements as a result of the implementation of SB 743.
- Outline the County’s VMT significance thresholds, screening criteria, and methodology for conducting the transportation VMT analysis.
- Help determine if mitigation is required to offset a project’s significant VMT impacts.
- Identify VMT reduction measures and strategies to mitigate potential impacts below a level of significance.
- Reduce the need to widen or build roads through effective use of the existing transportation network and maximizing the use of alternative modes of travel throughout the County.

Non-CEQA Transportation Analysis related to General Plan Requirements
Site Access Scoping Review
A Site Access Review is required by the County of San Diego for all projects. A Site Access Review is conducted by County staff and the applicant as part of the Scoping Agreement to confirm safe ingress and egress between the project site and public transportation network. Site access driveways and/or the intersection(s) that provides access to County Public Roads are included in the Scoping Review.

Local Mobility Analysis (LMA)
An LMA is required by the County General Plan to assess transportation effects and ensure orderly development, public safety, adequate infrastructure, and consistency with the General Plan. The LMA analysis will:

- Ensure that the local transportation system is adequate to serve the project and that improvements identified in the General Plan are constructed when needed consistent with the County’s Public Road Standards.
- Address issues related to operations and safety for all transportation modes.
- Ensure consideration and potential conditioning of the County’s Active Transportation Plan for bicycle and pedestrian facilities.
- Identify the necessary operational transportation entitlement conditions for land development projects.
- Outline the County’s screening criteria, study area, and methodologies to assess the potential need for off-site operation and safety improvements to the project study area transportation network.
• Establish measures of effectiveness to maintain transportation LOS consistent with the County’s General Plan Mobility Element.
• Facilitate on-site project access and roadway frontage design infrastructure improvements to serve the project and the surrounding community.

1.5. Process Overview

The TSG is intended for use by County staff, project applicants, consultants, other agencies/jurisdictions, as well as the general public and decision makers, to evaluate transportation effects of proposed land development projects going through the environmental and discretionary planning/entitlement process within the jurisdiction of the County of San Diego.

Preparer Qualification Requirements

Transportation Studies must be prepared under the supervision of a registered Traffic Engineer who has specific training and experience in preparing transportation studies. All transportation studies must be stamped by a California Registered Traffic Engineer or equivalent as approved by County Planning & Development Services (PDS) or Department of Public Works (DPW).

County Review and Outside Agency Coordination

Transportation Studies for land development projects will be reviewed by County PDS and DPW.

If a County project affects another agency or jurisdiction, such as Caltrans, SANDAG, MTS, NCTD, or neighboring cities, coordination with that agency or jurisdiction may be required and will be identified in the scoping review process. County of San Diego staff can provide guidance and contact information for other agencies or jurisdictions.
FIGURE 1 – SCOPING FRAMEWORK FOR TRANSPORTATION STUDIES

Figures are not available for this response.
Outline of Study Preparation and Review Process

The following summarizes the typical process for completing a Transportation Study in the County of San Diego:

- **Step 1 – Determine Study Requirements:** The applicant completes a Scoping Agreement for Transportation Studies (Appendix A – Scoping Agreement for Transportation Studies) that summarizes the proposed project description, location, site plan, site access, estimated trip generation and trip distribution, study area, methodology requirements, and any other specific issues to be addressed in the Transportation Study. The Scoping Agreement also includes preliminary screening criteria to determine if the project is screened out from CEQA Transportation Analysis and information to determine if a LMA is required.

- **Step 2 – Scoping Review and Agreement:** The completed project Scoping Agreement is submitted to the County of San Diego, along with the required fee deposit for review and approval. The County will either provide a letter confirming the Scoping Agreement or communicate other requirements. The applicant’s consultant may request a meeting to clarify the draft work scope and the County’s feedback. The Scoping Agreement will determine the type of Transportation Study that will be needed.

- **Step 3 – Conduct Transportation Study and Submit Draft:** The applicant’s consultant will prepare the Transportation Study consistent with the requirements established in Steps 1 and 2 (and as outlined in the TSG) and will submit a draft to the County (Appendix B – Transportation Impact Study Format). The County will provide written comments on the draft study. During this process, the applicant’s consultant may request a meeting with County staff to clarify study requirements or comments received on the draft study.

- **Step 4 – Submit Final Transportation Study:** The applicant’s consultant will address all County comments and produce a Final Transportation Study to be approved by staff. Multiple iterations of study review may be necessary to adequately address all staff comments. It is critical that staff and the traffic consultant coordinate closely during the review process to ensure productive and efficient communications in achieving the mutual goal to finalize the Transportation Study. A record identifying how each comment was addressed should also accompany the Final Transportation Study. Depending on whether the Transportation Study included a VMT analysis, a LMA, or both, the final mitigation recommendations or improvements will be either in the CEQA Findings and/or the discretionary Conditions of Approval.

The County may update the TSG on an as-needed basis to reflect the best state of practice methodologies and changes in CEQA requirements. As such, the County will continually review the TSG for applicability and coordinate with other jurisdictions and professionals to ensure the most recent guidance and best practices are being applied for land development review and transportation analysis.

The TSG is not binding on any decision-maker and should not be substituted for the use of independent professional judgment and evaluation of evidence in the record. The County also reserves the right to request further, project specific, information in its evaluation that may not be identified or described in this document.
2. Transportation Study Initiation

If a project requires a discretionary action, the applicant and County staff will determine the Transportation Study requirements according to TSG.

The Transportation Study process begins with the applicant’s consultant filling out a Scoping Agreement form (Appendix A), which serves as an application for transportation study scoping.

2.1. Types of Transportation Studies

CEQA and LMA requirements should be determined separately, as CEQA VMT analysis and/or LMA may apply to any type of transportation study. The following types of transportation studies (or a combination) may be required:

1. **No Transportation Analysis Required**: If a project meets screening criteria for CEQA VMT analysis and LMA, a Transportation Study will not be required.

2. **CEQA VMT Analysis Only**: Transportation studies where only CEQA VMT analysis is required because the project meets LMA screening criteria.

3. **LMA Only**: Transportation studies where only an LMA (Focused LMA or Full LMA) is required because the project meets CEQA VMT screening criteria.

4. **CEQA VMT and LMA Analysis**: Transportation studies that include both CEQA VMT analysis and a LMA (Focused LMA or Full LMA). This is required for projects that are not screened out based on the County’s screening criteria outlined in following section.

2.2. Transportation Study Screening Criteria

Discretionary projects may need to complete a Transportation Study as identified in Tables 1 and 2. A project’s consistency with the General Plan, estimated daily trips, project location, and other project characteristics will determine the type of study that is required based on the CEQA VMT and LMA screening criteria presented in Tables 1 and 2, respectively.

Table 1 – CEQA VMT Screening

<table>
<thead>
<tr>
<th>CEQA VMT Screening Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Small Residential and Employment Projects</td>
</tr>
<tr>
<td>• Less than 110 daily vehicle trips (trips are based on the number of vehicle trips after any alternative modes/location-based adjustments are applied)</td>
</tr>
<tr>
<td>2. Projects Located in VMT Efficient Areas</td>
</tr>
</tbody>
</table>
• Use location-based screening maps (consistent with the project land uses)

3. Locally Serving Retail Projects

• Projects that are 50,000 square feet or less

4. Locally Serving Public Facilities

• Public facilities that serve the local community including transit centers, public schools, libraries, post office, park-and-ride lots, other government offices, parks/trail heads, and passive public uses.

5. Redevelopment Projects with Lower Total VMT

• The proposed project’s total daily project VMT is less than the existing land use’s total daily VMT.

6. Affordable Housing

• 100% affordable housing

TABLE 2 – TYPE OF LMA BY DAILY PROJECT TRIPS

<table>
<thead>
<tr>
<th></th>
<th>Focused LMA</th>
<th>Full LMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consistent with General Plan</td>
<td>250-499 Daily Trips</td>
<td>500 or greater Daily Trips</td>
</tr>
<tr>
<td>Inconsistent with General Plan</td>
<td>N/A</td>
<td>250 or greater Daily Trips</td>
</tr>
</tbody>
</table>

For purposes of determining the LMA type, trips are based on the number of vehicle trips after any internal capture and alternative modes/location-based adjustments are applied but before adjustments for pass-by are taken.

Types of LMAs

- **Focused Local Mobility Analysis:** Applies only to a project consistent with the General Plan and forecast to generate 250 to 499 daily trips. A Focused LMA analysis is conducted for such projects to confirm that the project does not have an effect on the safety and operations of the transportation system and does not require a Full LMA.

- **Full Local Mobility Analysis:** Applies to a project consistent with the General Plan and forecast to generate 500 or more daily trips, or a project that is inconsistent with the General Plan and is forecast to generate over 250 daily trips. A Full LMA is required to ensure traffic operations and safety of the roadway network in the proximate area of the project, as well as ensure the local transportation system is adequate to serve the project and is consistent with County General Plan goals and policies.
2.3. Completing the Scoping Agreement Form

The applicant’s consultant will prepare a Scoping Agreement (Appendix A) before coordinating with the County. This ensures that all the information necessary to determine study requirements is compiled and readily accessible.

The following main items are required to complete the Scoping Agreement:

Project Location
- Project location & vicinity map.
- Project Community Planning Area.
- Zoning and community plan land use designation of the project site (demonstrate consistency).

Detailed Project Description
- Land uses and intensities.
- Gross parcel acreage and net developable acreage or building square footage or number of proposed residential units.
- Number of parking spaces: vehicle (including accessible spaces), bicycle (racks and secure storage), motorcycle.

Site Plan
- Driveway locations and access type (ex. Full access, partial access, right in/out only).
- Pedestrian access, bicycle access and on-site pedestrian circulation.
- Location/distance of closest existing transit stop (measure as walking distance to project entrance/or middle of parcel).
- Location of any planned trails identified in the CTMP within ¼ mile of the project location.

CEQA Transportation Analysis Screening
- Project Type Screening
- Project Location Screening

LMA Study Area and Scenarios
- Study area and scenarios for LMAs are discussed further in Chapter 4.

LMA Trip Generation and Distribution
- Identify the number of new daily and peak hour driveway vehicle-trips added by the project as described in this section.
• Trip generation rates are commonly expressed in trips per unit of development – for example, trips per housing unit or trips per thousand square feet – and are derived by averaging trip generation data collected from existing land uses.

For San Diego County, the following trip generation sources should be used:

• The current edition of the Institute of Transportation Engineer’s Trip Generation Manual and Trip Generation Handbook. The Trip Generation Manual provides average trip generation rates for a wide variety of land-use categories that is a nationally recognized transportation planning data source and industry standard.

• For unique land uses, trip generation should be derived from locally observed data that includes trip generation samples from at least three (3) similar facilities. The facilities selected as samples should be approved by County Staff prior to data collection.

• For existing facilities that are being expanded, trip generation should be determined by surveying the existing use to generate a project specific trip generation rate.

• The most detailed project information should be used to determine a project’s trip generation estimate. For example, if the project’s building square footage and the project acreage are both known, the building square footage is more detailed; therefore, should be used to estimate the trip generation.

Distribution of project trips throughout the study area can be estimated using two methods:

• Manual estimation using existing traffic volumes, location of complementary land uses, and engineering judgement. The trip distribution should be clearly communicated on a map that shows the percent of project traffic on each roadway in the vicinity of the project site. Manual estimation is appropriate for projects performing a Site Access Study, Focused LMA, or project’s that generate less than 1,000 daily trips.

• Use the current version of the SANDAG Regional Travel Demand Model to perform a select zone analysis. The SANDAG Regional Travel Demand Model should be used to determine the trip distribution for projects that generate 1,000 or greater daily trips.

Additional information on trip generation, including trip reductions are discussed further in Chapter 4.

2.4. Submittal Instructions

The Scoping Agreement will be submitted as follows:

1. Scoping Agreement will be submitted to Planning & Development Services by the Applicant/Consultant. The Scoping Agreement form is available on the County PDS website (https://www.sandiegocounty.gov/content/sdc/pds.html).

2. Applicant/Consultant submits a completed Scoping Agreement including a fee deposit.

3. Staff begins the Scoping Agreement review and approval processes.

4. Staff sends a completed and signed Scoping Agreement to the Consultant.
5. Consultant submits a draft Transportation Study including a fee deposit.

6. Staff completes initial review.

7. If required, comments are submitted to the consultant and a revised Transportation Study is submitted. Additional review cycles may be required.

8. Upon completion, staff issues a final notice to the Applicant and the final Transportation Study is accepted for public review.

FIGURE 2 – TRANSPORTATION STUDY PROCESS OVERVIEW (PROJECT PLANNING REVIEW)
3. CEQA Requirements for Transportation VMT

3.1. Overview

SB 743 changes the focus of transportation impact analysis in CEQA from measuring impacts to drivers, to measuring the impact of driving. The change is being made by replacing LOS with VMT and providing streamlined review of land use and transportation projects that will help reduce future VMT growth. This shift in transportation impact focus is expected to better align transportation impact analysis and mitigation outcomes with the State’s goals to reduce GHG emissions, encourage infill development, and improve public health through more active transportation.

In January 2019, the Natural Resources Agency finalized updates to the CEQA Guidelines including the incorporation of SB 743 modifications. The Office of Planning and Research (OPR) published its latest Technical Advisory on Evaluating Transportation Impacts in CEQA to the California Natural Resources Agency in December 2018. This Technical Advisory provides recommendations on how to evaluate transportation impacts under SB 743. These changes include elimination of auto delay, LOS, and other similar measures of vehicular capacity or traffic congestion as a basis for determining significant CEQA transportation impacts. CEQA Guidelines section 15064.3 states that “Generally, vehicle miles traveled is the most appropriate measure of transportation impacts” and the OPR guidance recommends the use of VMT as the preferred CEQA transportation metric. SB 743 includes the following two legislative intent statements:

1. “Ensure that the environmental impacts of traffic, such as noise, air pollution, and safety concerns, continue to be properly addressed and mitigated through the California Environmental Quality Act.”

2. “More appropriately balance the needs of congestion management with statewide goals related to infill development, promotion of public health through active transportation, and reduction of GHG emissions.”

To comply with the new legislation, the County of San Diego has identified VMT analysis methodology, establishment of VMT thresholds for CEQA transportation impacts, and identification of possible mitigation strategies. The VMT analysis will:

- Enable proposed development projects to comply with current CEQA requirements as a result of the implementation of SB 743.
- Describe the County’s CEQA significance thresholds, screening criteria, and methodology for conducting the transportation VMT analysis.
- Determine if mitigation is required to offset a project’s significant VMT impacts.
• Identify VMT reduction measures and strategies to mitigate potential impacts below a level of CEQA significance.

• Reduce the need to widen or build roads through effective use of the existing transportation network and maximizing the use of alternative modes of travel throughout the County.

VMT is a metric that accounts for the number of vehicle trips generated and the length or distance of those trips. VMT does not directly measure traffic operations but instead is a measure of network use or efficiency, especially if expressed as a function of population or employment (i.e. VMT per Resident). VMT tends to increase as land use density decreases and travel becomes more reliant on the use of the automobile due to the long distances between origins and destinations. VMT also serves as a proxy for impacts related to energy use, air pollution emissions, GHG emissions, safety, and roadway maintenance. The relationship between VMT and energy or emissions is based on fuel consumption. The traditional use of VMT in environmental impact analysis is to estimate mobile air pollution emissions, GHGs, and energy consumption.

3.2. Metrics and Methodology for Calculating VMT

Transportation VMT analysis for CEQA should be conducted using the SANDAG Regional Travel Demand Model. The model outputs can be used to produce VMT per Resident, VMT per Employee, Total VMT per Service Population, and Total VMT. Any other model used for VMT analysis shall be approved by PDS staff prior to submittal.

VMT per Resident

VMT per Resident is established by summing up total daily VMT generated by residents of a geographic area and dividing by the population of that geographic area. Total daily VMT includes all trip tours made by residents: home-based and non-home-based trip tours (i.e. all VMT for a resident for the entire day regardless of trip purpose or origin/destination).

To analyze the VMT per Resident for a proposed project, total daily VMT generated by project residents is divided by the project resident population.

SANDAG has a procedure to produce VMT per Resident; however, the SANDAG procedure to produce this metric only includes VMT generated within the SANDAG region by residents of the SANDAG region. To account for VMT generated by residents of the SANDAG region traveling outside of the region, the SANDAG model data must be appended with the VMT that occurs by SANDAG region residents outside of the region. The steps necessary to include VMT from all trips that enter or exit the SANDAG region are explained in the Trip Length Adjustment section below.

