DRAINAGE STUDY

FOR

SHADOW RUN RANCH

HIGHWAY 76, PAUMA VALLEY SAN DIEGO COUNTY, CALIFORNIA TM 5223 RPL-3

Engineer:

MASSON & ASSOCIATES, INC.

200 East Washington Avenue, Suite 200 Escondido, CA 92025 (760) 741-3570 **PN 04201**

Prepared by:

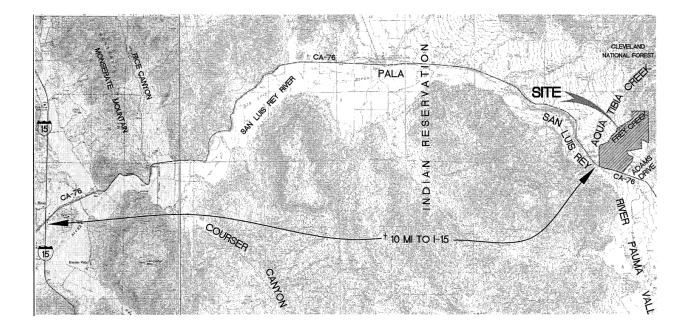
Robert D'Amaro RCE #C081699

Date: 12/20/2019 Exp. 03/31/20

Date	Comments
12/01/01	Original
6/13/05	1 st Revision
3/06/09	2 nd Revision
5/31/12	3 rd Revision
12/16/13	4 th Revision
05/16/14	Final
07/30/14	Public Notice Copies
	•

12/20/19 Updated report and attenuation calculations

TABLE OF CONTENTS


1.0	PRO	JECT DESCRIPTION1					
2.0	PUR	POSE2					
3.0	MET	HODOLOGY2					
4.0	HYDROLOGY2						
	4.1	Pre-Development Condition2					
	4.2	Post-Development Conditions3					
5.0	CON	CLUSION3					
APPI A A A A	F F F 1 1 S C ppend ppen						
	ENDE onse	EMS letter: "Other County Requirements" (Addendum to Geotechnical Plan)					
Attac Attac Attac Attac	hmen hmen hmen hmen hmen	t – 2 Reservoir drainage (1000 yr flood calcs) t – 3 Reservoir overtopping (seiche - short term concentrated flows) t – 4 NA t – 5 Detailed Operation and Maintenance plan					

EXHIBITS

Exhibit A – Pre-Development Hydrology Map Exhibit B – Post-Development Hydrology Map

1.0 PROJECT DESCRIPTION

The proposed project is located north and adjacent to Highway 76 and west of Adams Drive approximately 10 miles east of the I-15 freeway. The site is approximately 248 acres in size. The majority of the site is currently covered with Orange and Avocado groves. Elevation of the site ranges from 740 to 1430 MSL and slopes southerly toward Highway 76. Several natural drainage courses traverse the property with tributary areas less than 1 square mile terminating at existing culverts that cross Highway 76. One natural drainage channel crossing the western portion of the site (Frey Creek Basin) has a tributary area of approximately 4 square miles and terminates at Highway 76 where an existing bridge structure spans the creek. The proposed project is a 44 lot subdivision of single family homes with a minimum lot size of 2 acres. The project will include a system of private roads which will enter the project from Adams Drive with a secondary or emergency access to the site off of Highway 76. Approximately 202.5 acres of the 248.3 acre site will remain in its natural state as open space.

VICINITY MAP

2.0 PURPOSE

The purpose of this study is to determine the peak runoff rates and velocities for the predevelopment and post-development conditions. Comparisons will be made at the same discharge points for each drainage basin affecting the site and adjacent properties. The adequacy of existing conveyance facilities affected by the project such as culverts, sidewalk underdrains, curb inlets, and bioretention facilities will be determined.

3.0 METHODOLOGY

The Rational Method as outlined in the <u>County of San Diego Hydrology Manual</u>, dated June 2003, was used to determine the runoff flow rate for basins 1 and 2 which have tributary areas less than 1 square mile. The Soil Conservation Service – NRCS Hydrologic Method as outlined in the County's hydrology manual was used to determine the peak flow rate for basin 3 which has a tributary area of approximately 4 square miles. The 100-year frequency storm event was analyzed to determine peak runoff rates discharging the site for both the existing and post-development condition. The Rick Engineering Company Rational Method program for San Diego County and Hydrology Studio were used for attenuation calculations, and San Diego Hydrology Model 3.1 (SDHM) were used for the hydromodification calculations.

Soil type on-site and within the tributary areas was determined to be a combination of types A, B and C from the Soil Hydrologic Groups map (see Appendix A). Runoff coefficients, "C" were determined from Table 3-1 (Appendix A) based on Land Use and Soil Type as follows:

- Undisturbed Natural Terrain / Permanent Open Space \rightarrow C = 0.20 0.30
- Low Density Residential (LDR) / Residential, 1.0 DU/AC or less → C = 0.27 0.36

Weighted Coefficients were used in the calculations to determine C in areas with multiple soil types and impervious areas.

4.0 HYDROLOGY

4.1 Pre-Development Conditions

A pre-development hydrology map delineating basin areas, flow paths, concentration points, and existing drainage facilities has been prepared and is attached to this report as Exhibit "A". Pre-development hydrology calculations can be found in Appendix C.

Basin 1 – Runoff currently flows southerly over existing natural terrain and groves terminating at Highway 76 where a double 42" RCP culvert conveys runoff under Highway 76.

Basin 2 – Runoff currently flows southerly through the groves in a mostly defined natural channel toward Highway 76 where an existing 36" RCP culvert conveys runoff under Highway 76.

Basin 3 – The Frey Creek basin begins northerly and easterly of the proposed site. Runoff from the hillsides flows toward the creek bed which runs southwesterly through the hills crossing the northern portion of the site and running south toward Highway 76 across the western side of the

property. At Highway 76 a large bridge structure spans the creek with the deck approximately 20' above the creek bed.

4.2 Post-Development Conditions

A post-development hydrology map delineating basin areas, flow paths, concentration points, and proposed drainage facilities has been prepared and is attached to this report as Exhibit "B". Post-development hydrology calculations can be found in Appendix C.

Basin 1 – In the post-development condition, runoff will continue to flow southerly towards the existing culvert at Highway 76, as described in the pre-development conditions section for Basin 1. The runoff, however, will be interrupted by streets traversing the site and will be directed through proposed new culverts and routed in brow ditches or earthen channels back to the natural drainage courses traversing the site. Runoff discharging from proposed streets, driveways, homes and existing groove areas will be routed through proposed bioretention facilities and/or tree wells and dispersion areas prior to discharging to the natural terrain. The development will not result in an increase in peak discharge from basin 1.

Basin 2 – In the post-development condition, runoff will continue to flow southerly toward the existing culvert at Highway 76, as described in the pre-development conditions for Basin 2. The runoff, however, will be routed through proposed new culverts and routed in brow ditches or earthen channels back to the natural drainage courses traversing the site. All runoff will continue to concentrate at the existing culvert crossing at Highway 76. Runoff discharging from proposed streets, driveways, homes and existing groove areas will be routed through proposed bioretenton and/or tree wells and dispersion areas prior to discharging to the natural terrain. The development will result in increase in peak discharge from basin 2 of approximately 42.5 cfs. The bioretention facilities proposed for this project will mitigate any increase in runoff also the two larger bioretention facilities Imp's 10.22 and 2.06 will be larger and designed to allow for more ponding to mitigate the increase in discharge.

Basin 3 – In the post development condition the characteristics of the basin will remain pretty much the same as in the pre-development condition with the exception of approximately 15 acres of the 4 square mile tributary basin will be developed with single family homes. The development will affect less than 1% of the total drainage shed. On pad bioretention facilities are proposed for each lot in this tributary area. Additionally all the impervious areas from the driveways, and homes will be treated by on pad dispersion areas and water released off pad through existing mature groves utilizing tree wells for additional WQ treatment. See hydro-mod calculations and attenuation analysis (Appendix C & F).

5.0 CONCLUSION

The development of this site will create an increase in total runoff, however the construction of bioretention facilities and associated Hydromodification improvements will mitigate any increase in runoff. There will be no net increase in peak runoff at the locations of the existing culverts crossing under Highway 76. All runoff discharging from the site across Highway 76 enters the San Luis Rey River south of the Highway. Table 1 below provides a summary of the pre- and post-development areas and flows at the project discharge points. Hydromodification by its definition will handle any post construction changes in flow characteristics.

Note: Ref. section 6.2.7 of the Hydraulic Design Manual.

"Conjunctive use of detention facilities for water quality treatment and flood management is acceptable, and encouraged when it is desirable and feasible. When an aboveground detention facility is used for both water quality and flood control, the flood storage volume shall be provided in addition to the storage volume designated for water quality treatment." ***

*** Per Table 2 below: See provided calculations showing that the DCV can be retained within the soil and storage layers of the basin using the pore storage volume, therefore the flood storage volume will be counted at the bottom surface elevation of the basin for Attenuation calcultaions.

See the SDHM Hydromodification modeling in (Appendix F)

Table 1 – Attenuation of 100-year Flows

	Q100 - (CFS)					
POC	PRE-DEV.	POST DEV. w/o ATTENUATION	POST w/ ATTENUATION			
CP # 1	108.8	95.9	69.29			
CP # 2	38.7	42.5	25.57			
CP # 3	3,000.1	3,000.1	3,000.1			

Table 2 – DCV Volume Pore Storage Calculations

DCV retained by underground storage - Basin 1												
	Void	IMP 10.10						DB 1.12	DB 1.13	IMP 1.14	DB 1.15	
Final DCV Tributary to BMP		1,075	3,374	1,591	0	1,045	0	0	0	1,861	0	C.F.
Provided Surface Area		1,220	4,020	1,320	0	1,245	0	0	0	3,125	0	S.F.
Provided Soil Media Thickness	40%	21	21	21	0	21	0	0	0	21	0	IN.
Provided Gravel Thickness	40%	12	12	16	0	12	0	0	0	12	0	IN.
Underground storage provided		1,342	4,422	1,628	0	1,370	0	0	0	3,438	0	C.F.
Excess underground storage		267	1,048	37	0	325	0	0	0	1,577	0	C.F.
	Void	DB 2.04	DCV retained			orage - Bas		DB 2.01	DB 2.02	IMP 2.06	Large Lot	
Final DCV Tributary to BMP	Void		0	2,734	940	0	6,072	2,863	0	9,910	0	C.F.
Provided Surface Area		0	0	3,500	1,100	0	6,960	1,740	0	10,344	400	S.F.
Provided Soil Media Thickness	40%	0	0	21	21	0	21	21	0	21	0	IN.
Provided Gravel Thickness	40%	0	0	12	12	0	12	30	0	12	0	IN.
Underground storage provided		0	0	3,850	1,210	0	7,656	2,958	0	11,378	0	C.F.
Excess underground storage		0	0	1,116	270	0	1,584	95	0	1,468	0	C.F.
				= Drainage	areas direc	ted to "Bas	ins w/ und	erground	l pore sto	rage laye	rs"	

REFERENCES

U.S. Army Corps of Engineers. Hec-HMS Hydrologic Modeling Software. (Software Version 3.3)

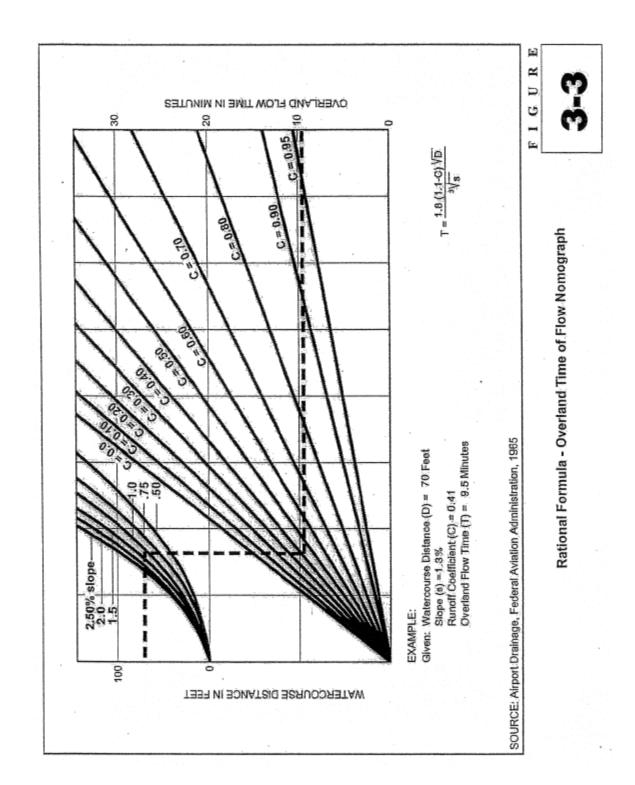
CivilDesign Corporation. San Diego County Rational Method. (Software Version 7.5)

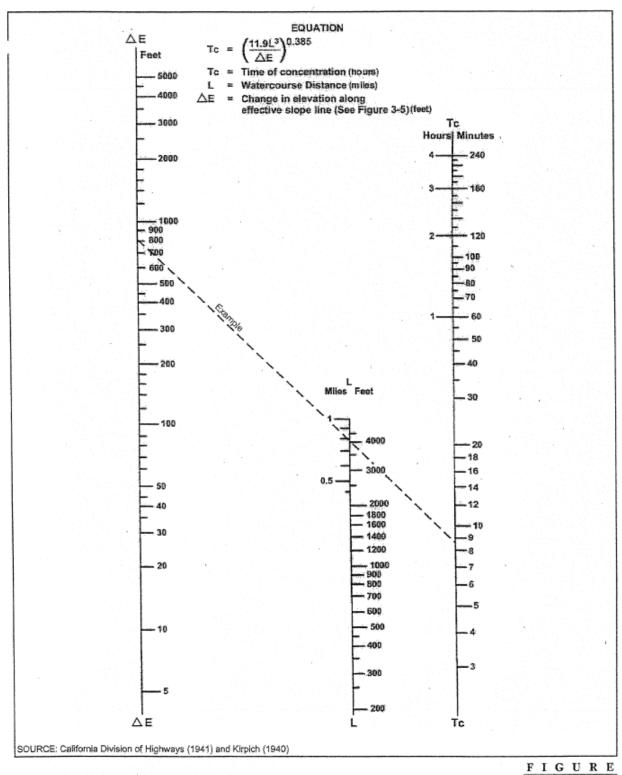
County of San Diego Department of Public Works Flood Control Section. San Diego County Hydrology Manual. (2003)

APPENDIX "A"

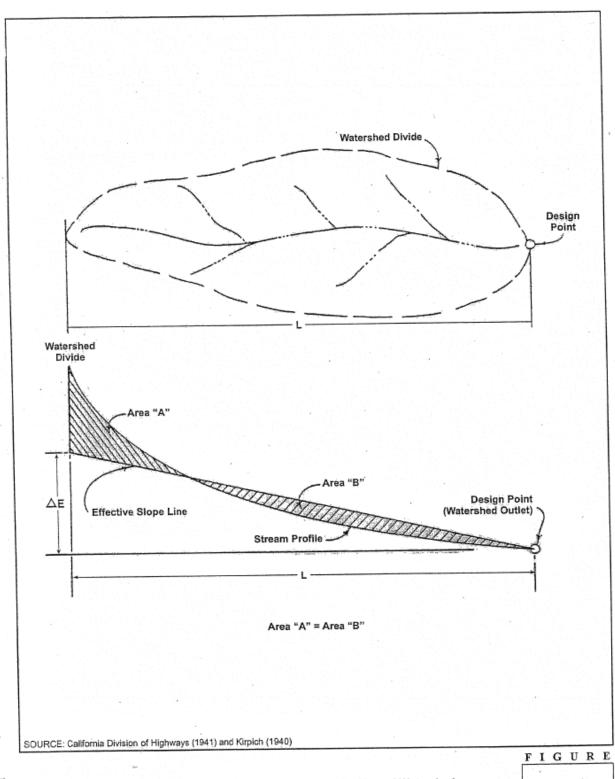
REFERANCE CHARTS – TABLES AND FIGURES

ection: 6 o	
Se	
San Diego County Hydrology Manual Date: June 2003	


Table 3-1 RUNOFF COEFFICIENTS FOR URBAN AREAS


TE.].	Landlike			Runoff Coefficient "C"	efficient "((i)		
MACK.	10 CO				Soil Type	ype		
NRCS Elements	County Elements	% IMPER.	A		В	O	D	
Undisturbed Natural Terrain (Natural)	Permanent Open Space	*0	0.20	0	0.25	0.30	0.35	
Low Density Residential (LDR)	Residential, 1.0 DU/A or less	10	0.27	0	0.32	0.36	0,41	
Low Density Residential (LDR)	Residential, 2.0 DU/A or less	20	0.34	0	0.38	0.42	0.46	
Low Density Residential (LDR)	Residential, 2.9 DU/A or less	25	0.38	0	0.41	0.45	0.49	
Medium Density Residential (MDR)	Residential, 4.3 DU/A or less	30	0.41	0	0.45	0.48	0.52	,
Medium Density Residential (MDR)	Residential, 7.3 DU/A or less	40	0.48	0	0.51	0.54	0.57	
Medium Density Residential (MDR)	Residential, 10.9 DU/A or less	45	0.52	0	0.54	0.57	0.60	
Medium Density Residential (MDR)	Residential, 14.5 DU/A or less	50	0.55	0	. 85.0	09.0	69.0	
High Density Residential (HDR)	Residential, 24.0 DU/A or less	65	99'0	0	19.0	69'0	0.71	
High Density Residential (HDR)	Residential, 43.0 DU/A or less	- 08	0.76	0	0.77	0.78	0.79	
Commercial/Industrial (N. Com)	Neighborhood Commercial	80	92.0	0	0.77	0.78	0.79	
Commercial/Industrial (G. Com)	General Commercial	82	0.80	0	08.0	0.81	0.82	
Commercial/Industrial (O.P. Com)	Office Professional/Commercial	06	0.83	0	0.84	0.84	0.85	
Commercial/Industrial (Limited I.)	Limited Industrial	06	0.83	0	0.84	0.84	0.85	
Commercial/Industrial (General I.)	General Industrial	95	0.87	0	0.87	0.87	0.87	

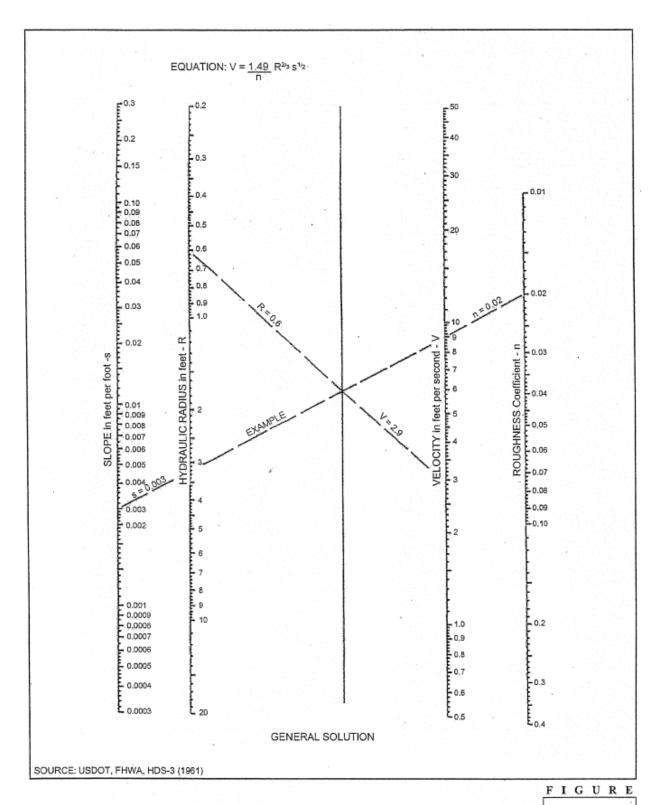
*The values associated with 0% impervious may be used for direct calculation of the runoff coefficient as described in Section 3.1.2 (representing the pervious runoff coefficient, Cp, for the soil type), or for areas that will remain undisturbed in perpetuity. Justification must be given that the area will remain natural forever (e.g., the area is located in Cleveland National Forest).


DU/A = dwelling units per acre NRCS = National Resources Conservation Service

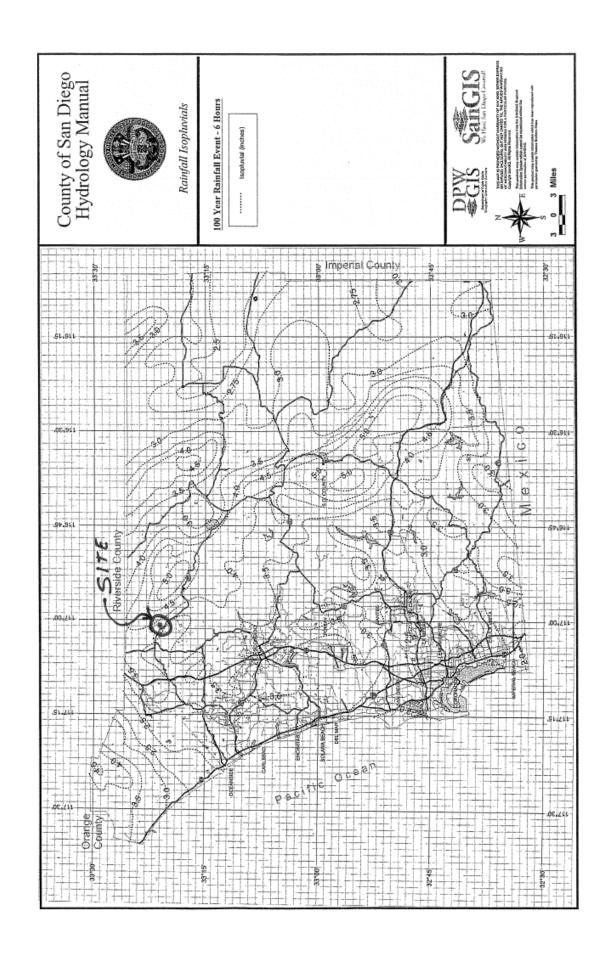
Intensity-Duration Design Chart - Template

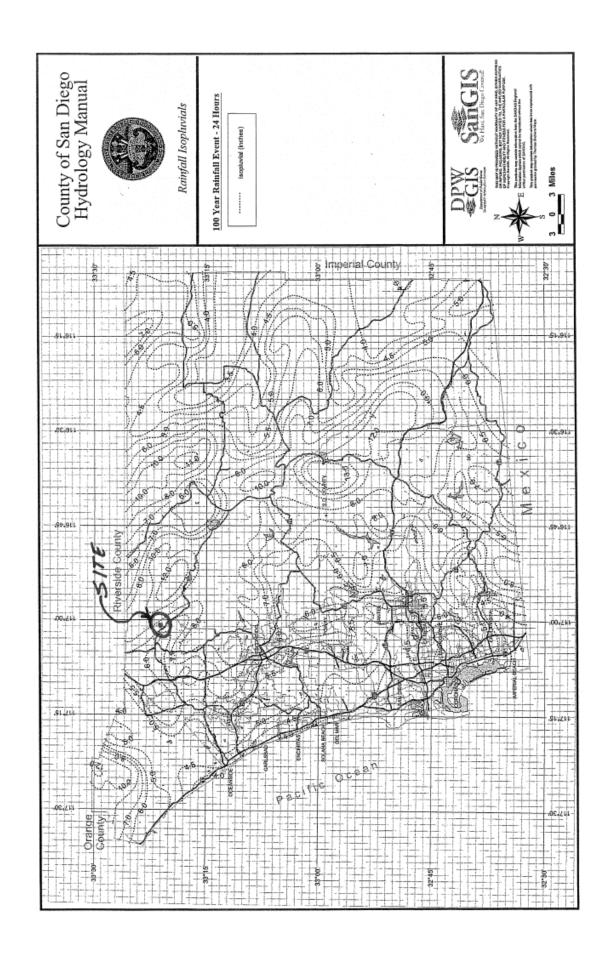


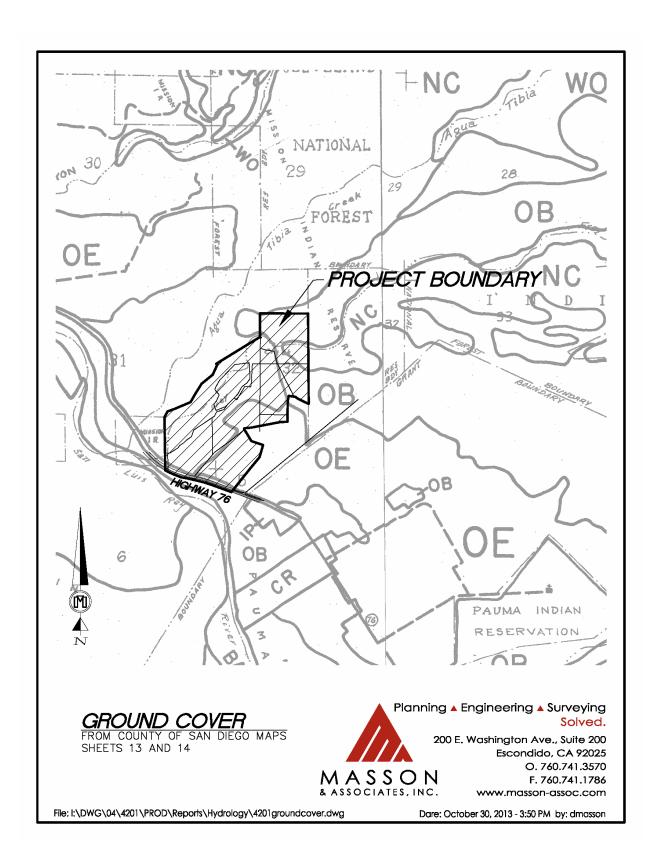
Nomograph for Determination of Time of Concentration (Tc) or Travel Time (Tt) for Natural Watersheds

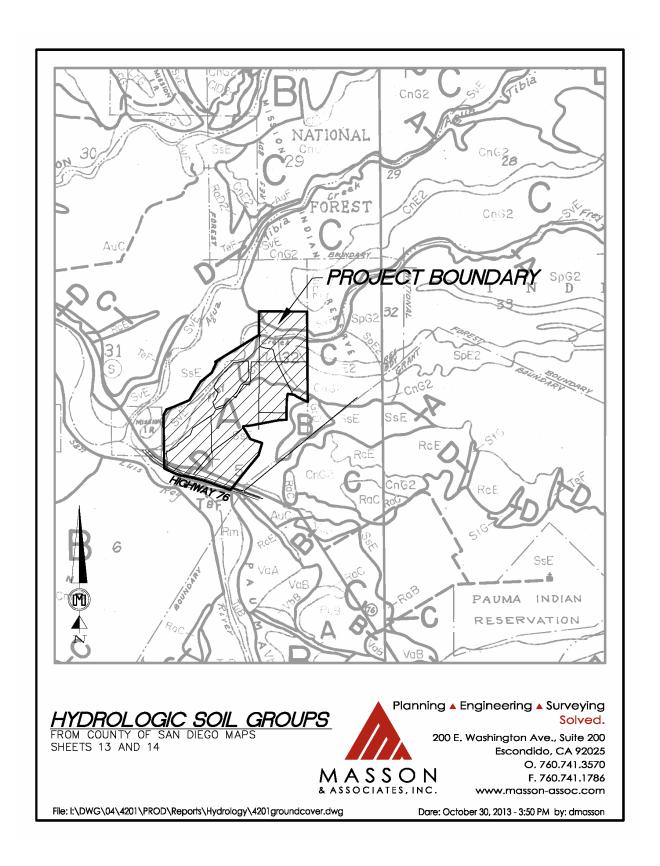

Computation of Effective Slope for Natural Watersheds

3-5


Gutter and Roadway Discharge - Velocity Chart


3-6




Manning's Equation Nomograph

3-7

APPENDIX "B"

HYDROGRAPHS – PRE AND POST BASIN'S 1, 2, AND 3

Basin 1 - Predevelopment RATIONAL METHOD HYDROGRAPH PROGRAM COPYRIGHT 1992, 2001 RICK ENGINEERING COMPANY RUN DATE 9/16/2019 HYDROGRAPH FILE NAME Text1 TIME OF CONCENTRATION 38 MIN. 6 HOUR RAINFALL 3.7 INCHES BASIN AREA 152.88 ACRES RUNOFF COEFFICIENT 0.27

PEAK DISCHARGE 108.8 CFS

TIME (MIN) =	0	DISCHARGE (CFS) = 0
TIME (MIN) =	38	DISCHARGE (CFS) = 9.7
TIME (MIN) =	76	DISCHARGE (CFS) = 10.5
TIME (MIN) =	114	DISCHARGE (CFS) = 12.9
TIME (MIN) =	152	DISCHARGE (CFS) = 14.7
TIME (MIN) =	190	DISCHARGE (CFS) = 21.5
TIME (MIN) =	228	DISCHARGE (CFS) = 30.3
TIME (MIN) =	266	DISCHARGE (CFS) = 108.8
TIME (MIN) =	304	DISCHARGE (CFS) = 17.3
TIME (MIN) =	342	DISCHARGE (CFS) = 11.6
TIME (MIN) =	380	DISCHARGE (CFS) = 0

Basin 2 - Predevelopment

RATIONAL METHOD HYDROGRAPH PROGRAM COPYRIGHT 1992, 2001 RICK ENGINEERING COMPANY RUN DATE 9/18/2019 HYDROGRAPH FILE NAME Text1 TIME OF CONCENTRATION 48 MIN. 6 HOUR RAINFALL 3.7 INCHES BASIN AREA 63.2 ACRES

RUNOFF COEFFICIENT 0.27 PEAK DISCHARGE 38.7 CFS

0	DISCHARGE (CFS) = 0
48	DISCHARGE (CFS) = 3.7
96	DISCHARGE (CFS) = 4.6
144	DISCHARGE (CFS) = 5.2
192	DISCHARGE (CFS) = 7.7
240	DISCHARGE (CFS) = 10.8
288	DISCHARGE (CFS) = 38.7
336	DISCHARGE (CFS) = 6.1
384	DISCHARGE (CFS) = 4.1
432	DISCHARGE (CFS) = 0
	48 96 144 192 240 288 336 384