VMT per Employee

VMT per Employee is established by summing the total daily VMT generated by resident employees\(^1\) of a geographic area and dividing by the number of employees of that geographic area. Total daily VMT

\(^1\) Resident employees both live and work in the SANDAG region.
includes all trip tours made by employees, not just work-related trips (i.e. all VMT for a resident for the entire day regardless of trip purpose or origin/destination). Employees whose work location is specified as home are not included in the calculations. To analyze the VMT per Employee for a proposed project, the total daily VMT produced by the project’s employees is divided by the total number of employees. The procedure developed by SANDAG to calculate VMT per Employee by TAZ only accounts for VMT generated within the SANDAG region by employees who are also residents of the SANDAG region. Employees that live outside of the region and travel into the SANDAG region for work are not accounted for because of the nature of the calculation.

VMT per Service Population

VMT per Service Population is established by dividing the total VMT with at least one trip end in a geographic area by the population plus employment of that geographic area. The total VMT includes all internal VMT, internal to external, and external to internal VMT (in other words all VMT regardless of geographic boundaries). Since this metric combines VMT for residents and employees and reflects how accessible all land uses are (for example, geographies with higher density, more shopping, and more jobs will have lower VMT per Service Population) it can be used to evaluate multiple types of projects. To analyze the VMT per Service Population for a proposed project, the project’s total VMT is divided by the project population plus employment.

Total VMT (Origin-Destination Method)

The total VMT (origin-destination method) within a geographic area can be calculated directly from model outputs by multiplying the origin-destination (O-D) trip matrix by the final assignment skims (O-D Method VMT). The total VMT value should be appended to include VMT from all trips that enter or exit the SANDAG region, as explained in the Trip Length Adjustment section below.

Total VMT (Boundary Method)

Total daily VMT within a given area can be measured by multiplying the daily volume on every roadway segment by the length of every roadway segment within the area. This is called Boundary Method VMT. Examples of Boundary Method VMT are VMT within the SANDAG region, VMT within a defined planning area, or VMT within the market area to be served by the project.

Trip Length Adjustments

Trip length adjustments for trips leaving the SANDAG Model Area can be made by using the California Statewide Travel Demand Model (CSTDM).

Adjusting the length of trips leaving a model boundary requires appending extra distance at the model gateway zone (or external centroid) connectors. This process results in new gateway distances that are weighted based on the amount and location of external travel origins and destinations.

The first step of this process is to determine trip volume leaving or entering the model boundary. These are referred to as internal-to-external (IX) and external-to-internal (XI) trips. This data can be generated either from O-D trip matrices or by conducting a select zone analysis to track trips to the model gateways. The volume at the gateways for this purpose should not include external-to-external (XX) through trips.
Determining the full length of trips leaving or entering a model boundary requires an O-D dataset that includes flows between the model area and the area external to the model. The California Statewide Travel Demand Model (CSTDM) should be used to develop the O-D dataset.

The next step requires determining the gateway(s) based on the SANDAG model which trips from the O-D data source would travel through. The trip length adjustment process ultimately requires calculating the weighted average distance beyond each model gateway. The process of calculating trip lengths external to the SANDAG model region for trips entering or exiting the SANDAG model area using the CSTDM is described below:

- Create correspondence between Study Area TAZs within SANDAG model to the Statewide Model TAZs.
- Add “Gate” attribute to CSTDM roadway network links and set “Gate” equal to “gateway id” only for those links identified as the locations corresponding to the SANDAG model gateways.
- Add “Gate_Dist” attribute to CSTDM roadway network links and set “Gate_Dist” equal to the link distance for those links outside the SANDAG model boundary. All the CSTDM roadway links inside the SANDAG model boundary will have a “Gate_Dist” attribute of 0.
- Run a highway skim on the CSTDM roadway network to skim the shortest travel time between each O-D pair, tracking the gateway and distance outside the SANDAG model boundary.
- For each gateway, summarize the average distance beyond the SANDAG model boundary weighted by volume at each gateway.
- Tag the gateway distance from the above step using CSTDM to the gateways in the SANDAG model and multiply to the gateway volume from the SANDAG model to determine the gateway external VMT to the SANDAG model. Make sure not to double-count any overlap distance that’s already accounted for in the VMT calculation from the SANDAG model.

Table 3 shows the base year (2012) weighted average distance beyond the SANDAG model boundary for trips passing through each model gateway, as calculated using the methodology above.

Table 3 – Trip Distances Outside San Diego County for Entering and Exiting Trips

<table>
<thead>
<tr>
<th>Gateway</th>
<th>Distance Outside San Diego County (miles)</th>
<th>IX Trips</th>
<th>XI Trips</th>
</tr>
</thead>
<tbody>
<tr>
<td>Route</td>
<td>Gateway</td>
<td>County</td>
<td></td>
</tr>
<tr>
<td>I-8</td>
<td>Imperial</td>
<td>70.16</td>
<td>69.20</td>
</tr>
<tr>
<td>SR-78</td>
<td>Imperial</td>
<td>54.07</td>
<td>58.90</td>
</tr>
<tr>
<td>SR-79</td>
<td>Riverside</td>
<td>71.71</td>
<td>62.54</td>
</tr>
<tr>
<td>Pechanga Pkwy</td>
<td>Riverside</td>
<td>35.89</td>
<td>30.91</td>
</tr>
<tr>
<td>I-15</td>
<td>Riverside</td>
<td>24.86</td>
<td>24.81</td>
</tr>
<tr>
<td>I-5</td>
<td>Orange County</td>
<td>60.54</td>
<td>62.81</td>
</tr>
</tbody>
</table>
3.3. VMT Analysis for Land Use Projects

3.3.1. Screening Criteria for CEQA VMT Analysis

The requirements to prepare a detailed transportation VMT analysis apply to all land development projects, except those that meet at least one of the screening criteria. A project that meets at least one of the screening criteria below would have a less than significant VMT impact due to project characteristics and/or location.

1. Projects Located in a VMT Efficient Area

A VMT efficient area is any area with an average VMT per Resident, VMT per Employee, or VMT per Service Population <County Selected VMT Threshold> below the baseline average for the <County Selected Geography> it is located within. Land use projects may qualify for the use of VMT efficient area screening if the project can be reasonably expected to generate VMT per Resident, per Employee, or per Service Population, respectively, that is similar to the existing land uses in the VMT efficient area. Screening maps for each metric <and geographic option> can be found in Appendix C.

Residential projects located within a VMT efficient area may be presumed to have a less than significant impact absent substantial evidence to the contrary. A VMT efficient area for residential projects is any area with an average VMT per Resident <County Selected VMT Threshold> below the baseline average for the <County Selected Geography>.

Employment projects located within a VMT efficient area may be presumed to have a less than significant impact absent substantial evidence to the contrary. A VMT efficient area for employment projects is any area with an average VMT per Employee <County Selected VMT Threshold> below the baseline average for the <County Selected Geography>.

Mixed-Use projects located within a VMT efficient area may be presumed to have a less than significant impact absent substantial evidence to the contrary. A VMT efficient area for mixed-use projects is any area with an average VMT per Service Population <County Selected VMT Threshold> below the baseline average for the <County Selected Geography>. Alternatively (or if a project is not screened out using the VMT per Service Population map), a project can screen each component of the mixed-use using the appropriate screening criteria for each land use.

Retail/Service projects located within a VMT efficient area may be presumed to have a less than significant impact absent substantial evidence to the contrary. A VMT efficient area for retail/service is any area with an average VMT per Service Population <County Selected VMT Threshold> below the baseline average for the <County Selected Geography>.

3 The selected significance threshold will be inserted were denoted upon the decision by the Board of Supervisors. Options include 15% below the regional average (as defined) or other, supported by substantial evidence.

4 The selected geography will be inserted where denoted upon the decision by the Board of Supervisors. Options under consideration are the regional average, unincorporated county average, and county sub-area averages.
2. Small Residential and Employment Projects

Projects generating less than <County Selected Trip Threshold> daily vehicle trips (trips are based on the number of vehicle trips calculated using national ITE trip generation rates with any alternative modes/location-based adjustments are applied) may be presumed to have a less than significant impact absent substantial evidence to the contrary.

3. Projects Located in a Transit Accessible Area

Projects located within a half mile of an existing major transit stop or an existing stop along a high-quality transit corridor⁵ may be presumed to have a less than significant impact absent substantial evidence to the contrary. Note that Sprinter stations are considered major transit stops. This presumption may not apply if the project:

- Has a Floor Area Ratio of less than 0.75.
- Includes more parking for use by residents, customers, or employees of the project than required by the County.
- Is inconsistent with SANDAG’s most recent Sustainable Communities Strategy (SCS).
- Replaces affordable residential units with a smaller number of moderate- or high-income residential units.

4. Locally Serving Retail/Service Projects

Local serving retail/service projects less than 50,000 square feet may be presumed to have a less than significant impact absent substantial evidence to the contrary. Local serving retail/service generally improves the convenience of shopping close to home and has the effect of reducing vehicle travel.

5. Locally Serving Public Facilities and Other Uses

Public facilities that serve the surrounding community or public facilities that are passive use may be presumed to have a less than significant impact absent substantial evidence to the contrary. These do not include facilities or uses that would attract users from outside the vicinity of the use. The following are examples of locally serving facilities and uses:

- Transit centers
- Schools
- Libraries
- Post offices
- Park-and-ride lots
- Local health/medical clinics
- Law enforcement and fire facilities
- Local parks and trailheads

⁵ Major transit stop: A site containing an existing rail transit station, a ferry terminal served by either a bus or rail transit service, or the intersection of two or more major bus routes with a frequency of service interval of 15 minutes or less during the morning and afternoon peak commute periods (PRC § 21064.3). High quality transit corridor: A corridor with fixed route bus service with service intervals no longer than 15 minutes during peak commute periods (PRC § 21155).
• Government offices
• Communication and utility buildings
• Water sanitation buildings
• Waste management buildings

6. Redevelopment Projects with Greater VMT Efficiency

Where a project replaces existing VMT-generating land uses, the project may be presumed to have a less than significant impact if the total project VMT is less than the existing land use’s total VMT, absent substantial evidence to the contrary.

7. Affordable Housing

An affordable housing project may be presumed to have a less than significant impact absent substantial evidence to the contrary if 100% of units are affordable.

3.3.2. VMT Thresholds of Significance

Projects that do not meet the above screening criteria must include a detailed evaluation of the VMT produced by the project. The significance thresholds and specific VMT metric used to measure VMT are described by land use type below.

• **Residential**: \(<\text{County Selected VMT Threshold}\>\) below \(<\text{County Selected Geography}\>\) average VMT per Resident.

• **Employment (Office/Commercial/Industrial)**: \(<\text{County Selected VMT Threshold}\>\) below \(<\text{County Selected Geography}\>\) average VMT per Employee or \(<\text{County Selected VMT Threshold}\>\) below \(<\text{County Selected Geography}\>\) average VMT per Service Population.

• **Retail/Service**: A net increase in total area VMT or \(<\text{County Selected VMT Threshold}\>\) below \(<\text{County Selected Geography}\>\) average VMT per Service Population.

• **Mixed-Use**: \(<\text{County Selected VMT Threshold}\>\) below \(<\text{County Selected Geography}\>\) average VMT per Service Population or each project component evaluated per the appropriate metric based on land use type (i.e. residential, office/commercial, and retail).

• **Regional Recreational**: A net increase in total regional VMT or \(<\text{County Selected VMT Threshold}\>\) below \(<\text{County Selected Geography}\>\) average VMT per Service Population.

• **Regional Public Facilities**: A net increase in total regional VMT or \(<\text{County Selected VMT Threshold}\>\) below \(<\text{County Selected Geography}\>\) average VMT per Service Population.

• **Other Project Types**: Appendix D provides a list with unique project types and identifies which land use category they fall within for analysis purposes.

For large land use plans, such as Specific Plans or Community Plan Updates the land use plan should be compared to the region overall. Comparison to the region is appropriate because large land use plans can have an effect on regional VMT (similar to how a regional retail project affects regional VMT). The following thresholds apply to large land use plans:
- **Residential**: Aggregate all residential land uses for the build-out year of the plan and compare the resulting build-out year VMT per Resident to the existing regional average. The threshold is \(<\text{County Selected VMT Threshold}>\) below the existing regional average VMT per Resident.

- **Employment**: Aggregate all employment land uses for the build-out year of the plan and compare the resulting build-out year VMT per Employee to the existing regional average. The threshold is \(<\text{County Selected VMT Threshold}>\) below the existing regional average VMT per Employee.

- **Retail/Service**: Evaluate the effect that adding these land uses has on regional VMT. The threshold is any increase in regional VMT.

3.3.3. VMT Analysis Procedures

For projects which meet one of the screening criteria for CEQA VMT analysis, no additional analysis is necessary. For projects that must provide a detailed evaluation of the VMT produced by the project, guidance is provided below on how to conduct transportation VMT analysis given the project type.

<table>
<thead>
<tr>
<th>Project Type</th>
<th>Determine Average VMT by Maps</th>
<th>SANDAG Modelling Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential, Employment, or Mixed-Use</td>
<td>Less than 2,400 un-adjusted driveway trips</td>
<td>Greater than 2,400 un-adjusted driveway trips</td>
</tr>
<tr>
<td>Non-Locally Serving Retail/Service, Public Facility, or Other</td>
<td>N/A</td>
<td>All Projects</td>
</tr>
</tbody>
</table>

1. Residential Projects

For projects that generate less than 2,400 daily unadjusted driveway trips (e.g. 240 or less single family residential units, 300 or less multi-family residential units, or 400 or less apartments): Identify the location of the project on the County’s Resident VMT per Resident map. The project’s VMT per Resident will be considered the same as the VMT per Resident of the TAZ it is located in. The project also has the option to use the SANDAG Regional Travel Demand Model (year that is used to determine the VMT thresholds) to determine the project’s VMT per Resident.

For projects that generate greater than 2,400 daily unadjusted driveway trips: Input the project into the SANDAG Regional Travel Demand Model for SANDAG (year that is used to determine the VMT thresholds) to provide the project’s VMT per Resident. To perform the analysis, all project land uses should be input, and the VMT per Resident should be determined using the same method/scripts that SANDAG utilizes to calculate the VMT per Resident metric.
2. Employment Projects

For projects that generate less than 2,400 daily unadjusted driveway trips: Identify the location of the project on the County’s VMT per Employee map. The project’s VMT per Employee will be considered the same as the VMT per Employee of the TAZ it is located in. The project also has the option to use the SANDAG Regional Travel Demand Model (year that is used to determine the VMT thresholds) to determine the project’s VMT per Resident.

The project applicant may choose to substitute VMT per Service Population for VMT per Employee in the procedure described above.

For projects that generate greater than 2,400 daily unadjusted driveway trips: Input the project into the SANDAG Regional Travel Demand Model (year that is used to determine the VMT thresholds) for SANDAG to provide the project’s VMT per Employee. To perform the analysis, all project land uses should be input, and the VMT per Employee should be determined using the same method/scripts that SANDAG utilizes to develop the VMT per Employee metric.

The project applicant may choose to substitute VMT per Service Population for VMT per Employee in the procedure described above. VMT per Service Population should be determined using the methodology described in Section 3.2.

3. Retail/Service Projects

Calculate the change to area VMT using the SANDAG Travel Demand Model. To calculate the change in area VMT, the regional retail component of the project should be input into the travel demand model (year that is used to determine the VMT thresholds). The “with project regional retail” area VMT produced by the model run is compared to the “no project” area VMT.

Alternatively, if the project applicant chooses VMT per Service Population as their analysis metric, input the project into the SANDAG Regional Travel Demand Model for SANDAG to provide the project’s VMT per Service Population. VMT per Service Population should be determined using the methodology described in Section 3.2.

4. Mixed Use Projects

For projects that generate less than 2,400 daily unadjusted driveway trips: Identify the location of the project on the County’s VMT per Service Population map. The project’s VMT per Service Population will be considered the same as the VMT per Service Population of the TAZ it is located in. The project also has the option to use the SANDAG Regional Travel Demand Model (year that is used to determine the VMT thresholds) to determine the project’s VMT per Resident.

For projects that generate greater than 2,400 daily unadjusted driveway trips: Input the project into the SANDAG Regional Travel Demand Model for SANDAG to provide the project’s VMT per Service Population. Compare back to the appropriate threshold to determine if the impact is significant. All project land uses should be input, and the VMT per Service Population metric should be determined using the methodology described in Section 3.2.