Basin 3 Single Lot - Predevelopment RATIONAL METHOD HYDROGRAPH PROGRAM COPYRIGHT 1992, 2001 RICK ENGINEERING COMPANY RUN DATE 9/18/2019 HYDROGRAPH FILE NAME Text1 TIME OF CONCENTRATION 19 MIN. 6 HOUR RAINFALL 3.7 INCHES BASIN AREA 0.91 ACRES

RUNOFF COEFFICIENT 0.27 PEAK DISCHARGE 1 CFS

TIME (MIN) =	0	DISCHARGE (CFS) = 0
TIME (MIN) =	19	DISCHARGE (CFS) = 0
TIME (MIN) =	38	DISCHARGE (CFS) = 0.1
TIME (MIN) =	57	DISCHARGE (CFS) = 0.1
TIME (MIN) =	76	DISCHARGE (CFS) = 0.1
TIME (MIN) =	95	DISCHARGE (CFS) = 0.1
TIME (MIN) =	114	DISCHARGE (CFS) = 0.1
TIME (MIN) =	133	DISCHARGE (CFS) = 0.1
TIME (MIN) =	152	DISCHARGE (CFS) = 0.1
TIME (MIN) =	171	DISCHARGE (CFS) = 0.1
TIME (MIN) =	190	DISCHARGE (CFS) = 0.1
TIME (MIN) =	209	DISCHARGE (CFS) = 0.1
TIME (MIN) =	228	DISCHARGE (CFS) = 0.2
TIME (MIN) =	247	DISCHARGE (CFS) = 0.3
TIME (MIN) =	266	DISCHARGE (CFS) = 1
TIME (MIN) =	285	DISCHARGE (CFS) = 0.2
TIME (MIN) =	304	DISCHARGE (CFS) = 0.1
TIME (MIN) =	323	DISCHARGE (CFS) = 0.1
TIME (MIN) =	342	DISCHARGE (CFS) = 0.1
TIME (MIN) =	361	DISCHARGE (CFS) = 0.1
TIME (MIN) =	380	DISCHARGE (CFS) = 0

Drainage Basin 1.01
RATIONAL METHOD HYDROGRAPH PROGRAM COPYRIGHT 1992, 2001 RICK ENGINEERING COMPANY RUN DATE 9/16/2019 HYDROGRAPH FILE NAME Text1 TIME OF CONCENTRATION 25 MIN. 6 HOUR RAINFALL 3.7 INCHES BASIN AREA 10.3 ACRES

RUNOFF COEFFICIENT 0.23 PEAK DISCHARGE 8.2 CFS

TIME (MIN) =	0	DISCHARGE (CFS) = 0
TIME (MIN) =	25	DISCHARGE (CFS) = 0.5
TIME (MIN) =	50	DISCHARGE (CFS) = 0.6
TIME (MIN) =	75	DISCHARGE (CFS) = 0.6
TIME (MIN) =	100	DISCHARGE (CFS) = 0.7
TIME (MIN) =	125	DISCHARGE (CFS) = 0.8
TIME (MIN) =	150	DISCHARGE (CFS) = 1
TIME (MIN) =	175	DISCHARGE (CFS) = 1.1
TIME (MIN) =	200	DISCHARGE (CFS) = 1.6
TIME (MIN) =	225	DISCHARGE (CFS) = 2.3
TIME (MIN) =	250	DISCHARGE (CFS) = 8.2
TIME (MIN) =	275	DISCHARGE (CFS) = 1.3
TIME (MIN) =	300	DISCHARGE (CFS) = 0.9
TIME (MIN) =	325	DISCHARGE (CFS) = 0.7
TIME (MIN) =	350	DISCHARGE (CFS) = 0.6
TIME (MIN) =	375	DISCHARGE (CFS) = 0

Drainage Basin 1.02 RATIONAL METHOD HYDROGRAPH PROGRAM COPYRIGHT 1992, 2001 RICK ENGINEERING COMPANY RUN DATE 9/18/2019 HYDROGRAPH FILE NAME Text1 TIME OF CONCENTRATION 22 MIN. 6 HOUR RAINFALL 3.7 INCHES BASIN AREA 4.93 ACRES

RUNOFF COEFFICIENT 0.11 PEAK DISCHARGE 2 CFS

TIME (MIN) =	0	DISCHARGE (CFS) = 0
TIME (MIN) =	22	DISCHARGE (CFS) = 0
TIME (MIN) =	44	DISCHARGE (CFS) = 0.1
TIME (MIN) =	66	DISCHARGE (CFS) = 0.1
TIME (MIN) =	88	DISCHARGE (CFS) = 0.1
TIME (MIN) =	110	DISCHARGE (CFS) = 0.2
TIME (MIN) =	132	DISCHARGE (CFS) = 0.2
TIME (MIN) =	154	DISCHARGE (CFS) = 0.2
TIME (MIN) =	176	DISCHARGE (CFS) = 0.2
TIME (MIN) =	198	DISCHARGE (CFS) = 0.3
TIME (MIN) =	220	DISCHARGE (CFS) = 0.4
TIME (MIN) =	242	DISCHARGE (CFS) = 0.6
TIME (MIN) =	264	DISCHARGE (CFS) = 2
TIME (MIN) =	286	DISCHARGE (CFS) = 0.3
TIME (MIN) =	308	DISCHARGE (CFS) = 0.2
TIME (MIN) =	330	DISCHARGE (CFS) = 0.2
TIME (MIN) =	352	DISCHARGE (CFS) = 0.1
TIME (MIN) =	374	DISCHARGE (CFS) = 0

Drainage Basin 1.03
RATIONAL METHOD HYDROGRAPH PROGRAM COPYRIGHT 1992, 2001 RICK ENGINEERING COMPANY RUN DATE 9/16/2019 HYDROGRAPH FILE NAME Text1 TIME OF CONCENTRATION 12 MIN. 6 HOUR RAINFALL 3.7 INCHES BASIN AREA 6.65 ACRES

RUNOFF COEFFICIENT 0.21 PEAK DISCHARGE 7.7 CFS

Remoir coli	TOTEL VI 0.21 LET HE DIO	CILINGE 7.7 CIB
TIME (MIN) =	0	DISCHARGE (CFS) = 0
TIME (MIN) =	12	DISCHARGE (CFS) = 0.3
TIME (MIN) =	24	DISCHARGE (CFS) = 0.3
TIME (MIN) =	36	DISCHARGE (CFS) = 0.3
TIME (MIN) =	48	DISCHARGE (CFS) = 0.3
TIME (MIN) =	60	DISCHARGE (CFS) = 0.4
TIME (MIN) =	72	DISCHARGE (CFS) = 0.4
TIME (MIN) =	84	DISCHARGE (CFS) = 0.4
TIME (MIN) =	96	DISCHARGE (CFS) = 0.4
TIME (MIN) =	108	DISCHARGE (CFS) = 0.4
TIME (MIN) =	120	DISCHARGE (CFS) = 0.5
TIME (MIN) =	132	DISCHARGE (CFS) = 0.5
TIME (MIN) =	144	DISCHARGE (CFS) = 0.5
TIME (MIN) =	156	DISCHARGE (CFS) = 0.6
TIME (MIN) =	168	DISCHARGE (CFS) = 0.6
TIME (MIN) =	180	DISCHARGE (CFS) = 0.7
TIME (MIN) =	192	DISCHARGE (CFS) = 0.7
TIME (MIN) =	204	DISCHARGE (CFS) = 0.9
TIME (MIN) =	216	DISCHARGE (CFS) = 1
TIME (MIN) =	228	DISCHARGE (CFS) = 1.5
TIME (MIN) =	240	DISCHARGE (CFS) = 2.2
TIME (MIN) =	252	DISCHARGE (CFS) = 7.7
TIME (MIN) =	264	DISCHARGE (CFS) = 1.2
TIME (MIN) =	276	DISCHARGE (CFS) = 0.8
TIME (MIN) =	288	DISCHARGE (CFS) = 0.6
TIME (MIN) =	300	DISCHARGE (CFS) = 0.5
TIME (MIN) =	312	DISCHARGE (CFS) = 0.5
TIME (MIN) =	324	DISCHARGE (CFS) = 0.4
TIME (MIN) =	336	DISCHARGE (CFS) = 0.4
TIME (MIN) =	348	DISCHARGE (CFS) = 0.3
TIME (MIN) =	360	DISCHARGE (CFS) = 0.3
TIME (MIN) =	372	DISCHARGE (CFS) = 0

Drainage Basin 1.04
RATIONAL METHOD HYDROGRAPH PROGRAM COPYRIGHT 1992, 2001 RICK ENGINEERING COMPANY RUN DATE 9/16/2019 HYDROGRAPH FILE NAME Text1 TIME OF CONCENTRATION 16 MIN. 6 HOUR RAINFALL 3.7 INCHES BASIN AREA 9.06 ACRES

RUNOFF COEFFICIENT 0.21 PEAK DISCHARGE 8.8 CFS

TIME (MIN) =	0	DISCHARGE (CFS) = 0
TIME (MIN) =	16	DISCHARGE (CFS) = 0.4
TIME (MIN) =	32	DISCHARGE (CFS) = 0.4
TIME (MIN) =		DISCHARGE (CFS) = 0.5
TIME (MIN) =	64	DISCHARGE (CFS) = 0.5
TIME (MIN) =	80	DISCHARGE (CFS) = 0.5
TIME (MIN) =	96	DISCHARGE (CFS) = 0.6
TIME (MIN) =	112	DISCHARGE (CFS) = 0.6
TIME (MIN) =	128	DISCHARGE (CFS) = 0.6
TIME (MIN) =	144	DISCHARGE (CFS) = 0.7
TIME (MIN) =	160	DISCHARGE (CFS) = 0.8
TIME (MIN) =	176	DISCHARGE (CFS) = 0.8
TIME (MIN) =	192	DISCHARGE (CFS) = 1
TIME (MIN) =	208	DISCHARGE (CFS) = 1.2
TIME (MIN) =	224	DISCHARGE (CFS) = 1.7
TIME (MIN) =	240	DISCHARGE (CFS) = 2.4
TIME (MIN) =	256	DISCHARGE (CFS) = 8.8
TIME (MIN) =	272	DISCHARGE (CFS) = 1.4
TIME (MIN) =	288	DISCHARGE (CFS) = 0.9
TIME (MIN) =	304	DISCHARGE (CFS) = 0.7
TIME (MIN) =	320	DISCHARGE (CFS) = 0.6
TIME (MIN) =	336	DISCHARGE (CFS) = 0.5
TIME (MIN) =	352	DISCHARGE (CFS) = 0.5
TIME (MIN) =	368	DISCHARGE (CFS) = 0.4
TIME (MIN) =	384	DISCHARGE (CFS) = 0

Drainage Basin 1.05
RATIONAL METHOD HYDROGRAPH PROGRAM COPYRIGHT 1992, 2001 RICK ENGINEERING COMPANY RUN DATE 9/17/2019 HYDROGRAPH FILE NAME Text1 TIME OF CONCENTRATION 15 MIN. 6 HOUR RAINFALL 3.7 INCHES BASIN AREA 2.72 ACRES

RUNOFF COEFFICIENT 0.12 PEAK DISCHARGE 1.6 CFS

ROHOIT COLI	TICILITI	0.12 TEAR DISCHARGE 1.0 CIS
TIME (MIN) =	0	DISCHARGE (CFS) = 0
TIME (MIN) =	15	DISCHARGE (CFS) = 0.1
TIME $(MIN) =$	30	DISCHARGE (CFS) = 0.1
TIME (MIN) =	45	DISCHARGE (CFS) = 0.1
TIME $(MIN) =$	60	DISCHARGE (CFS) = 0.1
TIME $(MIN) =$	75	DISCHARGE (CFS) = 0.1
TIME $(MIN) =$	90	DISCHARGE (CFS) = 0.1
TIME (MIN) =	105	DISCHARGE (CFS) = 0.1
TIME (MIN) =	120	DISCHARGE (CFS) = 0.1
TIME (MIN) =	135	DISCHARGE (CFS) = 0.1
TIME (MIN) =	150	DISCHARGE (CFS) = 0.1
TIME (MIN) =	165	DISCHARGE (CFS) = 0.1
TIME (MIN) =	180	DISCHARGE (CFS) = 0.2
TIME (MIN) =	195	DISCHARGE (CFS) = 0.2
TIME (MIN) =	210	DISCHARGE (CFS) = 0.2
TIME (MIN) =	225	DISCHARGE (CFS) = 0.3
TIME (MIN) =	240	DISCHARGE (CFS) = 0.4
TIME (MIN) =	255	DISCHARGE (CFS) = 1.6
TIME (MIN) =	270	DISCHARGE (CFS) = 0.2
TIME (MIN) =	285	DISCHARGE (CFS) = 0.2
TIME (MIN) =	300	DISCHARGE (CFS) = 0.1
TIME (MIN) =	315	DISCHARGE (CFS) = 0.1
TIME (MIN) =	330	DISCHARGE (CFS) = 0.1
TIME (MIN) =	345	DISCHARGE (CFS) = 0.1
TIME (MIN) =	360	DISCHARGE (CFS) = 0.1
TIME (MIN) =	375	DISCHARGE (CFS) = 0

RATIONAL METHOD HYDROGRAPH PROGRAM COPYRIGHT 1992, 2001 RICK ENGINEERING COMPANY RUN DATE 9/16/2019 HYDROGRAPH FILE NAME Text1 TIME OF CONCENTRATION 26 MIN. 6 HOUR RAINFALL 3.7 INCHES BASIN AREA 28.93 ACRES

RUNOFF COEFFICIENT 0.18 PEAK DISCHARGE 17.5 CFS

TIME (MIN) =	0	DISCHARGE (CFS) = 0
TIME (MIN) =	26	DISCHARGE (CFS) = 1.2
TIME (MIN) =	52	DISCHARGE (CFS) = 1.3
TIME (MIN) =	78	DISCHARGE (CFS) = 1.4
TIME (MIN) =	104	DISCHARGE (CFS) = 1.6
TIME (MIN) =	130	DISCHARGE (CFS) = 1.7
TIME (MIN) =	156	DISCHARGE (CFS) = 2.1
TIME (MIN) =	182	DISCHARGE (CFS) = 2.4
TIME (MIN) =	208	DISCHARGE (CFS) = 3.5
TIME (MIN) =	234	DISCHARGE (CFS) = 4.9
TIME (MIN) =	260	DISCHARGE (CFS) = 17.5
TIME (MIN) =	286	DISCHARGE (CFS) = 2.8
TIME (MIN) =	312	DISCHARGE (CFS) = 1.9
TIME (MIN) =	338	DISCHARGE (CFS) = 1.5
TIME (MIN) =	364	DISCHARGE (CFS) = 1.2
TIME (MIN) =	390	DISCHARGE (CFS) = 0

Drainage Basin 1.07
RATIONAL METHOD HYDROGRAPH PROGRAM COPYRIGHT 1992, 2001 RICK ENGINEERING COMPANY RUN DATE 9/17/2019 HYDROGRAPH FILE NAME Text1 TIME OF CONCENTRATION 30 MIN. 6 HOUR RAINFALL 3.7 INCHES BASIN AREA 18.71 ACRES

RUNOFF COEFFICIENT 0.12 PEAK DISCHARGE 6.9 CFS

TIME (MIN) =	0	DISCHARGE (CFS) = 0
TIME (MIN) =	30	DISCHARGE (CFS) = 0.5
TIME (MIN) =	60	DISCHARGE (CFS) = 0.5
TIME (MIN) =	90	DISCHARGE (CFS) = 0.6
TIME (MIN) =	120	DISCHARGE (CFS) = 0.7
TIME (MIN) =	150	DISCHARGE (CFS) = 0.8
TIME (MIN) =	180	DISCHARGE (CFS) = 0.9
TIME (MIN) =	210	DISCHARGE (CFS) = 1.4
TIME (MIN) =	240	DISCHARGE (CFS) = 1.9
TIME (MIN) =	270	DISCHARGE (CFS) = 6.9
TIME (MIN) =	300	DISCHARGE (CFS) = 1.1
TIME (MIN) =	330	DISCHARGE (CFS) = 0.7
TIME (MIN) =	360	DISCHARGE (CFS) = 0.6
TIME (MIN) =	390	DISCHARGE(CFS) = 0

Drainage Basin 1.08
RATIONAL METHOD HYDROGRAPH PROGRAM COPYRIGHT 1992, 2001 RICK ENGINEERING COMPANY RUN DATE 9/16/2019 HYDROGRAPH FILE NAME Text1 TIME OF CONCENTRATION 15 MIN. 6 HOUR RAINFALL 3.7 INCHES BASIN AREA 2.23 ACRES

RUNOFF COEFFICIENT 0.1 PEAK DISCHARGE 1.1 CFS

TIME (MIN) =	0	DISCHARGE (CFS) = 0
TIME (MIN) =	15	DISCHARGE (CFS) = 0
TIME (MIN) =	30	DISCHARGE (CFS) = 0.1
TIME (MIN) =	45	DISCHARGE (CFS) = 0.1
TIME (MIN) =	60	DISCHARGE (CFS) = 0.1
TIME (MIN) =	75	DISCHARGE (CFS) = 0.1
TIME (MIN) =	90	DISCHARGE (CFS) = 0.1
TIME (MIN) =	105	DISCHARGE (CFS) = 0.1
TIME (MIN) =	120	DISCHARGE (CFS) = 0.1
TIME (MIN) =	135	DISCHARGE (CFS) = 0.1
TIME (MIN) =	150	DISCHARGE (CFS) = 0.1
TIME (MIN) =	165	DISCHARGE (CFS) = 0.1
TIME (MIN) =	180	DISCHARGE (CFS) = 0.1
TIME (MIN) =	195	DISCHARGE (CFS) = 0.1
TIME (MIN) =	210	DISCHARGE (CFS) = 0.1
TIME (MIN) =	225	DISCHARGE (CFS) = 0.2
TIME (MIN) =	240	DISCHARGE (CFS) = 0.3
TIME (MIN) =	255	DISCHARGE (CFS) = 1.1
TIME (MIN) =	270	DISCHARGE (CFS) = 0.2
TIME (MIN) =	285	DISCHARGE (CFS) = 0.1
TIME (MIN) =	300	DISCHARGE (CFS) = 0.1
TIME (MIN) =	315	DISCHARGE (CFS) = 0.1
TIME (MIN) =	330	DISCHARGE (CFS) = 0.1
TIME (MIN) =	345	DISCHARGE (CFS) = 0.1
TIME (MIN) =	360	DISCHARGE (CFS) = 0.1
TIME (MIN) =	375	DISCHARGE (CFS) = 0

Drainage Basin 1.09
RATIONAL METHOD HYDROGRAPH PROGRAM COPYRIGHT 1992, 2001 RICK ENGINEERING COMPANY RUN DATE 9/17/2019 HYDROGRAPH FILE NAME Text1 TIME OF CONCENTRATION 11 MIN. 6 HOUR RAINFALL 3.7 INCHES BASIN AREA 6.13 ACRES

RUNOFF COEFFICIENT 0.1 PEAK DISCHARGE 3.6 CFS

KUNOFF COEF.	FICIENT	U.I PEAK DISCHARGE 3.0 CFS
TIME (MIN) =	0	DISCHARGE (CFS) = 0
TIME (MIN) =	11	DISCHARGE (CFS) = 0.1
TIME (MIN) =	22	DISCHARGE (CFS) = 0.1
TIME (MIN) =	33	DISCHARGE (CFS) = 0.1
TIME (MIN) =	44	DISCHARGE (CFS) = 0.1
TIME (MIN) =	55	DISCHARGE (CFS) = 0.2
TIME (MIN) =	66	DISCHARGE (CFS) = 0.2
TIME (MIN) =	77	DISCHARGE (CFS) = 0.2
TIME (MIN) =	88	DISCHARGE (CFS) = 0.2
TIME (MIN) =	99	DISCHARGE (CFS) = 0.2
TIME (MIN) =	110	DISCHARGE (CFS) = 0.2
TIME (MIN) =	121	DISCHARGE (CFS) = 0.2
TIME (MIN) =	132	DISCHARGE (CFS) = 0.2
TIME (MIN) =	143	DISCHARGE (CFS) = 0.2
TIME (MIN) =	154	DISCHARGE (CFS) = 0.2
TIME (MIN) =	165	DISCHARGE (CFS) = 0.3
TIME (MIN) =	176	DISCHARGE (CFS) = 0.3
TIME (MIN) =	187	DISCHARGE (CFS) = 0.3
TIME (MIN) =	198	DISCHARGE (CFS) = 0.3
TIME (MIN) =	209	DISCHARGE (CFS) = 0.4
TIME (MIN) =	220	DISCHARGE (CFS) = 0.5
TIME (MIN) =	231	DISCHARGE (CFS) = 0.7
TIME (MIN) =	242	DISCHARGE (CFS) = 1
TIME (MIN) =	253	DISCHARGE (CFS) = 3.6
TIME (MIN) =	264	DISCHARGE (CFS) = 0.6
TIME (MIN) =	275	DISCHARGE (CFS) = 0.4
TIME (MIN) =	286	DISCHARGE (CFS) = 0.3
TIME (MIN) =	297	DISCHARGE (CFS) = 0.3
TIME (MIN) =	308	DISCHARGE (CFS) = 0.2
TIME (MIN) =	319	DISCHARGE (CFS) = 0.2
TIME (MIN) =	330	DISCHARGE (CFS) = 0.2
TIME (MIN) =	341	DISCHARGE (CFS) = 0.2
TIME (MIN) =	352	DISCHARGE (CFS) = 0.2
TIME (MIN) =	363	DISCHARGE (CFS) = 0.1
TIME (MIN) =	374	DISCHARGE (CFS) = 0

RATIONAL METHOD HYDROGRAPH PROGRAM COPYRIGHT 1992, 2001 RICK ENGINEERING COMPANY RUN DATE 9/17/2019 HYDROGRAPH FILE NAME Text1 TIME OF CONCENTRATION 41 MIN. 6 HOUR RAINFALL 3.7 INCHES BASIN AREA 23.76 ACRES

RUNOFF COEFFICIENT 0.1 PEAK DISCHARGE 6 CFS

TIME (MIN) =	0	DISCHARGE (CFS) = 0
TIME (MIN) =	41	DISCHARGE (CFS) = 0.5
TIME (MIN) =	82	DISCHARGE (CFS) = 0.6
TIME (MIN) =	123	DISCHARGE (CFS) = 0.7
TIME (MIN) =	164	DISCHARGE (CFS) = 0.8
TIME (MIN) =	205	DISCHARGE (CFS) = 1.2
TIME (MIN) =	246	DISCHARGE (CFS) = 1.6
TIME (MIN) =	287	DISCHARGE (CFS) = 6
TIME (MIN) =	328	DISCHARGE (CFS) = 0.9
TIME (MIN) =	369	DISCHARGE (CFS) = 0.6
TIME (MIN) =	410	DISCHARGE (CFS) = 0

RATIONAL METHOD HYDROGRAPH PROGRAM COPYRIGHT 1992, 2001 RICK ENGINEERING COMPANY RUN DATE 9/17/2019 HYDROGRAPH FILE NAME Text1 TIME OF CONCENTRATION 33 MIN. 6 HOUR RAINFALL 3.7 INCHES BASIN AREA 6.5 ACRES

RUNOFF COEFFICIENT 0.1 PEAK DISCHARGE 1.9 CFS

TIME (MIN) =	0	DISCHARGE (CFS) = 0
TIME (MIN) =	33	DISCHARGE (CFS) = 0.1
TIME (MIN) =	66	DISCHARGE (CFS) = 0.2
TIME (MIN) =	99	DISCHARGE (CFS) = 0.2
TIME (MIN) =	132	DISCHARGE (CFS) = 0.2
TIME (MIN) =	165	DISCHARGE (CFS) = 0.3
TIME (MIN) =	198	DISCHARGE (CFS) = 0.4
TIME (MIN) =	231	DISCHARGE (CFS) = 0.5
TIME (MIN) =	264	DISCHARGE (CFS) = 1.9
TIME (MIN) =	297	DISCHARGE (CFS) = 0.3
TIME (MIN) =	330	DISCHARGE (CFS) = 0.2
TIME (MIN) =	363	DISCHARGE (CFS) = 0.2
TIME (MIN) =	396	DISCHARGE (CFS) = 0

RATIONAL METHOD HYDROGRAPH PROGRAM COPYRIGHT 1992, 2001 RICK ENGINEERING COMPANY RUN DATE 9/17/2019 HYDROGRAPH FILE NAME Text1 TIME OF CONCENTRATION 34 MIN. 6 HOUR RAINFALL 3.7 INCHES BASIN AREA 13.37 ACRES

RUNOFF COEFFICIENT 0.15 PEAK DISCHARGE 5.7 CFS

TIME (MIN) =	0	DISCHARGE (CFS) = 0
TIME (MIN) =	34	DISCHARGE (CFS) = 0.4
TIME (MIN) =	68	DISCHARGE (CFS) = 0.5
TIME (MIN) =	102	DISCHARGE (CFS) = 0.5
TIME (MIN) =	136	DISCHARGE (CFS) = 0.7
TIME (MIN) =	170	DISCHARGE (CFS) = 0.8
TIME (MIN) =	204	DISCHARGE (CFS) = 1.1
TIME (MIN) =	238	DISCHARGE (CFS) = 1.6
TIME (MIN) =	272	DISCHARGE (CFS) = 5.7
TIME (MIN) =	306	DISCHARGE (CFS) = 0.9
TIME (MIN) =	340	DISCHARGE (CFS) = 0.6
TIME (MIN) =	374	DISCHARGE (CFS) = 0.5
TIME (MIN) =	408	DISCHARGE (CFS) = 0

RATIONAL METHOD HYDROGRAPH PROGRAM COPYRIGHT 1992, 2001 RICK ENGINEERING COMPANY RUN DATE 9/17/2019 HYDROGRAPH FILE NAME Text1 TIME OF CONCENTRATION 25 MIN. 6 HOUR RAINFALL 3.7 INCHES BASIN AREA 2.26 ACRES

RUNOFF COEFFICIENT 0.16 PEAK DISCHARGE 1.2 CFS

TIME (MIN) =	0	DISCHARGE (CFS) = 0
TIME (MIN) =	25	DISCHARGE (CFS) = 0.1
TIME (MIN) =	50	DISCHARGE (CFS) = 0.1
TIME (MIN) =	75	DISCHARGE (CFS) = 0.1
TIME (MIN) =	100	DISCHARGE (CFS) = 0.1
TIME (MIN) =	125	DISCHARGE (CFS) = 0.1
TIME (MIN) =	150	DISCHARGE (CFS) = 0.1
TIME (MIN) =	175	DISCHARGE (CFS) = 0.2
TIME (MIN) =	200	DISCHARGE (CFS) = 0.2
TIME (MIN) =	225	DISCHARGE (CFS) = 0.4
TIME (MIN) =	250	DISCHARGE (CFS) = 1.2
TIME (MIN) =	275	DISCHARGE (CFS) = 0.2
TIME (MIN) =	300	DISCHARGE (CFS) = 0.1
TIME (MIN) =	325	DISCHARGE (CFS) = 0.1
TIME (MIN) =	350	DISCHARGE (CFS) = 0.1
TIME (MIN) =	375	DISCHARGE (CFS) = 0

RATIONAL METHOD HYDROGRAPH PROGRAM COPYRIGHT 1992, 2001 RICK ENGINEERING COMPANY RUN DATE 9/17/2019 HYDROGRAPH FILE NAME Text1 TIME OF CONCENTRATION 20 MIN. 6 HOUR RAINFALL 3.7 INCHES BASIN AREA 3 ACRES

RUNOFF COEFFICIENT 0.19 PEAK DISCHARGE 2.3 CFS

TIME (MIN) =	0	DISCHARGE (CFS) = 0
TIME (MIN) =	20	DISCHARGE (CFS) = 0.1
TIME (MIN) =	40	DISCHARGE (CFS) = 0.1
TIME (MIN) =	60	DISCHARGE (CFS) = 0.1
TIME (MIN) =	80	DISCHARGE (CFS) = 0.2
TIME (MIN) =	100	DISCHARGE (CFS) = 0.2
TIME (MIN) =	120	DISCHARGE (CFS) = 0.2
TIME (MIN) =	140	DISCHARGE (CFS) = 0.2
TIME (MIN) =	160	DISCHARGE (CFS) = 0.2
TIME (MIN) =	180	DISCHARGE (CFS) = 0.3
TIME (MIN) =	200	DISCHARGE (CFS) = 0.3
TIME (MIN) =	220	DISCHARGE (CFS) = 0.4
TIME (MIN) =	240	DISCHARGE (CFS) = 0.6
TIME (MIN) =	260	DISCHARGE (CFS) = 2.3
TIME (MIN) =	280	DISCHARGE (CFS) = 0.4
TIME (MIN) =	300	DISCHARGE (CFS) = 0.2
TIME (MIN) =	320	DISCHARGE (CFS) = 0.2
TIME (MIN) =	340	DISCHARGE (CFS) = 0.2
TIME (MIN) =	360	DISCHARGE (CFS) = 0.1
TIME (MIN) =	380	DISCHARGE(CFS) = 0

RATIONAL METHOD HYDROGRAPH PROGRAM COPYRIGHT 1992, 2001 RICK ENGINEERING COMPANY RUN DATE 9/18/2019 HYDROGRAPH FILE NAME Text1 TIME OF CONCENTRATION 29 MIN. 6 HOUR RAINFALL 3.7 INCHES BASIN AREA 6.79 ACRES