OR, evaluate each individual project component per the appropriate metric based on land use type (i.e. residential, office/commercial, and retail) as described above.
5. Other Project Types
Input the project into the SANDAG Regional Travel Demand Model for SANDAG to provide the project’s applicable VMT metric. To perform the analysis, all project land uses should be input, and the VMT metric that is appropriate based on the land use type should be determined using the methodology described in Section 3.2.

6. Apply VMT Reductions
If the project includes TDM measures, the reduction in VMT due to each measure shall be calculated and can be applied to the project analysis. There are several resources for determining the reduction in VMT due to TDM measures, such as the California Air Pollution Control Officers Association (CAPCOA) Quantifying GHG Mitigation Measures (2010) (Quantification Report) and the SANDAG Mobility Management Guidebook/VMT Reduction Calculator Tool (see Mitigation Section below).

The VMT reductions associated with project TDM should be applied to the appropriate metric(s) based on the project land uses. If the project does not include any TDM, then no reduction would be taken.

The resulting VMT values should be compared to the appropriate threshold in section 3.4 to determine whether the project results in a significant CEQA transportation impact due to VMT. Further information on VMT reduction and mitigation is provided in Section 3.5.

3.4. VMT Analysis for Transportation Projects
For transportation projects, any project that results in an increase in additional motor vehicle capacity (such as constructing a new roadway or adding additional vehicle travel lanes on an existing roadway) has the potential to increase vehicle travel, referred to as “induced vehicle travel.”

Appendix E contains a list of transportation projects that, absent substantial evidence to the contrary, do not require an induced travel/VMT analysis since they typically do not cause substantial or measurable increases in VMT.

For all other projects, a VMT analysis must be done. To calculate the change in area (boundary method) VMT, the project should be input into the travel demand model. The “with project” area VMT produced by the model run is compared to the “no project” area VMT. A net increase in area VMT indicates that the project has a significant impact.

3.5. VMT Reduction and Mitigation Measures
To mitigate VMT impacts, the project applicant must reduce VMT, which can be done by either reducing the number of automobile trips generated by the project or by reducing the distance that people drive. The following strategies are available to achieve this:

1. Modify the project’s site design and built physical characteristics to reduce VMT generated by the project.
2. Implement programmatic TDM measures to reduce VMT generated by the project.
Strategies that reduce single occupant automobile trips or reduce travel distances are called TDM strategies. There are several resources for determining the reduction in VMT due to TDM measures such as the CAPCOA Quantification Report and the SANDAG Mobility Management Guidebook/VMT Reduction Calculator Tool.

- CAPCOA Quantification Report
- SANDAG Mobility Management Guidebook/VMT Reduction Calculator Tool

The County is exploring programmatic options for addressing significant transportation VMT impacts such as a VMT Impact Fee Program, VMT Exchange, and/or a VMT Bank. These options would offer a regional approach for achieving VMT reductions and are briefly described as follows:

- VMT Impact Fee Program – This concept resembles a traditional impact fee program in compliance with the mitigation fee act and uses VMT as a metric. The nexus for the fee program would be a VMT reduction goal consistent with the CEQA threshold established by the County. The main difference from a fee program based on a metric such as vehicle LOS is that the VMT reduction nexus results in a capital improvement program (CIP) consisting largely of transit, bicycle, and pedestrian projects. These types of fee programs are recognized by case law as an acceptable form of CEQA mitigation if they can demonstrate that the CIP projects will be fully funded and implemented.

- VMT Exchanges – This concept (along with VMT banks) borrows mitigation approaches from other environmental analysis such as wetlands. The concept relies on an applicant agreeing to implement a predetermined VMT reducing project or proposing a new one in exchange for the ability to develop a VMT generating project. The mitigation projects may or may not be located near the applicant’s project site. The concept requires a facilitating entity (such as the SANDAG or the County) to match the VMT generator (the development project) with the VMT reducing project and ensure through substantial evidence that the VMT reduction is valid. VMT Banks – This concept attempts to create a monetary value for VMT reduction (e.g., credits) such that an applicant could purchase VMT reduction credits. The money exchanged for credits could be applied to local, regional, or state level VMT reduction projects or actions. Like all VMT mitigation, substantial evidence would be necessary that the projects covered by the Bank would achieve expected VMT reductions and some form of monitoring may be required. This is more complicated than a simple exchange and would require more time and effort to set up and implement. The verification of how much VMT reduction is associated with each dollar or credit would be one of the more difficult parts of the program.

3.6. Cumulative VMT Impacts

Since VMT is a composite metric that will continue to be generated over time, a key consideration for cumulative scenarios is whether the rate of VMT generation gets better or worse in the long-term. If the rate is trending down over time consistent with expectations for air pollutant and GHGs, then the project level analysis may suffice. With the adoption of the CAP, the County identified strategies and measures to reduce the County’s contribution of GHG emissions to the atmosphere to meet the State’s 2020 and 2030 GHG emissions targets, and to demonstrate progress towards the 2050 GHG reduction goal; thus the VMT trend in the County can be considered downward.
For projects that require GPAs or are inconsistent with the General Plan, a cumulative VMT analysis is required. A project would result in a significant project-generated VMT impact under cumulative conditions if the applicable cumulative project-generated VMT thresholds are exceeded.

Measuring the ‘project’s effect on VMT’ is necessary especially under cumulative conditions to fully explain the project’s impact. A project effect on VMT under cumulative conditions would be considered significant if the cumulative link-level boundary VMT per Service Population (based on the <County Selected Geography>) increases under the plus project condition compared to the no project condition.

Please note that the cumulative no project shall reflect the adopted RTP/SCS; as such, if a project is consistent with the regional RTP/SCS, then the cumulative impacts shall be considered less than significant.
4. Local Mobility Analysis

4.1. Local Mobility Analysis Overview

The authority for requiring non-CEQA transportation analysis and potentially requiring project improvement conditions to address identified deficiencies lies in the County’s Site Plan review authority and General Plan policies to promote orderly development, promote public safety, and to ensure land development site planning and the needed infrastructure are adequate.

The LMA evaluates the effects of a proposed development project on traffic operations and safety for the roadway network in the proximate area of the project. The LMA will:

- Ensure that the local transportation system is adequate to serve the project and that improvements identified in the General Plan are constructed when needed consistent with the County’s Public Road Standards.
- Address issues related to operations and safety for all transportation modes.
- Ensure consideration of the County’s Active Transportation Plan for bicycle and pedestrian facilities.
- Identify the necessary transportation entitlement conditions for land development projects.
- Outline the County’s screening criteria, study area and methodologies to assess the potential need for off-site transportation operation and safety improvements to the project study area roadway network.
- Establish measures of effectiveness to maintain transportation LOS consistent with the County’s General Plan Mobility Element.
- Facilitate on-site project access and roadway frontage design infrastructure improvements to serve the project and the surrounding community.

4.2. LMA and General Plan Consistency

The LMA is intended to implement the County’s General Plan by ensuring:

- A safe and efficient road network that balances regional travel needs with the travel requirements and preferences of local communities.
- Development projects to provide associated road improvements necessary to achieve a level of service of “D” or higher on all Mobility Element roads except for those where an unacceptable level of service has been accepted by the County.
- New or expanded transportation facilities that are phased with and equitably funded by the development that necessitates their construction.
• Roads are designed to be safe for all users and compatible with their context and consistent with County Public Road Standards.

• A multi-modal transportation system that provides for the safe, accessible, convenient, and efficient movement of people and goods.

• A public transit system that reduces automobile dependence and serves all segments of the population.

• Bicycle and pedestrian networks and facilities that provide safe, efficient, and attractive mobility options as well as recreational opportunities for County residents.

• A safe, scenic, interconnected, and enjoyable non-motorized multi-use trail system developed, managed, and maintained according to the County Trails Program, Regional Trails Plan, and the Community Trails Master Plan.

4.3. Determining Study Requirements

4.3.1. Screening Criteria

Discretionary projects may need to complete an LMA. The project’s consistency with the General Plan and estimated daily trips will determine the type of LMA that is required based on Table 4.

<table>
<thead>
<tr>
<th>Consistent with General Plan</th>
<th>Focused LMA</th>
<th>Full LMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consistent with General Plan</td>
<td>250-499 Daily Trips</td>
<td>500 or greater Daily Trips</td>
</tr>
<tr>
<td>Inconsistent with General Plan</td>
<td>N/A</td>
<td>250 or greater Daily Trips</td>
</tr>
</tbody>
</table>

For purposes of determining the LMA type, trips are based on the number of vehicle trips after any internal capture and alternative modes/location-based adjustments are applied but before adjustments for pass-by are taken.
FIGURE 3 - DETERMINING LOCAL MOBILITY ANALYSIS TYPE

1. Is the Project consistent with the General Plan?
 - NO
 - Full Local Mobility Analysis required
2. Does the Project generate 250 ADT or more?
 - YES
 - No Local Mobility Analysis required
 - NO
 - Does the Project generate less than 250 ADT?
 - YES
 - No Local Mobility Analysis required
 - NO
 - Does the Project generate 500 ADT or more?
 - YES
 - Full Local Mobility Analysis required
 - NO
 - Focused Local Mobility Analysis required
4.4. Analysis Requirements

4.4.1. Study Area

The extents of the LMA study will be determined for each mode based on the LMA type and travel mode, as follows:

Vehicle

Determine the required study (Focused LMA or Full LMA) based on the consistency with the General Plan, forecasted daily project trips, and the criteria listed in Table 5.

Table 5 - Extent of Study for Vehicle (Intersection) Analysis

<table>
<thead>
<tr>
<th>Land Use Consistent with General Plan</th>
<th>Focused LMA</th>
<th>Full LMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>250-499 Daily Trips</td>
<td>Site Access driveways and intersections that receive 50% or more of the total peak hour project generated trips or have known operational concerns*</td>
<td></td>
</tr>
<tr>
<td>500 or greater Daily Trips</td>
<td>Site Access driveways and intersections where at least 50 project peak hour trips are added or have known operational concerns (if the project does not contribute 50 peak hour trips total to any intersection, then the study intersections will be intersections that receive 50% or more of the total peak hour project generated trips)*</td>
<td></td>
</tr>
<tr>
<td>Land Use Inconsistent with General Plan</td>
<td>N/A</td>
<td>250 or greater Daily Trips</td>
</tr>
<tr>
<td></td>
<td>Site Access driveways and intersections where at least 25 project peak hour trips are added or have known operational concerns (if the project does not contribute 25 peak hour trips total to any intersection, then the study intersections will be intersections that receive 50% or more of the total peak hour project generated trips)*</td>
<td></td>
</tr>
</tbody>
</table>

For purposes of determining the LMA type, trips are based on the number of vehicle trips after any internal capture and alternative modes/location-based adjustments are applied but before adjustments for pass-by are taken. Study intersections for Focused and Full studies are determined by number of project trips at the intersection, or if the project creates safety or operational concerns identified in the Scoping Agreement.

*The number of intersections to be included for LMA will be identified in the Scoping Agreement. For larger projects, a roadway segment assessment may be appropriate and requested by County staff.
Active Transportation

Assessment of pedestrian, bicycle, transit, and trail facilities will be identified in Scoping Agreement. Identification of potential active transportation improvements through the LMA could also be utilized in VMT mitigation where applicable.

Pedestrian:

Documentation of existing and planned pedestrian facilities and basic deficiencies (missing sidewalk, curb ramps, and major obstructions) within ¼-mile walking distance measured from each pedestrian access point (for example, driveways, internal project sidewalk connections to the street, etc.).

Bicycle:

Documentation of existing and planned bicycle facilities and basic deficiencies (bike lane gaps, obstructions) within one-mile bicycling distance measured from the center of the intersection formed by each project driveway.

Transit:

Identification of the closest transit routes and stops to the project within ¼ mile walking distance and documentation of amenities at existing transit stops (i.e. shelters, maps, benches, etc.).

Trails:

Documentation of all planned trails and pathways identified in the County’s CTMP within ¼ mile of the project site.

4.4.2. Site Access and Circulation Evaluation Criteria

The LMA should address the following site-specific topics:

- Appropriate access management standards for median openings and spacing between major driveway connections.
- Potential sight distance problems.
- Potential pedestrian or bicycle conflicts.
- Relationship of internal circulation facilities to public streets.
- Sufficiency of driveway length at major entrances.
- On-site circulation as it impacts the public roadway system or access to public transportation and bicycle/pedestrian network.
- Potential for shared access among developments, including alternate access roads.

4.4.3. Data Collection and Study Periods

- Counts should be no more than two years old unless older counts are demonstrated to be still valid for Existing Conditions. Counts older than four years old must be updated.
- The LMA should provide tables and map figures of the traffic count data. Technical Appendices should include original traffic count data sheets.

- Traffic counts should typically be conducted during AM and PM peak periods on Tuesdays, Wednesdays, or Thursdays, unless approved by County staff. For typical commute hours, the peak hour will fall between 7:00-9:00 AM and 4:00-6:00 PM.

- Other peak hours, off-peak, or special event peak periods, may also be required depending on the project location and type of use. If the study necessitates a weekend analysis, Saturday from 11:00 AM to 1:00 PM will be the analyzed peak period.

- Traffic data should not be collected on weeks that include a holiday and non-school session time periods, unless approved by County staff.

4.4.4. Other Data Collection Considerations

Other considerations in data collection documentation and analysis should incorporate all applicable components that relate to the transportation network, which may include:

- Speed limits and average/85th percentile vehicle speed.
- Parking characteristics (on-street parking presence and type, bus stops).
- Signing (static, dynamic or variable) and pavement markings.
- School zone.
- Signal phasing and timing plans.
- Intersection control type.
- Right turn and left turn treatments.
- Railroad crossing location.
- Ramp metering.
- Pedestrian counts.
- Bicycle counts.
- Transit stops (type, frequency/schedule, dwell time, trip length, bus blockage).
- Roadway classification (functional class, rural/urban designation, access class, area type).
- Cross section elements (number, width and purpose of lanes, shoulder type and width, median type and width, pavement type and rating condition, cross slope, sidewalk, bicycle lane).
- Geometry (horizontal and vertical alignment, storage lengths, intersection/interchange configurations, auxiliary lanes).
- Pedestrian and bicycle accommodation.
- Transit (location, position, proportions with shelters and benches).
- Roadside (clear zone width, lateral clearance, driveway counts).

4.4.5. Study Scenarios

The following scenarios should be evaluated for the LMA:

- **Existing Conditions**: Existing traffic volumes. Document existing geometrics (i.e., roadway/intersection configurations, sight distance, turn lane storage, presence of closely spaced or offset driveways, etc.).

 Document existing traffic volumes and peak-hour levels of service in the study area.

- **Opening Year Conditions**: The Opening Year (without project) traffic volumes should be derived by using an ambient growth factor applied to the existing traffic volumes. The proposed ambient growth factor should be submitted by the consultant and approved by County staff as part of the Scoping Agreement to determine the Opening Year conditions.

- **Opening Year Plus Project**: The project’s generated traffic is added to the Opening Year Conditions to evaluate the plus project conditions.

- **Phased Analysis** (if necessary): For phased developments, include projections for the year that each phase of the development is planned to be complete. Forecast performance measures should be indicated both without and with the development in the year that each phase is planned to be complete. Either multi-phased development and/or construction phase especially if early phased development will overlap with construction activities.

- **Build-out/Horizon Year**: For General Plan Amendments (GPA), a General Plan Buildout/Horizon Year analysis (without and with the project) will be required. For GPAs, the LMA scope is expanded to identify potential new near-term and long-range traffic effects that were not previously identified in the Adopted General Plan analyses. The expanded GPA LMA includes a more comprehensive study area and a comparative Buildout assessment of the Adopted versus the Proposed GPA and the effects to the County’s long-range Mobility Element roadway network.

4.4.6. Trip Generation

The applicant’s consultant should identify the number of new daily and peak hour driveway vehicle-trips added by the project as described in this section.

Trip generation rates are commonly expressed in trips per unit of development - for example, trips per housing unit or trips per thousand square feet - and are derived by averaging trip generation data collected from existing land uses.

For San Diego County, the following trip generation sources should be used:

For unique land uses, trip generation should be derived from local empirical data that includes trip generation samples from at least three (3) similar facilities. The facilities selected as samples should be approved by County Staff through Scoping Agreement prior to data collection.

For existing facilities that are being expanded, trip generation should be determined by surveying the existing use to generate a project specific trip generation rate.

The most detailed project information should be used to determine a project’s trip generation estimate. For example, if the project’s building square footage and the project acreage are both known, the building square footage is more detailed; therefore, should be used to estimate the trip generation.