RUNOFF COEFFICIENT 0.1 PEAK DISCHARGE 2.1 CFS

TIME (MIN) =	0	DISCHARGE (CFS) = 0
TIME (MIN) =	29	DISCHARGE (CFS) = 0.2
TIME (MIN) =	58	DISCHARGE (CFS) = 0.2
TIME (MIN) =	87	DISCHARGE (CFS) = 0.2
TIME (MIN) =	116	DISCHARGE (CFS) = 0.2
TIME (MIN) =	145	DISCHARGE (CFS) = 0.3
TIME (MIN) =	174	DISCHARGE (CFS) = 0.3
TIME (MIN) =	203	DISCHARGE (CFS) = 0.4
TIME (MIN) =	232	DISCHARGE (CFS) = 0.6
TIME (MIN) =	261	DISCHARGE (CFS) = 2.1
TIME (MIN) =	290	DISCHARGE (CFS) = 0.3
TIME (MIN) =	319	DISCHARGE (CFS) = 0.2
TIME (MIN) =	348	DISCHARGE (CFS) = 0.2
TIME (MIN) =	377	DISCHARGE (CFS) = 0

RATIONAL METHOD HYDROGRAPH PROGRAM COPYRIGHT 1992, 2001 RICK ENGINEERING COMPANY RUN DATE 9/13/2019 HYDROGRAPH FILE NAME Text1 TIME OF CONCENTRATION 24 MIN. 6 HOUR RAINFALL 3.7 INCHES BASIN AREA 5.28 ACRES

RUNOFF COEFFICIENT 0.15 PEAK DISCHARGE 2.8 CFS

TIME (MIN) =	0	DISCHARGE (CFS) = 0
TIME (MIN) =	24	DISCHARGE (CFS) = 0.2
TIME (MIN) =	48	DISCHARGE (CFS) = 0.2
TIME (MIN) =	72	DISCHARGE (CFS) = 0.2
TIME (MIN) =	96	DISCHARGE (CFS) = 0.2
TIME (MIN) =	120	DISCHARGE (CFS) = 0.3
TIME (MIN) =	144	DISCHARGE (CFS) = 0.3
TIME (MIN) =	168	DISCHARGE (CFS) = 0.3
TIME (MIN) =	192	DISCHARGE (CFS) = 0.4
TIME (MIN) =	216	DISCHARGE (CFS) = 0.6
TIME (MIN) =	240	DISCHARGE (CFS) = 0.8
TIME (MIN) =	264	DISCHARGE (CFS) = 2.8
TIME (MIN) =	288	DISCHARGE (CFS) = 0.4
TIME (MIN) =	312	DISCHARGE (CFS) = 0.3
TIME (MIN) =	336	DISCHARGE (CFS) = 0.2
TIME (MIN) =	360	DISCHARGE (CFS) = 0.2
TIME (MIN) =	384	DISCHARGE(CFS) = 0

RATIONAL METHOD HYDROGRAPH PROGRAM COPYRIGHT 1992, 2001 RICK ENGINEERING COMPANY RUN DATE 9/13/2019 HYDROGRAPH FILE NAME Text1 TIME OF CONCENTRATION 30 MIN. 6 HOUR RAINFALL 3.7 INCHES BASIN AREA 12.51 ACRES

RUNOFF COEFFICIENT 0.15 PEAK DISCHARGE 5.8 CFS

TIME (MIN) =	0	DISCHARGE (CFS) = 0
TIME (MIN) =	30	DISCHARGE (CFS) = 0.4
TIME (MIN) =	60	DISCHARGE (CFS) = 0.4
TIME (MIN) =	90	DISCHARGE (CFS) = 0.5
TIME (MIN) =	120	DISCHARGE (CFS) = 0.6
TIME (MIN) =	150	DISCHARGE (CFS) = 0.7
TIME (MIN) =	180	DISCHARGE (CFS) = 0.8
TIME (MIN) =	210	DISCHARGE (CFS) = 1.1
TIME (MIN) =	240	DISCHARGE (CFS) = 1.6
TIME (MIN) =	270	DISCHARGE (CFS) = 5.8
TIME (MIN) =	300	DISCHARGE (CFS) = 0.9
TIME (MIN) =	330	DISCHARGE (CFS) = 0.6
TIME (MIN) =	360	DISCHARGE (CFS) = 0.5
TIME (MIN) =	390	DISCHARGE (CFS) = 0

RATIONAL METHOD HYDROGRAPH PROGRAM COPYRIGHT 1992, 2001 RICK ENGINEERING COMPANY RUN DATE 9/16/2019 HYDROGRAPH FILE NAME Text1 TIME OF CONCENTRATION 33 MIN. 6 HOUR RAINFALL 3.7 INCHES BASIN AREA 20.15 ACRES

RUNOFF COEFFICIENT 0.13 PEAK DISCHARGE 7.6 CFS

TIME (MIN) =	0	DISCHARGE (CFS) = 0
TIME (MIN) =	33	DISCHARGE (CFS) = 0.6
TIME (MIN) =	66	DISCHARGE (CFS) = 0.7
TIME (MIN) =	99	DISCHARGE (CFS) = 0.7
TIME (MIN) =	132	DISCHARGE (CFS) = 0.9
TIME (MIN) =	165	DISCHARGE (CFS) = 1
TIME (MIN) =	198	DISCHARGE (CFS) = 1.5
TIME (MIN) =	231	DISCHARGE (CFS) = 2.1
TIME (MIN) =	264	DISCHARGE (CFS) = 7.6
TIME (MIN) =	297	DISCHARGE (CFS) = 1.2
TIME (MIN) =	330	DISCHARGE (CFS) = 0.8
TIME (MIN) =	363	DISCHARGE (CFS) = 0.6
TIME (MIN) =	396	DISCHARGE (CFS) = 0

RATIONAL METHOD HYDROGRAPH PROGRAM COPYRIGHT 1992, 2001 RICK ENGINEERING COMPANY RUN DATE 9/13/2019 HYDROGRAPH FILE NAME Text1 TIME OF CONCENTRATION 45 MIN. 6 HOUR RAINFALL 3.7 INCHES BASIN AREA 17.84 ACRES

RUNOFF COEFFICIENT 0.26 PEAK DISCHARGE 11 CFS

TIME (MIN) =	0	DISCHARGE (CFS) = 0
TIME (MIN) =	45	DISCHARGE (CFS) = 1.1
TIME (MIN) =	90	DISCHARGE (CFS) = 1.3
TIME (MIN) =	135	DISCHARGE (CFS) = 1.5
TIME (MIN) =	180	DISCHARGE (CFS) = 2.2
TIME (MIN) =	225	DISCHARGE (CFS) = 3
TIME (MIN) =	270	DISCHARGE (CFS) = 11
TIME (MIN) =	315	DISCHARGE (CFS) = 1.7
TIME (MIN) =	360	DISCHARGE (CFS) = 1.2
TIME (MIN) =	405	DISCHARGE (CFS) = 0

RATIONAL METHOD HYDROGRAPH PROGRAM COPYRIGHT 1992, 2001 RICK ENGINEERING COMPANY RUN DATE 9/16/2019 HYDROGRAPH FILE NAME Text1 TIME OF CONCENTRATION 9 MIN. 6 HOUR RAINFALL 3.7 INCHES BASIN AREA 0.42 ACRES

RUNOFF COEFFICIENT 0.79 PEAK DISCHARGE 2.2 CFS

ROMOIT COLIT	ICILITY 0.77 I LINE DIS	CITARGE 2.2 CIB
TIME (MIN) =	0	DISCHARGE (CFS) = 0
TIME (MIN) =	9	DISCHARGE (CFS) = 1.2
TIME (MIN) =	18	DISCHARGE (CFS) = 0.1
TIME (MIN) =	27	DISCHARGE (CFS) = 0.1
TIME (MIN) =	36	DISCHARGE (CFS) = 0.1
TIME (MIN) =	45	DISCHARGE (CFS) = 0.1
TIME (MIN) =	54	DISCHARGE (CFS) = 0.1
TIME (MIN) =	63	DISCHARGE (CFS) = 0.1
TIME (MIN) =	72	DISCHARGE (CFS) = 0.1
TIME (MIN) =	81	DISCHARGE (CFS) = 0.1
TIME (MIN) =	90	DISCHARGE (CFS) = 0.1
TIME (MIN) =	99	DISCHARGE (CFS) = 0.1
TIME (MIN) =	108	DISCHARGE (CFS) = 0.1
TIME (MIN) =	117	DISCHARGE (CFS) = 0.1
TIME (MIN) =	126	DISCHARGE (CFS) = 0.1
TIME (MIN) =	135	DISCHARGE (CFS) = 0.1
TIME (MIN) =	144	DISCHARGE (CFS) = 0.1
TIME (MIN) =	153	DISCHARGE (CFS) = 0.1
TIME (MIN) =	162	DISCHARGE (CFS) = 0.1
TIME (MIN) =	171	DISCHARGE (CFS) = 0.1
TIME (MIN) =	180	DISCHARGE (CFS) = 0.2
TIME (MIN) =	189	DISCHARGE (CFS) = 0.2
TIME (MIN) =	198	DISCHARGE (CFS) = 0.2
TIME (MIN) =	207	DISCHARGE (CFS) = 0.2
TIME (MIN) =	216	DISCHARGE (CFS) = 0.3
TIME (MIN) =	225	DISCHARGE (CFS) = 0.3
TIME (MIN) =	234	DISCHARGE (CFS) = 0.4
TIME (MIN) =	243	DISCHARGE (CFS) = 0.6
TIME (MIN) =	252	DISCHARGE (CFS) = 2.2
TIME (MIN) =	261	DISCHARGE (CFS) = 0.4
TIME (MIN) =	270	DISCHARGE (CFS) = 0.2
TIME (MIN) =	279	DISCHARGE (CFS) = 0.2
TIME (MIN) =	288	DISCHARGE (CFS) = 0.2
TIME (MIN) =	297	DISCHARGE (CFS) = 0.1
TIME (MIN) =	306	DISCHARGE (CFS) = 0.1
TIME (MIN) =	315	DISCHARGE (CFS) = 0.1
TIME (MIN) =	324	DISCHARGE (CFS) = 0.1
TIME (MIN) =	333	DISCHARGE (CFS) = 0.1
TIME (MIN) =	342	DISCHARGE (CFS) = 0.1
TIME (MIN) =	351	DISCHARGE (CFS) = 0.1
TIME (MIN) =	360	DISCHARGE (CFS) = 0.1
TIME (MIN) =	369	DISCHARGE (CFS) = 0

RATIONAL METHOD HYDROGRAPH PROGRAM COPYRIGHT 1992, 2001 RICK ENGINEERING COMPANY RUN DATE 9/18/2019 HYDROGRAPH FILE NAME Text1 TIME OF CONCENTRATION 11 MIN. 6 HOUR RAINFALL 3.7 INCHES BASIN AREA 0.55 ACRES

RUNOFF COEFFICIENT 0.61 PEAK DISCHARGE 2 CFS

ROHOIT COLI	IICILIVI	0.01 TEAR DISCHARGE 2 CIS
TIME (MIN) =	0	DISCHARGE (CFS) = 0
TIME (MIN) =	11	DISCHARGE (CFS) = 0.1
TIME (MIN) =	22	DISCHARGE (CFS) = 0.1
TIME (MIN) =	33	DISCHARGE (CFS) = 0.1
TIME (MIN) =	44	DISCHARGE (CFS) = 0.1
TIME (MIN) =	55	DISCHARGE (CFS) = 0.1
TIME (MIN) =	66	DISCHARGE (CFS) = 0.1
TIME (MIN) =	77	DISCHARGE (CFS) = 0.1
TIME (MIN) =	88	DISCHARGE (CFS) = 0.1
TIME (MIN) =	99	DISCHARGE (CFS) = 0.1
TIME (MIN) =	110	DISCHARGE (CFS) = 0.1
TIME (MIN) =	121	DISCHARGE (CFS) = 0.1
TIME (MIN) =	132	DISCHARGE (CFS) = 0.1
TIME (MIN) =	143	DISCHARGE (CFS) = 0.1
TIME (MIN) =	154	DISCHARGE (CFS) = 0.1
TIME (MIN) =	165	DISCHARGE (CFS) = 0.1
TIME (MIN) =	176	DISCHARGE (CFS) = 0.2
TIME (MIN) =	187	DISCHARGE (CFS) = 0.2
TIME (MIN) =	198	DISCHARGE (CFS) = 0.2
TIME (MIN) =	209	DISCHARGE (CFS) = 0.2
TIME (MIN) =	220	DISCHARGE (CFS) = 0.3
TIME (MIN) =	231	DISCHARGE (CFS) = 0.4
TIME (MIN) =	242	DISCHARGE (CFS) = 0.5
TIME (MIN) =	253	DISCHARGE (CFS) = 2
TIME (MIN) =	264	DISCHARGE (CFS) = 0.3
TIME (MIN) =	275	DISCHARGE (CFS) = 0.2
TIME (MIN) =	286	DISCHARGE (CFS) = 0.2
TIME (MIN) =	297	DISCHARGE (CFS) = 0.1
TIME (MIN) =	308	DISCHARGE (CFS) = 0.1
TIME (MIN) =	319	DISCHARGE (CFS) = 0.1
TIME (MIN) =	330	DISCHARGE (CFS) = 0.1
TIME (MIN) =	341	DISCHARGE (CFS) = 0.1
TIME (MIN) =	352	DISCHARGE (CFS) = 0.1
TIME (MIN) =	363	DISCHARGE (CFS) = 0.1
TIME (MIN) =	374	DISCHARGE (CFS) = 0

RATIONAL METHOD HYDROGRAPH PROGRAM COPYRIGHT 1992, 2001 RICK ENGINEERING COMPANY RUN DATE 9/17/2019 HYDROGRAPH FILE NAME Text1 TIME OF CONCENTRATION 16 MIN. 6 HOUR RAINFALL 3.7 INCHES BASIN AREA 0.3 ACRES

RUNOFF COEFFICIENT 0.47 PEAK DISCHARGE 0.6 CFS

TIME (MIN) =	0	DISCHARGE (CFS) = 0
TIME (MIN) =	16	DISCHARGE (CFS) = 0
TIME (MIN) =	32	DISCHARGE (CFS) = 0
TIME (MIN) =	48	DISCHARGE (CFS) = 0
TIME (MIN) =	64	DISCHARGE (CFS) = 0
TIME (MIN) =	80	DISCHARGE (CFS) = 0
TIME (MIN) =	96	DISCHARGE (CFS) = 0
TIME (MIN) =	112	DISCHARGE (CFS) = 0
TIME (MIN) =	128	DISCHARGE (CFS) = 0
TIME (MIN) =	144	DISCHARGE (CFS) = 0.1
TIME (MIN) =	160	DISCHARGE (CFS) = 0.1
TIME (MIN) =	176	DISCHARGE (CFS) = 0.1
TIME (MIN) =	192	DISCHARGE (CFS) = 0.1
TIME (MIN) =	208	DISCHARGE (CFS) = 0.1
TIME (MIN) =	224	DISCHARGE (CFS) = 0.1
TIME (MIN) =	240	DISCHARGE (CFS) = 0.2
TIME (MIN) =	256	DISCHARGE (CFS) = 0.6
TIME (MIN) =	272	DISCHARGE (CFS) = 0.1
TIME (MIN) =	288	DISCHARGE (CFS) = 0.1
TIME (MIN) =	304	DISCHARGE (CFS) = 0.1
TIME (MIN) =	320	DISCHARGE (CFS) = 0
TIME (MIN) =	336	DISCHARGE (CFS) = 0
TIME (MIN) =	352	DISCHARGE (CFS) = 0
TIME (MIN) =	368	DISCHARGE (CFS) = 0
TIME (MIN) =	384	DISCHARGE (CFS) = 0

RATIONAL METHOD HYDROGRAPH PROGRAM COPYRIGHT 1992, 2001 RICK ENGINEERING COMPANY RUN DATE 9/16/2019 HYDROGRAPH FILE NAME Text1 TIME OF CONCENTRATION 10 MIN. 6 HOUR RAINFALL 3.7 INCHES BASIN AREA 0.64 ACRES

RUNOFF COEFFICIENT 0.76 PEAK DISCHARGE 3 CFS

KUNOFF COEF	FICIENT	0.70 PEAK DISCHARGE 3 CFS
TIME (MIN) =	0	DISCHARGE (CFS) = 0
TIME (MIN) =	10	DISCHARGE (CFS) = 0.1
TIME (MIN) =	20	DISCHARGE (CFS) = 0.1
TIME (MIN) =	30	DISCHARGE (CFS) = 0.1
TIME (MIN) =	40	DISCHARGE (CFS) = 0.1
TIME (MIN) =	50	DISCHARGE (CFS) = 0.1
TIME (MIN) =	60	DISCHARGE (CFS) = 0.1
TIME (MIN) =	70	DISCHARGE (CFS) = 0.1
TIME (MIN) =	80	DISCHARGE (CFS) = 0.1
TIME (MIN) =	90	DISCHARGE (CFS) = 0.1
TIME (MIN) =	100	DISCHARGE (CFS) = 0.1
TIME (MIN) =	110	DISCHARGE (CFS) = 0.2
TIME (MIN) =	120	DISCHARGE (CFS) = 0.2
TIME (MIN) =	130	DISCHARGE (CFS) = 0.2
TIME (MIN) =	140	DISCHARGE (CFS) = 0.2
TIME (MIN) =	150	DISCHARGE (CFS) = 0.2
TIME (MIN) =	160	DISCHARGE (CFS) = 0.2
TIME (MIN) =	170	DISCHARGE (CFS) = 0.2
TIME (MIN) =	180	DISCHARGE (CFS) = 0.2
TIME (MIN) =	190	DISCHARGE (CFS) = 0.3
TIME (MIN) =	200	DISCHARGE (CFS) = 0.3
TIME (MIN) =	210	DISCHARGE (CFS) = 0.4
TIME (MIN) =	220	DISCHARGE (CFS) = 0.4
TIME (MIN) =	230	DISCHARGE (CFS) = 0.6
TIME (MIN) =	240	DISCHARGE (CFS) = 0.9
TIME (MIN) =	250	DISCHARGE (CFS) = 3
TIME (MIN) =	260	DISCHARGE (CFS) = 0.5
TIME (MIN) =	270	DISCHARGE (CFS) = 0.3
TIME (MIN) =	280	DISCHARGE (CFS) = 0.3
TIME (MIN) =	290	DISCHARGE (CFS) = 0.2
TIME (MIN) =	300	DISCHARGE (CFS) = 0.2
TIME (MIN) =	310	DISCHARGE (CFS) = 0.2
TIME (MIN) =	320	DISCHARGE (CFS) = 0.1
TIME (MIN) =	330	DISCHARGE (CFS) = 0.1
TIME (MIN) =	340	DISCHARGE (CFS) = 0.1
TIME (MIN) =	350	DISCHARGE (CFS) = 0.1
TIME (MIN) =	360	DISCHARGE (CFS) = 0.1
TIME (MIN) =	370	DISCHARGE (CFS) = 0

RATIONAL METHOD HYDROGRAPH PROGRAM COPYRIGHT 1992, 2001 RICK ENGINEERING COMPANY RUN DATE 9/17/2019 HYDROGRAPH FILE NAME Text1 TIME OF CONCENTRATION 7 MIN. 6 HOUR RAINFALL 3.7 INCHES BASIN AREA 0.72 ACRES

RUNOFF COEFFICIENT 0.72 PEAK DISCHARGE 4.1 CFS

RUNOFF COEFF	ICIENT	0.72 PEAK DISCHARGE 4.1 CFS
TIME (MIN) =	0	DISCHARGE (CFS) = 0
TIME (MIN) =	7	DISCHARGE (CFS) = 0.1
TIME (MIN) =	14	DISCHARGE (CFS) = 0.1
TIME (MIN) =	21	DISCHARGE (CFS) = 0.1
TIME (MIN) =	28	DISCHARGE (CFS) = 0.1
TIME (MIN) =	35	DISCHARGE (CFS) = 0.1
TIME (MIN) =	42	DISCHARGE (CFS) = 0.1
TIME (MIN) =	49	DISCHARGE (CFS) = 0.1
TIME (MIN) =	56	DISCHARGE (CFS) = 0.1
TIME (MIN) =	63	DISCHARGE (CFS) = 0.1
TIME (MIN) =	70	DISCHARGE (CFS) = 0.1
TIME (MIN) =	77	DISCHARGE (CFS) = 0.1
TIME (MIN) =	84	DISCHARGE (CFS) = 0.1
TIME (MIN) =	91	DISCHARGE (CFS) = 0.2
TIME (MIN) =	98	DISCHARGE (CFS) = 0.2
TIME (MIN) =	105	DISCHARGE (CFS) = 0.2
TIME (MIN) =	112	DISCHARGE (CFS) = 0.2
TIME (MIN) =	119	DISCHARGE (CFS) = 0.2
TIME (MIN) =	126	DISCHARGE (CFS) = 0.2
TIME (MIN) =	133	DISCHARGE (CFS) = 0.2
TIME (MIN) =	140	DISCHARGE (CFS) = 0.2
TIME (MIN) =	147	DISCHARGE (CFS) = 0.2
` ′	154	· · ·
TIME (MIN) = TIME (MIN) =		DISCHARGE (CFS) = 0.2 DISCHARGE (CFS) = 0.2
* *	161	` '
TIME (MIN) =	168	DISCHARGE (CFS) = 0.2
TIME (MIN) =	175	DISCHARGE (CFS) = 0.3
TIME (MIN) =	182	DISCHARGE (CFS) = 0.3
TIME (MIN) =	189	DISCHARGE (CFS) = 0.3
TIME (MIN) =	196	DISCHARGE (CFS) = 0.3
TIME (MIN) =	203	DISCHARGE (CFS) = 0.4
TIME (MIN) =	210	DISCHARGE (CFS) = 0.4
TIME (MIN) =	217	DISCHARGE (CFS) = 0.5
TIME (MIN) =	224	DISCHARGE (CFS) = 0.5
TIME (MIN) =	231	DISCHARGE (CFS) = 0.8
TIME (MIN) =	238	DISCHARGE (CFS) = 1.1
TIME (MIN) =	245	DISCHARGE (CFS) = 4.1
TIME (MIN) =	252	DISCHARGE (CFS) = 0.6
	259	DISCHARGE (CFS) = 0.4
TIME (MIN) =	266	DISCHARGE (CFS) = 0.3
TIME (MIN) =	273	DISCHARGE (CFS) = 0.3
TIME (MIN) =	280	DISCHARGE (CFS) = 0.2
TIME (MIN) =	287	DISCHARGE (CFS) = 0.2
TIME (MIN) =	294	DISCHARGE (CFS) = 0.2
TIME (MIN) =	301	DISCHARGE (CFS) = 0.2
TIME (MIN) =	308	DISCHARGE (CFS) = 0.2
TIME (MIN) =	315	DISCHARGE (CFS) = 0.2
TIME (MIN) =	322	DISCHARGE (CFS) = 0.1
TIME (MIN) =	329	DISCHARGE (CFS) = 0.1
TIME (MIN) =	336	DISCHARGE (CFS) = 0.1
TIME (MIN) =	343	DISCHARGE (CFS) = 0.1
TIME $(MIN) =$	350	DISCHARGE (CFS) = 0.1
TIME $(MIN) =$	357	DISCHARGE (CFS) = 0.1
TIME (MIN) =	364	DISCHARGE (CFS) = 0

RATIONAL METHOD HYDROGRAPH PROGRAM COPYRIGHT 1992, 2001 RICK ENGINEERING COMPANY RUN DATE 9/16/2019 HYDROGRAPH FILE NAME Text1 TIME OF CONCENTRATION 14 MIN. 6 HOUR RAINFALL 3.7 INCHES BASIN AREA 0.77 ACRES

RUNOFF COEFFICIENT 0.52 PEAK DISCHARGE 2 CFS

TIME (MIN) =	0	DISCHARGE (CFS) = 0
TIME (MIN) =	14	DISCHARGE (CFS) = 0.1
TIME (MIN) =	28	DISCHARGE (CFS) = 0.1
TIME (MIN) =	42	DISCHARGE (CFS) = 0.1
TIME (MIN) =	56	DISCHARGE (CFS) = 0.1
TIME (MIN) =	70	DISCHARGE (CFS) = 0.1
TIME (MIN) =	84	DISCHARGE (CFS) = 0.1
TIME (MIN) =	98	DISCHARGE (CFS) = 0.1
TIME (MIN) =	112	DISCHARGE (CFS) = 0.1
TIME (MIN) =	126	DISCHARGE (CFS) = 0.1
TIME (MIN) =	140	DISCHARGE (CFS) = 0.1
TIME (MIN) =	154	DISCHARGE (CFS) = 0.2
TIME (MIN) =	168	DISCHARGE (CFS) = 0.2
TIME (MIN) =	182	DISCHARGE (CFS) = 0.2
TIME (MIN) =	196	DISCHARGE (CFS) = 0.2
TIME (MIN) =	210	DISCHARGE (CFS) = 0.3
TIME (MIN) =	224	DISCHARGE (CFS) = 0.4
TIME (MIN) =	238	DISCHARGE (CFS) = 0.6
TIME (MIN) =	252	DISCHARGE (CFS) = 2
TIME (MIN) =	266	DISCHARGE (CFS) = 0.3
TIME (MIN) =	280	DISCHARGE (CFS) = 0.2
TIME (MIN) =	294	DISCHARGE (CFS) = 0.2
TIME (MIN) =	308	DISCHARGE (CFS) = 0.1
TIME (MIN) =	322	DISCHARGE (CFS) = 0.1
TIME (MIN) =	336	DISCHARGE (CFS) = 0.1
TIME (MIN) =	350	DISCHARGE (CFS) = 0.1
TIME (MIN) =	364	DISCHARGE (CFS) = 0.1
TIME (MIN) =	378	DISCHARGE (CFS) = 0

RATIONAL METHOD HYDROGRAPH PROGRAM COPYRIGHT 1992, 2001 RICK ENGINEERING COMPANY RUN DATE 9/12/2019 HYDROGRAPH FILE NAME Text1 TIME OF CONCENTRATION 24 MIN. 6 HOUR RAINFALL 3.7 INCHES BASIN AREA 2.04 ACRES

RUNOFF COEFFICIENT 0.41 PEAK DISCHARGE 3 CFS

TIME (MIN) =	0	DISCHARGE (CFS) = 0
TIME (MIN) =	24	DISCHARGE (CFS) = 0.2
TIME (MIN) =	48	DISCHARGE (CFS) = 0.2
TIME (MIN) =	72	DISCHARGE (CFS) = 0.2
TIME (MIN) =	96	DISCHARGE (CFS) = 0.2
TIME (MIN) =	120	DISCHARGE (CFS) = 0.3
TIME (MIN) =	144	DISCHARGE (CFS) = 0.3
TIME (MIN) =	168	DISCHARGE (CFS) = 0.4
TIME (MIN) =	192	DISCHARGE (CFS) = 0.4
TIME (MIN) =	216	DISCHARGE (CFS) = 0.6
TIME (MIN) =	240	DISCHARGE (CFS) = 0.8
TIME (MIN) =	264	DISCHARGE (CFS) = 3
TIME (MIN) =	288	DISCHARGE (CFS) = 0.5
TIME (MIN) =	312	DISCHARGE (CFS) = 0.3
TIME (MIN) =	336	DISCHARGE (CFS) = 0.2
TIME (MIN) =	360	DISCHARGE (CFS) = 0.2
TIME (MIN) =	384	DISCHARGE (CFS) = 0

RATIONAL METHOD HYDROGRAPH PROGRAM COPYRIGHT 1992, 2001 RICK ENGINEERING COMPANY RUN DATE 9/12/2019 HYDROGRAPH FILE NAME Text1 TIME OF CONCENTRATION 15 MIN. 6 HOUR RAINFALL 3.7 INCHES BASIN AREA 0.5 ACRES

RUNOFF COEFFICIENT 0.58 PEAK DISCHARGE 1.4 CFS

TIME (MIN) =	0	DISCHARGE (CFS) = 0
TIME (MIN) =	15	DISCHARGE (CFS) = 0.1
TIME (MIN) =	30	DISCHARGE (CFS) = 0.1
TIME (MIN) =	45	DISCHARGE (CFS) = 0.1
TIME (MIN) =	60	DISCHARGE (CFS) = 0.1
TIME (MIN) =	75	DISCHARGE (CFS) = 0.1
TIME (MIN) =	90	DISCHARGE (CFS) = 0.1
TIME (MIN) =	105	DISCHARGE (CFS) = 0.1
TIME (MIN) =	120	DISCHARGE (CFS) = 0.1
TIME (MIN) =	135	DISCHARGE (CFS) = 0.1
TIME (MIN) =	150	DISCHARGE (CFS) = 0.1
TIME (MIN) =	165	DISCHARGE (CFS) = 0.1
TIME (MIN) =	180	DISCHARGE (CFS) = 0.1
TIME (MIN) =	195	DISCHARGE (CFS) = 0.2
TIME (MIN) =	210	DISCHARGE (CFS) = 0.2
TIME (MIN) =	225	DISCHARGE (CFS) = 0.3
TIME (MIN) =	240	DISCHARGE (CFS) = 0.4
TIME (MIN) =	255	DISCHARGE (CFS) = 1.4
TIME (MIN) =	270	DISCHARGE (CFS) = 0.2
TIME (MIN) =	285	DISCHARGE (CFS) = 0.1
TIME (MIN) =	300	DISCHARGE (CFS) = 0.1
TIME (MIN) =	315	DISCHARGE (CFS) = 0.1
TIME (MIN) =	330	DISCHARGE (CFS) = 0.1
TIME (MIN) =	345	DISCHARGE (CFS) = 0.1
TIME (MIN) =	360	DISCHARGE (CFS) = 0.1
TIME (MIN) =	375	DISCHARGE (CFS) = 0

RATIONAL METHOD HYDROGRAPH PROGRAM COPYRIGHT 1992, 2001 RICK ENGINEERING COMPANY RUN DATE 11/22/2019 HYDROGRAPH FILE NAME Text1 TIME OF CONCENTRATION 16 MIN. 6 HOUR RAINFALL 3.7 INCHES BASIN AREA 0.54 ACRES