4.4.7. Trip Reductions

Reasonable reductions to trip rates may also be considered, including:

Internal Capture

For mixed-use projects it is appropriate to estimate the interaction between the project uses. For example, for a project that has retail, residential, and office, with compatible supporting land uses within a ¼ mile walking distance, trip reductions may be used. Most trip generation data is for stand-alone, single land uses and does not account for the interaction between land uses for a mixed-use project.

Trip internalization for mixed-use developments (if applicable) should be calculated using state of the practice methodologies. The ITE Trip Generation Handbook provides a procedure for calculating internal trips for mixed-use projects. SANDAG’s mixed-use trip generation or (MXD) methodology may also be considered. The applicant’s consultant may also propose a method for determining adjustments to trip generation for mixed-use projects, with approval from County staff through the Scoping Agreement.

Trip generation adjustments to account for internal capture should be applied to the raw trip generation calculated for each land use.

Alternative Modes

Most trip generation data is based on suburban locations with primarily auto trips. Transit, bicycling, and walking is not generally captured in the trip generation data. For projects that will have alternative modes, transit use, bicycling, and walking must be specifically acknowledged to reduce the trip generation (after the internal capture step).

Accounting for alternative modes includes considerations for project proposed (or required) TDM measures. Consultant should propose the alternative modes reduction factor for the project to be reviewed and approved by County staff identified in the Scoping Agreement.

SANDAG trip reduction factors may also be considered for developments within ¼ mile walking distance to a local transit station.
Pass-By & Diverted Trips

Properly estimating the number of pass-by trips is important because even though pass-by trips do not add extra trips to the surrounding roadway system, such trips impact the traffic at the driveways and all the turning movements expected at these driveways. The percentage of pass-by and diverted link trips should be estimated based on data provided by ITE or actual surveys of similar land uses. The pass-by reduction should not exceed 10% of the adjacent street volume.

Typically, pass-by trips will not be added to the study intersections (except for accounting for them at project driveways). Typically, diverted link trips are added to all study intersections along with the net new project trips, unless there is specific justification to demonstrate where the trips are diverting from.

Credit for Existing Uses

For redevelopment projects, it may be appropriate to apply a “trip credit” to account for vehicle trips being generated by an existing use that will be redeveloped. The existing use should be operating at the time of data collection, and traffic counts should be performed to determine the appropriate trip credit. The “trip credit” should be applied after internal capture and alternative modes are accounted for.

Truck Traffic

For projects that anticipate the generation of significant truck traffic (typically a project that estimates that truck traffic will account for 25% or more of the total project trip generation), all truck trips should be converted to passenger car equivalents (PCE) for the capacity analysis. Typically, the PCE that should be applied is 2.5 passenger cars for each truck trip.

Other Jurisdictions

Caltrans or adjacent jurisdictions may use different trip reduction rates. Early consultation with reviewing agencies is strongly recommended and must be documented in the Scoping Agreement.
4.4.8. Trip Distribution

The following describes the procedure for assigning project trips to the roadway network. Trip distribution can be determined from zip code data, census data, market research, travel demand models, existing travel patterns, and/or the locations of complementary land uses, and professional engineering judgment. Trip distribution assumptions should be consistent for developments of the same use in the same areas. Trip distribution for the County can be estimated using two methods:

- Manual estimation using procedures described above for existing traffic volumes, location of complementary land uses, and engineering judgement. The trip distribution should be clearly communicated on a map that shows the percent of project traffic on each roadway in the vicinity of the project site. Manual estimation is appropriate for projects performing a Site Access Study, Focused LMA, or project’s that generate less than 1,000 daily trips.

- Use the current version of the SANDAG Regional Travel Demand Model to perform a select zone analysis. The SANDAG Regional Travel Demand Model should be used to determine the trip distribution for projects that generate 1,000 or greater daily trips.

A preliminary trip distribution pattern should be submitted with the Scoping Agreement for County staff review.
4.5. LMA Methodology

4.5.1. Signalized Intersections Methodology

Traffic operational impacts at signalized intersections should be analyzed using standard or state-of-the-practice procedures such as Highway Capacity Manual (HCM) analysis. At isolated intersections that are not heavily congested, deterministic methods that apply HCM equations for each intersection in isolation can be used. HCM 6th Edition is the latest version which reflects current state-of-the-practice methodology. There are several software packages that use deterministic methods such as Synchro, Vistro (previously Traffix), and Highway Capacity Software. The HCM methodology assigns a LOS grade to an intersection based on estimated delay.

For intersections that are closely spaced, have a unique geometry, or are part of a congested corridor, micro-simulation analysis should be performed. Micro-simulation can more accurately evaluate intersections with unique characteristics or in congested systems because the method accounts for how intersections within a system interact with one another. For example, if a vehicle queue extends from an intersection and blocks a different intersection, micro-simulation will account for that condition, whereas deterministic methods will not. Micro-simulation should also be considered when determining required turn lane storage if the analyst believes deterministic methods are not producing reasonable maximum or 95th percentile queue lengths. There are several micro-simulation software packages such as SimTraffic (which is a module of Synchro) and Vissim.

It is recommended that the methodology and software proposed for use is coordinated with County staff as part of the Scoping Agreement process. County staff may also request the consultant provide micro-simulation electronic files for review.

The following provides general guidelines for the parameters necessary to perform the analysis. For evaluating existing and project buildout conditions within five years of commencement of the LMA, the parameters should generally be based on field measurements taken during traffic data collection or field observation. For new study intersections or to analyze a buildout year that is beyond five years of commencement of the LMA, the guidelines in Table 6 can be used to determine input parameters.

Table 6 - Signalized Intersections Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intersection Delay</td>
<td>Average intersection delay (and associated HCM level of service) should be reported for signalized intersections.</td>
</tr>
<tr>
<td>Peak Hour Factor (PHF)</td>
<td>Use the measured PHF by intersection approach that is obtained during traffic data collection. For new intersections or to analyze conditions beyond five years of commencing the LMA, refer to the HCM and maintain consistency across analysis periods, scenarios, and intersections.</td>
</tr>
<tr>
<td>Saturation Flow Rate</td>
<td>Use typical saturation flow rate presented in the HCM. The current typical saturation flow rate is 1,800 vehicles per hour per lane.</td>
</tr>
</tbody>
</table>
An improvement is required at a signalized intersection if any of the following are triggered:

- Consistent with County General Plan Policy, any intersection that is operating at an acceptable LOS or better without project traffic in which the addition of project traffic causes the intersection to degrade to an LOS E or F should identify improvements to improve operations to LOS D or better.

- Any signalized study intersection that is operating at LOS E or F without project traffic where the project increased delay by 5.0 or more seconds should identify improvements to offset the increase in delay.

- If the left turn volume exceeds 100 vehicles per hour, an exclusive left turn lane is recommended.

- If the left turn volume exceeds 150 vehicles per hour and posted speed 45 mph or greater, a protected left turn signal phase is recommended.

- If the left turn volume exceeds 300 vehicles per hour, a second left turn lane is recommended.

- If the right turn volume exceeds 150 vehicles per hour, a dedicated right turn lane is recommended.

- The project causes the 95th percentile queue at a turn lane to exceed the existing turn lane length/storage.
The following types of typical improvements for signalized intersections:

- Addition of left or right turn lanes.
- Lengthening a turn lane.
- Signal timing/phasing/coordination/equipment improvements or transportation system management (TSM).
- ADA signal accessible improvements.
- The County may also require upgrades to meet current design standards or better accommodate pedestrian and bicycle mobility consistent with the County Active Transportation Plan.

4.5.2. Unsignalized Intersections Methodology

Traffic operational impacts at unsignalized intersections (all-way stop, side-street stop, and roundabout intersections) should be analyzed using standard or state-of-the-practice procedures consistent with acceptable LOS as outlined in the County General Plan. The software packages and methods described for signalized intersections also apply to stop controlled intersections.

All-way stop intersections and roundabouts should be reported for the entire intersection average value. Minor side-street stop intersections should be reported for the worst-case movement.

An improvement is required at side street stop unsignalized intersection if:

- The project causes the average intersection delay to be LOS E or F during the peak hour.
- If the worst-case movement is currently operating at LOS E or F:
 - The project adds 5 or more seconds of overall intersection.
 - AND
 - The project adds ten (10) or more trips to the worst-case movement OR 50 or more trips to the overall intersection.
- The intersection meets the peak hour traffic signal warrants after the addition of project traffic per the California Manual on Uniform Traffic Control Devices (CA MUTCD–latest edition). An investigation of the need for a traffic control signal may also include an analysis of factors related to the existing operations and safety at a study intersection and the potential to improve these conditions. A warrant analysis is not required for right turn in/right turn out only intersections or driveways that are physically restricted by raised center median.

An improvement is required at all-way stop and roundabout unsignalized intersection if:

- The project causes the average intersection delay to be LOS E or F during the peak hour.
- The project adds 5 or more seconds of delay to an intersection that is currently operating at LOS E or F during the peak hour.
• The intersection meets the peak hour traffic signal warrants after the addition of project traffic per the *California Manual on Uniform Traffic Control Devices* (CA MUTCD—latest edition). An investigation of the need for a traffic control signal may also include an analysis of factors related to the existing operations and safety at a study intersection and the potential to improve these conditions. A warrant analysis is not required for right turn in/right turn out only intersections or driveways that are physically restricted by raised center median.

The following types of typical improvements improve operations for unsignalized intersections:

• Install All-Way Stop Control.
• Install Two-Way Stop Control.
• Provide Left Turn Lane.
• Provide Right Turn Lane.
• Install Bypass Lane.
• Install Center Acceleration Lane.
• Install new traffic control device (Perform intersection control evaluation (ICE), see below).
• The County may also require upgrades to meet current design standards or better accommodate pedestrian and bicycle mobility consistent with the County ATP.

4.5.3. Intersection Control Evaluation (ICE)

The selection of the appropriate intersection control evaluation (ICE) should be guided by performance-based evaluations that objectively consider the range of project solutions and control strategies for a given project context. Traffic operations and safety performance are key inputs into the ICE framework. Consistent with the California MUTCD, the County of San Diego recognizes the roundabout as a standard form of intersection control. Roundabouts can provide increased efficiency of operations and enhanced safety. Should a project recommend the construction of a new signalized intersection or control measure, the County recommends the intersection be further analyzed using Caltrans ICE methodology. If the analysis screening indicates that a roundabout should be evaluated, the analysis should be conducted using one of the following methodologies: SIDRA or RODEL. These models are consistent with HCM 2010 and HCM Edition 6 models.

There are various reference and informational guides that discuss applications, designs, and performance characteristics of different intersection types and control strategies are available to support screening, analyzing and designing roundabouts.

https://safety.fhwa.dot.gov/intersection/innovative/roundabouts/

https://dot.ca.gov/programs/traffic-operations/intersection-evaluation-control

It is recommended that early consultation occur with County staff when the Transportation Study determines the need for a new intersection control measure. A roundabout option should be screened
early in the draft Transportation Study. During this process, the applicant’s consultant may request a meeting with County staff to clarify study requirements or comments received on the draft study related to the need to conduct an ICE study.

4.5.4. Roadway Segments Methodology

Intersections are typically the constraint when analyzing traffic operations. However, in some cases for larger projects, a roadway segment assessment may be appropriate and requested by County staff.

Roadway segment analysis should be performed using thresholds from the latest HCM methodology that reflects the current state-of-the-practice. The HCM methodology assigns a LOS grade to the roadway segment and is evaluated based on acceptable LOS as identified in the County General Plan and Public Road Standards based on facility classification type.

4.5.5. Site Access, Safety, and Other Analyses

The proper application of access management and basic site planning principles is essential to all transportation analysis. The design of site circulation, parking, and access should also easily accommodate bus and pedestrian movements. The following factors should be considered when evaluating existing and/or post-project traffic conditions to address identified traffic operations and safety concerns:

1. Intersection phasing and queuing
2. Inadequate weaving distance with increasing traffic volumes
3. Inadequate deceleration length with increasing traffic volumes
4. Speed differentials from vehicles slowing or stopping
5. Inadequate decision sight distance
6. Access management
7. Driveway location and design
8. Bicycle, pedestrian and transit accessibility
TABLE 7 - SAFETY TREATMENTS BY FACILITY TYPE

<table>
<thead>
<tr>
<th>Facility Type</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freeways</td>
<td>Ensure intersection and freeway ramps capacity and storage don’t spill onto local roadways</td>
</tr>
<tr>
<td>Roadways</td>
<td>Roadway shoulder enhancements to provide “breakdown space,” dedicated space for use only by transit vehicles, to provide bicycle access, or otherwise to improve safety</td>
</tr>
<tr>
<td>Intersections</td>
<td>Addition of through lane(s), right turn lane(s) and left turn lane(s)</td>
</tr>
<tr>
<td></td>
<td>Left and/or right turn lane pocket length (queue length)</td>
</tr>
<tr>
<td></td>
<td>Intersection control measures and coordination (stop control, signal, roundabout)</td>
</tr>
<tr>
<td></td>
<td>Intersection geometrics for heavy vehicle traffic (e.g. curb returns)</td>
</tr>
<tr>
<td>Driveways</td>
<td>Sight distance</td>
</tr>
<tr>
<td></td>
<td>Driveway length and gated entrances</td>
</tr>
<tr>
<td></td>
<td>Corner clearance</td>
</tr>
<tr>
<td></td>
<td>Number or driveways</td>
</tr>
<tr>
<td>Access Management</td>
<td>Raised median and two-way-left-turn lanes</td>
</tr>
<tr>
<td></td>
<td>Sight distance improvements</td>
</tr>
<tr>
<td></td>
<td>Access and signal spacing</td>
</tr>
<tr>
<td></td>
<td>Gap analysis</td>
</tr>
<tr>
<td>Complete Streets - Bicycle, Pedestrian & Transit</td>
<td>Infrastructure</td>
</tr>
<tr>
<td></td>
<td>Accessibility</td>
</tr>
<tr>
<td></td>
<td>Bus turnouts</td>
</tr>
<tr>
<td>Parking</td>
<td>Parking plans and restrictions</td>
</tr>
<tr>
<td>Traffic Calming</td>
<td>Vertical deflections (speed humps, speed tables, and raised intersections), horizontal shifts, roadway narrowing, etc.</td>
</tr>
</tbody>
</table>
Construction

All projects should anticipate construction impacts with new development. To the extent possible, operational analysis should include information about project construction schedule such as duration, hours or operations, any required grading, potential haul routes, traffic control plans and street closure.

Active Transportation Assessment

The County of San Diego’s Active Transportation Plan (ATP) is a multi-objective plan that balances environmental, economic, and community interests; implements the County’s General Plan; and aligns with multiple County initiatives. The ATP identifies goals, objectives, and actions related to improving safety to reduce auto collisions with cyclists and pedestrians, increasing accessibility and connectivity with an active transportation network, and improving public health by encouraging walking and biking.

The pedestrian, bicycle, and trail facilities assessment is intended to determine a project’s potential effect on Active Transportation facilities in the vicinity of the proposed project. The deficiencies could be physical, through removal or modification of existing facilities. The deficiencies could also be based on demand if the project is adding bicycle and pedestrian trips to inadequate facilities.

https://www.sandiegocounty.gov/content/sdc/pds/advance/ActiveTransportationPlan.html

Pedestrian: Documentation of existing and planned pedestrian facilities and basic deficiencies (missing sidewalk, curb ramps, and major obstructions) within ¼-mile walking distance measured from each pedestrian access point (for example, driveways, internal project sidewalk connections to the street, etc.).

The project should construct sidewalks to close sidewalk gaps adjacent to the project site.

The project should remove sidewalk obstructions that limit the pedestrian access route to less than four feet adjacent to the project site.

The project should construct curb ramps/meet accessibility standards for any intersections adjacent to the project site.

The project can consider adding traffic calming and pedestrian related signal timing changes (leading pedestrian interval signal timing) to accommodate an increase in pedestrian demand on roadways and intersections adjacent to the project site.

Bicycle: Documentation of bicycle facilities and basic deficiencies (bike lane gaps, obstructions) within ½ mile bicycling distance measured from the center of the intersection formed by each project driveway.

The project should construct (or preserve space for) any planned bicycle facility per the County’s Active Transportation.

The project could consider upgrading adjacent bicycle facilities by adding upgraded treatments (such as green bike lane paint, buffers, etc. where appropriate) to accommodate an increase in bicycle demand.

The project should construct any planned bicycle facilities adjacent to the project frontage to be consistent with the County’s Mobility Element and Active Transportation Plan.
Trails: The County Trails Program will be utilized to develop a system of interconnected regional and community trails and pathways. These trails and pathways are intended to address an established public need for recreation and transportation but will also provide health and quality of life benefits associated with hiking, mountain biking, and horseback riding throughout the County's biologically diverse environments. The County Trails Program involves both trail development and management on public, semi-public, and private lands.

https://www.sandiegocounty.gov/content/sdc/pds/community-trails-master-plan.html

Documentation of all planned trails and pathways identified in the County’s CTMP within ¼ mile of the project site.