RUNOFF COEFFICIENT 0.51 PEAK DISCHARGE 1.3 CFS

HOLVOIT COBITE	CIBITI OUT I BIHI BIO	ern meet no ere
TIME (MIN) =	0	DISCHARGE (CFS) = 0
TIME (MIN) =	16	DISCHARGE (CFS) = 0.1
TIME (MIN) =	32	DISCHARGE (CFS) = 0.1
TIME (MIN) =	48	DISCHARGE (CFS) = 0.1
TIME (MIN) =	64	DISCHARGE (CFS) = 0.1
TIME (MIN) =	80	DISCHARGE (CFS) = 0.1
TIME (MIN) =	96	DISCHARGE (CFS) = 0.1
TIME (MIN) =	112	DISCHARGE (CFS) = 0.1
TIME (MIN) =	128	DISCHARGE (CFS) = 0.1
TIME (MIN) =	144	DISCHARGE (CFS) = 0.1
TIME (MIN) =	160	DISCHARGE (CFS) = 0.1
TIME (MIN) =	176	DISCHARGE (CFS) = 0.1
TIME (MIN) =	192	DISCHARGE (CFS) = 0.2
TIME (MIN) =	208	DISCHARGE (CFS) = 0.2
TIME (MIN) =	224	DISCHARGE (CFS) = 0.3
TIME (MIN) =	240	DISCHARGE (CFS) = 0.3
TIME (MIN) =	256	DISCHARGE (CFS) = 1.3
TIME (MIN) =	272	DISCHARGE (CFS) = 0.2
TIME (MIN) =	288	DISCHARGE (CFS) = 0.1
TIME (MIN) =	304	DISCHARGE (CFS) = 0.1
TIME (MIN) =	320	DISCHARGE (CFS) = 0.1
TIME (MIN) =	336	DISCHARGE (CFS) = 0.1
TIME (MIN) =	352	DISCHARGE (CFS) = 0.1
TIME (MIN) =	368	DISCHARGE (CFS) = 0.1
TIME (MIN) =	384	DISCHARGE (CFS) = 0

RATIONAL METHOD HYDROGRAPH PROGRAM COPYRIGHT 1992, 2001 RICK ENGINEERING COMPANY RUN DATE 9/17/2019 HYDROGRAPH FILE NAME Text1 TIME OF CONCENTRATION 12 MIN. 6 HOUR RAINFALL 3.7 INCHES BASIN AREA 0.54 ACRES

RUNOFF COEFFICIENT 0.59 PEAK DISCHARGE 1.8 CFS

KUNOIT COLF.	FICILIVI	0.39 LEAK DISCHARGE 1.6 CF5
TIME (MIN) =	0	DISCHARGE (CFS) = 0
TIME (MIN) =	12	DISCHARGE (CFS) = 0.1
TIME (MIN) =	24	DISCHARGE (CFS) = 0.1
TIME (MIN) =	36	DISCHARGE (CFS) = 0.1
TIME (MIN) =	48	DISCHARGE (CFS) = 0.1
TIME (MIN) =	60	DISCHARGE (CFS) = 0.1
TIME (MIN) =	72	DISCHARGE (CFS) = 0.1
TIME (MIN) =	84	DISCHARGE (CFS) = 0.1
TIME (MIN) =	96	DISCHARGE (CFS) = 0.1
TIME (MIN) =	108	DISCHARGE (CFS) = 0.1
TIME (MIN) =	120	DISCHARGE (CFS) = 0.1
TIME (MIN) =	132	DISCHARGE (CFS) = 0.1
TIME (MIN) =	144	DISCHARGE (CFS) = 0.1
TIME (MIN) =	156	DISCHARGE (CFS) = 0.1
TIME (MIN) =	168	DISCHARGE (CFS) = 0.1
TIME (MIN) =	180	DISCHARGE (CFS) = 0.2
TIME (MIN) =	192	DISCHARGE (CFS) = 0.2
TIME (MIN) =	204	DISCHARGE (CFS) = 0.2
TIME (MIN) =	216	DISCHARGE (CFS) = 0.2
TIME (MIN) =	228	DISCHARGE (CFS) = 0.3
TIME (MIN) =	240	DISCHARGE (CFS) = 0.5
TIME (MIN) =	252	DISCHARGE (CFS) = 1.8
TIME (MIN) =	264	DISCHARGE (CFS) = 0.3
TIME (MIN) =	276	DISCHARGE (CFS) = 0.2
TIME (MIN) =	288	DISCHARGE (CFS) = 0.1
TIME (MIN) =	300	DISCHARGE (CFS) = 0.1
TIME (MIN) =	312	DISCHARGE (CFS) = 0.1
TIME (MIN) =	324	DISCHARGE (CFS) = 0.1
TIME (MIN) =	336	DISCHARGE (CFS) = 0.1
TIME (MIN) =	348	DISCHARGE (CFS) = 0.1
TIME (MIN) =	360	DISCHARGE (CFS) = 0.1
TIME (MIN) =	372	DISCHARGE (CFS) = 0

RATIONAL METHOD HYDROGRAPH PROGRAM COPYRIGHT 1992, 2001 RICK ENGINEERING COMPANY RUN DATE 11/22/2019 HYDROGRAPH FILE NAME Text1 TIME OF CONCENTRATION 14 MIN. 6 HOUR RAINFALL 3.7 INCHES BASIN AREA 0.67 ACRES

RUNOFF COEFFICIENT 0.51 PEAK DISCHARGE 1.7 CFS

TIME (MIN) =	0	DISCHARGE (CFS) = 0
TIME (MIN) =	14	DISCHARGE (CFS) = 0.1
TIME (MIN) =	28	DISCHARGE (CFS) = 0.1
TIME (MIN) =	42	DISCHARGE (CFS) = 0.1
TIME (MIN) =	56	DISCHARGE (CFS) = 0.1
TIME (MIN) =	70	DISCHARGE (CFS) = 0.1
TIME (MIN) =	84	DISCHARGE (CFS) = 0.1
TIME (MIN) =	98	DISCHARGE (CFS) = 0.1
TIME (MIN) =	112	DISCHARGE (CFS) = 0.1
TIME (MIN) =	126	DISCHARGE (CFS) = 0.1
TIME (MIN) =	140	DISCHARGE (CFS) = 0.1
TIME (MIN) =	154	DISCHARGE (CFS) = 0.1
TIME (MIN) =	168	DISCHARGE (CFS) = 0.2
TIME (MIN) =	182	DISCHARGE (CFS) = 0.2
TIME (MIN) =	196	DISCHARGE (CFS) = 0.2
TIME (MIN) =	210	DISCHARGE (CFS) = 0.2
TIME (MIN) =	224	DISCHARGE (CFS) = 0.3
TIME (MIN) =	238	DISCHARGE (CFS) = 0.5
TIME (MIN) =	252	DISCHARGE (CFS) = 1.7
TIME (MIN) =	266	DISCHARGE (CFS) = 0.3
TIME (MIN) =	280	DISCHARGE (CFS) = 0.2
TIME (MIN) =	294	DISCHARGE (CFS) = 0.1
TIME (MIN) =	308	DISCHARGE (CFS) = 0.1
TIME (MIN) =	322	DISCHARGE (CFS) = 0.1
TIME (MIN) =	336	DISCHARGE (CFS) = 0.1
TIME (MIN) =	350	DISCHARGE (CFS) = 0.1
TIME (MIN) =	364	DISCHARGE (CFS) = 0.1
TIME (MIN) =	378	DISCHARGE (CFS) = 0
		· · ·

RATIONAL METHOD HYDROGRAPH PROGRAM COPYRIGHT 1992, 2001 RICK ENGINEERING COMPANY RUN DATE 9/12/2019 HYDROGRAPH FILE NAME Text1 TIME OF CONCENTRATION 17 MIN. 6 HOUR RAINFALL 3.7 INCHES BASIN AREA 3.26 ACRES

RUNOFF COEFFICIENT 0.56 PEAK DISCHARGE 8.1 CFS

TIME (MIN) =	0	DISCHARGE (CFS) = 0
TIME (MIN) =	17	DISCHARGE (CFS) = 0.4
TIME (MIN) =	34	DISCHARGE (CFS) = 0.4
TIME (MIN) =	51	DISCHARGE (CFS) = 0.5
TIME (MIN) =	68	DISCHARGE (CFS) = 0.5
TIME (MIN) =	85	DISCHARGE (CFS) = 0.5
TIME (MIN) =	102	DISCHARGE (CFS) = 0.5
TIME (MIN) =	119	DISCHARGE (CFS) = 0.6
TIME (MIN) =	136	DISCHARGE (CFS) = 0.6
TIME (MIN) =	153	DISCHARGE (CFS) = 0.7
TIME (MIN) =	170	DISCHARGE (CFS) = 0.8
TIME (MIN) =	187	DISCHARGE (CFS) = 1
TIME (MIN) =	204	DISCHARGE (CFS) = 1.1
TIME (MIN) =	221	DISCHARGE (CFS) = 1.6
TIME (MIN) =	238	DISCHARGE (CFS) = 2.2
TIME (MIN) =	255	DISCHARGE (CFS) = 8.1
TIME (MIN) =	272	DISCHARGE (CFS) = 1.3
TIME (MIN) =	289	DISCHARGE (CFS) = 0.9
TIME (MIN) =	306	DISCHARGE (CFS) = 0.7
TIME (MIN) =	323	DISCHARGE (CFS) = 0.6
TIME (MIN) =	340	DISCHARGE (CFS) = 0.5
TIME (MIN) =	357	DISCHARGE (CFS) = 0.4
TIME (MIN) =	374	DISCHARGE (CFS) = 0

RATIONAL METHOD HYDROGRAPH PROGRAM COPYRIGHT 1992, 2001 RICK ENGINEERING COMPANY RUN DATE 9/16/2019 HYDROGRAPH FILE NAME Text1 TIME OF CONCENTRATION 23 MIN. 6 HOUR RAINFALL 3.7 INCHES BASIN AREA 5 ACRES

RUNOFF COEFFICIENT 0.2 PEAK DISCHARGE 3.6 CFS

TIME (MIN) =	0	DISCHARGE (CFS) = 0
TIME (MIN) =	23	DISCHARGE (CFS) = 0
TIME (MIN) =	46	DISCHARGE (CFS) = 0.2
TIME (MIN) =	69	DISCHARGE (CFS) = 0.2
TIME (MIN) =	92	DISCHARGE (CFS) = 0.3
TIME (MIN) =	115	DISCHARGE (CFS) = 0.3
TIME (MIN) =	138	DISCHARGE (CFS) = 0.3
TIME (MIN) =	161	DISCHARGE (CFS) = 0.4
TIME (MIN) =	184	DISCHARGE (CFS) = 0.4
TIME (MIN) =	207	DISCHARGE (CFS) = 0.5
TIME (MIN) =	230	DISCHARGE (CFS) = 0.7
TIME (MIN) =	253	DISCHARGE (CFS) = 1.1
TIME (MIN) =	276	DISCHARGE (CFS) = 3.6
TIME (MIN) =	299	DISCHARGE (CFS) = 0.6
TIME (MIN) =	322	DISCHARGE (CFS) = 0.4
TIME (MIN) =	345	DISCHARGE (CFS) = 0.3
TIME (MIN) =	368	DISCHARGE (CFS) = 0.3
TIME (MIN) =	391	DISCHARGE (CFS) = 0

Basin 3 Single Lot - Post Development RATIONAL METHOD HYDROGRAPH PROGRAM COPYRIGHT 1992, 2001 RICK ENGINEERING COMPANY RUN DATE 9/18/2019 HYDROGRAPH FILE NAME Text1 TIME OF CONCENTRATION 17 MIN. 6 HOUR RAINFALL 3.7 INCHES BASIN AREA 0.91 ACRES

RUNOFF COEFFICIENT 0.36 PEAK DISCHARGE 1.5 CFS

TIME (MIN) =	0	DISCHARGE (CFS) = 0
TIME (MIN) =	17	DISCHARGE (CFS) = 0.1
TIME (MIN) =	34	DISCHARGE (CFS) = 0.1
TIME (MIN) =	51	DISCHARGE (CFS) = 0.1
TIME (MIN) =	68	DISCHARGE (CFS) = 0.1
TIME (MIN) =	85	DISCHARGE (CFS) = 0.1
TIME (MIN) =	102	DISCHARGE (CFS) = 0.1
TIME (MIN) =	119	DISCHARGE (CFS) = 0.1
TIME (MIN) =	136	DISCHARGE (CFS) = 0.1
TIME (MIN) =	153	DISCHARGE (CFS) = 0.1
TIME (MIN) =	170	DISCHARGE (CFS) = 0.1
TIME (MIN) =	187	DISCHARGE (CFS) = 0.2
TIME (MIN) =	204	DISCHARGE (CFS) = 0.2
TIME (MIN) =	221	DISCHARGE (CFS) = 0.3
TIME (MIN) =	238	DISCHARGE (CFS) = 0.4
TIME (MIN) =	255	DISCHARGE (CFS) = 1.5
TIME (MIN) =	272	DISCHARGE (CFS) = 0.2
TIME (MIN) =	289	DISCHARGE (CFS) = 0.2
TIME (MIN) =	306	DISCHARGE (CFS) = 0.1
TIME (MIN) =	323	DISCHARGE (CFS) = 0.1
TIME (MIN) =		DISCHARGE (CFS) = 0.1
TIME (MIN) =		DISCHARGE (CFS) = 0.1
TIME (MIN) =	374	DISCHARGE (CFS) = 0

APPENDIX "C"

PRE AND POST-DEVELOPMENT HYDROLOGY CALCULATIONS

BASIN'S 1, 2, 3, AND X

Pre-Development Hydrology Conditions - Basin 1								
BASIN ID	AREA	၁	CA	Change in elevation	Longest Runoff length	٦°	1100	Q 100 (W/o Attenuation)
	(ac.)			Œ	Ħ	(min.)	(in/hr)	(cfs)
1.01	152.88	0.270	41.28	1004	4802	38.0	2.64	108.8

Pre-Development Hydrology Conditions - Basin 2								
BASIN ID	AREA	၁	СА	Change in elevation	Longest Runoff length	T _°	1100	Q100 (W/o Attenuation)
	(ac.)			ft	ft	(min.)	(in/hr)	(cfs)
2.01	63.20	0.270	17.06	404	4452	48.0	2.27	38.7

Pre-Development hydrology Calculations - Basin-3

San Diego County Hydrology Manual Section: Appendix D
Date: June 2003 Page: 2 of 3

Curve Number Worksheet

WORKSHEET 4-2 Sheder Run Rench (name of project)

RUNOFF CURVE NUMBER (for PZN Condition = 2.0) CN2:

column 1	column 2	column 3	column 4	column 5	column 6
GROUND COVER/ LAND USE	HYDROLOGIC CONDITION (field in- spection)	SOIL GROUP	CN ₂ From Hydrology Manual, Table 4-2	FRACTION OF AREA A;/A	PARTIAL CN ₂ CN ₂ x A _i /A
O.E.	Good	A	33	.027	0.89
ORCHARDS EVERGREEN	4000		72	.003	0.22
O.B.		A	41	.012	0.49
OPEN BRUSH	1700d	2	75	- 189	14. 18
N.C.		A	55	-028	1.54
Marrowlest Chaparral	Fair	-	21	0157	12.23
B. C.	Δ.	В	57	.206	11. 74
Broadleaf Chaparral	Good	2	71	. 186	13.14
W. D.		AB	28 55	2007	0.20
LOODLAND	Good	2	70	. 138	7.59
			Sums =	1.000	66

For entire basin $CN_2 = 66$

San Diego County Hydrology Manual Date: June 2003 Page:

Section:

Appendix D 3 of 3

WORKSHEET 4-3

Peak Discharge Computation

*****For use with NRCS Hydrologic Method Computations*****

Items in boxes are required input parameters for	or the SDUH Peak Discharge Program.
Computed by:	Date:
Project Identification (Drainage Area Name):	FRYE CREEK
Geographic location of center of drainage area:	Long: " Lat: "
	Drainage Area: 4.0 – square miles
Stor	m Frequency (Section 2.3) /00 - year
6-Hour Storm Duration I	Precipitation (Appendix B) 3.7 - inches
24-Hour Storm Duration I	Precipitation (Appendix B) 7.5 - inches
Precipitation Zone Number (PZN): PZN (Section 4.1.2.4 and Appendix C)	= 1.0 2.0 3.0 4.0
PZN Ajustment Factor for 5-year to 35-year storm frequency (interpolate): (Section 4.1.2.4 and Table 4-6)	1.5 2.5 2.0 1.5
PZN Ajustment Factor for 35-year to 150-year storm frequency (interpolate): (Section 4.1.2.4 and Table 4-6)	2.0 3.0 3.0 2.0
PZN Adjusted Runoff Curve Number (interpolate between nearest whole number PZN conditions): CN (Sections 4.1.2.4 and 4.2.4, Tables 4-6 and 4-10)	11.0 o(2.0) 66 CNx 82 CN2.0 o(5.0) 82
Watershed Length (L) (Section 4.3.1): 6.0 - m	iles
Length to Centroid (Le) (Section 4.3.1): 3.55 - n	niles
Slope (s) (Section 4.3.1): <u>778.3</u> – feet/mile	Basin n Factor (Section 4.3.5):055
Corps lag $(T_L) = 24 \text{ n}^{-} ((L \times L_e)/s^{0.5})^m \text{ (Section 4.3.1.1)}$ OR	
Corps lag $(T_L) = 0.8 T_c$ (Section 4.3.1.2)	Lag Time: / 2 - hours
Time to Peak = 0.862 x Corps lag (Section 4.1.5.5):	Time to Peak: /* - hours

Project: Shadow Run Ranch Simulation Run: Run 1

Start of Run: 26Feb2009, 00:00 Basin Model: Basin 3
End of Run: 27Feb2009, 06:00 Meteorologic Model: Met 1
Compute Time: 26Feb2009, 16:06:40 Control Specifications: Control 1

Volume Units: IN

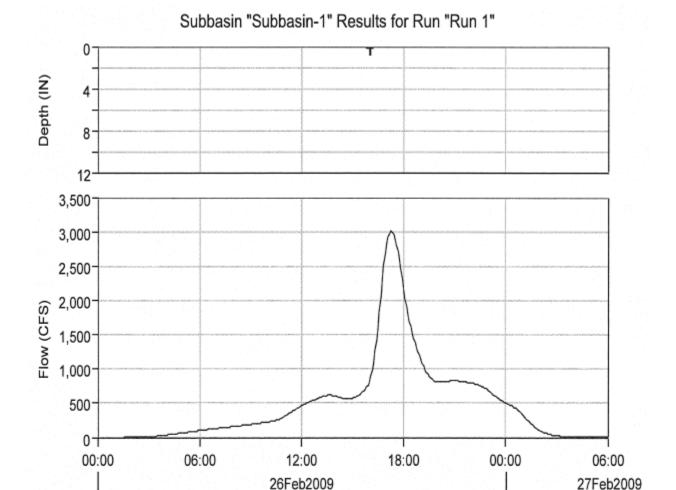
Hydrologic	Drainage Area	Peak Discharge		Volume
Element	(MI2)	(CFS)		(IN)
Subbasin-1	4.0	3003.1	26Feb2009, 17:15	5.58

Project: Shadow Run Ranch

Simulation Run: Run 1 Subbasin: Subbasin-1

Start of Run: 26Feb2009, 00:00 Basin Model: Basin 3
End of Run: 27Feb2009, 06:00 Meteorologic Model: Met 1
Compute Time: 26Feb2009, 16:06:40 Control Specifications: Control 1

Volume Units: IN


Computed Results

Peak Discharge: 3003.1 (CFS) Date/Time of Peak Discharge: 26Feb2009, 17:15

Total Precipitation: 7.46 (IN) Total Direct Runoff: 5.58 (IN)

Total Loss: 0.00 (IN) Total Baseflow: 0.00 (IN)

Total Excess: 5.58 (IN) Discharge: 5.58 (IN)

Run:Run 1 Element:SUBBASIN-1 Result:Precipitation

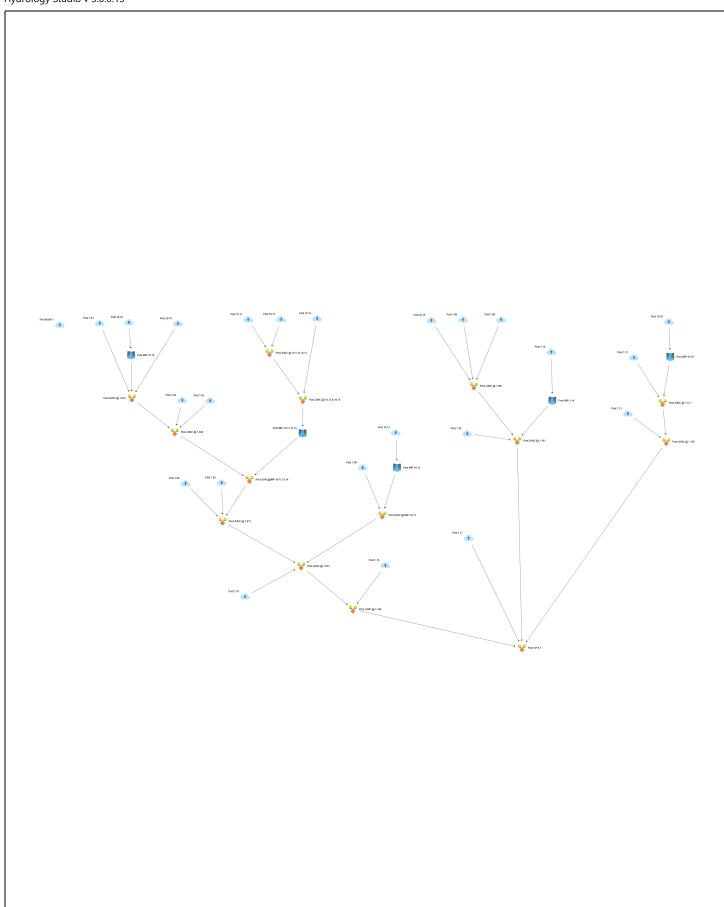
Run:Run 1 Element:SUBBASIN-1 Result:Precipitation Loss

- Run:Run 1 Element:SUBBASIN-1 Result:Outflow

	Post-Development Hydrology Conditions - Basin 1										
BASIN ID	AREA	၁	CA	Change in elevation	Longest Runoff length	Тc	1100	Q100 (W/o Attenuation)			
	(ac.)			tt	ft	(min.)	(in/hr)	(cfs)			
1.01	10.30	0.230	2.37	57	872	25.0	3.45	8.2			
1.02	4.93	0.110	0.54	74	718	22.0	3.75	2.0			
1.03	6.65	0.210	1.40	368	760	12.0	5.54	7.7			
1.04	9.06	0.210	1.90	647	1293	16.0	4.60	8.8			
1.05	2.72	0.120	0.33	46	379	15.0	4.80	1.6			
1.06	28.93	0.180	5.21	792	2511	26.0	3.37	17.5			
1.07	18.71	0.120	2.25	83	1095	30.0	3.07	6.9			
1.08	2.23	0.100	0.22	66	413	15.0	4.80	1.1			
1.09	6.13	0.100	0.61	112	367	11.0	5.86	3.6			
1.10	23.76	0.100	2.38	244	2407	41.0	2.51	6.0			
1.11	6.50	0.100	0.65	86	1251	33.0	2.89	1.9			
1.12	13.37	0.150	2.01	96	1424	34.0	2.83	5.7			
1.13	2.26	0.160	0.36	22	546	25.0	3.45	1.2			
1.14	3.00	0.190	0.57	57	639	20.0	3.99	2.3			
1.15	6.79	0.100	0.68	103	1150	29.0	3.14	2.1			
10.10	0.42	0.790	0.33	21	639	9.0	6.67	2.2			
10.11	0.55	0.610	0.34	38	538	11.0	5.86	2.0			
10.12	0.30	0.470	0.14	54	718	16.0	4.60	0.6			
10.13	0.64	0.760	0.49	50	855	10.0	6.23	3.0			
10.14	0.72	0.720	0.52	30	436	7.0	7.85	4.1			
10.15	0.78	0.520	0.41	16	447	14.0	5.02	2.0			
10.19	0.54	0.590	0.32	18	423	12.0	5.54	1.8			
20.10	5.00	0.200	1.00	32	600	23.0	3.64	3.6			
Total	154.29							95.9			

	Post-Development Hydrology Conditions - Basin 2										
BASIN ID	AREA	၁	CA	Change in elevation	Longest Runoff length	T°	1100	Q100 (W/o Attenuation)			
	(ac.)			Ħ	ff	(min.)	(in/hr)	(cfs)			
2.01	5.28	0.150	0.79	129	1047	24.0	3.54	2.8			
2.02	12.51	0.150	1.88	130	1357	30.0	3.07	5.8			
2.04	20.15	0.130	2.62	104	1368	33.0	2.89	7.6			
2.06	17.84	0.260	4.64	106	2362	45.0	2.36	11.0			
10.16	2.04	0.410	0.84	109	1418	24.0	3.54	3.0			
10.17	0.50	0.580	0.29	31	724	15.0	4.80	1.4			
10.18	0.54	0.510	0.28	27	615	16.0	4.60	1.3			
10.21	0.67	0.510	0.34	52	650	14.0	5.02	1.7			
10.22	3.26	0.560	1.83	145	1457	17.0	4.43	8.1			
Total	62.79							42.5			

Table of Contents


Hydrology Studio v 3.0.0.13 11-22-2019

Basin Model Schematic	1
Hydrograph by Return Period	2
100 - Year	
Hydrograph Summary	4
Hydrograph Reports	
Hydrograph No. 1, Manual, Pre BASIN 1	6
Hydrograph No. 2, Manual, Post 1.01	7
Hydrograph No. 3, Manual, Post 1.03	8
Hydrograph No. 4, Manual, Post 1.04	9
Hydrograph No. 5, Manual, Post 1.06	10
Hydrograph No. 6, Manual, Post 1.02	11
Hydrograph No. 7, Manual, Post 10.10	12
Hydrograph No. 8, Pond Route, Post IMP-10.10	13
Detention Pond Reports - 10.10	14
Hydrograph No. 9, Manual, Post 10.15	18
Hydrograph No. 10, Manual, Post 10.13	19
Hydrograph No. 11, Pond Route, Post IMP-10.13	20
Detention Pond Reports - IMP-10.13	21
Hydrograph No. 12, Manual, Post 20.10	25
Hydrograph No. 13, Junction, Post JUNC @ 1.021	26
Hydrograph No. 14, Manual, Post 1.08	27
Hydrograph No. 15, Junction, Post JUNC @ 1.024	28
Hydrograph No. 16, Junction, Post JUNC @ IMP-10.13	29
Hydrograph No. 17, Manual, Post 10.11	
Hydrograph No. 18, Manual, Post 10.12	31
Hydrograph No. 19, Manual, Post 10.14	
Hydrograph No. 20, Junction, Post JUNC @ 10.11 & 10.12	
Hydrograph No. 21, Junction, Post JUNC @ 10.12 & 10.14	
Hydrograph No. 22, Pond Route, Post IMP-10.11,12,14	
Detention Pond Reports - IMP-10.11,12,14	
Hydrograph No. 23, Manual, Post 1.05	40
Hydrograph No. 24, Junction, Post JUNC@IMP-10.11,12,14	41
Hydrograph No. 25, Junction, Post JUNC @ 1.071	42
Hydrograph No. 26, Manual, Post 1.07	43
Hydrograph No. 27, Manual, Post 1.09	44
Hydrograph No. 28, Manual, Post 1.10	45

Contents continued...

Hydrograph No. 29, Manual, Post 1.14	46
Hydrograph No. 30, Pond Route, Post IMP-1.14	47
Detention Pond Reports - IMP-1.14	48
Hydrograph No. 31, Manual, Post 10.19	52
Hydrograph No. 32, Manual, Post 1.11	53
Hydrograph No. 33, Pond Route, Post IMP-10.19	54
Detention Pond Reports - IMP-10.19	55
Hydrograph No. 34, Manual, Post 1.12	59
Hydrograph No. 35, Manual, Post 1.13	60
Hydrograph No. 36, Junction, Post JUNC @ 1.073	61
Hydrograph No. 37, Junction, Post JUNC @ 1.121	62
Hydrograph No. 38, Junction, Post JUNC @ 1.126	63
Hydrograph No. 39, Junction, Post JUNC @ 1.091	64
Hydrograph No. 40, Junction, Post JUNC @ 1.101	65
Hydrograph No. 41, Manual, Post 1.15	66
Hydrograph No. 42, Junction, Post JUNC @ 1.104	67
Hydrograph No. 43. Junction. Post CP # 1	68

Basin Model

Hydrograph by Return Period

11-22-2019 Hydrology Studio v 3.0.0.13 Peak Outflow (cfs) Hyd. Hydrograph Hydrograph No. Type Name 2-yr 25-yr 3-yr 5-yr 10-yr 50-yr 100-yr 1-yr Pre BASIN 1 1 Manual 108.8 2 Manual Post 1.01 8.200 3 Manual Post 1.03 7.700 Post 1.04 8.800 4 Manual 5 Post 1.06 17.50 Manual Manual Post 1.02 2.000 6 7 Manual Post 10.10 2.200 8 Pond Route Post IMP-10.10 1.984 Post 10.15 2.000 9 Manual Manual Post 10.13 3.000 10 Pond Route Post IMP-10.13 2.443 11 12 Manual Post 20.10 3.600 13 Junction Post JUNC @ 1.021 10.74 14 Manual Post 1.08 1.100 15 Junction Post JUNC @ 1.024 19.55 Post JUNC @ IMP-10.13 18.83 16 Junction 17 Manual Post 10.11 2.000 Post 10.12 0.600 18 Manual 19 Manual Post 10.14 4.100 Post JUNC @ 10.11 & 10.12 20 Junction 2.530 21 Junction Post JUNC @ 10.12 & 10.14 5.340 22 Pond Route Post IMP-10.11,12,14 3.025 Post 1.05 1.600 23 Manual 24 Junction Post JUNC@IMP-10.11,12,14 22.58 25 Junction Post JUNC @ 1.071 31.14 Post 1.07 6.900 26 Manual 27 Post 1.09 3.600 Manual 28 Manual Post 1.10 6.000 29 Manual Post 1.14 2.300 30 Pond Route Post IMP-1.14 0.050 Post 10.19 1.800 31 Manual 32 Manual Post 1.11 1.900 33 Pond Route Post IMP-10.19 0.798 34 Manual Post 1.12 5.700 35 Manual Post 1.13 1.200 36 Junction Post JUNC @ 1.073 52.20

Hydrograph by Return Period

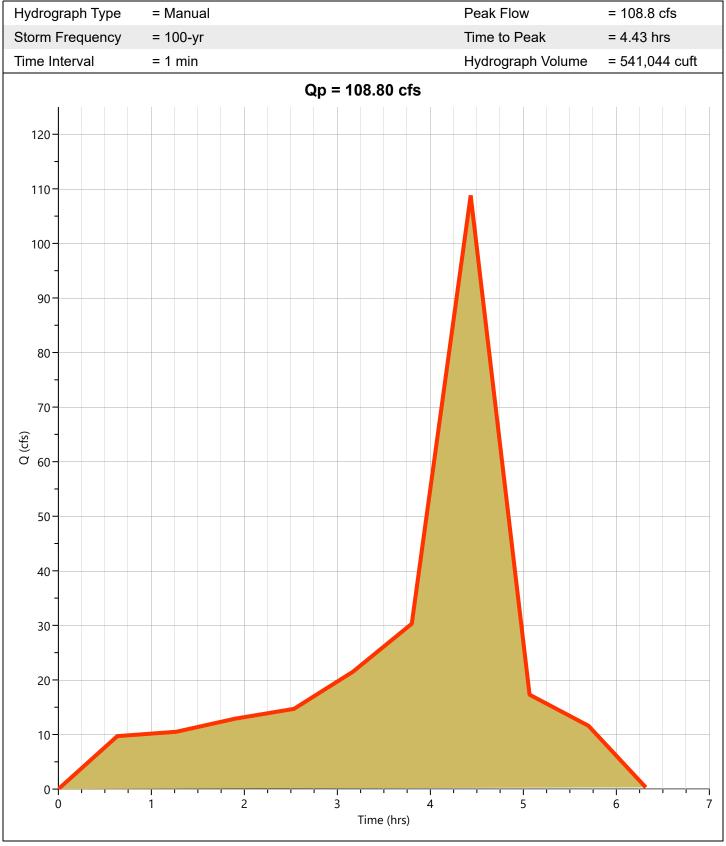
11-22-2019 Hydrology Studio v 3.0.0.13 Peak Outflow (cfs) Hyd. Hydrograph Hydrograph No. Type Name 10-yr 25-yr 100-yr 1-yr 2-yr 3-yr 5-yr 50-yr 37 Junction Post JUNC @ 1.121 6.316 38 Junction Post JUNC @ 1.126 6.636 Post JUNC @ 1.091 6.470 39 Junction Post JUNC @ 1.101 8.852 40 Junction 2.100 41 Manual Post 1.15 42 Junction Post JUNC @ 1.104 54.02 43 Junction Post CP # 1 69.29

Project Name:

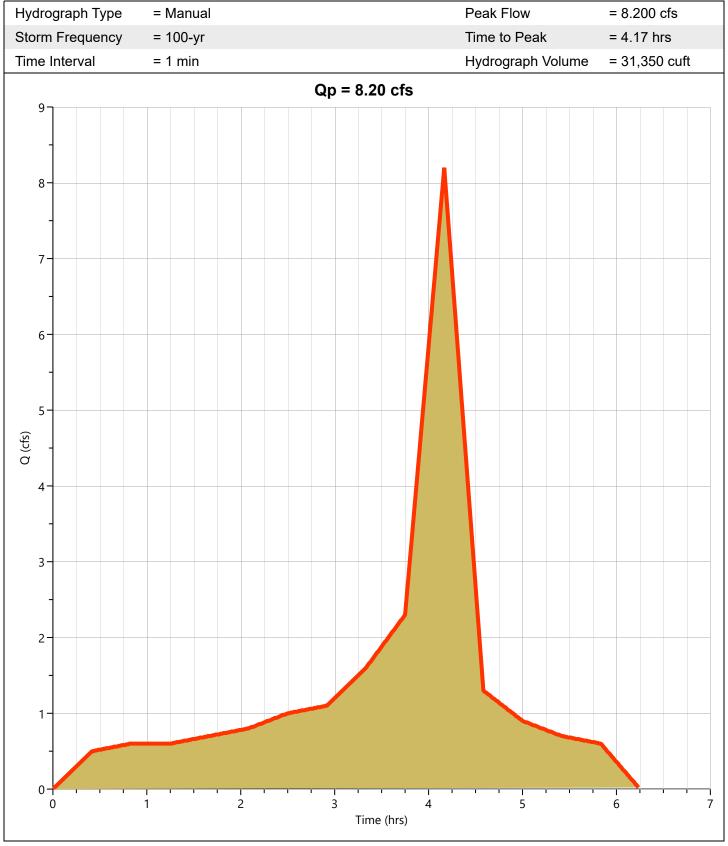
Hydrograph 100-yr Summary

11-22-2019

Hyd. No.	Hydrograph Type	Hydrograph Name	Peak Flow (cfs)	Time to Peak (hrs)	Hydrograph Volume (cuft)	Inflow Hyd(s)	Maximum Elevation (ft)	Maximum Storage (cuft)
1	Manual	Pre BASIN 1	108.8	4.43	541,044			
2	Manual	Post 1.01	8.200	4.17	31,350			
3	Manual	Post 1.03	7.700	4.20	18,443			
4	Manual	Post 1.04	8.800	4.27	25,456			
5	Manual	Post 1.06	17.50	4.33	70,200			
6	Manual	Post 1.02	2.000	4.40	6,864			
7	Manual	Post 10.10	2.200	4.20	5,076			
8	Pond Route	Post IMP-10.10	1.984	4.22	4,661	7	1087.21	987
9	Manual	Post 10.15	2.000	4.20	5,292			
10	Manual	Post 10.13	3.000	4.17	6,420			
11	Pond Route	Post IMP-10.13	2.443	4.20	5,236	10	966.38	2,325
12	Manual	Post 20.10	3.600	4.60	13,248			
13	Junction	Post JUNC @ 1.021	10.74	4.17	49,259	2, 8, 12		
14	Manual	Post 1.08	1.100	4.25	3,330			
15	Junction	Post JUNC @ 1.024	19.55	4.20	74,565	3, 6, 13		
16	Junction	Post JUNC @ IMP-10.13	18.83	4.33	75,436	5, 11		
17	Manual	Post 10.11	2.000	4.22	4,554			
18	Manual	Post 10.12	0.600	4.27	1,637			
19	Manual	Post 10.14	4.100	4.08	6,720			
20	Junction	Post JUNC @ 10.11 & 10.12	2.530	4.22	6,191	17, 18		
21	Junction	Post JUNC @ 10.12 & 10.14	5.340	4.08	12,911	19, 20		
22	Pond Route	Post IMP-10.11,12,14	3.025	4.20	10,045	21	1003.02	4,412
23	Manual	Post 1.05	1.600	4.25	4,410			
24	Junction	Post JUNC@IMP-10.11,12,14	22.58	4.20	84,610	15, 22		
25	Junction	Post JUNC @ 1.071	31.14	4.20	114,476	4, 23, 24		
26	Manual	Post 1.07	6.900	4.50	29,880			
27	Manual	Post 1.09	3.600	4.22	8,250			
28	Manual	Post 1.10	6.000	4.78	31,734			
29	Manual	Post 1.14	2.300	4.33	7,583			
30	Pond Route	Post IMP-1.14	0.050	6.05	3,502	29	899.36	6,556
31	Manual	Post 10.19	1.800	4.20	4,326			
32	Manual	Post 1.11	1.900	4.40	8,910	-		
33	Pond Route	Post IMP-10.19	0.798	4.33	3,208	31	883.93	2,678
34	Manual	Post 1.12	5.700	4.53	27,132			
35	Manual	Post 1.13	1.200	4.17	4,650			
36	Junction	Post JUNC @ 1.073	52.20	4.25	219,792	16, 25, 26		

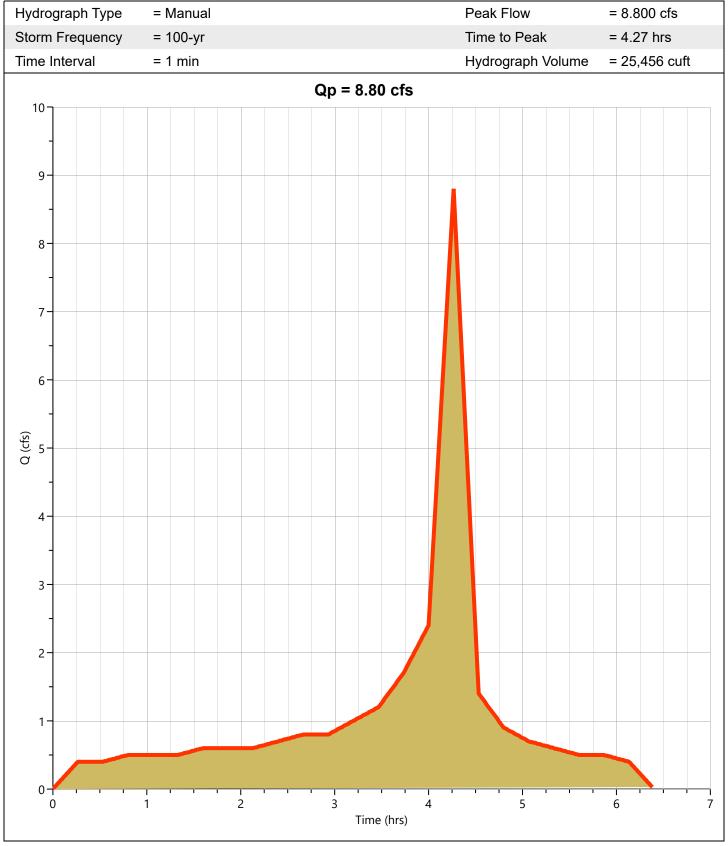

Hydrograph 100-yr Summary

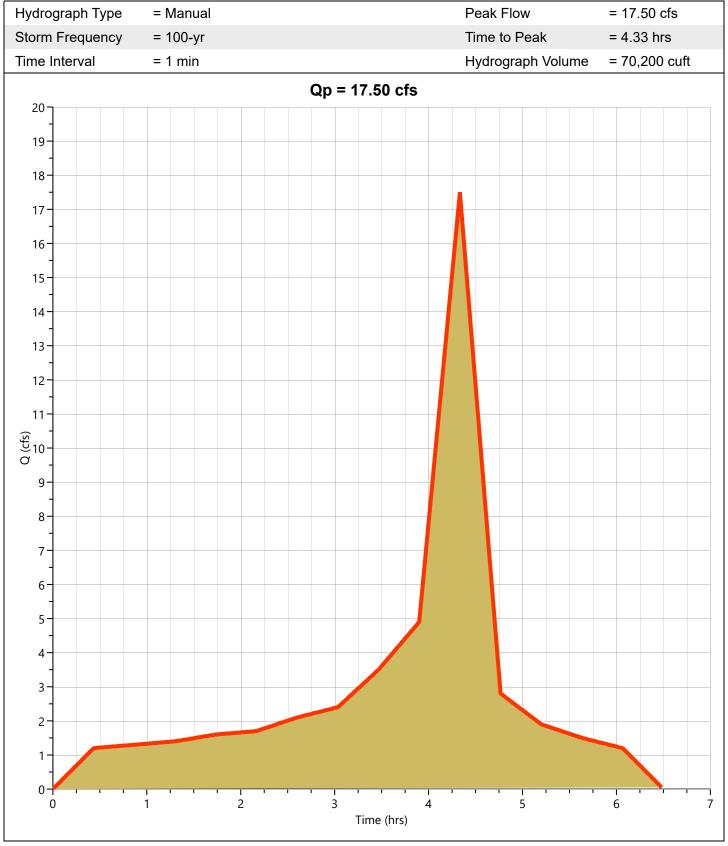
11-22-2019


37 Junction Post JUNC @ 1.121 6.316 4.53 30,340 33,34 33 34 38 34 39 35,37 39 Junction Post JUNC @ 1.128 6.636 4.53 34,990 35,37 39 30 30 30 30 30 30 30	Hyd. No.	Hydrograph Type	Hydrograph Name	Peak Flow (cfs)	Time to Peak (hrs)	Hydrograph Volume (cuft)	Inflow Hyd(s)	Maximum Elevation (ft)	Maximum Storage (cuft)
39 Junction Post JUNC @ 1.091 6.470 4.22 16,872 9, 14, 27 40 Junction Post JUNC @ 1.101 8.852 4.22 52,108 28, 30, 39 41 Manual Post 1.15 2.100 4.35 9,048 42 Junction Post JUNC @ 1.104 54.02 4.27 228,840 36, 41	37	Junction	Post JUNC @ 1.121	6.316	4.53	30,340	33, 34		
40 Junction Post JUNC @ 1.101 8.852 4.22 52,108 28, 30, 39 41 Manual Post 1.15 2.100 4.35 9,048 42 Junction Post JUNC @ 1.104 54.02 4.27 228,840 36, 41	38	Junction	Post JUNC @ 1.126	6.636	4.53	34,990	35, 37		
41 Manual Post 1.15 2.100 4.35 9,048 42 Junction Post JUNC @ 1.104 54.02 4.27 228,840 36, 41	39	Junction	Post JUNC @ 1.091	6.470	4.22	16,872	9, 14, 27		
42 Junction Post JUNC @ 1.104 54.02 4.27 228,840 36, 41	40	Junction	Post JUNC @ 1.101	8.852	4.22	52,108	28, 30, 39		
	41	Manual	Post 1.15	2.100	4.35	9,048			
43 Junction Post CP # 1 69.29 4.25 324,847 32,38,40,42	42	Junction	Post JUNC @ 1.104	54.02	4.27	228,840	36, 41		
	43	Junction	Post CP # 1	69.29	4.25	324,847	32, 38, 40, 42		

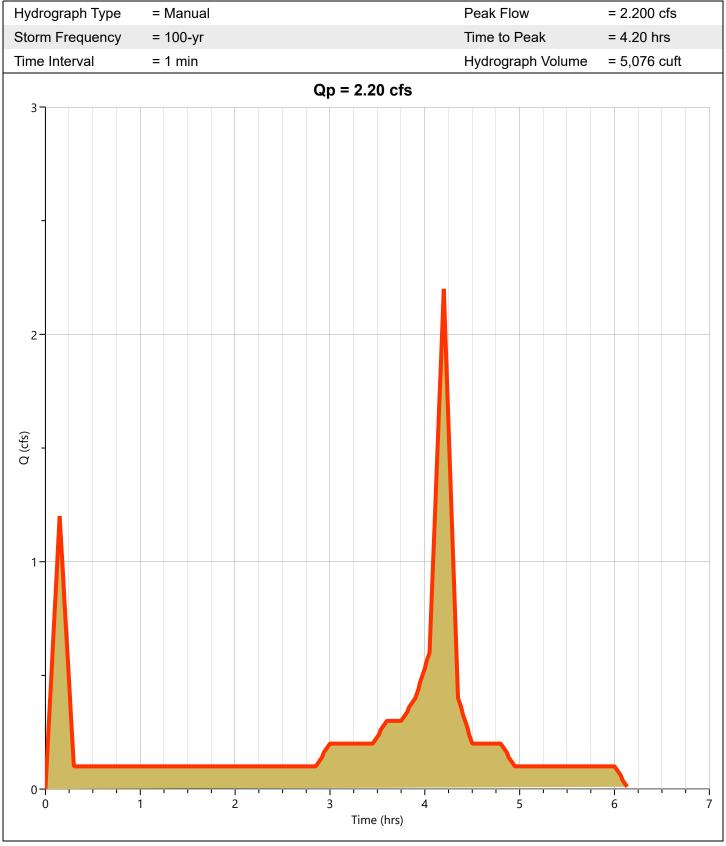
Hydrology Studio v 3.0.0.13 11-22-2019

Pre BASIN 1 Hyd. No. 1


Post 1.01 Hyd. No. 2


Post 1.03 Hyd. No. 3

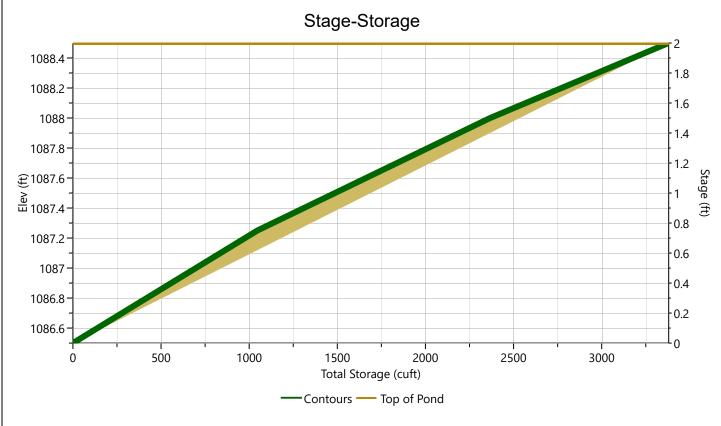
Post 1.04 Hyd. No. 4


Post 1.06 Hyd. No. 5

Post 1.02 Hyd. No. 6

Hydrograph Type	= Manual		Peak Flow	= 2.000 cfs
Storm Frequency	= 100-yr		Time to Peak	= 4.40 hrs
Time Interval	= 1 min		Hydrograph Volume	= 6,864 cuft
		Qp = 2.00 cfs		
3				
2				
Q (cfs)				
o]				
1 -				
0 0	<u>, , , , , , , , , , , , , , , , , , , </u>	1 ' ' i		
0	1 2	3 4 Time (hrs)	5	6 7
		. ,		

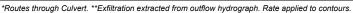
Post 10.10 Hyd. No. 7

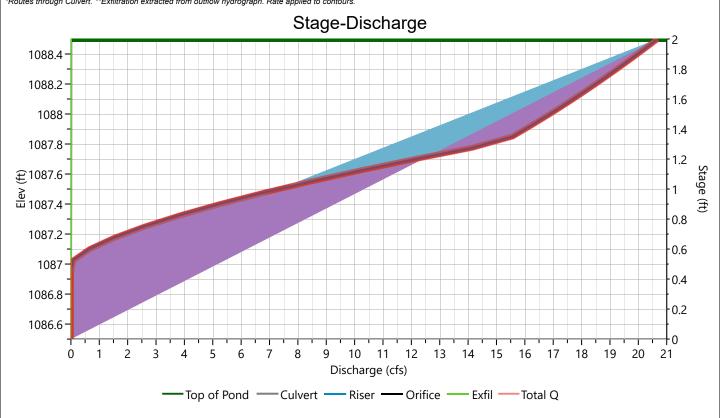


Post IMP-10.10

Hydrograph Type	= Pond Route		Peak Flow	= 1.984 cfs
Storm Frequency	= 100-yr		Time to Peak	= 4.22 hrs
Time Interval	= 1 min		Hydrograph Volume	= 4,661 cuft
Inflow Hydrograph	= 7 - 10.10		Max. Elevation	= 1087.21 ft
Pond Name	= 10.10		Max. Storage	= 987 cuft
Pond Routing by Storage Inc	dication Method		Center of mas	ss detention time = 35 min
	Q	p = 1.98 cfs		
3				
-				
2-				
Q (cfs)				
o				
1				
0	, , , , , , , ,			
	1 2	3 4	5	6 7
	,	Time (hrs)		
		10.10 — IMP-10.10		
		42		

10.10 Stage-Storage

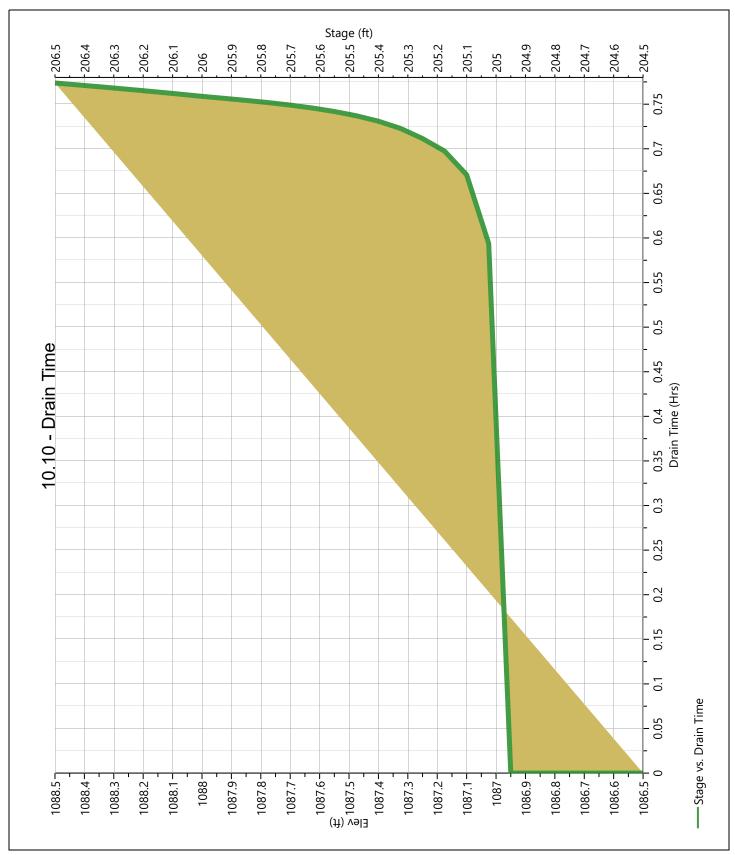

User Defined Contou	rs			Stage / Stora	Stage / Storage Table						
Description	Input	Stage (ft)	Elevation (ft)	Contour Area (sqft)	Incr. Storage (cuft)	Total Storage (cuft)					
Bottom Elevation, ft	1086.50										
Voids (%)	100.00	0.00 0.75	1086.50 1087.25	1,220 1,570	0.000 1,046	0.000 1,046					
Volume Calc	None	1.50	1088.00	1,952	1,321	2,367					
		2.00	1088.50	2,100	1,013	3,380					



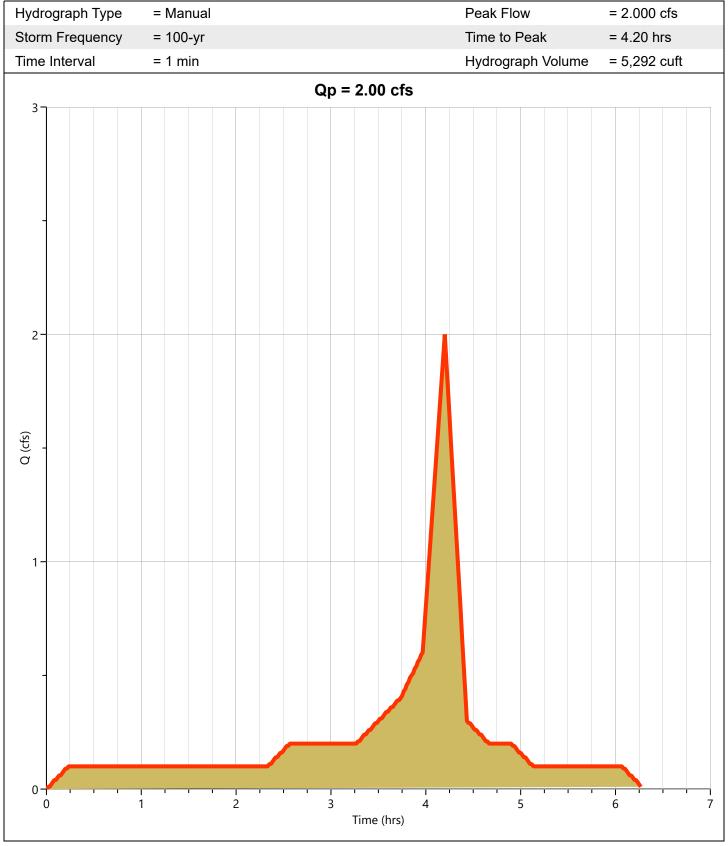
10.10

Stage-Discharge

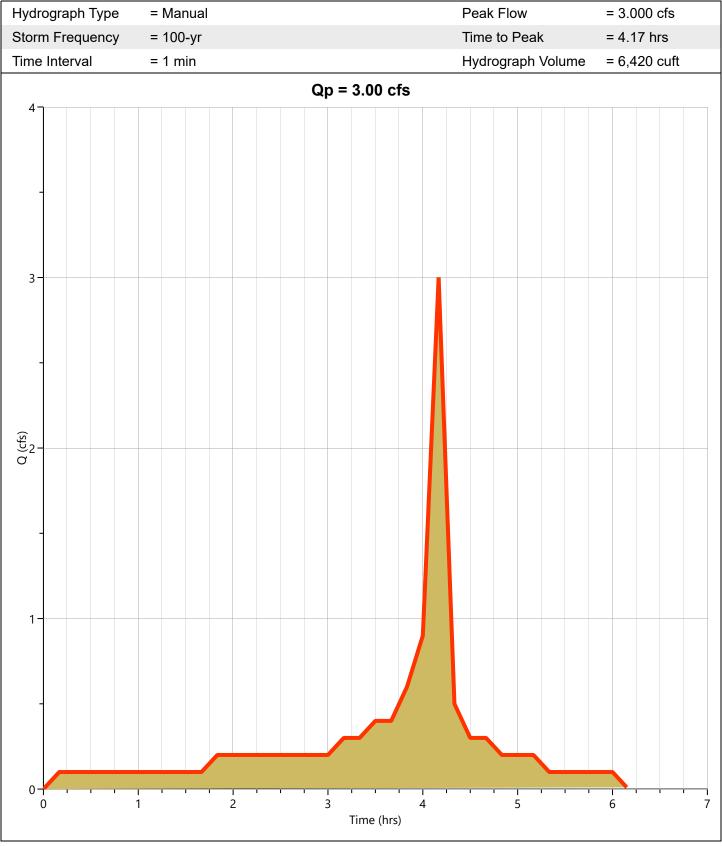
Culvert / Outlines	Culvent		Orifices		Ouifice Diete	
Culvert / Orifices	Culvert	1*	2	3	Orifice Plate	
Rise, in	24	.5			Orifice Dia, in	
Span, in	24	.5			No. Orifices	
No. Barrels	1	1			Invert Elevation, ft	
Invert Elevation, ft	1083.75	1084.00			Height, ft	
Orifice Coefficient, Co	0.60	0.60			Orifice Coefficient, Co	
Length, ft	8.5					
Barrel Slope, %	1					
N-Value, n	0.013					
Weirs	Riser*	Weirs			Ancillon	
weirs	Riser	1	2	3	Ancillary	
Shape / Type	Circular				Exfiltration, in/hr 0.	10**
Crest Elevation, ft	1087					
Crest Length, ft	6.28					
Angle, deg						
Weir Coefficient, Cw	3.3					



10.10

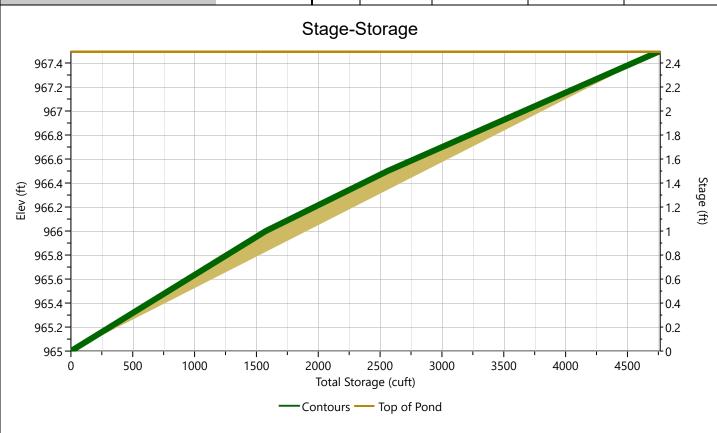

Stage-Storage-Discharge Summary

Stage	Elev.	Storage	Culvert	(Orifices, cf	s	Riser		Weirs, cfs		Pf Riser	Exfil	User	Total
(ft)	(ft)	(cuft)	(cfs)	1	2	3	(cfs)	1	2	3	(cfs)	(cfs)	(cfs)	(cfs)
0.00	1086.50	0.000	0.000	0.000			0.000					0.000		0.000
0.75	1087.25	1,046	2.596 oc	0.006			2.591					0.004		2.600
1.50	1088.00	2,367	16.88 oc	0.008			16.87 ic					0.005		16.89
2.00	1088.50	3,380	20.68 oc	0.009			20.67 ic					0.005		20.68


10.10 Pond Drawdown

Post 10.15 Hyd. No. 9

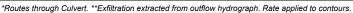
Post 10.13 Hyd. No. 10

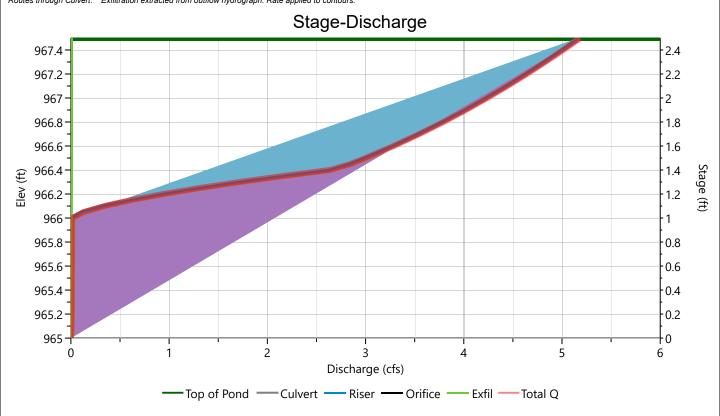

Post IMP-10.13

Hydrograph Type	= Pond Route		Peak Flow	= 2.443 cfs					
Storm Frequency	= 100-yr		Time to Peak	= 4.20 hrs					
Time Interval	= 1 min		Hydrograph Volume	= 5,236 cuft					
Inflow Hydrograph	= 10 - 10.13		Max. Elevation	= 966.38 ft					
Pond Name	= IMP-10.13		Max. Storage	= 2,325 cuft					
Pond Routing by Storage In	ndication Method		Center of ma	ess detention time = 42 min					
		Qp = 2.44 cfs							
47									
3									
(\$) ₂									
1 -									
0									
0	1 2	3 4	5	6 7					
	Time (hrs)								
	— 10.13 — IMP-10.13								
	20								