The project should construct any planned pathways along the project’s frontage to be consistent with the County’s Mobility Element and CTMP.

Documentation of all planned or existing trails that bisect any portion of the project’s parcel(s).

For project parcels that include a planned trail, early coordination with County Trails Staff is strongly encouraged to determine trail alignment and any potential easements that may be requested or required.

County Design Exception Request (DER) Process

The LMAs should identify and provide a brief summary of proposed and approved DERs. The LMAs should contain a reference to the detailed design exception documentation (separate documents that are included in LMA Technical Appendices).

Fire/Emergency Services

LMAs for large residential projects (over 50 units/500 ADT) and non-conforming GPA projects should provide a high-level discussion regarding secondary/emergency access and emergency evacuation planning with the local Fire District and emergency service agencies. The LMA should include a reference to supporting project documentation that addresses secondary/emergency access and emergency evacuation planning in a more comprehensive manner.
Appendix A: Scoping Agreement for Transportation Studies
General Project Information and Description

Project Information

<table>
<thead>
<tr>
<th>Project Name:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Project PDS Number:</td>
<td></td>
</tr>
<tr>
<td>Project Location:</td>
<td></td>
</tr>
</tbody>
</table>

Project Description

<table>
<thead>
<tr>
<th>Land Uses and Intensities:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross and Developable Acreage:</td>
<td></td>
</tr>
<tr>
<td>Number of Vehicle Parking Spaces:</td>
<td></td>
</tr>
<tr>
<td>Bicycle Storage Capacity:</td>
<td></td>
</tr>
<tr>
<td>Motorcycle Spaces:</td>
<td></td>
</tr>
</tbody>
</table>

Consultant

<table>
<thead>
<tr>
<th>Name of Firm:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Manager:</td>
<td></td>
</tr>
<tr>
<td>Address:</td>
<td></td>
</tr>
<tr>
<td>Telephone:</td>
<td></td>
</tr>
</tbody>
</table>

Trip Generation

<table>
<thead>
<tr>
<th>Source:</th>
<th>Pass-by Trips:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Daily Trips:</td>
<td>Diverted Trips:</td>
</tr>
<tr>
<td>Internal Capture Rate:</td>
<td>Trip Credit:</td>
</tr>
<tr>
<td>Alternative Modes:</td>
<td>Net Daily Trips:</td>
</tr>
</tbody>
</table>

General Plan Consistency

Is this project consistent with the General Plan? Yes No

Site Plan

Attach 11x17 copies of the project location/vicinity map and site plan containing the following:

- Driveway locations and access type
- Pedestrian access, bicycle access, and on-site pedestrian circulation
- Location and distance to closest existing transit stop (measure as walking distance to project entrance or middle of parcel)
- Location of any planned trails identified in the Community Trails Master Plan (CTMP) within ¼ mile of the project location
CEQA Transportation Analysis Screening

Project Type Screening

1) Select the Land Uses that apply to your project from the five options below.
2) Answer the questions for each Land Use that applies to your project (if “Yes” in any land use category below then that land use (or a portion of the land use) is screened from CEQA Transportation Analysis).

<table>
<thead>
<tr>
<th>Screened Out</th>
<th>Not Screened Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

☐ 1. Small Projects:
 a. Does the project result in 110 daily trips or less?

☐ 2. Small Service/Retail Project:
 a. Is the project less than 50,000 square feet?

☐ 3. Mixed-Use Project:
 a. Is the project location screened out based on the SANDAG screening map for VMT/service population?

☐ 4. Locally Serving Retail/Public Facility/Recreational
 a. Is the project locally serving: Retail OR Public Facility OR Recreational?

☐ 5. Redevelopment Project:
 a. Does the project result in a net decrease in total Project VMT than the existing use?
 b. If the project is to redevelop an affordable housing site, are all proposed units affordable housing units? Mark “No” for projects that replace affordable housing with market rate units.

Project Location Screening (if not screened based on project type) – Part 1

Is this project located within a grey area (area with little to no existing land use) on the applicable County screening maps for the project land use type? □ Yes □ No

If “yes”, the project cannot be screened based on location. If “No”, proceed to Part 2.

Project Location Screening (if not screened based on project type) – Part 2

1) Select the Land Uses that apply to your project
2) Answer the questions for each Land Use that applies to your project (if “Yes” in any land use category below then that land use (or a portion of the land use) is screened from CEQA Transportation Analysis).

<table>
<thead>
<tr>
<th>Screened Out</th>
<th>Not Screened Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

☐ 1. Residential
 a. Is the project location screened out using the County screening maps for VMT/resident?

☐ 2. Employment
 a. Is the project location screened out using the County screening maps for VMT/employee or VMT/service population?

☐ 3. Retail/Public Facility/Recreational
 a. Is the project location screened out using the County screening maps for VMT/service population?
Local Mobility Analysis

Type of Local Mobility Analysis (LMA)

☐ Site Access Study
249 daily trips or less

☐ Focused LMA
250 to 499 daily trips and consistent with the General Plan

☐ Full LMA
500 or greater daily trips and consistent with the General Plan, or
250 or greater daily trips and inconsistent with the General Plan

Trip Distribution

☐ Select Zone (Model Series__________)
Projects that generate greater than 1,000 daily trips

☐ Manual Estimation
Site Access Studies, Focused LMAs, or project’s that generate less than 1,000 daily trips

Provide exhibit detailing trip distribution and trip assignment for review.

Study Intersections (and Roadway Segments) (NOTE: Subject to change based on staff review)

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.

Attach a separate page if the number of study locations exceeds 10.

Other Jurisdictions

Is this project located within one mile of another Local Jurisdiction? ☐ Yes ☐ No

If so, name of Jurisdiction:

Specific Issues to be addressed within the Study
(in addition to requirements described in the Guidelines – to be filled out by County Staff)

1.
2.
3.
4.
5.
Recommended by:

Consultant’s Representative
Date

Scoping Agreement Submitted on
Date

Scoping Agreement Re-submitted on
Date

Approved Scoping Agreement:

County of San Diego
Transportation Specialist
Date
Appendix B: Transportation Study Format
This page intentionally left blank
Transportation Study Format Outline

The outline below provides organizational guidance for the various sections of a typical transportation study. When a project is screened from CEQA VMT analysis or local mobility analysis, the section is not required in the transportation study.

COVER PAGE

TABLE OF CONTENTS (Including a list of tables, maps, and figures)

GLOSSARY OF TERMS AND ACRONYMS

EXECUTIVE SUMMARY
 a) Table summarizing CEQA impacts and mitigation measures.
 b) Table summarizing LMA findings and proposed improvements.

INTRODUCTION
1.0 Project and Study Description.
 1.1 Purpose of the Transportation Study.
 1.2 Project location and vicinity map (Exhibit).
 1.3 Project size and description.
 1.4 Existing and proposed land-use and zoning.
 1.5 Site plan and proposed project (Exhibit).
 1.6 Proposed project opening year and analysis scenarios.

CEQA VMT ANALYSIS
2.0 Project VMT per capita, per employee, and/or per service population for all analysis scenarios.
3.0 Project effect on VMT for all analysis scenarios.
4.0 Identification of VMT impacts.
5.0 Proposed VMT mitigation measures.

LOCAL MOBILITY ANALYSIS
6.0 Methodology and Thresholds.
7.0 Existing Conditions.
 7.1 Existing roadway network.
 7.2 Existing traffic control and intersection geometrics (Exhibit).
 7.3 Existing traffic volumes – AM and PM peak hour and ADT (Exhibit).
 7.4 Existing level of service (LOS) at intersections (Table).
 7.5 Existing bicycle facilities (Exhibit).
 7.6 Existing pedestrian and trail facilities (Exhibit).
 7.7 Existing transit facilities (Exhibit).
8.0 Project Traffic.
 8.1 Trip generation (Table).
 8.2 Trip distribution and assignment (Exhibit).
 8.3 Project AM and PM peak hour turning movement volumes (Exhibit).
9.0 Opening Year Analysis.
9.1 Opening Year No Project Analysis.
 9.1.1 AM and PM peak hour turning movement volumes (Exhibit).
 9.1.2 Intersection level of service (Table).
9.2 Opening Year Plus Project Analysis.
 9.2.1 AM and PM peak hour turning movement volumes (Exhibit).
 9.2.2 Intersection level of service (Table).
 9.2.3 Identification of intersection deficiencies and improvements.
10.0 Phased Year Analysis (if necessary).
 10.1 Project phase description (including construction overlap) and projections.
 10.2 Phased Year No Project Analysis.
 10.2.1 AM and PM peak hour turning movement volumes (Exhibit).
 10.2.2 Intersection level of service (Table).
 10.3 Phased Year With Project Analysis.
 10.3.1 AM and PM peak hour turning movement volumes (Exhibit).
 10.3.2 Intersection level of service (Table).
 10.3.3 Identification of intersection deficiencies and improvements.
11.0 Build-out/Horizon Year Analysis (for GPAs only).
 11.1 Build-out/Horizon Year No Project Analysis.
 11.1.1 AM and PM peak hour turning movement volumes (Exhibit).
 11.1.2 Intersection level of service (Table).
 11.2 Build-out/Horizon Year Plus Project Analysis.
 11.2.1 AM and PM peak hour turning movement volumes (Exhibit).
 11.2.2 Intersection level of service (Table).
 11.2.3 Identification of intersection deficiencies and improvements.
12.0 Traffic Signal Warrant Analysis.
13.0 Site Access Analysis.
14.0 Safety and Operation Improvement Analysis.
15.0 Active Transportation Analysis.
 15.1 Pedestrian Analysis.
 15.1.1 Existing and planned facilities (Exhibit).
 15.1.2 Deficiencies.
 15.1.3 Proposed improvements.
 15.2 Bicycle Analysis.
 15.2.1 Existing and planned facilities (Exhibit).
 15.2.2 Deficiencies
 15.2.3 Proposed improvements.
 15.3 Trails.
 15.3.1 Existing and planned facilities (Exhibit).
 15.3.2 Proposed improvements.
16.0 Improvements and Recommendations.
 16.1 Proposed improvements at intersections.
 16.2 Proposed improvements at roadway segments.
16.3 Recommended improvements categorized by whether they are included in a fee plan or not (identify if these improvements are included in an adopted fee program).

APPENDIX

A. Approved scoping agreement.
B. Traffic counts.
C. Intersection analysis worksheets.
D. VMT and TDM calculations.
E. VMT and TDM mitigation calculations.
F. Signal warrant worksheets.
Appendix C: VMT Efficient Areas Screening Map Options
This page intentionally left blank
San Diego County VMT Per Resident by TAZ Relative to SANDAG Regional Average*

Legend
- **At least 15% below the SANDAG Regional Average**
- **0% to 15% below the SANDAG Regional Average**
- **Above the SANDAG Regional Average**

SANDAG Regional Average = 21.85 Vehicle Miles Traveled/Resident

Based on the SANDAG Series 13 Base Year Model
San Diego County VMT Per Employee by TAZ Relative to SANDAG Regional Average*

Legend
- At least 15% below the SANDAG Regional Average
- 0% to 15% below the SANDAG Regional Average
- Above the SANDAG Regional Average

SANDAG Regional Average = 26.25 Vehicle Miles Traveled/Employee

*Based on the SANDAG Series 13 Base Year Model
Draft

San Diego County VMT Per Service Population by TAZ Relative to Unincorporated County Average*

*Based on the SANDAG Series '11 Base Year Model

Unincorporated County Average = 37.53 Vehicle Miles Traveled/Service Population

Legend
- At least 15% below the Unincorporated County Average
- 0% to 15% below the Unincorporated County Average
- Above the Unincorporated County Average
- Areas with insufficient data to determine average VMT
- San Diego County Incorporated Cities
- Community Plan Area
- County Water Authority Boundary

May 1, 2020
San Diego County VMT Per Employee by TAZ Relative to Subregional Average*

Legend
- At least 15% below the Subregional Average
- 0% to 15% below the Subregional Average
- Above the Subregional Average
- Areas with insufficient data to determine average VMT
- Community Plan Area
- San Diego County Incorporated Cities
- County Water Authority Boundary

Subregional Averages (Vehicle Miles Traveled/Employee): 1=28.51, 2=44.38, 3=38.60, 4=42.89, 5=46.40

*Based on the SANDAG Series 13 Base Year Model

Draft

May 1, 2020
Subregional Averages (VMT/Service Population): 1=29.80, 2=50.07, 3=39.83, 4=42.33, 5=64.44

San Diego County VMT Per Service Population by TAZ Relative to Subregional Average*

*Based on the SANDAG Series 13 Base Year Model
This page intentionally left blank
Appendix D: Project Types Grouped by Land Use Category
This page intentionally left blank
Project Types Grouped by Land Use Category

The following table provides a list of unique project types and the land use type they should be considered under for SB 743 screening and analysis.

LAND USE CATEGORIES

<table>
<thead>
<tr>
<th>Land Use Category for SB 743 Analysis for all Project Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Residential Projects</td>
</tr>
<tr>
<td>The uses below generally fall within the County General Plan Land Use Designations of Village Residential, Semi-Rural Residential or Rural Lands Residential.</td>
</tr>
<tr>
<td>• Congregate Care Facility</td>
</tr>
<tr>
<td>• Estate Housing</td>
</tr>
<tr>
<td>• Mobile Home</td>
</tr>
<tr>
<td>• Multiple Dwelling Unit (all sizes)</td>
</tr>
<tr>
<td>• Retirement/Senior Citizen Housing</td>
</tr>
<tr>
<td>• Single Family Detached</td>
</tr>
</tbody>
</table>

| **2. Employment Projects** |
| The uses below generally fall within the County General Plan Land Use Designations of General Commercial, Office Professional, Limited-Impact Industrial, Medium-Impact Industrial or High-Impact Industrial. |
| • Agriculture |
| • Hospital: Convalescent/Nursing |
| • Hospital: General |
| • Industrial/Business Park |
| • Scientific Research and Development |
| • Hotel (w/ convention facilities/restaurants) |
| • Motel |
| • Resort Hotel |
| • Military Base |
| • Commercial Office |
| • Corporate Headquarters/Single Tenant Office |
| • Medical Office |
| • Government Offices (Primarily Office with Employees) |
| • Industrial: Manufacturing/Assembly |
| • Industrial: Rental Storage |
| • Industrial: Truck Terminal |
| • Industrial: Warehousing |

| **3. Retail and Service** |
| The uses below generally fall within the County General Plan Land Use Designations of General Commercial, Neighborhood Commercial, Rural Commercial, or Village Core Mixed Use. |
| • Shopping Center |
| • Automobile Services |
| • Convenience Market Chain |
| • Discount Store/Discount Club |
| • Drugstore |
| • Furniture Store |
| • Lumber/Home Improvement Store |
| • Nursery |
| • Restaurant |
| • Specialty Retail Center/Strip Commercial |
| • Supermarket |
| • Financial Institution (Bank or Credit Union) |
| • Bowling Center |
| • Movie Theater |
| • Racquetball/Tennis/Health Club |
| • Sport Facility (Indoor or Outdoor) |
| • Winery |
| • Special Event Facility |
4. Regional Public Facilities
The uses below generally fall within the County General Plan Land Use Designation of Public and Semi-Public Facilities.

<table>
<thead>
<tr>
<th>Public and Semi-Public Facilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airport</td>
</tr>
<tr>
<td>Cemetery</td>
</tr>
<tr>
<td>University</td>
</tr>
<tr>
<td>Community College</td>
</tr>
<tr>
<td>House of Worship: General</td>
</tr>
<tr>
<td>House of Worship: Without School or Day Care</td>
</tr>
<tr>
<td>Bus Depot</td>
</tr>
</tbody>
</table>

5. Locally Serving Public Facilities
The uses below generally fall within the County General Plan Land Use Designation of Public and Semi-Public Facilities.

<table>
<thead>
<tr>
<th>Public and Semi-Public Facilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schools (unless determined to draw students from outside the local area)</td>
</tr>
<tr>
<td>Day Care Center/Child Care Center</td>
</tr>
<tr>
<td>Library</td>
</tr>
<tr>
<td>Department of Motor Vehicles</td>
</tr>
<tr>
<td>Government Offices (Primarily Serving Customers)</td>
</tr>
<tr>
<td>Post Office</td>
</tr>
<tr>
<td>Park & Ride Lot</td>
</tr>
<tr>
<td>Transit Station</td>
</tr>
<tr>
<td>Neighborhood Park (developed or undeveloped)</td>
</tr>
</tbody>
</table>

6. Regional Recreational
The uses below generally fall within the County General Plan Land Use Designations of Rural Lands Residential, Rural Commercial, or Open Space- Recreation.