IMP-10.13

Stage-Storage

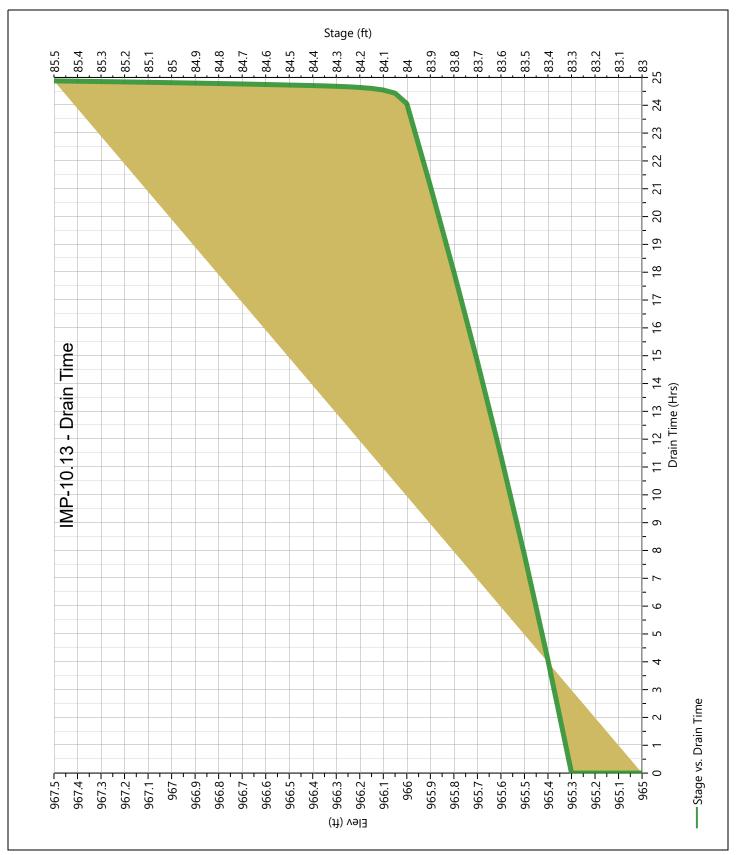

User Defined Conto	ırs			Stage / Stora	ge Table	
Description	Input	Stage (ft)	Elevation (ft)	Contour Area (sqft)	Incr. Storage (cuft)	Total Storage (cuft)
Bottom Elevation, ft	965.00					
Voids (%)	100.00	0.00 1.00	965.00 966.00	1,320 1,831	0.000 1,576	0.000 1,576
		1.50	966.50	2,109	985	2,561
Volume Calc	Ave End Area	2.50	967.50	2,300	2,205	4,765
		2.00	007.00	2,000	2,200	1,7 00



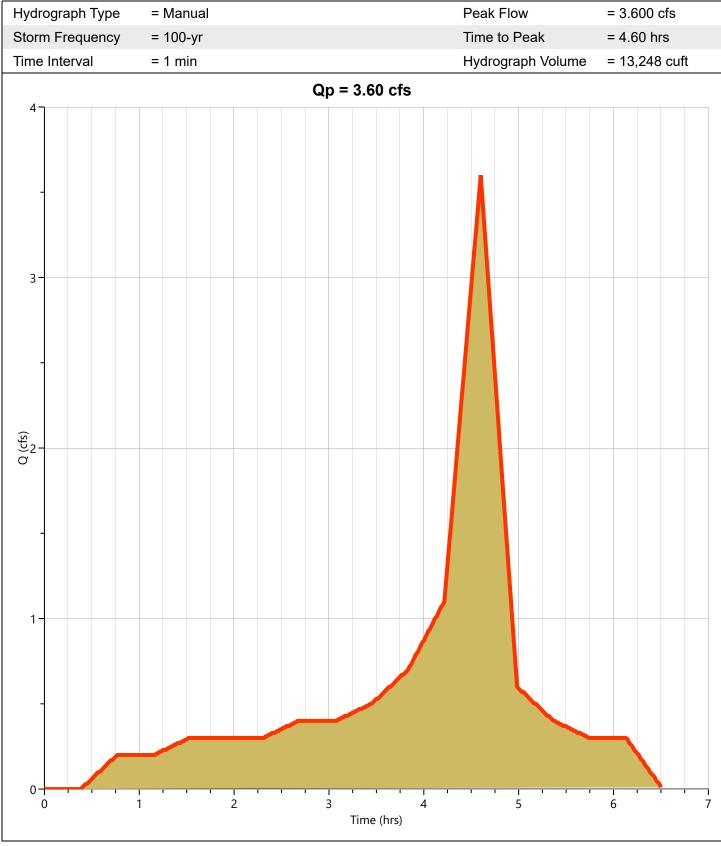
IMP-10.13

Stage-Discharge

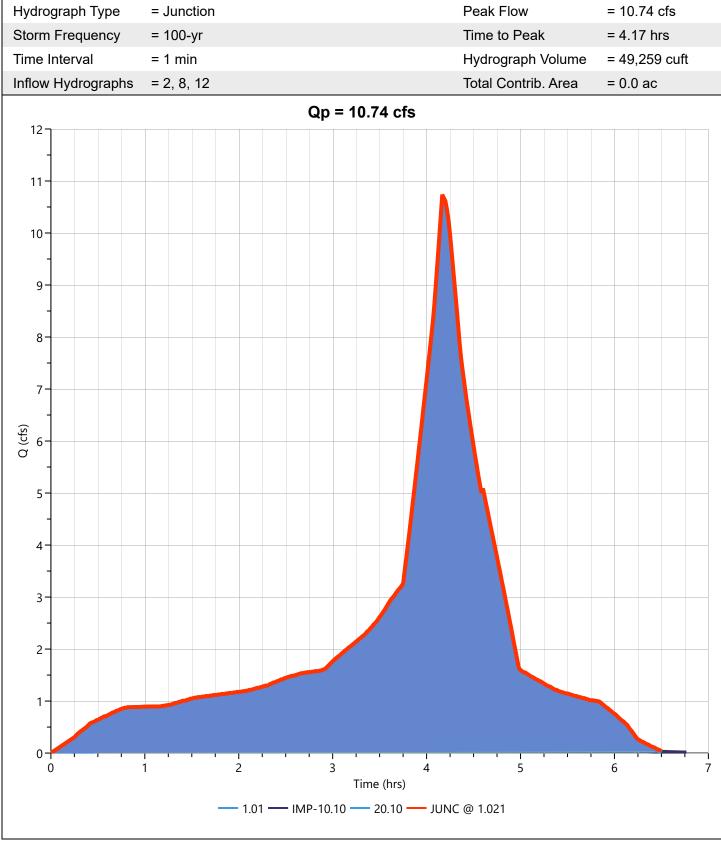
Out out / Outlines	Ondrant		Orifices		Ovifice Plate	
Culvert / Orifices	Culvert	1*	2	3	Orifice Plate	
Rise, in	12	.5			Orifice Dia, in	
Span, in	12	.5			No. Orifices	
No. Barrels	1	1			Invert Elevation, ft	
Invert Elevation, ft	962.25	962.50			Height, ft	
Orifice Coefficient, Co	0.60	0.60			Orifice Coefficient, Co	
Length, ft	12					
Barrel Slope, %	1					
N-Value, n	0.013					
Weirs	Riser*		Weirs		A a !!! a	
weirs	Riser	1	2	3	Ancillary	
Shape / Type	Circular				Exfiltration, in/hr	0.20**
Crest Elevation, ft	966					
Crest Length, ft	3.14					
Angle, deg						
Weir Coefficient, Cw	3.3					



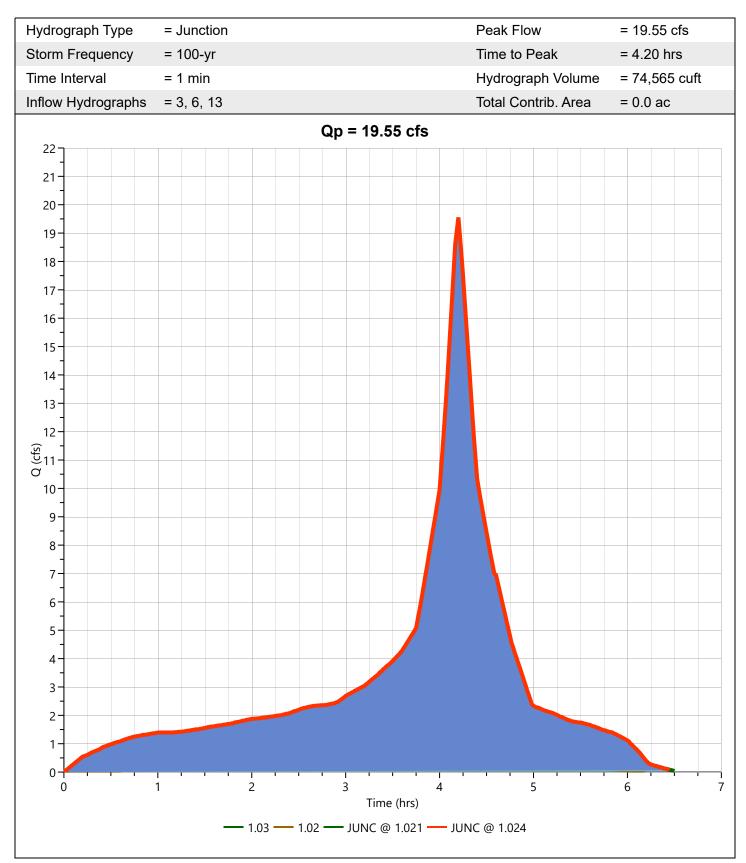
IMP-10.13

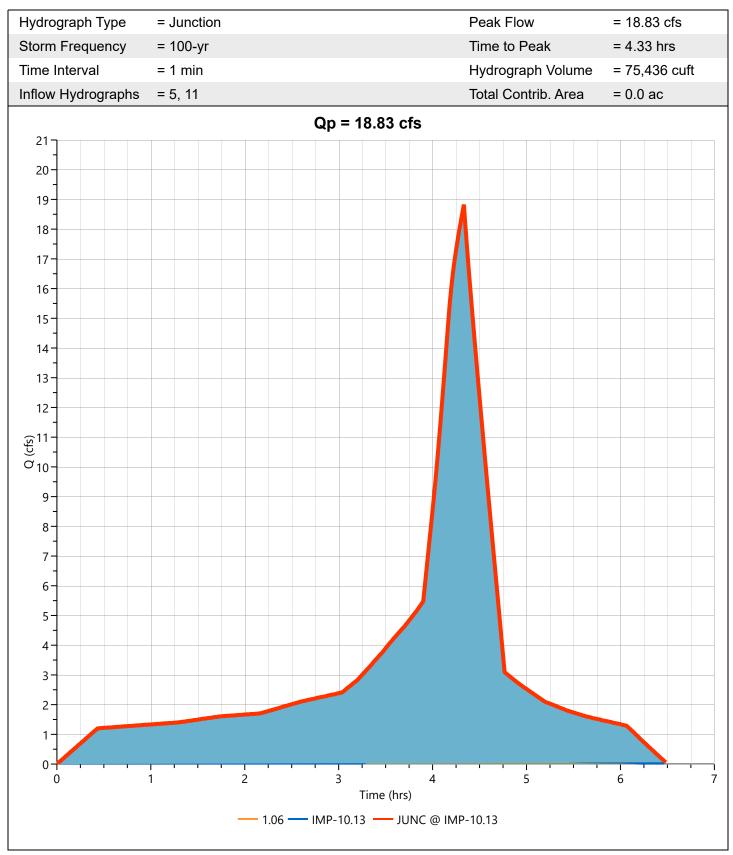

Stage-Storage-Discharge Summary

Stage	Elev.	Storage	Culvert	(Orifices, cf	s	Riser		Weirs, cfs		Pf Riser	Exfil	User	Total
Stage (ft)	(ft)	(cuft)	(cfs)	1	2	3	(cfs)	1	2	3	(cfs)	(cfs)	(cfs)	(cfs)
0.00	965.00	0.000	0.000	0.000			0.000					0.000		0.000
1.00	966.00	1,576	0.007 ic	0.007			0.000					0.008		0.015
1.50	966.50	2,561	2.991 ic	0.008			2.983 ic					0.010		3.001
2.50	967.50	4,765	5.177 ic	0.010			5.167 ic					0.011		5.188


IMP-10.13 Pond Drawdown

Post 20.10 Hyd. No. 12


Post JUNC @ 1.021


Post 1.08 Hyd. No. 14

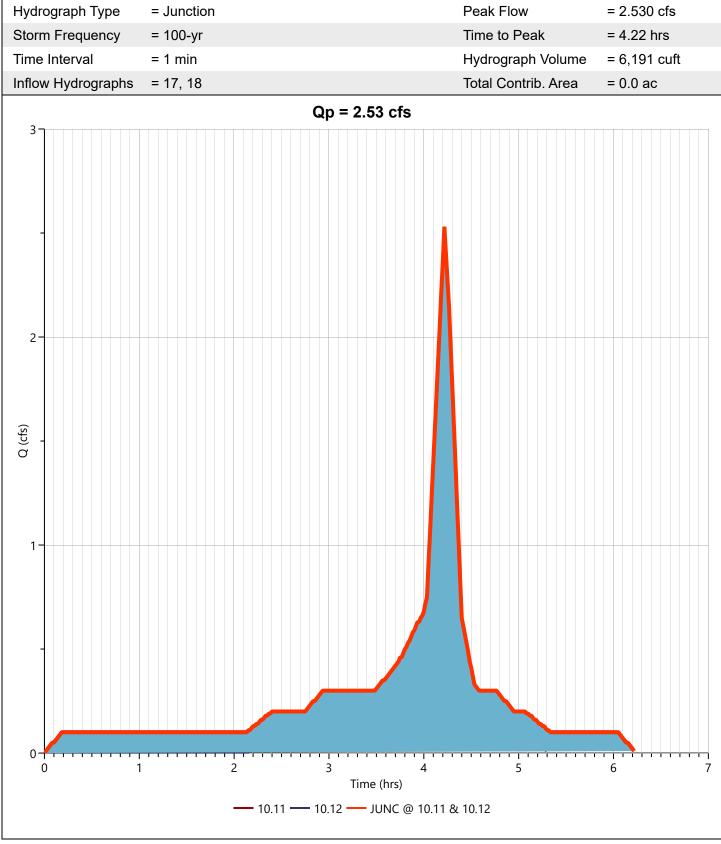
Hydrograph Type	= Manual		Peak Flow	= 1.100 cfs
Storm Frequency	= 100-yr		Time to Peak	= 4.25 hrs
Time Interval	= 1 min		Hydrograph Volume	= 3,330 cuft
		Qp = 1.10 cfs		
2				
1.9				
1.8				
1.7				
1.6				
1.5				
1.4				
1.3				
1.2				
1.1				
(g) 1			A	
0.9				
0.8				
-				
0.7				
0.6				
0.5				
0.4				
0.3				
0.2				
0.1				
0	1 1 1 1			
0	1 2	3 Time (hrs)	5	6 7
		27		

Post JUNC @ 1.024

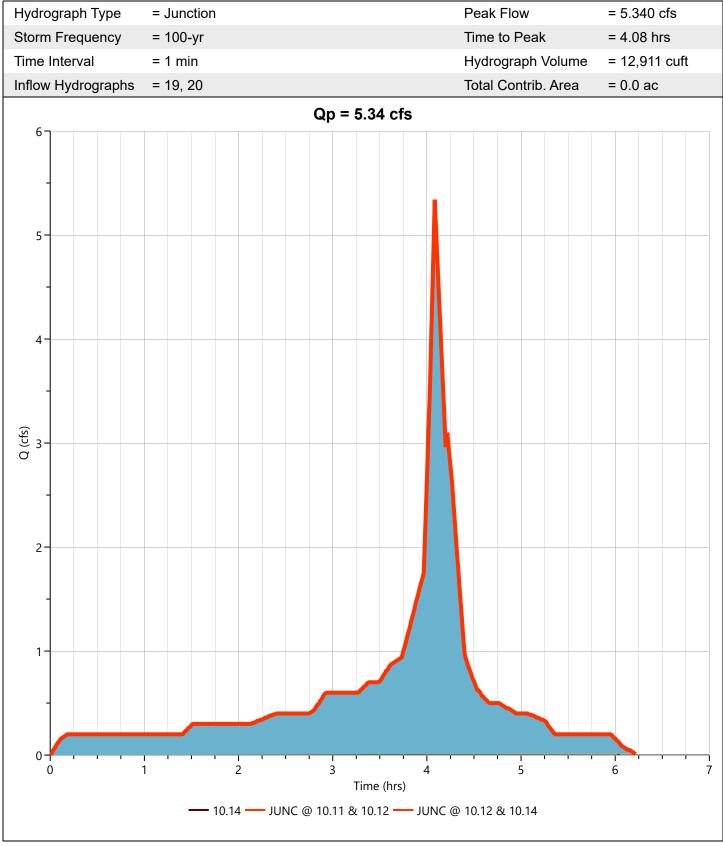
Post JUNC @ IMP-10.13

Post 10.11 Hyd. No. 17

Hydrograph Type	= Manual		Peak Flow	= 2.000 cfs					
Storm Frequency	= 100-yr		Time to Peak	= 4.22 hrs					
Time Interval	= 1 min		Hydrograph Volume	= 4,554 cuft					
		Qp = 2.00 cfs							
37		-							
2-									
Q (cfs)									
o									
1 -									
0-	1 1 2		. , , , , , ,						
U	0 1 2 3 4 5 6 7 Time (hrs)								
	(


Post 10.12 Hyd. No. 18

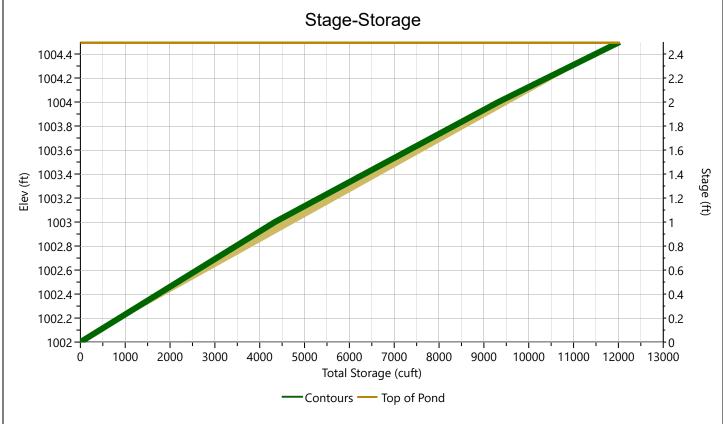
Hydrograph Type	= Manual		Peak Flow	= 0.600 cfs
Storm Frequency	= 100-yr		Time to Peak	= 4.27 hrs
Time Interval	= 1 min		Hydrograph Volume	= 1,637 cuft
		Qp = 0.60 cfs		
1				
0.95				
0.9				
0.85				
0.8				
0.75				
0.7				
0.65				
0.6				
0.55			A	
(ct) O 0.5				
0.45				
0.4				
0.35				
0.3				
0.25				
0.2				
0.15				
0.1				
0.05				
0	1 2	2 3	4	5 6
		Time (hrs)		


Post 10.14 Hyd. No. 19

Hydrograph Type	= Manual		Peak Flow	= 4.100 cfs					
Storm Frequency	= 100-yr		Time to Peak	= 4.08 hrs					
Time Interval	= 1 min		Hydrograph Volume	= 6,720 cuft					
Qp = 4.10 cfs									
5 7		-							
4-									
-									
3-									
3 7									
Q (cfs)									
2-									
_									
1 -									
0-1-1-1	1 1 1 1 1	· · · · · · · · · · · · · · · · · · ·							
U	1 2	3 4 Time (hrs)	5	6 7					
22									

Post JUNC @ 10.11 & 10.12

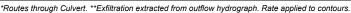
Post JUNC @ 10.12 & 10.14

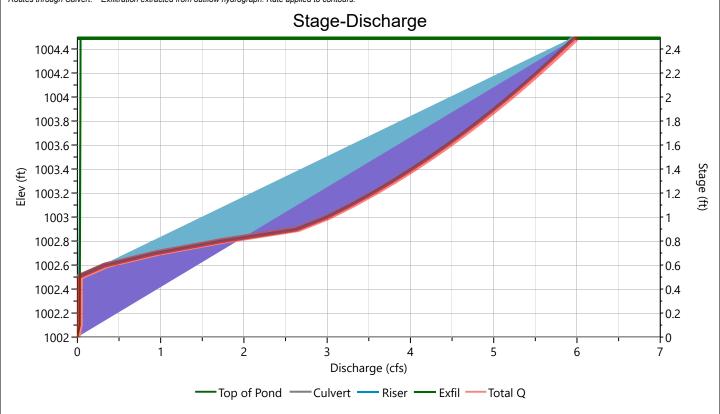

Post IMP-10.11,12,14

Hydrograph Type	= Pond Route	Peak Flow	= 3.025 cfs							
Storm Frequency	= 100-yr	Time to Peak	= 4.20 hrs							
Time Interval	= 1 min	Hydrograph Volume	= 10,045 cuft							
Inflow Hydrograph	= 21 - JUNC @ 10.12 & 10.14	Max. Elevation	= 1003.02 ft							
Pond Name	= IMP-10.11,12,14	Max. Storage	= 4,412 cuft							
Pond Routing by Storage In	ndication Method	Center of ma	ass detention time = 42 min							
Qp = 3.03 cfs										
67										
5 –										
1										
4-										
-										
3-										
Q (cfs)										
α										
2-										
1-										
-										
0										
-										
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	1 2 3	4 5	6 7							
	Time (hrs)									
— JUNC @ 10.12 & 10.14 — IMP-10.11,12,14										

IMP-10.11,12,14

Stage-Storage

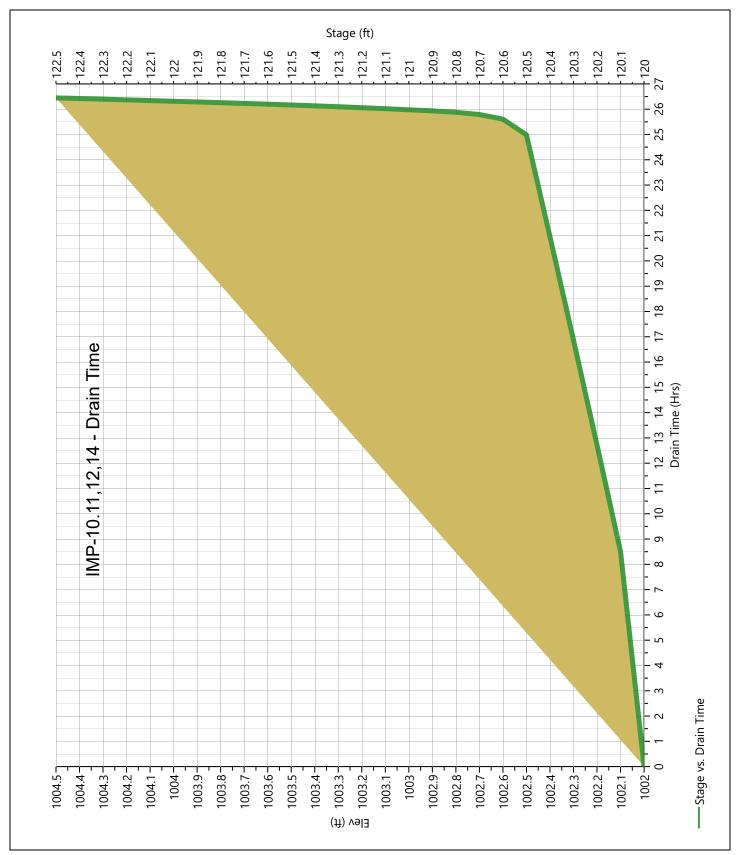

User Defined Contou	rs	Stage / Storage Table							
Description	ription Input		Elevation (ft)	Contour Area (sqft)	Incr. Storage (cuft)	Total Storage (cuft)			
Bottom Elevation, ft	1002.00	(ft)							
Voids (%)	100.00	0.00 1.00	1002.00 1003.00	4,020 4,655	0.000 4,338	0.000 4,338			
Volume Calc	None	2.00	1004.00	5,318	4,987	9,324			
volume Calc	None	2.50	1004.50	5,500	2,705	12,029			



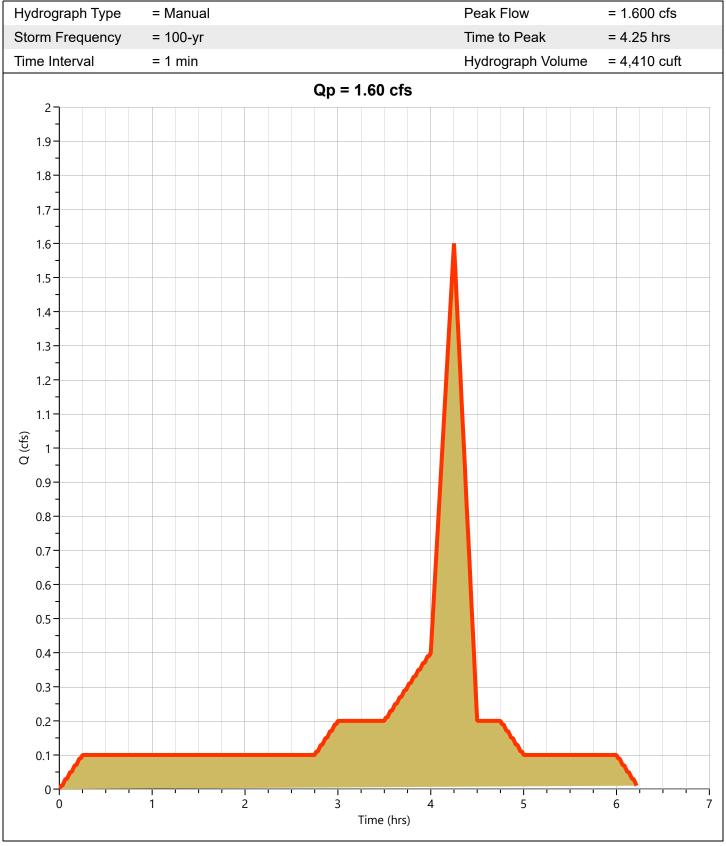
IMP-10.11,12,14

Stage-Discharge

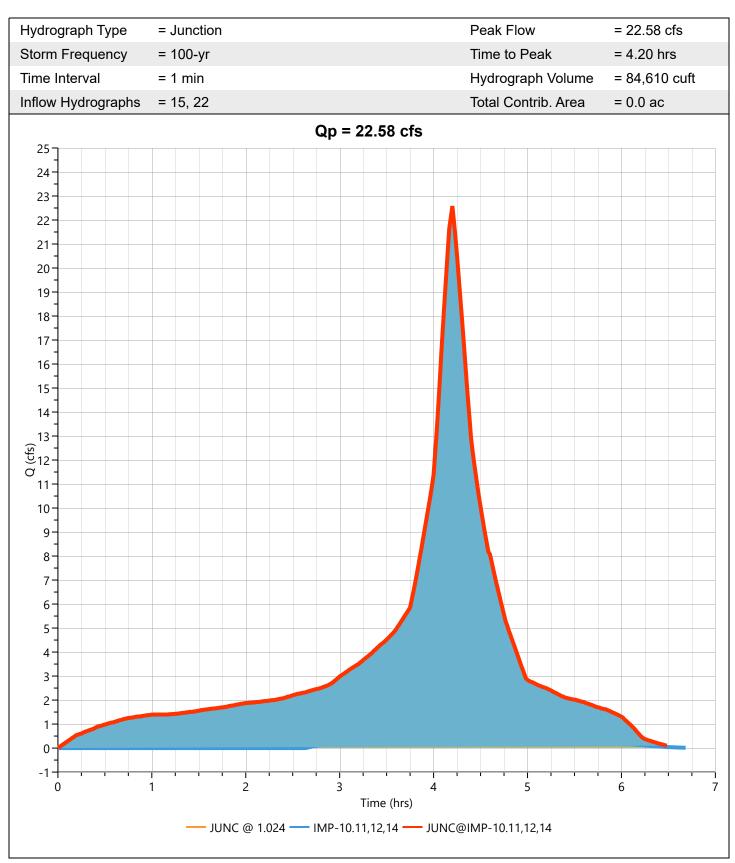
Culvert / Orifices	Culvent		Orifices		Ovidiaa Plata		
Culvert / Orifices	Culvert	1 2		3	Orifice Plate		
Rise, in	12				Orifice Dia, in		
Span, in	12				No. Orifices		
No. Barrels	1				Invert Elevation, ft		
Invert Elevation, ft	999.25				Height, ft		
Orifice Coefficient, Co	0.60				Orifice Coefficient, Co		
Length, ft	8.5						
Barrel Slope, %	1						
N-Value, n	0.015						
Weirs	Riser*		Weirs		Anaillan		
vveirs	Risei	1	2	3	Ancillary		
Shape / Type	Circular				Exfiltration, in/hr	0.30**	
Crest Elevation, ft	1002.5						
Crest Length, ft	3.14						
Angle, deg							
Weir Coefficient, Cw	3.3						

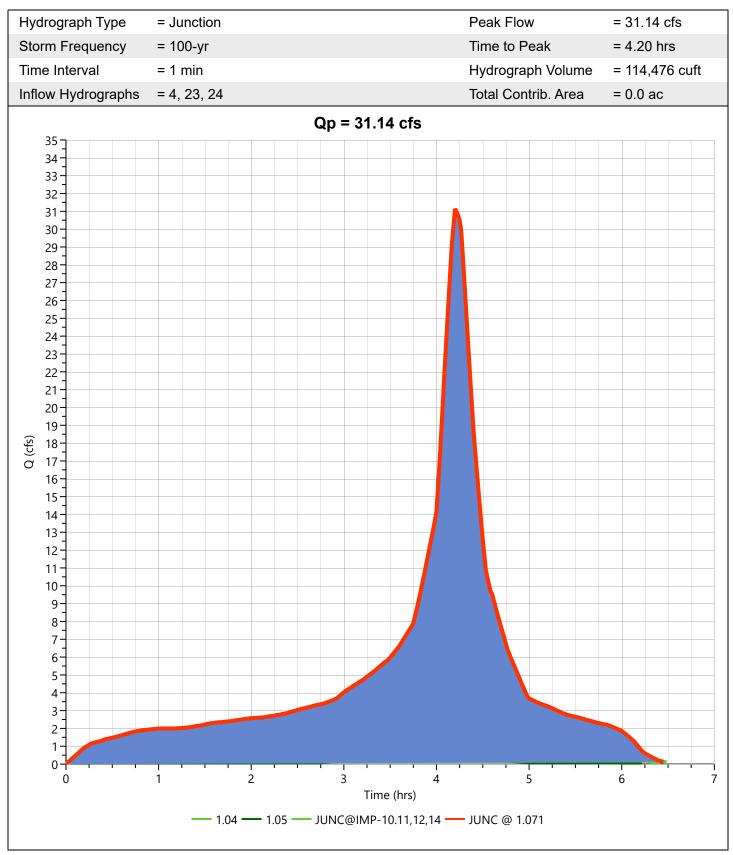

IMP-10.11,12,14

Stage-Storage-Discharge Summary


Stage Elev.	Storage	e Culvert	Orifices, cfs		Riser	Weirs, cfs			Pf Riser	Exfil	User	Total		
(ft)	(ft) (ft) (cuft)	(cuft)	cuft) (cfs)	1	2	3	(cfs)	1	2	3	(cfs)	(cfs)	(cfs)	(cfs)
0.00	1002.00	0.000	0.000				0.000					0.000		0.000
1.00	1003.00	4,338	2.983 ic				2.983 ic					0.032		3.015
2.00	1004.00	9,324	5.167 ic				5.167 ic					0.037		5.204
2.50	1004.50	12,029	5.966 ic				5.966 ic					0.038		6.004
	•	•			•				•	•				

IMP-10.11,12,14


Pond Drawdown


Post 1.05 Hyd. No. 23

Post JUNC@IMP-10.11,12,14

Post JUNC @ 1.071

Post 1.07 Hyd. No. 26

= 100-yr = 1 min	Qp = 6.90 cfs	Time to Peak Hydrograph Volume	= 4.50 hrs = 29,880 cuft
= 1 min	Qp = 6.90 cfs	Hydrograph Volume	= 29,880 cuft
	Qp = 6.90 cfs		
1 2	3 4 Time (hrs)	5	6 7
		Time (hrs)	

Post 1.09 Hyd. No. 27

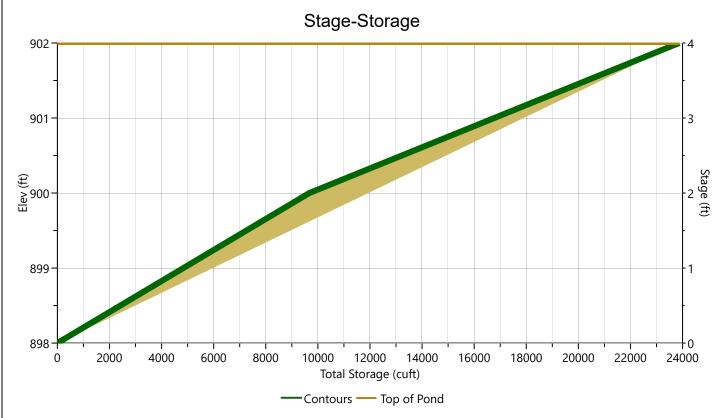
Hydrograph Type	= Manual		Peak Flow	= 3.600 cfs	
Storm Frequency	= 100-yr		Time to Peak	= 4.22 hrs	
Time Interval	= 1 min		Hydrograph Volume	= 8,250 cuft	
		Qp = 3.60 cfs			
4					
1					
3					
-					
(\$\overline{\psi}_2 - \overline{\psi}_2					
O O					
-					
1-					
1					
0	1 2	2 4		6 7	
U	1 2	3 4 Time (hrs)	5	6 7	
		44			

Post 1.10 Hyd. No. 28

Hydrograph Type	= Manual		Peak Flow	= 6.000 cfs
Storm Frequency	= 100-yr		Time to Peak	= 4.78 hrs
Time Interval	= 1 min		Hydrograph Volume	= 31,734 cuft
		Qp = 6.00 cfs		
77		-		
-				
6			A	
5 –				
-				
4-				
(S)				
Q (cfs)				
3-				
2-				
1-				
0	1 2	3 4	5	6 7
		Time (hrs)	3	,
		AF.		

Post 1.14 Hyd. No. 29

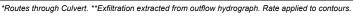
Time Interval = 1 min Hydrograph Volume = 7,583 cuft Op = 2.30 cfs	Hydrograph Type	= Manual		Peak Flow	= 2.300 cfs		
Qp = 2.30 cfs	Storm Frequency	= 100-yr		Time to Peak	= 4.33 hrs		
	Time Interval	= 1 min		Hydrograph Volume	me = 7,583 cuft		
			Qp = 2.30 cfs				
	3						
	-						
	2						
	_						
	(S)						
	2) 7						
0 1 2 3 4 5 6 7	1						
0 1 2 3 4 5 6 7							
0 1 2 3 4 5 6 7							
0 1 2 3 4 5 6 7							
0 1 2 3 4 5 6 7	_						
0 1 2 3 4 5 6 7							
0 1 2 3 4 5 6 7							
0 1 2 3 4 5 6 7							
0 1 2 3 4 5 6 7							
Time (hrs)	0	1 2		5	6 7		
			Time (hrs)				

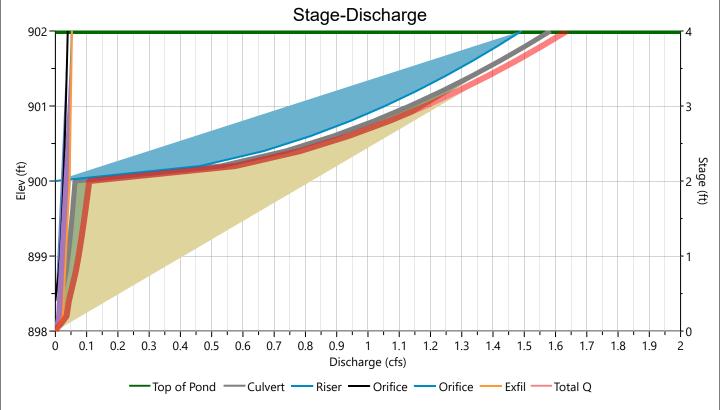

Post IMP-1.14 Hyd. No. 30

Hydrograph Type	= Pond Route	Peak Flow	= 0.050 cfs								
Storm Frequency	= 100-yr	Time to Peak	= 6.05 hrs								
Time Interval	= 1 min	Hydrograph Volume	= 3,502 cuft								
Inflow Hydrograph	= 29 - 1.14	Max. Elevation	= 899.36 ft								
Pond Name	= IMP-1.14	Max. Storage	= 6,556 cuft								
Pond Routing by Storage Ind	ication Method	Center of mass	s detention time = 12.57 hrs								
Qp = 0.05 cfs											
3											
-											
2											
Q (cfs)											
1-											
-											
0											
0 2 4	6 8 10 12 14 16	18 20 22 24 26 28	3 30 32 34								
	Time — 1.14 —										

IMP-1.14

Stage-Storage

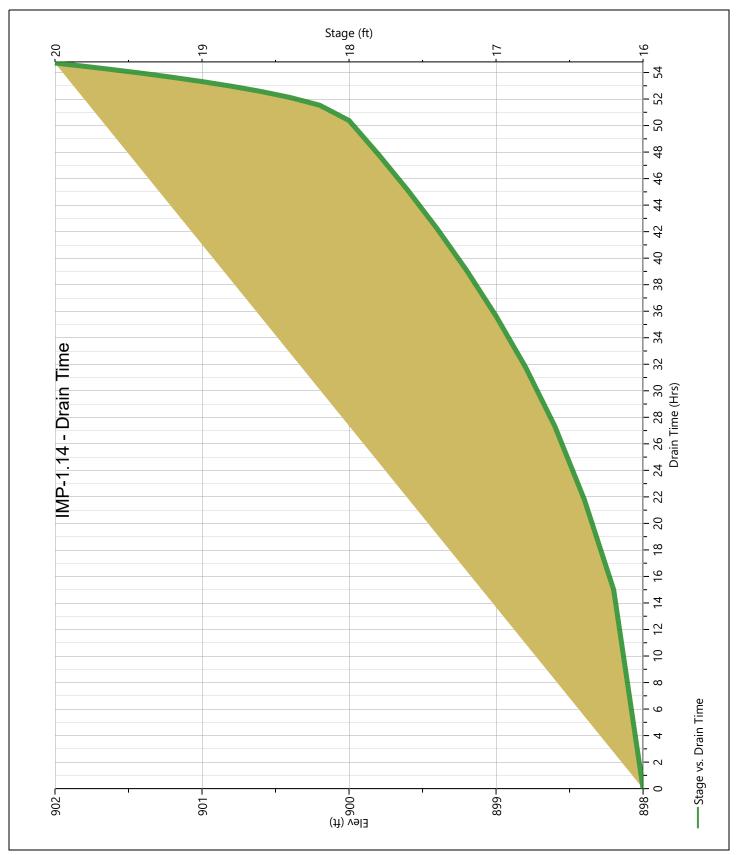

User Defined Contou	rs	Stage / Storage Table							
Description	Input	Stage (ft)	Elevation (ft)	Contour Area (sqft)	Incr. Storage (cuft)	Total Storage (cuft)			
Bottom Elevation, ft	898.00								
Voids (%)	100.00	0.00 2.00	898.00 900.00	3,125 6,547	0.000 9,672	0.000 9,672			
Volume Calc	None	4.00	902.00	7,653	14,200	23,872			
		-							
		-							
		-							
		1	l	<u> </u>		l			



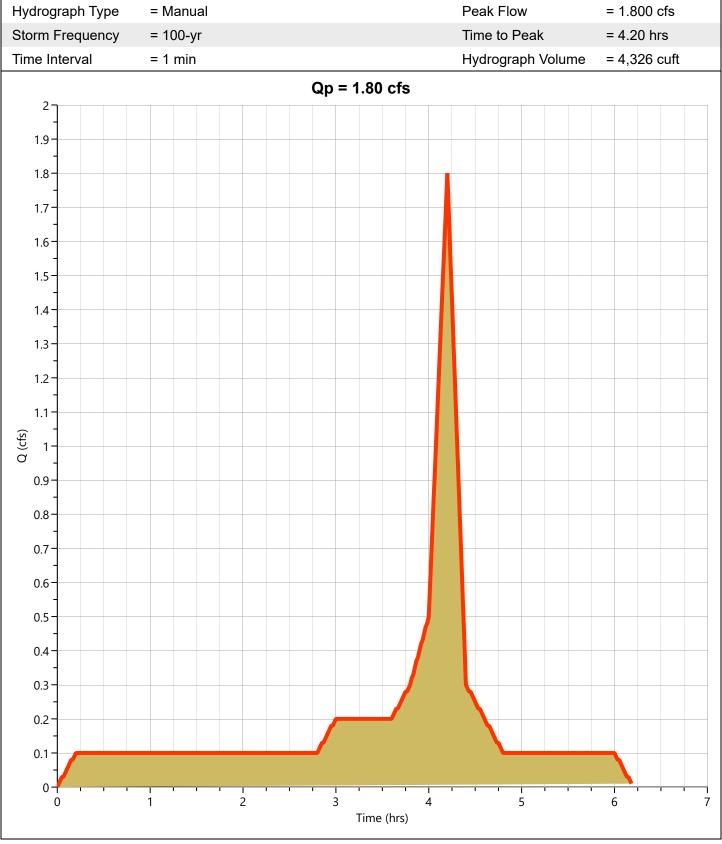
IMP-1.14

Stage-Discharge

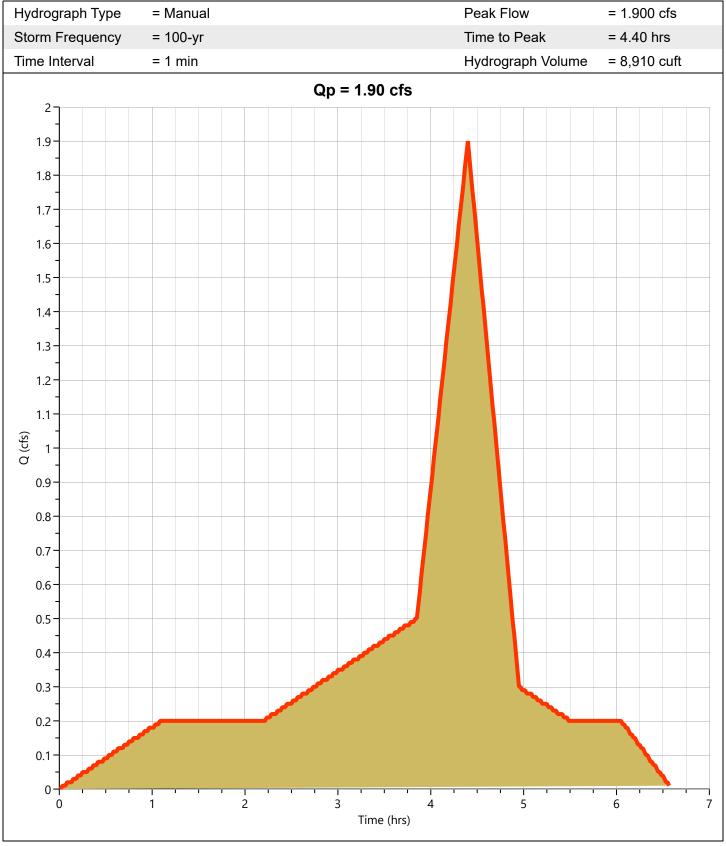
Code cont / Outflood	Culvent		Orifices		Outline Diete	
Culvert / Orifices	Culvert	1*	2	3*	Orifice Plate	
Rise, in	12	.9		1	Orifice Dia, in	
Span, in	12	.9		1	No. Orifices	
No. Barrels	1	1		1	Invert Elevation, ft	
Invert Elevation, ft	895.25	898.50		895.50	Height, ft	
Orifice Coefficient, Co	0.60	0.60		0.60	Orifice Coefficient, Co	
Length, ft	54					
Barrel Slope, %	1					
N-Value, n	0.013					
Weirs	Riser*		Weirs		Anoillon	
weirs	Riser	1	2	3	Ancillary	
Shape / Type	Circular				Exfiltration, in/hr	0.30**
Crest Elevation, ft	900					
Crest Length, ft	1.57					
Angle, deg						
Weir Coefficient, Cw	3.3					


IMP-1.14

Stage-Storage-Discharge Summary

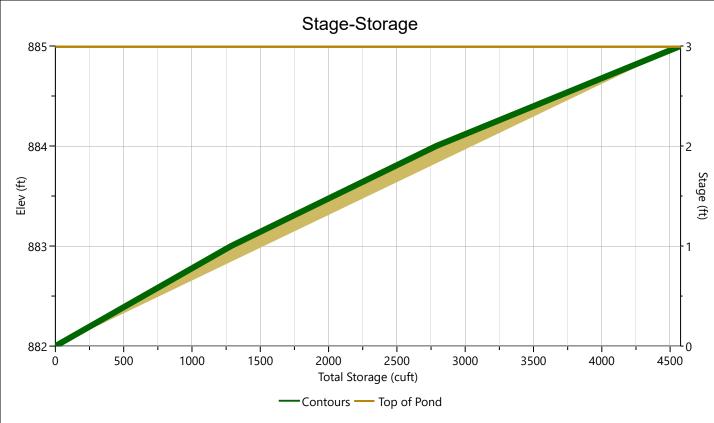

Stage	Elev.	Storage	Culvert	(Orifices, cf	s	Riser		Weirs, cfs		Pf Riser	r Exfil Use	User	Total
Stage (ft)	(ft)	(cuft)	(cfs)	1	2	3	(cfs)	1	2	3	(cfs)	(cfs)	(cfs)	(cfs)
0.00	898.00	0.000	0.000	0.000		0.000	0.000					0.000		0.000
2.00	900.00	9,672	0.063 oc	0.026		0.037	0.000					0.045		0.108
4.00	902.00	23,872	1.584 oc	0.040		0.053	1.491 ic					0.053		1.637
	ı	ı	1	ihmeraed we	I	l		I	1	L	1		1	

IMP-1.14


Pond Drawdown

Post 10.19 Hyd. No. 31

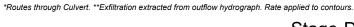
Post 1.11 Hyd. No. 32

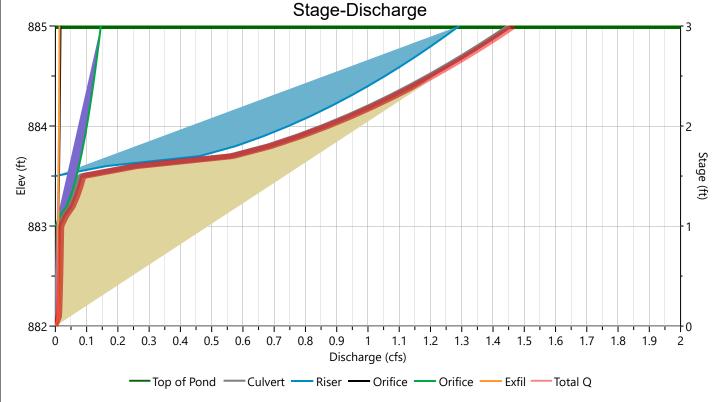

Post IMP-10.19

Hydrograph Type	= Pond Route		Peak Flow	= 0.798 cfs
Storm Frequency	= 100-yr		Time to Peak	= 4.33 hrs
Time Interval	= 1 min		Hydrograph Volume	= 3,208 cuft
Inflow Hydrograph	= 31 - 10.19		Max. Elevation	= 883.93 ft
Pond Name	= IMP-10.19		Max. Storage	= 2,678 cuft
Pond Routing by Storage In	dication Method		Center of mas	s detention time = 2.18 hrs
		Qp = 0.80 cfs		
2]				
1.9				
1.8				
1.7				
1.6				
1.5		+		
1.4				
1.3				
1.2				
1.1 				
(c) 1				
0.9				
0.8				
0.7				
0.6				
0.5				
0.4				
0.3				
0.2				
0.1				
0 1	2 3	4 5 6	7 8 9	10 11
	-	Time (hrs)	- •	
		— 10.19 — IMP-10.19		
1				

IMP-10.19

Stage-Storage

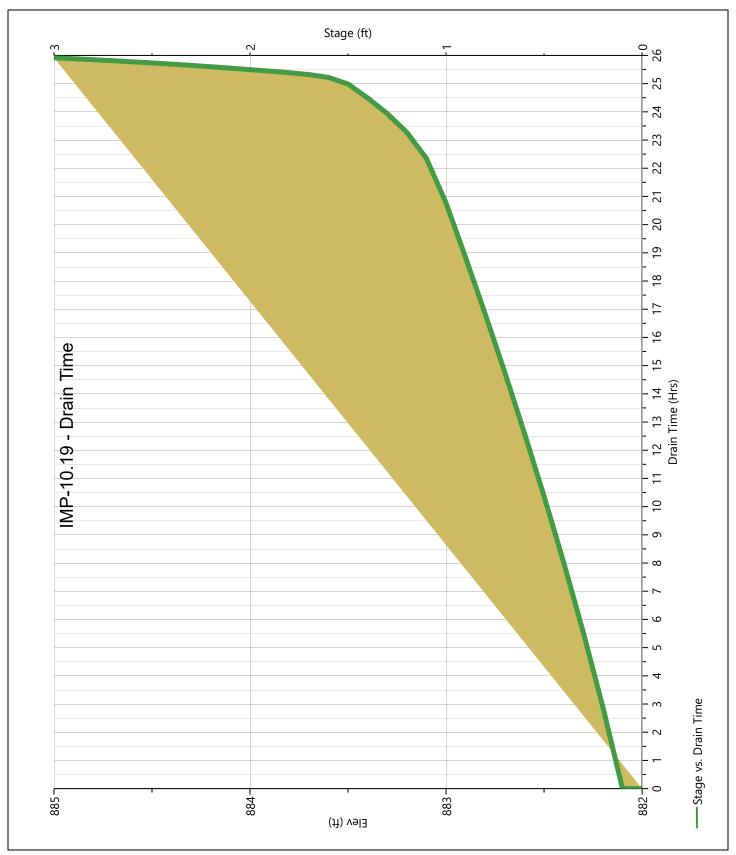

User Defined Contou	rs	Stage / Storage Table						
Description	Input	Stage (ft)	Elevation (ft)	Contour Area (sqft)	Incr. Storage (cuft)	Total Storage (cuft)		
Bottom Elevation, ft	882.00	0.00	882.00	1,245	0.000	0.000		
Voids (%)	100.00	1.00	883.00	1,327	1,286	1,286		
Volume Calc	None	2.00	884.00	1,677	1,502	2,788		
		3.00	885.00	1,900	1,789	4,577		



IMP-10.19

Stage-Discharge

Only and / Only and	0		Orifices		0.15		
Culvert / Orifices	Culvert	1*	2*	3	Orifice Plate		
Rise, in	12	.6	2		Orifice Dia, in		
Span, in	12	.6	2		No. Orifices		
No. Barrels	1	1	1		Invert Elevation, ft		
Invert Elevation, ft	879.25	879.50	883.00		Height, ft		
Orifice Coefficient, Co	0.60	0.60	0.60		Orifice Coefficient, Co		
Length, ft	10						
Barrel Slope, %	1						
N-Value, n	0.013						
Maine	Dia au*		Weirs		A maillam.		
Weirs	Riser*	1	2	3	Ancillary		
Shape / Type	Circular				Exfiltration, in/hr 0.	30**	
Crest Elevation, ft	883.5						
Crest Length, ft	1.57						
Angle, deg							
Weir Coefficient, Cw	3.3						

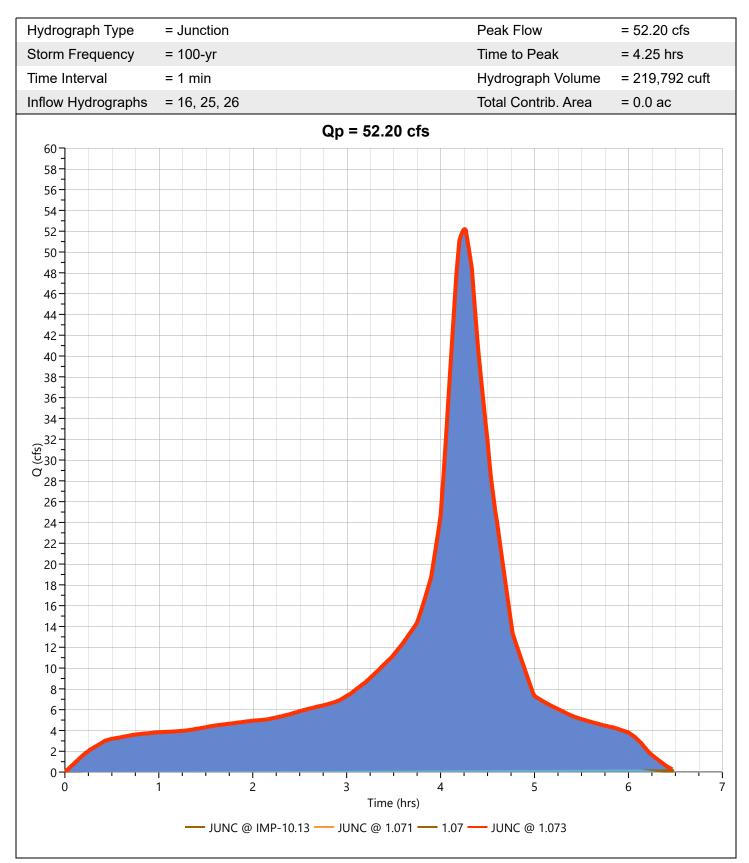

IMP-10.19

Stage-Storage-Discharge Summary

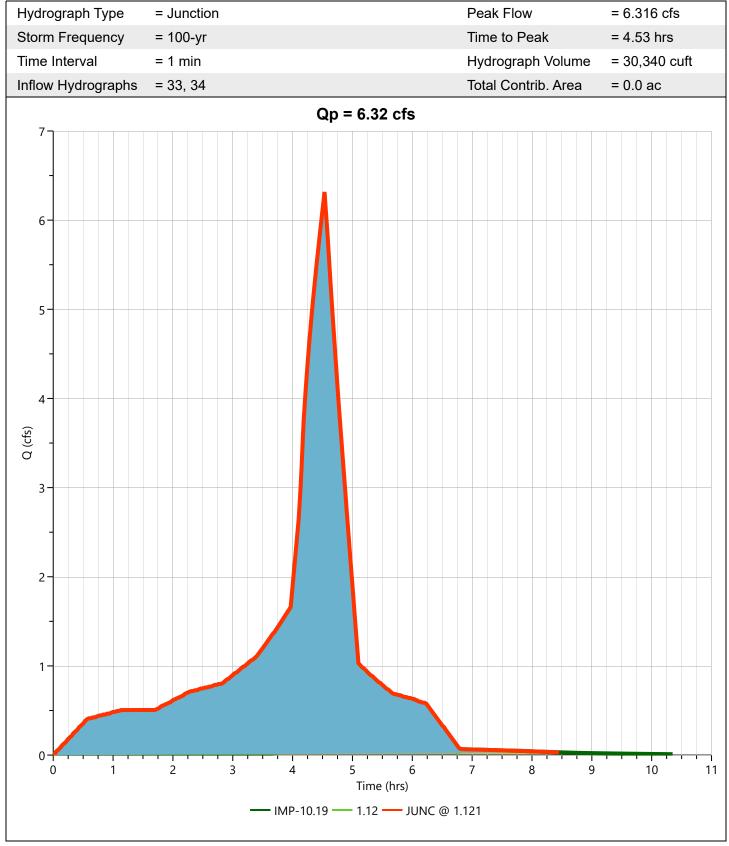
Stage	Elev.	Storage	Culvert	(Orifices, cf	s	Riser		Weirs, cfs		Pf Riser	Exfil	User	Total
Stage (ft)	(ft)	(cuft)	(cfs)	1	2	3	(cfs)	1	2	3	(cfs)	(cfs)	(cfs)	(cfs)
0.00	882.00	0.000	0.000	0.000	0.000		0.000					0.000		0.000
1.00	883.00	1,286	0.009 ic	0.009	0.000		0.000					0.009		0.019
2.00	884.00	2,788	0.860 ic	0.013	0.101		0.746 ic					0.012		0.871
3.00	885.00	4,577	1.453 ic	0.016	0.145		1.292 ic					0.013		1.467

IMP-10.19

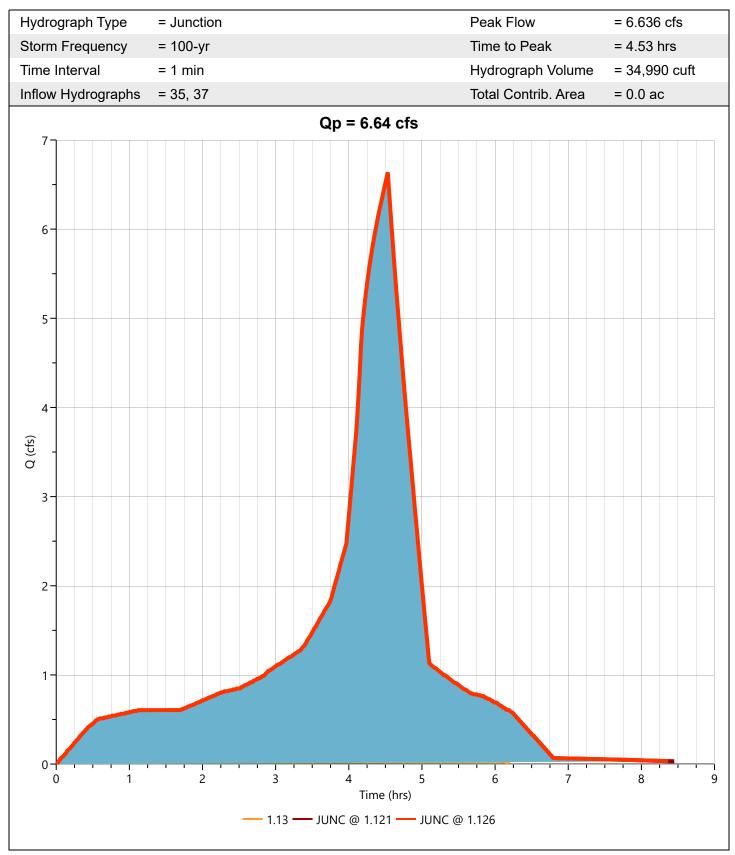
Pond Drawdown

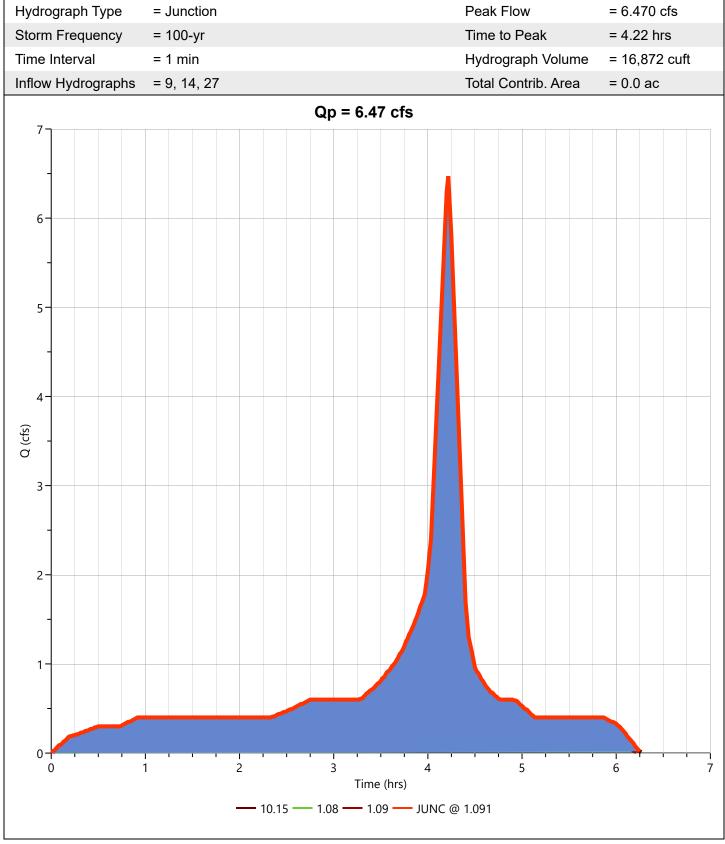

Post 1.12 Hyd. No. 34

Hydrograph Type	= Manual		Peak Flow	= 5.700 cfs	
Storm Frequency	= 100-yr		Time to Peak	= 4.53 hrs	
Time Interval = 1 min			Hydrograph Volume	= 27,132 cuft	
		Qp = 5.70 cfs			
6					
-					
			Λ		
5					
1					
4					
-					
O (cfs)					
α					
2					
-					
1-					
1 _					
0	1 2	3 4	5	6 7	
		Time (hrs)			
		59			