<table>
<thead>
<tr>
<th>Recreational Facilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marina</td>
</tr>
<tr>
<td>Zoo</td>
</tr>
<tr>
<td>Aquarium</td>
</tr>
<tr>
<td>Golf Course</td>
</tr>
<tr>
<td>Regional Park or Beach, Ocean, or Bay Park</td>
</tr>
</tbody>
</table>

Appendix E: Transportation Projects That Do Not Require VMT Analysis
This page intentionally left blank
Transportation Projects That Do Not Require VMT Analysis

The following complete list is provided in the OPR Technical Advisory (December 2018, Pages 20-21) for transportation projects that “would not likely lead to a substantial or measurable increase in vehicle travel, and therefore generally should not require an induced travel analysis:"

- Rehabilitation, maintenance, replacement, safety, and repair projects designed to improve the condition of existing transportation assets (e.g., highways; roadways; bridges; culverts; Transportation Management System field elements such as cameras, message signs, detection, or signals; tunnels; transit systems; and assets that serve bicycle and pedestrian facilities) and that do not add additional motor vehicle capacity

- Roadside safety devices or hardware installation such as median barriers and guardrails

- Roadway shoulder enhancements to provide “breakdown space,” dedicated space for use only by transit vehicles, to provide bicycle access, or to otherwise improve safety, but which will not be used as automobile vehicle travel lanes

- Addition of an auxiliary lane of less than one mile in length designed to improve roadway safety

- Installation, removal, or reconfiguration of traffic lanes that are not for through traffic, such as left, right, and U-turn pockets, two-way left turn lanes, or emergency breakdown lanes that are not utilized as through lanes

- Addition of roadway capacity on local or collector streets provided the project also substantially improves conditions for pedestrians, cyclists, and, if applicable, transit

- Conversion of existing general purpose lanes (including ramps) to managed lanes or transit lanes, or changing lane management in a manner that would not substantially increase vehicle travel

- Addition of a new lane that is permanently restricted to use only by transit vehicles

- Reduction in number of through lanes

- Grade separation to separate vehicles from rail, transit, pedestrians or bicycles, or to replace a lane in order to separate preferential vehicles (e.g., HOV, HOT, or trucks) from general vehicles

- Installation, removal, or reconfiguration of traffic control devices, including Transit Signal Priority (TSP) features

- Installation of traffic metering systems, detection systems, cameras, changeable message signs and other electronics designed to optimize vehicle, bicycle, or pedestrian flow

- Timing of signals to optimize vehicle, bicycle, or pedestrian flow
• Installation of roundabouts or traffic circles
• Installation or reconfiguration of traffic calming devices
• Adoption of or increase in tolls
• Addition of tolled lanes, where tolls are sufficient to mitigate VMT increase
• Initiation of new transit service
• Conversion of streets from one-way to two-way operation with no net increase in number of traffic lanes
• Removal or relocation of off-street or on-street parking spaces
• Adoption or modification of on-street parking or loading restrictions (including meters, time limits, accessible spaces, and preferential/reserved parking permit programs)
• Addition of traffic wayfinding signage
• Rehabilitation and maintenance projects that do not add motor vehicle capacity
• Addition of new or enhanced bike or pedestrian facilities on existing streets/highways or within existing public rights-of-way
• Addition of Class I bike paths, trails, multi-use paths, or other off-road facilities that serve non-motorized travel
• Installation of publicly available alternative fuel/charging infrastructure
• Addition of passing lanes, truck climbing lanes, or truck brake-check lanes in rural areas that do not increase overall vehicle capacity along the corridor
Appendix F: Justification/Rationale Screening Criteria and Threshold
Appendix F: Justification/Rationale Screening Criteria and Threshold

This appendix provides context and justification/rationale for the screening criteria and thresholds for performing transportation VMT CEQA impact analysis. Red italicized text indicates options available to the Board of Supervisors or supporting information related to those options. The text associated with the Board’s approved direction will be inserted/retained for the final version of the appendix.

Screening Criteria

Development projects are presumed to have less than significant impacts to the transportation system, and therefore would not be required to conduct a VMT analysis, if any of the following criteria are established.

1. Projects Located in a VMT Efficient Area (Location Based Screening Maps)

A VMT efficient area is any area with an average VMT per resident, VMT per employee, or VMT per service population <County Selected VMT Threshold> below the baseline average for the <County Selected Geography> it is located within. Land use projects may qualify for the use of VMT efficient area screening if the project can be reasonably expected to generate VMT per resident, per employee, or per service population, respectively, that is similar to the existing land uses in the VMT efficient area. Location-based screening maps are used to determine if a project is in a VMT efficient area.

Justification – This presumption is based on the Office of Planning and Research Technical Advisory on Evaluating Transportation Impacts in CEQA (December 2018) (OPR Technical Advisory), which provides that “residential and office projects that locate in areas with low VMT, and that incorporate similar features (i.e., density, mix of uses, transit accessibility), will tend to exhibit similarly low VMT. Maps created with data from a travel survey or travel demand model can illustrate areas that are currently below threshold. Because new development in such locations would likely result in a similar level of VMT, such maps can be used to screen out residential and office projects from needing to prepare a detailed VMT analysis.” These maps are known as the “location-based screening maps.” The OPR Technical Advisory also specifies that lead agencies, using more location specific information, may develop their own more specific information that includes more land uses. As such, the location-based screening maps are for residential uses (based on VMT per resident), employment uses (based on VMT per employee), and other uses (based on VMT/service population) that locate in a zone that has similar land uses to the proposed land use.

Note: The County has the discretion to determine thresholds including the appropriate geography to set thresholds by. The following are potential geography options and justifications for each for the County:
• **SANDAG Region** – The OPR Technical Advisory discusses the “region” as an appropriate geography to establish average VMT and thresholds. While the OPR Technical Advisory does not directly state that the “region” is a metropolitan planning organization (MPO), it does refer to use of an MPO region as a basis for determining average VMT. Many jurisdictions have interpreted the OPR Technical Advisory reference to region or regional average as aligning with the MPO boundary. The MPO region that the County is contained within is the SANDAG region. Therefore, use of the SANDAG region as the basis for establishing average VMT numbers could be considered consistent with the OPR Technical Advisory.

• **Unincorporated Region** – The OPR Technical Advisory discusses the “region or city” as an appropriate geography to establish average VMT and thresholds. Since the OPR Technical Advisory does not specifically define “region,” a potential regional boundary that is logical for the County is the unincorporated county. The unincorporated area aligns with the region that the County has land use jurisdiction over and the General Plan, which contains the goals and policies that shape future growth within the County, and is distinct from areas within incorporated cities. Since the unincorporated county land use context is diverse and different than the incorporated areas of the county, it is important to consider planning goals and policies that reflect the unincorporated area. To illustrate the diversity and difference between the unincorporated area and incorporated Cities, the following statistics are helpful:

 o San Diego County (incorporated and unincorporated areas combined) is approximately 4,526 square miles.
 o The unincorporated area represents approximately 3,570 square miles or 79% of the land area.
 o The unincorporated area represents approximately 16% of the countywide population.

This demonstrates that the unincorporated county context is primarily rural in nature whereas the incorporated cities are largely suburban/urban in nature. A threshold based on the unincorporated county region allows the County to reflect the difference in land use context (rural, semi-rural, and village) as compared to the incorporated area and supports the County’s ability to establish thresholds that reflect agency specific goals and policies.

• **Sub-Regions** – This splits the unincorporated area into sub-regions that help to further refine the geography and thresholds to reflect the diversity in land use context and travel patterns within the unincorporated county. The OPR Technical Advisory discusses “region or city” as an appropriate geography to establish average VMT and thresholds. The OPR Technical Advisory does not provide guidance for establishing sub-regions for the basis of evaluating VMT or setting thresholds. However, using sub-regions to establish average VMT and thresholds reflects the village concepts identified in the General Plan, diversity of land use context, and diversity in travel patterns, analogous to use of “city” boundaries. The General Plan includes policies and growth patterns that focus development near the village communities (which supports the goals of SB 743 to locate development near other established development, reducing VMT). If the
unincorporated County is split into sub-regions, these sub-regions are composed of communities with similar commute and trip patterns. See Attachment for a detailed explanation regarding the grouping of communities into analysis regions.

2. Small Projects

Projects generating less than \(<\text{County Selected Trip Threshold}\) daily vehicle trips (trips are based on the number of vehicle trips calculated using ITE trip generation rates with any alternative modes/location-based adjustments are applied) may be presumed to have a less than significant transportation impact under CEQA absent substantial evidence to the contrary.

Justification – The OPR Technical Advisory states that “projects that generate or attract fewer than 110 trips per day generally may be assumed to cause a less-than-significant impact.” This is supported by the fact that CEQA provides a categorical exemption for existing facilities, including additions to existing structures of up to 10,000 square feet, so long as the project is in an area where public infrastructure is available to allow for maximum planned development, and the project is not in an environmentally sensitive area. (CEQA Guidelines, § 15301(e)(2).)

Typical project types for which trip generation increases relatively linearly with building footprint (e.g., general office building, single tenant office building, office park, or business park) generate or attract an additional 110-124 trips per 10,000 square feet according to the national publication Institute of Transportation Engineers (ITE) Trip Generation Manual. An alternative small project size is justified by using the same procedure described in the OPR Technical Advisory but using an alternative trip-generation model. Specifically, the fact that CEQA provides a categorical exemption for existing facilities, including additions to existing structures of up to 10,000 square feet, so long as the project is in an area where public infrastructure is available to allow for maximum planned development, and the project is not in an environmentally sensitive area. OPR evaluated the small project size assuming an office building. There are other sources of data to determine the trip generation of a project that could be used in justifying a small project size. Possible data sources available to the County include:

- National Publication of ITE Trip Generation, 10th Edition (2017) – Results in a small project size of 100 daily trips.
- Develop County specific trip generation rates; requires performing trip generation surveys at multiple locations to establish an average trip generation rate.

Because the SANDAG Not So Brief Guide of Vehicular Traffic Generation Rates for the San Diego Region is based on region-specific trip generation data, use of this data would be justified as reflective of local conditions.
3. Projects Located in a Transit Accessible Area

Projects located within a half mile of an existing major transit stop or an existing stop along a high-quality transit corridor¹ may be presumed to have a less than significant impact absent substantial evidence to the contrary. Note that Sprinter stations are considered major transit stops. This presumption may not apply if the project:

- Has a Floor Area Ratio of less than 0.75.
- Includes more parking for use by residents, customers, or employees of the project than required by the County.
- Is inconsistent with SANDAG’s most recent Sustainable Communities Strategy.
- Replaces affordable residential units with a smaller number of moderate- or high-income residential units.

Justification – The OPR Technical Advisory includes screening projects that are located near a major transit stop or near a stop along a high-quality transit corridor. Projects located near a major transit stop or near a stop along a high-quality transit corridor can help reduce VMT by increasing capacity for transit-supportive residential and/or employment densities in low VMT areas. The increased density that is associated with projects near high quality transit can increase transit ridership and therefore justify enhanced transit service which would in turn increase the amount of destinations that are accessible by transit and further increase transit ridership and decrease VMT.

4. Locally Serving Retail

Local serving retail projects less than 50,000 square feet may be presumed to have a less than significant impact absent substantial evidence to the contrary. Local serving retail generally improves the convenience of shopping close to home and has the effect of reducing vehicle travel.

Justification – The OPR Technical Advisory provides that “because new retail development typically redistributes shopping trips rather than creating new trips, ² estimating the total change in VMT (i.e., the difference in total VMT in the area affected with and without the project) is the best way to analyze a retail project’s transportation impacts." Local serving retail generally shortens trips as longer trips from regional retail are redistributed to new local retail.

5. Locally Serving Public Facilities and Other Uses

Public facilities that serve the surrounding community or public facilities that are passive use may be presumed to have a less than significant impact absent substantial evidence to the

¹ Major transit stop: A site containing an existing rail transit station, a ferry terminal served by either a bus or rail transit service, or the intersection of two or more major bus routes with a frequency of service interval of 15 minutes or less during the morning and afternoon peak commute periods (PRC § 21064.3). High quality transit corridor: A corridor with fixed route bus service with service intervals no longer than 15 minutes during peak commute periods (PRC § 21155).

contrary. These do not include facilities or uses that would attract users from outside the vicinity of the use.

Justification – Similar to local serving retail, local serving public facilities would redistribute trips and would not create new trips. Thus, similar to local serving retail, trips are generally shortened as longer trips from a regional facility are redistributed to the local serving public facility.

6. Redevelopment Projects with Greater VMT Efficiency

Where a project replaces existing VMT-generating land uses, the project may be presumed to have a less than significant impact if the total project VMT is less than the existing land use’s total VMT, absent substantial evidence to the contrary.

Justification – Consistent with the OPR Technical Advisory, “where a project replaces existing VMT-generating land uses, if the replacement leads to a net overall decrease in VMT, the project would lead to a less-than-significant transportation impact. If the project leads to a net overall increase in VMT, then the thresholds described (in the OPR Technical Advisory) should apply.”

The OPR Technical Advisory states “If a residential or office project leads to a net increase in VMT, then the project’s VMT per capita (residential) or per employee (office) should be compared to thresholds recommended above. Per capita and per employee VMT are efficiency metrics, and, as such, apply only to the proposed project without regard to the VMT generated by the previously existing land use.”

Per the OPR Technical Advisory, if the project leads to a net increase in provision of locally-serving retail, transportation impacts from the retail portion of the development should be presumed to be less than significant. If the project consists of regionally-serving retail, and increases overall VMT compared to with existing uses, then the project would lead to a significant transportation impact.

7. Affordable Housing

An affordable housing project may be presumed to have a less than significant impact absent substantial evidence to the contrary if 100% of units are affordable.

Justification – Affordable residential projects generate fewer trips than market rate residential projects. The OPR Technical Advisory also states that “Evidence supports a presumption of less than significant impact for a 100 percent affordable residential development (or the residential component of a mixed-use development) in infill locations”. Project by project justification is necessary to demonstrate that an affordable housing project is expected to generate less VMT if it is not 100 percent affordable or not located in an infill location. A project located in a suburban context or in a village context within the county can be considered an infill location because those locations represent the areas within the county that have the most compact land use pattern (as compared to rural areas).

Thresholds

If a project is required to complete a VMT analysis, the project’s transportation impacts under CEQA would be significant if the project’s VMT exceeds the thresholds below.

Note: If a different percentage threshold (not 15%), is selected, justification would be provided that references the General Plan, CAP, and other planning documents that demonstrate that the County has policies in place to meet the State’s GHG goals. Specific justification would need to be identified depending on what the selected threshold is.

1. Residential
 Threshold – 15% below <County Selected Geography> average household VMT per resident.
 Justification – The OPR Technical Advisory provides that “residential development that would generate vehicle travel that is 15 or more percent below the existing residential VMT per capita, measured against the region or city, may indicate a less-than-significant transportation impact.” OPR notes that this was intended to achieve general consistency with both the Caltrans Statewide target for VMT reduction (15% by 2020) and the urban regional targets for greenhouse gas (GHG) emissions reductions established under SB 375 (13-16% for passenger vehicles by 2035). The County defines their region as the <County Selected Geography> for comparison purposes.

2. Employment (Office/Commercial/Industrial)
 Threshold – 15% below <County Selected Geography> average VMT per employee.
 Justification – The OPR Technical Advisory provides that “office projects that would generate vehicle travel exceeding 15 percent below existing VMT per employee for the region may indicate a significant transportation impact.” VMT per employee is an appropriate metric for commercial and industrial projects in addition to office projects since the SANDAG regional travel demand model includes employment uses as a broad category. In addition, commercial and industrial projects are similar to an office land use in that the majority of the VMT is generated by employees.

3. Regional Retail/Service
 Threshold – A net increase in total area VMT or 15% below the <County Selected Geography> average VMT per service population
 Justification – The threshold for retail/service projects within the County is consistent with the OPR Technical Advisory supplemented with the VMT per service population metric as appropriate. The service population metric provides a supplemental metric that captures all VMT associated with a project by including VMT associated with trips entering or exiting the modelling region, allowing for full accounting of project VMT.

 The service population metric allows for comparison of the VMT efficiency of retail projects against all other land uses in the <County Selected Geography>. Using 15% below the <County Selected Geography> average as the threshold holds retail projects to a similar expectation of VMT efficiency justified above for VMT per employee and VMT per capita. Supplementing the
OPR Technical Advisory recommended retail threshold with the service population metric captures all VMT associated with a project by including VMT associated with trips entering or exiting the modelling region, allowing for full accounting of project VMT.

4. Mixed Use

Mixed Use projects contain a multiple land uses as a part of one project, such as residential, office, and retail.

Threshold – 15% below the <County Selected Geography> average VMT per service population or each project component evaluated per the appropriate metric based on land use type

Justification – Evaluating each component of the project based on their land use type is consistent with the OPR Technical Advisory. The service population metric allows for comparison of the VMT efficiency of mixed use projects against all other land uses in the <County Selected Geography>. Using 15% below the <County Selected Geography> average as the threshold holds mixed use projects to a similar expectation of VMT efficiency justified above for VMT per employee and VMT per capita. It also captures all VMT associated with a project by including VMT associated with trips entering or exiting the modelling region, allowing for full accounting of project VMT which is not possible using the VMT per employee metric.

5. Regional Recreational

Threshold – A net increase in total regional VMT or 15% below the <County Selected Geography> average VMT per service population.

Justification – The threshold for regional recreational projects within the County is consistent with the OPR Technical Advisory (applying the recommendations for regional retail uses) supplemented with the VMT per service population metric as appropriate. The service population metric allows for comparison of the VMT efficiency of regional recreational projects against all other land uses in the <County Selected Geography>. Using 15% below the <County Selected Geography> average as the threshold holds regional recreational projects to a similar expectation of VMT efficiency justified above for VMT per employee and VMT per capita. Supplementing the OPR Technical Advisory recommended threshold with the service population metric captures all VMT associated with a project by including VMT associated with trips entering or exiting the modelling region, allowing for full accounting of project VMT.

6. Regional Public Facilities

Threshold – A net increase in total regional VMT or 15% below the <County Selected Geography> average VMT per service population.

Justification – Regional public facilities within the County can be analyzed consistent with the OPR technical advisory (applying the recommendations for regional retail uses) by measuring the net change in regional VMT and by using the VMT per service population metric as a supplement. The service population metric allows for comparison of the VMT efficiency of regional public facility projects against all other land uses in the <County Selected Geography>. Using 15% below the <County Selected Geography> average as the threshold holds regional public facilities to a similar expectation of VMT efficiency justified above for VMT per employee.
and VMT per capita. It also captures all VMT associated with a project by including VMT associated with trips entering or exiting the modelling region, allowing for full accounting of project VMT which is not possible using the VMT per employee metric.
This memorandum provides documentation of the methods used to define geographic regions within the County for the purposes of SB 743 creating SB 743 thresholds and location-based screening criteria.

We analyzed U.S. Census Bureau Data and data from SANDAG’s Regional Travel Demand Model to determine areas within the Unincorporated County that have similar travel pattern characteristics. The following describes each data set:

- **U.S. Census Bureau Data:** The data that was used is U.S. Census Longitudinal Employer-Household Dynamics (LEHD) Origin-Destination Employment Statistics (LODES) data. LODES data are delivered through an online graphical interface application called OnTheMap. LODES is a dataset that describes geographic patterns of jobs by their employment locations and residential locations. The OnTheMap tool provides visuals of commute patterns between a defined region (for our purposes, we used community plan areas) and locations of employment (we used community plan area within the County and cities for employment locations outside of the Unincorporated County). Examples for Borrego Springs, Campo, Fallbrook, Ramona, and La Presa are provided in Attachment A. The notable trends observed are that areas further east in the County, such as Borrego Springs, tend to have a greater internalization of trips. Areas in North County such as Fallbrook have a larger proportion of trips made to North County cities, with some to Riverside and Orange Counties as well. Areas closer to incorporated areas such as La Presa tend to have more trips to the City of San Diego or other cities with large employment centers.

1 Additional information about LODES data is available at https://lehd.ces.census.gov/applications/help/onthemap.html#what_is_onthemap
• **SANDAG Series 13 Travel Demand Model Data:** We reviewed AM travel patterns using the base year (2012) SANDAG Series 13 Travel Demand Model. Specifically, we looked at all AM trips originating within a community plan area and where the destination of those trips are. This serves a proxy for understanding the commute patterns and place of employment for residents of each community plan area. The patterns were displayed in a matrix showing the community plan of origin and the percent of AM trips with a destination either in the origin community plan area, a different community plan area, or a city within the SANDAG region. The matrix was organized to visually show the community plan areas that have the largest percent of trips that go to City of San Diego, North County Cities, South County Cities, East County Cities, stay within the Unincorporated County, and stay internal to their own community plan area. These trends can be visually observed based on the highlighting of the matrix in Attachment B.

Using the SANDAG Series 13 Travel Demand Model Data, we grouped community plan areas into geographies based on commonalities observed in the AM trip data. These groups were developed based on how many trips were made to the City of San Diego, North County Cities, South County Cities, East County Cities, stay within the Unincorporated County, and how many stay internal to their own community plan area. The U.S. Census Longitudinal Employer-Household Dynamics (LEHD) Origin-Destination Employment Statistics (LODES) data was used to visually confirm that the SANDAG data results. The specific trends that were confirmed are:

• Community plan areas farthest from the incorporated cities exhibit the greatest internalization of trips,
• Community plan areas in North County show the largest share of their trips to incorporated North County Cities,
• East County community plan areas show a large proportion of their trips to the City of San Diego as well as incorporated East County Cities, and
• Most community plan areas adjacent to the City of San Diego show the largest share of trips to the City of San Diego.

Based on the SANDAG data, community plan areas were grouped together to define five (5) subregions that have similar commute patterns. The criteria for each subregion are as follows:

Subregion 1 – Greater than 35% of AM peak period trips to the City of San Diego, or greater than 20% of AM peak period trips to the City of San Diego and greater than 15% of AM peak period trips to another city.

Subregion 2 – Between 15% and 35% of AM peak period trips to the City of San Diego and greater than 10% of AM peak period trips to El Cajon, Santee, and La Mesa.
Subregion 3 – Between 15% and 35% of AM peak period trips to the City of San Diego and greater than 10% of AM peak period trips to Ramona.

Subregion 4 – Greater than 30% of AM peak period trips to incorporated SANDAG region cities collectively. Less than 15% of AM peak period trips to City of San Diego. 15% or greater of AM peak period trips to North County Cities.

Subregion 5 – 30% or fewer AM peak period trips to incorporated SANDAG region cities collectively.

A map of these subregions can be found in Attachment C.
Attachment A
Counts of Primary Jobs from Home Selection Area to Work County Subdivisions in 2017

All Workers

Map Legend

<table>
<thead>
<tr>
<th>Job Count</th>
<th>Selection Areas</th>
<th>Job Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>➔ 351</td>
<td>Analysis Selection</td>
<td>➔ 351</td>
</tr>
<tr>
<td>➔ 146</td>
<td></td>
<td>➔ 146</td>
</tr>
<tr>
<td>➔ 36</td>
<td></td>
<td>➔ 36</td>
</tr>
<tr>
<td>➔ 32</td>
<td></td>
<td>➔ 32</td>
</tr>
<tr>
<td>➔ 25</td>
<td></td>
<td>➔ 25</td>
</tr>
<tr>
<td>➔ 23</td>
<td></td>
<td>➔ 23</td>
</tr>
<tr>
<td>➔ 12</td>
<td></td>
<td>➔ 12</td>
</tr>
<tr>
<td>➔ 9</td>
<td></td>
<td>➔ 9</td>
</tr>
<tr>
<td>➔ 8</td>
<td></td>
<td>➔ 8</td>
</tr>
</tbody>
</table>
Primary Jobs from Home Selection Area to Work County Subdivisions in 2017

All Workers

<table>
<thead>
<tr>
<th>County Subdivisions as Work Destination Area</th>
<th>2017</th>
<th>Share</th>
</tr>
</thead>
<tbody>
<tr>
<td>All County Subdivisions</td>
<td>840</td>
<td>100.0</td>
</tr>
<tr>
<td>Borrego Springs CCD (San Diego, CA)</td>
<td>351</td>
<td>41.8</td>
</tr>
<tr>
<td>San Diego CCD (San Diego, CA)</td>
<td>146</td>
<td>17.4</td>
</tr>
<tr>
<td>Oceanside-Escondido CCD (San Diego, CA)</td>
<td>36</td>
<td>4.3</td>
</tr>
<tr>
<td>Palomar-Julian CCD (San Diego, CA)</td>
<td>32</td>
<td>3.8</td>
</tr>
<tr>
<td>Anaheim-Santa Ana-Garden Grove CCD (Orange, CA)</td>
<td>25</td>
<td>3.0</td>
</tr>
<tr>
<td>Los Angeles CCD (Los Angeles, CA)</td>
<td>23</td>
<td>2.7</td>
</tr>
<tr>
<td>San Fernando Valley CCD (Los Angeles, CA)</td>
<td>12</td>
<td>1.4</td>
</tr>
<tr>
<td>Central Coast CCD (Orange, CA)</td>
<td>9</td>
<td>1.1</td>
</tr>
<tr>
<td>Ontario CCD (San Bernardino, CA)</td>
<td>9</td>
<td>1.1</td>
</tr>
<tr>
<td>East San Gabriel Valley CCD (Los Angeles, CA)</td>
<td>8</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Note: Jobs in All Other Locations (169) are not shown in chart.
<table>
<thead>
<tr>
<th>County Subdivisions as Work Destination Area</th>
<th>2017 Count</th>
<th>Share</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Other Locations</td>
<td>189</td>
<td>22.5</td>
</tr>
</tbody>
</table>
Analysis Settings

<table>
<thead>
<tr>
<th>Analysis Type</th>
<th>Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destination Type</td>
<td>County Subdivisions</td>
</tr>
<tr>
<td>Selection area as</td>
<td>Home</td>
</tr>
<tr>
<td>Year(s)</td>
<td>2017, 2016, 2015</td>
</tr>
<tr>
<td>Job Type</td>
<td>Primary Jobs</td>
</tr>
<tr>
<td>Selection Area</td>
<td>Borrego Springs CDP, CA from Places (Cities, CDPs, etc.)</td>
</tr>
<tr>
<td>Selected Census Blocks</td>
<td>216</td>
</tr>
<tr>
<td>Analysis Generation Date</td>
<td>12/02/2019 10:21 - OnTheMap 6.6</td>
</tr>
<tr>
<td>Code Revision</td>
<td>d7f8a300c9fde458f61bc73d3099ca2cb8f8f8ea</td>
</tr>
<tr>
<td>LODES Data Version</td>
<td>20170818</td>
</tr>
</tbody>
</table>

Data Sources

Notes

1. Race, Ethnicity, Educational Attainment, and Sex statistics are beta release results and are not available before 2009.
2. Educational Attainment is only produced for workers aged 30 and over.
3. Firm Age and Firm Size statistics are beta release results for All Private jobs and are not available before 2011.
4. Data on Federal employment are not available after 2015.
Work Destination Report - Home Selection Area to Work County Subdivisions
All Jobs for All Workers in 2017

Counts of All Jobs from Home Selection Area to Work County Subdivisions in 2017
All Workers

Map Legend

<table>
<thead>
<tr>
<th>Job Count</th>
<th>Selection Areas</th>
<th>Job Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>443</td>
<td></td>
<td>443</td>
</tr>
<tr>
<td>153</td>
<td></td>
<td>153</td>
</tr>
<tr>
<td>45</td>
<td></td>
<td>45</td>
</tr>
<tr>
<td>33</td>
<td></td>
<td>33</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>22</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>
All Jobs from Home Selection Area to Work County Subdivisions in 2017

All Workers

<table>
<thead>
<tr>
<th>County Subdivisions as Work Destination Area</th>
<th>2017</th>
<th>Share</th>
</tr>
</thead>
<tbody>
<tr>
<td>All County Subdivisions</td>
<td>943</td>
<td>100.0</td>
</tr>
<tr>
<td>San Diego CCD (San Diego, CA)</td>
<td>443</td>
<td>47.0</td>
</tr>
<tr>
<td>Mountain Empire CCD (San Diego, CA)</td>
<td>153</td>
<td>16.2</td>
</tr>
<tr>
<td>Oceanside-Escondido CCD (San Diego, CA)</td>
<td>45</td>
<td>4.8</td>
</tr>
<tr>
<td>Laguna-Pine Valley CCD (San Diego, CA)</td>
<td>33</td>
<td>3.5</td>
</tr>
<tr>
<td>Alpine CCD (San Diego, CA)</td>
<td>23</td>
<td>2.4</td>
</tr>
<tr>
<td>Los Angeles CCD (Los Angeles, CA)</td>
<td>22</td>
<td>2.3</td>
</tr>
<tr>
<td>Anaheim-Santa Ana-Garden Grove CCD (Orange, CA)</td>
<td>22</td>
<td>2.3</td>
</tr>
<tr>
<td>San Fernando Valley CCD (Los Angeles, CA)</td>
<td>17</td>
<td>1.8</td>
</tr>
<tr>
<td>Irvine-Lake Forest CCD (Orange, CA)</td>
<td>12</td>
<td>1.3</td>
</tr>
<tr>
<td>Ontario CCD (San Bernardino, CA)</td>
<td>12</td>
<td>1.3</td>
</tr>
</tbody>
</table>

Note: Jobs in All Other Locations (161) are not shown in chart.
<table>
<thead>
<tr>
<th>County Subdivisions as Work Destination Area</th>
<th>2017 Count</th>
<th>Share</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Other Locations</td>
<td>161</td>
<td>17.1</td>
</tr>
</tbody>
</table>
Analysis Settings

<table>
<thead>
<tr>
<th>Analysis Type</th>
<th>Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destination Type</td>
<td>County Subdivisions</td>
</tr>
<tr>
<td>Selection area as</td>
<td>Home</td>
</tr>
<tr>
<td>Year(s)</td>
<td>2017, 2016, 2015</td>
</tr>
<tr>
<td>Job Type</td>
<td>All Jobs</td>
</tr>
<tr>
<td>Selection Area</td>
<td>Campo CDP, CA from Places (Cities, CDPs, etc.)</td>
</tr>
<tr>
<td>Selected Census Blocks</td>
<td>194</td>
</tr>
<tr>
<td>Analysis Generation Date</td>
<td>12/01/2019 23:04 - OnTheMap 6.6</td>
</tr>
<tr>
<td>Code Revision</td>
<td>d7f8a300c9f4e458f61bc73d3099ca2cb8f8eaa</td>
</tr>
<tr>
<td>LODES Data Version</td>
<td>20170818</td>
</tr>
</tbody>
</table>

Data Sources

Notes

1. Race, Ethnicity, Educational Attainment, and Sex statistics are beta release results and are not available before 2009.
2. Educational Attainment is only produced for workers aged 30 and over.
3. Firm Age and Firm Size statistics are beta release results for All Private jobs and are not available before 2011.
4. Data on Federal employment are not available after 2015.
Counts of All Jobs from Home Selection Area to Work County Subdivisions in 2017
All Workers

Map Legend

<table>
<thead>
<tr>
<th>Job Count</th>
<th>Selection Areas</th>
<th>Job Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,220</td>
<td>Analysis Selection</td>
<td>3,220</td>
</tr>
<tr>
<td>2,890</td>
<td></td>
<td>2,890</td>
</tr>
<tr>
<td>2,069</td>
<td></td>
<td>2,069</td>
</tr>
<tr>
<td>856</td>
<td></td>
<td>856</td>
</tr>
<tr>
<td>364</td>
<td></td>
<td>364</td>
</tr>
<tr>
<td>273</td>
<td></td>
<td>273</td>
</tr>
<tr>
<td>226</td>
<td></td>
<td>226</td>
</tr>
<tr>
<td>160</td>
<td></td>
<td>160</td>
</tr>
<tr>
<td>158</td>
<td></td>
<td>158</td>
</tr>
<tr>
<td>123</td>
<td></td>
<td>123</td>
</tr>
</tbody>
</table>
All Jobs from Home Selection Area to Work County Subdivisions in 2017

All Workers

<table>
<thead>
<tr>
<th>County Subdivisions as Work Destination Area</th>
<th>2017 Count</th>
<th>Share</th>
</tr>
</thead>
<tbody>
<tr>
<td>All County Subdivisions</td>
<td>12,565</td>
<td>100.0</td>
</tr>
<tr>
<td>Oceanside-Escondido CCD (San Diego, CA)</td>
<td>3,220</td>
<td>25.6</td>
</tr>
<tr>
<td>Fallbrook CCD (San Diego, CA)</td>
<td>2,890</td>
<td>23.0</td>
</tr>
<tr>
<td>San Diego CCD (San Diego, CA)</td>
<td>2,069</td>
<td>16.5</td>
</tr>
<tr>
<td>Murrieta CCD (Riverside, CA)</td>
<td>856</td>
<td>6.8</td>
</tr>
<tr>
<td>Anaheim-Santa Ana-Garden Grove CCD (Orange, CA)</td>
<td>364</td>
<td>2.9</td>
</tr>
<tr>
<td>Los Angeles CCD (Los Angeles, CA)</td>
<td>273</td>
<td>2.2</td>
</tr>
<tr>
<td>Pauma Valley CCD (San Diego, CA)</td>
<td>226</td>
<td>1.8</td>
</tr>
<tr>
<td>Valley Center CCD (San Diego, CA)</td>
<td>160</td>
<td>1.3</td>
</tr>
<tr>
<td>San Fernando Valley CCD (Los Angeles, CA)</td>
<td>158</td>
<td>1.3</td>
</tr>
<tr>
<td>Irvine-Lake Forest CCD (Orange, CA)</td>
<td>123</td>
<td>1.0</td>
</tr>
<tr>
<td>All Other Locations</td>
<td>2,226</td>
<td>17.7</td>
</tr>
</tbody>
</table>

Note: Jobs in All Other Locations (2,226) are not shown in chart.
Additional Information

Analysis Settings

<table>
<thead>
<tr>
<th>Analysis Type</th>
<th>Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destination Type</td>
<td>County Subdivisions</td>
</tr>
<tr>
<td>Selection area as</td>
<td>Home</td>
</tr>
<tr>
<td>Year(s)</td>
<td>2017, 2016, 2015</td>
</tr>
<tr>
<td>Job Type</td>
<td>All Jobs</td>
</tr>
<tr>
<td>Selection Area</td>
<td>Fallbrook CDP, CA from Places (Cities, CDPs, etc.)</td>
</tr>
<tr>
<td>Selected Census Blocks</td>
<td>347</td>
</tr>
<tr>
<td>Analysis Generation Date</td>
<td>12/01/2019 23:07 - OnTheMap 6.6</td>
</tr>
<tr>
<td>Code Revision</td>
<td>d7f8a300c9f4e458f61bc73d3099ca2cb8f8feaa</td>
</tr>
<tr>
<td>LODES Data Version</td>
<td>20170818</td>
</tr>
</tbody>
</table>

Data Sources

Notes

1. Race, Ethnicity, Educational Attainment, and Sex statistics are beta release results and are not available before 2009.
2. Educational Attainment is only produced for workers aged 30 and over.
3. Firm Age and Firm Size statistics are beta release results for All Private jobs and are not available before 2011.
4. Data on Federal employment are not available after 2015.
Counts of Primary Jobs from Home Selection Area to Work County Subdivisions in 2017
All Workers

Map Legend

<table>
<thead>
<tr>
<th>Job Count</th>
<th>Selection Areas</th>
<th>Job Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,519</td>
<td>➡️ Analysis Selection</td>
<td>➡️ 4,519</td>
</tr>
<tr>
<td>1,661</td>
<td></td>
<td>➡️ 1,661</td>
</tr>
<tr>
<td>1,031</td>
<td></td>
<td>➡️ 1,031</td>
</tr>
<tr>
<td>161</td>
<td></td>
<td>➡️ 161</td>
</tr>
<tr>
<td>137</td>
<td></td>
<td>➡️ 137</td>
</tr>
<tr>
<td>72</td>
<td></td>
<td>➡️ 72</td>
</tr>
<tr>
<td>70</td>
<td></td>
<td>➡️ 70</td>
</tr>
<tr>
<td>69</td>
<td></td>
<td>➡️ 69</td>
</tr>
<tr>
<td>50</td>
<td></td>
<td>➡️ 50</td>
</tr>
<tr>
<td>49</td>
<td></td>
<td>➡️ 49</td>
</tr>
</tbody>
</table>
Primary Jobs from Home Selection Area to Work County Subdivisions in 2017

All Workers

County Subdivisions

<table>
<thead>
<tr>
<th>County Subdivisions as Work Destination Area</th>
<th>2017 Count</th>
<th>Share</th>
</tr>
</thead>
<tbody>
<tr>
<td>All County Subdivisions</td>
<td>8,864</td>
<td>100.0</td>
</tr>
<tr>
<td>San Diego CCD (San Diego, CA)</td>
<td>4,519</td>
<td>51.0</td>
</tr>
<tr>
<td>Ramona CCD (San Diego, CA)</td>
<td>1,661</td>
<td>18.7</td>
</tr>
<tr>
<td>Oceanside-Escondido CCD (San Diego, CA)</td>
<td>1,031</td>
<td>11.6</td>
</tr>
<tr>
<td>Anaheim-Santa Ana-Garden Grove CCD (Orange, CA)</td>
<td>161</td>
<td>1.8</td>
</tr>
<tr>
<td>Los Angeles CCD (Los Angeles, CA)</td>
<td>137</td>
<td>1.5</td>
</tr>
<tr>
<td>Murrieta CCD (Riverside, CA)</td>
<td>72</td>
<td>0.8</td>
</tr>
<tr>
<td>Palomar-Julian CCD (San Diego, CA)</td>
<td>70</td>
<td>0.8</td>
</tr>
<tr>
<td>San Fernando Valley CCD (Los Angeles, CA)</td>
<td>69</td>
<td>0.8</td>
</tr>
<tr>
<td>Central Coast CCD (Orange, CA)</td>
<td>50</td>
<td>0.6</td>
</tr>
<tr>
<td>San Bernardino CCD (San Bernardino, CA)</td>
<td>49</td>
<td>0.6</td>
</tr>
<tr>
<td>All Other Locations</td>
<td>1,045</td>
<td>11.8</td>
</tr>
</tbody>
</table>

Note: Jobs in All Other Locations (1,045) are not shown in chart.
Additional Information

Analysis Settings

<table>
<thead>
<tr>
<th>Analysis Type</th>
<th>Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destination Type</td>
<td>County Subdivisions</td>
</tr>
<tr>
<td>Selection area as</td>
<td>Home</td>
</tr>
<tr>
<td>Year(s)</td>
<td>2017, 2016, 2015</td>
</tr>
<tr>
<td>Job Type</td>
<td>Primary Jobs</td>
</tr>
<tr>
<td>Selection Area</td>
<td>Ramona CDP, CA from Places (Cities, CDPs, etc.)</td>
</tr>
<tr>
<td>Selected Census Blocks</td>
<td>447</td>
</tr>
<tr>
<td>Analysis Generation Date</td>
<td>12/02/2019 10:25 - OnTheMap 6.6</td>
</tr>
<tr>
<td>Code Revision</td>
<td>d7f8a3000c9f4e4586f61bc73d3099ca2eb8f8f3ea</td>
</tr>
<tr>
<td>LODES Data Version</td>
<td>20170818</td>
</tr>
</tbody>
</table>

Data Sources

Notes

1. Race, Ethnicity, Educational Attainment, and Sex statistics are beta release results and are not available before 2009.
2. Educational Attainment is only produced for workers aged 30 and over.
3. Firm Age and Firm Size statistics are beta release results for All Private jobs and are not available before 2011.
4. Data on Federal employment are not available after 2015.
Attachment B
<table>
<thead>
<tr>
<th>Subregion</th>
<th>Greater than 35% to the City of San Diego or greater than 20% to the City of San Diego and greater than 15% to another city</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subregion 2</td>
<td>Between 15% and 35% going to San Diego and at least 10% to El Cajon, Santee, and La Mesa</td>
</tr>
<tr>
<td>Subregion 3</td>
<td>Between 15% and 35% to city of San Diego and at least 10% to Ramona</td>
</tr>
<tr>
<td>Subregion 4</td>
<td>Greater than 30% to incorporated SD County cities, less than 15% to City of San Diego, 15% or greater to North County Cities</td>
</tr>
<tr>
<td>Subregion 5</td>
<td>30% or fewer going to north or south county cities</td>
</tr>
</tbody>
</table>
Attachment C
Attachment C: San Diego County Analysis Regions Based on Common Trip Destinations
Appendix G: County General Plan Goals and Climate Action Plan Strategies Related to Transportation
This page intentionally left blank
County General Plan Goals and Climate Action Plan Strategies Related to Transportation

The County adopted an update to its General Plan in 2011. The General Plan serves as the legal underpinning for land use decisions and is the County’s vision about how the unincorporated area will grow. The term “element” refers to the topics that California law requires be covered in a general plan. In addition to the mobility element (sometimes called a circulation element), the other elements required in California include land use, housing, conservation, open space, noise, safety, and environmental justice for cities and counties with identified disadvantaged communities. Each of these provide a framework for analysis of transportation impacts that support the new method of CEQA analysis, while some will require an analysis outside of CEQA.

Land Use Element

The land use plan and development doctrine that sustain the intent and integrity of the Community Development Model and the boundaries between Regional Categories describes the overarching primacy of the Land Use Element. VMT efficient areas would be located along the western edge of the unincorporated areas by providing streamlining for villages within the County Water Authority boundary and closer to the employment and services centers in the unincorporated areas. Here are key Land Use Policies that influence transportation analysis.

Goal LU-5 Climate Change and Land Use. Incorporate a mixture of uses within Villages and Rural Villages and plan residential densities at a level that support multi-modal transportation, including walking, bicycling, and the use of public transit, when appropriate. This is to support a reduction of vehicle trips within communities.

Goal LU-9 Distinct Villages and Community Cores. In villages, encourage future residential developments to achieve planned densities through multi-family, mixed use, and small-lot single-family projects that are compatible with community character.

Mobility Element

The Mobility Element includes several components including a description of the County’s goals and policies that address the safe and efficient operation, as well as maintenance and management of the transportation network. The Mobility Element framework provides for a balanced, multi-modal transportation system for the movement of people and goods within the unincorporated areas of the County of San Diego. General Plan Policy M-2.1 requires a LOS D or higher for all roads. Criteria were established for ‘Accepting a Road Classification with a LOS E and LOS F’ when specific issues of community character or environmental constraints were considered. The buildout of the General Plan Mobility Element was estimated to have planning level costs of $2.39 Billion, a reduction of $4.4 Billion from the previous General Plan. The road network in the Mobility Element was studied in the General Plan Program EIR through impacts on LOS. Mitigation measures identified in the Program EIR were the goals and policies in the Mobility and Land Use Elements, as well as a required update to the Transportation Impact Program. On October 31, 2012, the Board adopted updates to the Transportation Impact Fee to implement the Mobility Element for the General Plan. The update overall reduced residential impact fees by 46% and commercial impact fees by 75%. The TIF is estimated to pay $535 Million towards the $2.39 Billion estimated to build out the Mobility Element. Implementation of
the remaining Mobility Element would occur overtime to be paid for by private development, through State or Federal funds, grants, or the County’s General Fund.

Here are key County General Plan Mobility Element Goals that direct how transportation analysis is performed to facilitate the implementation of the County General Plan vision:

Goal M1 - A Balanced Road Network. A safe and efficient road network that balances regional travel needs with the travel requirements and preferences of local communities.

Goal M2 – Responding to Physical Constraints and Preservation Goals. Level of Service Criteria. Require development projects to provide associated road improvements necessary to achieve a level of service of “D” or higher on all Mobility Element roads except for those where a failing level of service has been accepted by the County.

Goal M3 – Transportation Facility Development. New or expanded transportation facilities that are phased with and equitably funded by the development that necessitates their construction.

GOAL M4 – Safe and Compatible Roads. Roads designed to be safe for all users and compatible with their context.

GOAL M5 – Safe and Efficient Multi-Modal Transportation System. A multi-modal transportation system that provides for the safe, accessible, convenient, and efficient movement of people and goods within the unincorporated County.

GOAL M6 – Efficient Freight Service Linked to Other Transportation Modes. Freight services that efficiently move goods and that are effectively linked to other transportation modes.

GOAL M8 – Public Transit System. A public transit system that reduces automobile dependence and serves all segments of the population.

GOAL M9 – Effective Use of Existing Transportation Network. Reduce the need to widen or build roads through effective use of the existing transportation network and maximizing the use of alternative modes of travel throughout the County.

GOAL M10 – Parking for Community Needs. Parking regulations that serve community needs and enhance community character.

GOAL M11 – Bicycle and Pedestrian Facilities. Bicycle and pedestrian networks and facilities that provide safe, efficient, and attractive mobility options as well as recreational opportunities for County residents.

GOAL M12 – County Trails Program. A safe, scenic, interconnected, and enjoyable non-motorized multi-use trail system developed, managed, and maintained according to the County Trails Program, Regional Trails Plan, and the Community Trails Master Plan.

The County adopted an Active Transportation Plan in October 2018 that updated the County’s standards for bicycle facilities and classifications and included a Pedestrian Gap Analysis appendix that identifies potential sidewalk and pathway improvements in villages throughout the county. The updated bicycle facility classifications are included in
the Mobility Element Appendix maps of the General Plan. The Board of Supervisors also adopted a Complete Streets Policy (J-38) along with the adoption of the Active Transportation Plan.

In recognition of SB 743 and new CEQA requirements for VMT analysis, and to ensure consistency with the County’s General Plan Goals and Policies, the TSG includes criteria for properly assessing and mitigating VMT within the county, as well as procedures and methods for analyzing and identifying specific improvements to maintain LOS standards, and to address the safety and operations of the transportation system for all users.

Housing Element

The Housing Element objectives include improving housing affordability, assigning densities based on characteristics of the land, and locating growth near infrastructure, services and jobs. A key Housing Element Policy that influences transportation analysis is:

Goal H-1.3 Housing Near Public Services. Maximize housing in areas served by transportation networks, within close proximity to job centers, and where public services and infrastructure are available.

Conservation Open Space Element

There is a strong correlation between land use planning, transportation system planning, and the emission of air quality pollutants, GHG that contribute to global climate change. The General Plan recognized that the primary opportunities to reduce air quality pollutants and GHG emissions are in the urbanized areas of the County where there are land use patterns that can best support the increased use of transit and pedestrian activities since most GHGs and air pollutants result from mobile source emissions. The General Plan notes, “the unincorporated County can also be part of the solution by producing development patterns that contribute to reducing the dependence on the automobile and by promoting development with lower energy demands...A holistic approach to achieving sustainable communities requires the integration of a regionwide multi-modal transportation system with a significant reliance on single-occupant motor vehicles, along with buildings that consume less through design and efficient building materials.” A key conservation element that influences transportation analysis is:

Goal COS-14 Sustainable Land Development. Land use development techniques and patterns that reduce emissions of criteria pollutants and GHGs through minimized transportation and energy demands, while protecting public health and contributing to a more sustainable environment.

Climate Action Plan

The County Climate Action Plan (CAP), adopted in February 2018, and the County Active Transportation Plan (ATP), adopted in October 2018, also support the intent of SB 743. Light duty vehicle emissions constitute approximately 43% of the total unincorporated GHG emissions. The CAP has two GHG emissions reduction strategies related to VMT, which reduce 40,673 metric tons of GHG emissions (about 2.7% of the amount emitted by on-road transportation in the unincorporated county). CAP Strategies T-1 and T-2 focus on reducing VMT and shifting towards alternative modes of transportation, focusing density in unincorporated villages, conserving open space and agricultural lands, and implementing infrastructure improvements to provide for active
transportation. A transportation demand management (TDM) ordinance, being developed as a measure of the CAP, will be an important tool for non-residential projects to use when mitigating VMT impacts while also reducing GHG emissions. The CAP and ATP identify capital improvements related to pedestrian and bicycle infrastructure improvements that SB 743 mitigations could fund in the future.

Strategy T-1: Reduce Vehicle Miles. This strategy focuses on preserving open space and agricultural lands, and focusing density in the county villages. Conservation efforts will avoid GHG emissions from transportation and energy use associated with conveyance of water and solid waste services. Reductions in Vehicle Miles Traveled (VMT) resulting from this strategy will also improve air quality through reduced vehicle emissions and contribute to public health improvements by creating opportunities for active transportation choices.

Strategy T-2: Shift Towards Alternative Modes of Transportation. This strategy focuses on implementing infrastructure improvements to promote active transportation, and understanding commuters’ transportation decisions in order to help people use the infrastructure in place for transit, ridesharing, walking, biking, and telework. The strategy also includes measures that sets performance standards for reducing employee commute trips at County facilities, parking management, and focusing development in the county villages. Reducing transportation emissions has a beneficial effect of improving public and community health through both enhanced air quality and mobility, and cost savings for community members by reducing fuel use.