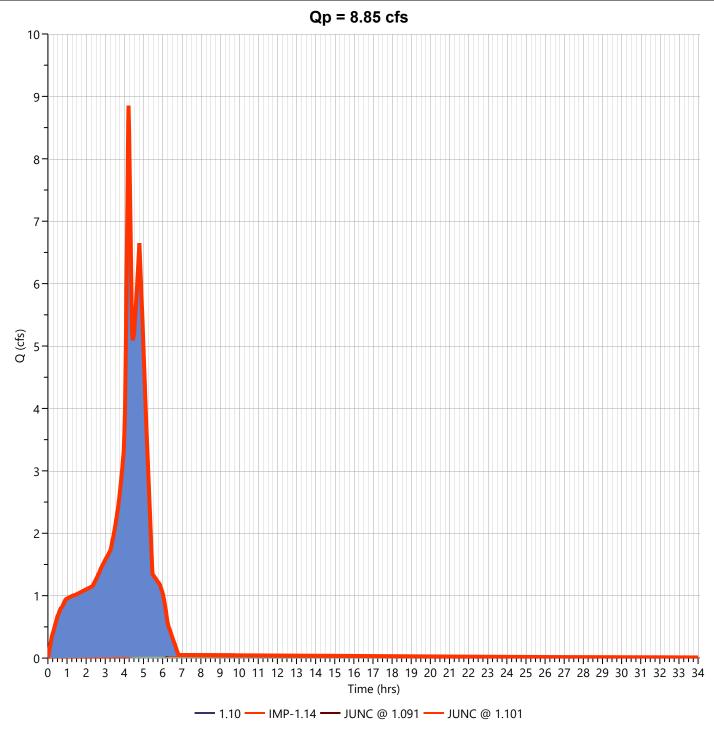

Post 1.13 Hyd. No. 35

Hydrograph Type	= Manual			Peak Flow	= 1.200 cfs	
Storm Frequency	= 100-yr			Time to Peak	= 4.17 hrs	
Time Interval	= 1 min			Hydrograph Volume	= 4,650 cuft	
		Qp =	1.20 cfs			
2						
1.9						
1.8						
1.7						
-						
1.6						
1.5						
1.4						
1.3						
-						
1.2						
1.1						
(Q) 1 -						
0.9						
-						
0.8						
0.7						
0.6						
0.5						
0.4						
0.3						
-						
0.2						
0.1						
0-0	1 2	3	4	5	6	
U	Ι	3	Time (hrs)	J	J	


Post JUNC @ 1.073

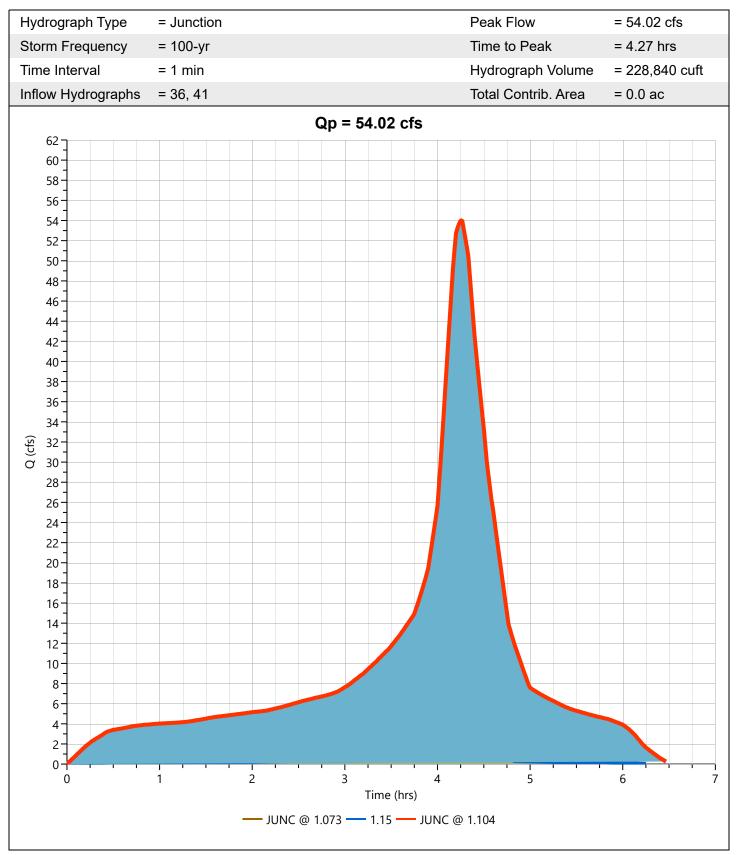

Post JUNC @ 1.121

Post JUNC @ 1.126



Post JUNC @ 1.091

Post JUNC @ 1.101


Hydrograph Type	= Junction	Peak Flow	= 8.852 cfs
Storm Frequency	= 100-yr	Time to Peak	= 4.22 hrs
Time Interval	= 1 min	Hydrograph Volume	= 52,108 cuft
Inflow Hydrographs	= 28, 30, 39	Total Contrib. Area	= 0.0 ac

Post 1.15 Hyd. No. 41

Hydrograph Type	= Manual		Peak Flow	= 2.100 cfs
Storm Frequency	= 100-yr		Time to Peak	= 4.35 hrs
Time Interval	= 1 min		Hydrograph Volume	= 9,048 cuft
		Qp = 2.10 cfs		
3 7		-		
			A	
2				
cfs)				
Q (cfs)				
1-				
0	· · · · · · · ·			
0	1 2	3 4 Time (hrs)	5	6 7
		66		

Post JUNC @ 1.104

Post CP # 1 Hyd. No. 43

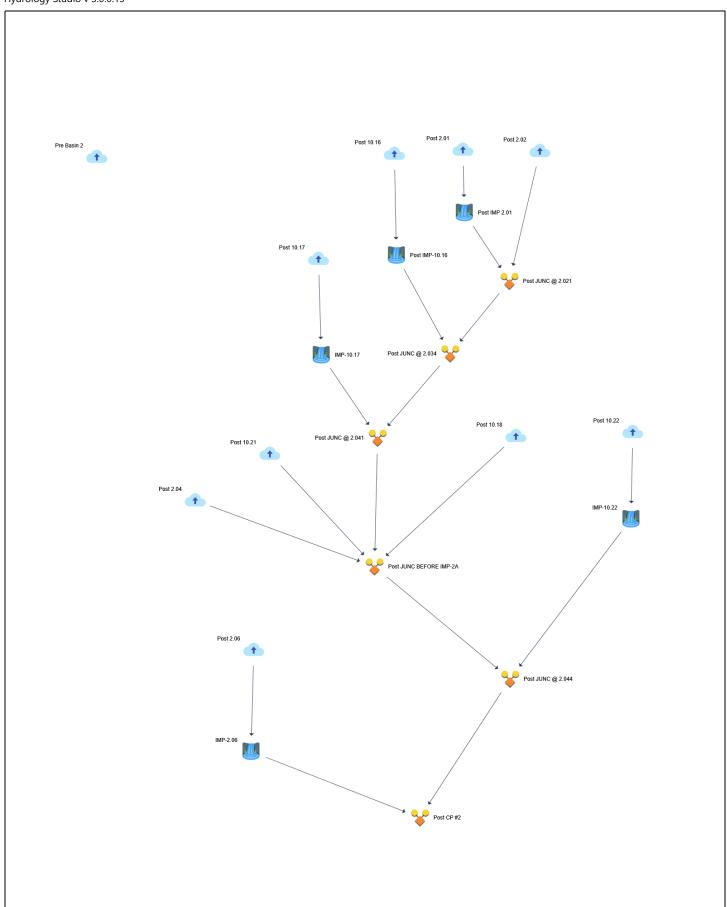

= 100-yr		Time to Deale		
	Time to Peak		= 4.25 hrs	
= 1 min		Hydrograph Volume	= 324,847 cuft	
= 32, 38, 40, 42		Total Contrib. Area	= 0.0 ac	
	Qp = 69.29 cfs			
	A			
2 3	4 5 Time (hrs)	6 7 8	9 1	
— 1.11 — JUNC @ 1.		UNC @ 1.104 —— CP # 1		
	2 3	Qp = 69.29 cfs 2 3 4 5 Time (hrs)	Qp = 69.29 cfs	

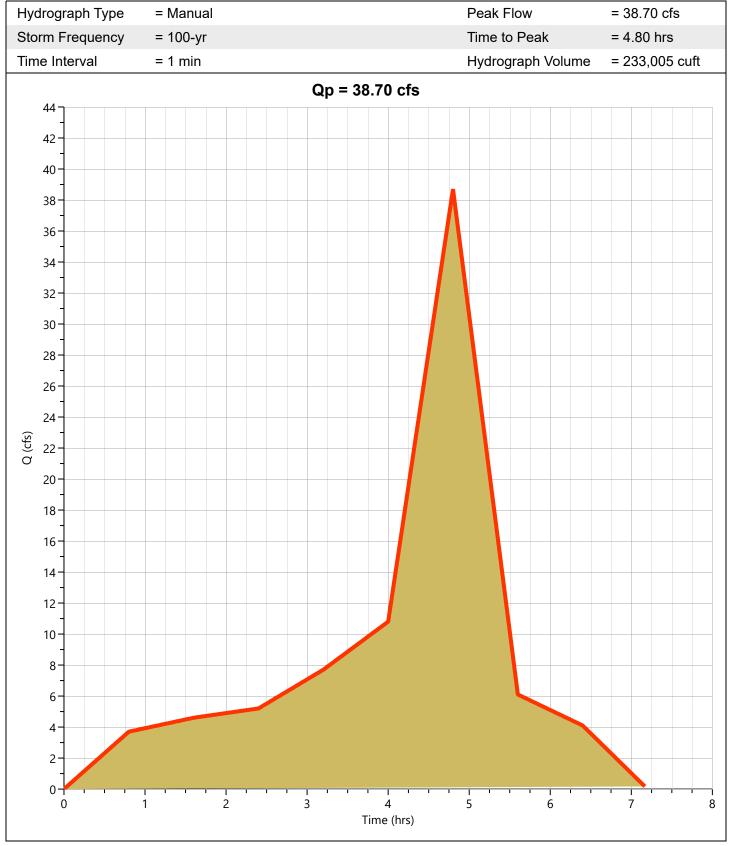
Table of Contents

Hydrology Studio v 3.0.0.13 12-17-2019

Bas	sin Model Schematic	1
Нус	Irograph by Return Period	. 2
100	- Year	
	Hydrograph Summary	3
	Hydrograph Reports	
	Hydrograph No. 1, Manual, Pre Basin 2	4
	Hydrograph No. 2, Manual, Post 10.16	5
	Hydrograph No. 3, Pond Route, Post IMP-10.16	6
	Detention Pond Reports - IMP-10.16	7
	Hydrograph No. 4, Manual, Post 10.17	11
	Hydrograph No. 5, Pond Route, IMP-10.17	12
	Detention Pond Reports - IMP-10.17	13
	Hydrograph No. 6, Manual, Post 10.18	17
	Hydrograph No. 7, Manual, Post 10.22	18
	Hydrograph No. 8, Pond Route, IMP-10.22	19
	Detention Pond Reports - IMP-10.22	20
	Hydrograph No. 9, Manual, Post 2.06	24
	Hydrograph No. 10, Pond Route, IMP-2.06	25
	Detention Pond Reports - IMP-2.06	26
	Hydrograph No. 11, Manual, Post 2.01	30
	Hydrograph No. 12, Manual, Post 2.02	31
	Hydrograph No. 13, Manual, Post 2.04	32
	Hydrograph No. 14, Manual, Post 10.21	33
	Hydrograph No. 15, Pond Route, Post IMP 2.01	34
	Detention Pond Reports - IMP 2.01	35
	Hydrograph No. 16, Junction, Post JUNC @ 2.021	39
	Hydrograph No. 18, Junction, Post JUNC @ 2.034	40
	Hydrograph No. 19, Junction, Post JUNC @ 2.041	41
	Hydrograph No. 20, Junction, Post JUNC BEFORE IMP-2A	42
	Hydrograph No. 21, Junction, Post JUNC @ 2.044	43
	Hydrograph No. 22 Junction, Post CP #2	44

Basin Model

Hydrograph by Return Period 12-17-2019


Hyd.	Hydrograph	Hydrograph				Peak Out	flow (cfs)			
No.	Туре	Name	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr
1	Manual	Pre Basin 2								38.70
2	Manual	Post 10.16								3.000
3	Pond Route	Post IMP-10.16								0.445
4	Manual	Post 10.17								1.400
5	Pond Route	IMP-10.17								1.265
6	Manual	Post 10.18								1.300
7	Manual	Post 10.22								8.100
8	Pond Route	IMP-10.22								0.176
9	Manual	Post 2.06								11.00
10	Pond Route	IMP-2.06								9.804
11	Manual	Post 2.01								2.800
12	Manual	Post 2.02								5.800
13	Manual	Post 2.04								7.600
14	Manual	Post 10.21								1.700
15	Pond Route	Post IMP 2.01								2.456
16	Junction	Post JUNC @ 2.021								8.196
18	Junction	Post JUNC @ 2.034								8.410
19	Junction	Post JUNC @ 2.041								8.844
20	Junction	Post JUNC BEFORE IMP-2A								17.17
21	Junction	Post JUNC @ 2.044								17.32
22	Junction	Post CP #2								25.57

Hydrograph 100-yr Summary

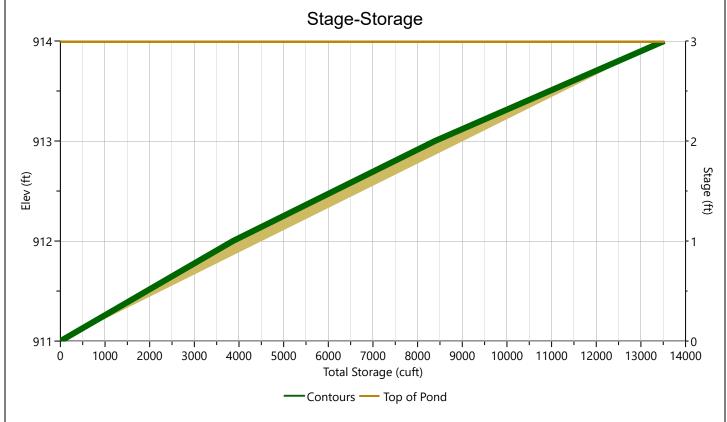
12-17-2019

Hyd. No.	Hydrograph Type	Hydrograph Name	Peak Flow (cfs)	Time to Peak (hrs)	Hydrograph Volume (cuft)	Inflow Hyd(s)	Maximum Elevation (ft)	Maximum Storage (cuft)
1	Manual	Pre Basin 2	38.70	4.80	233,005			
2	Manual	Post 10.16	3.000	4.40	11,242			
3	Pond Route	Post IMP-10.16	0.445	4.85	7,425	2	913.06	8,683
4	Manual	Post 10.17	1.400	4.25	4,050			
5	Pond Route	IMP-10.17	1.265	4.28	3,361	4	878.75	822
6	Manual	Post 10.18	1.300	4.27	4,037			
7	Manual	Post 10.22	8.100	4.25	24,378			
8	Pond Route	IMP-10.22	0.176	6.07	12,073	7	767.58	21,624
9	Manual	Post 2.06	11.00	4.50	62,100			
10	Pond Route	IMP-2.06	9.804	4.58	54,646	9	739.61	12,307
11	Manual	Post 2.01	2.800	4.40	10,663			
12	Manual	Post 2.02	5.800	4.50	25,020			
13	Manual	Post 2.04	7.600	4.40	35,046			
14	Manual	Post 10.21	1.700	4.20	4,620			
15	Pond Route	Post IMP 2.01	2.456	4.45	9,303	11	1021.38	3,197
16	Junction	Post JUNC @ 2.021	8.196	4.50	34,323	12, 15		
18	Junction	Post JUNC @ 2.034	8.410	4.50	41,748	3, 16		
19	Junction	Post JUNC @ 2.041	8.844	4.50	45,109	5, 18		
20	Junction	Post JUNC BEFORE IMP-2A	17.17	4.40	88,812	6, 13, 14, 19		
21	Junction	Post JUNC @ 2.044	17.32	4.40	100,885	8, 20		
22	Junction	Post CP #2	25.57	4.40	155,531	10, 21		

Pre Basin 2 Hyd. No. 1

Post 10.16 Hyd. No. 2

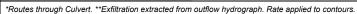
Hydrograph Type	= Manual	Peak Flow	= 3.000 cfs		
Storm Frequency	= 100-yr	Time to Peak	= 4.40 hrs		
Time Interval	= 1 min	Hydrograph Volume			
	Qp =	3.00 cfs			
47					
3-					
-					
(\$j) 2 -					
σ					
1 -					
0					
	1 2 3	Time (hrs)	6 7		

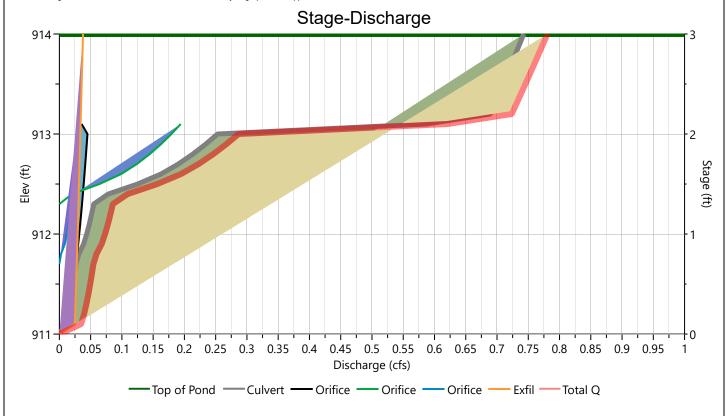

Post IMP-10.16

Hydrograph Type	= Pond Route		Peak Flow	= 0.445 cfs
Storm Frequency	= 100-yr		Time to Peak	= 4.85 hrs
Time Interval	= 1 min		Hydrograph Volume	= 7,425 cuft
Inflow Hydrograph	= 2 - 10.16		Max. Elevation	= 913.06 ft
Pond Name	= IMP-10.16		Max. Storage	= 8,683 cuft
Pond Routing by Storage Inc	dication Method		Center of mas	s detention time = 7.49 hrs
		Qp = 0.45 cfs		
4		•		
-				
3				
-				
(\$) ₂				
-				
1-				
-				
0				
0 2 4	6 8 10 12	14 16 18 20 2 Time (hrs)	22 24 26 28	30 32 34
		— 10.16 — IMP-10.16		
		10.10		

IMP-10.16

Stage-Storage

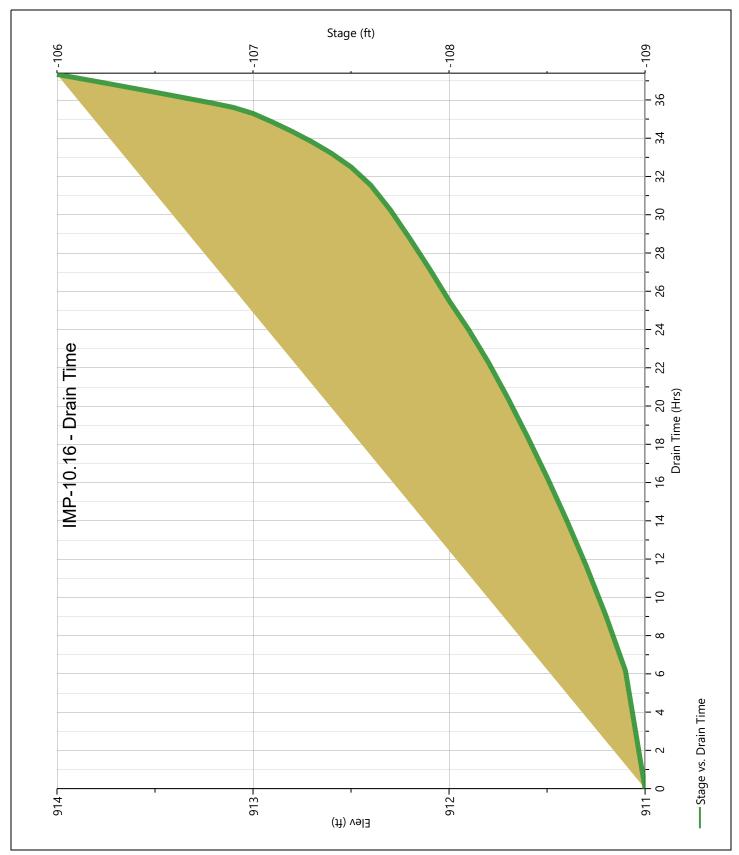

User Defined Contours				Stage / Stora	ge Table	
Description	Input	Stage (ft)	Elevation (ft)	Contour Area (sqft)	Incr. Storage (cuft)	Total Storage (cuft)
Bottom Elevation, ft	911.00					
Voids (%)	100.00	0.00	911.00	3,500	0.000	0.000
Volus (78)	100.00	1.00	912.00	4,225	3,863	3,863
Volume Calc	None	2.00	913.00	4,824	4,525	8,387
		3.00	914.00	5,450	5,137	13,524
		-				



IMP-10.16

Stage-Discharge

Out out / Outlines	Orifices Culvert				Ovision Plata		
Culvert / Orifices	Cuivert	1*	2*	3*	Orifice Plate		
Rise, in	12	1.1	3	1	Orifice Dia, in		
Span, in	12	1.1	3	1	No. Orifices		
No. Barrels	1	1	1	1	Invert Elevation, ft		
Invert Elevation, ft	908.25	908.50	912.30	911.75	Height, ft		
Orifice Coefficient, Co	0.60	0.60	0.60	0.60	Orifice Coefficient, Co		
Length, ft	100						
Barrel Slope, %	1						
N-Value, n	0.150						
Maine	Diagr*	Weirs		A waillaw.			
Weirs	Riser*	1	2	3	Ancillary		
Shape / Type	Circular				Exfiltration, in/hr	0.30**	
Crest Elevation, ft	913						
Crest Length, ft	3.14						
Angle, deg							
Weir Coefficient, Cw	3.3						


IMP-10.16

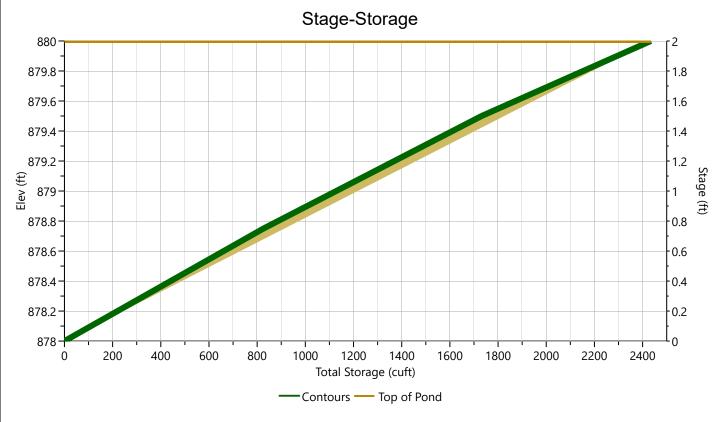
Stage-Storage-Discharge Summary


Stage (ft) Elev. (ft) Storage (cuft) Cofs 1 2 3 2 3 1 2 3 2	Total (cfs) 0.000 0.073 0.287 0.781
1.00 912.00 3,863 0.044 oc 0.032 0.000 0.012 0.000 2.00 913.00 8,387 0.253 oc 0.045 0.179 0.029 0.000	0.073 0.287
2.00 913.00 8,387 0.253 oc 0.045 0.179 0.029 0.000 0.034	0.287
3.00 914.00 13,524 0.743 oc 0.000 0.000 0.000 0.000 0.000 0.000	0.781

IMP-10.16

Pond Drawdown

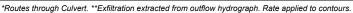
Post 10.17 Hyd. No. 4

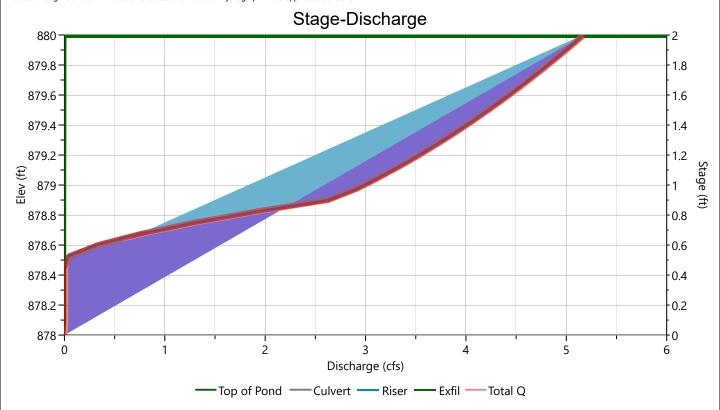

IMP-10.17 Hyd. No. 5

Hydrograph Type	= Pond Route		Peak Flow	= 1.265 cfs
Storm Frequency	= 100-yr		Time to Peak	= 4.28 hrs
Time Interval	= 1 min		Hydrograph Volume	= 3,361 cuft
Inflow Hydrograph	= 4 - 10.17		Max. Elevation	= 878.75 ft
Pond Name	= IMP-10.17		Max. Storage	= 822 cuft
Pond Routing by Storage Inc	dication Method		Center of ma	ss detention time = 33 min
		Qp = 1.27 cfs		
2				
1.9				
1.8				
1.7				
1.6				
1.5				
-				
1.4 -				
1.3				
1.2				
1.1				
(c) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
0.9				
0.8				
0.7				
0.6				
4				
0.5				
0.4				
0.3				
0.2				
0.1				
0		· · · · · · ·	· · · · · · · · ·	
0	1 2	3 4 Time (hrs)	5	6
		— 10.17 — IMP-10.17		

IMP-10.17

Stage-Storage

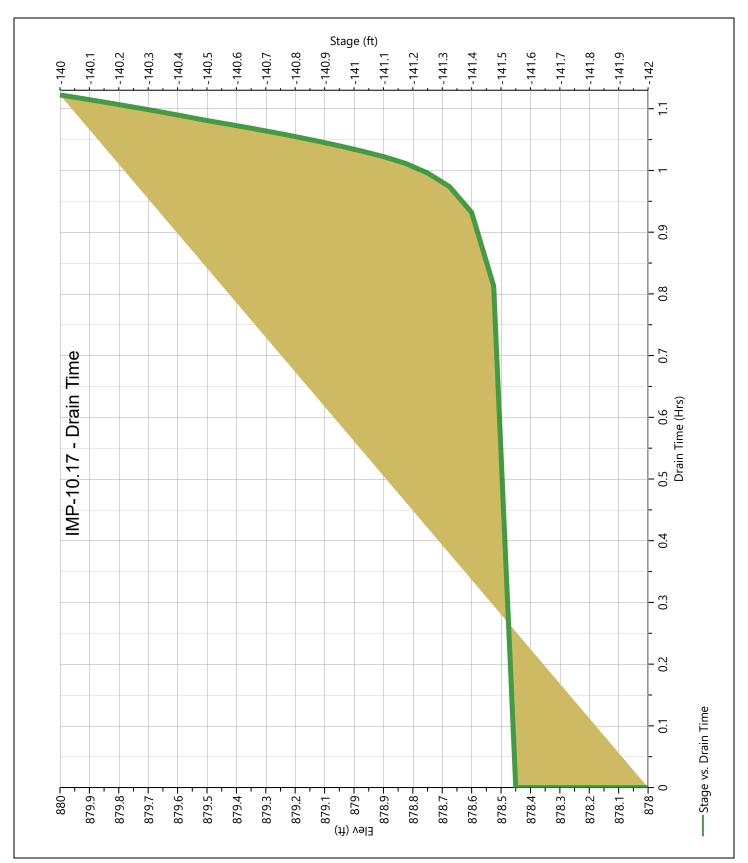

User Defined Contou	rs			Stage / Stora	ge Table	
Description	Input	Stage (ft)	Elevation (ft)	Contour Area (sqft)	Incr. Storage (cuft)	Total Storage (cuft)
Bottom Elevation, ft	878.00	0.00	878.00		0.000	0.000
Voids (%)	100.00	0.00	878.75	1,100 1,103	826	826
Volume Calc	None	1.50	879.50	1,311	905	1,732
		2.00	880.00	1,500	703	2,434
		<u>I</u>				<u> </u>



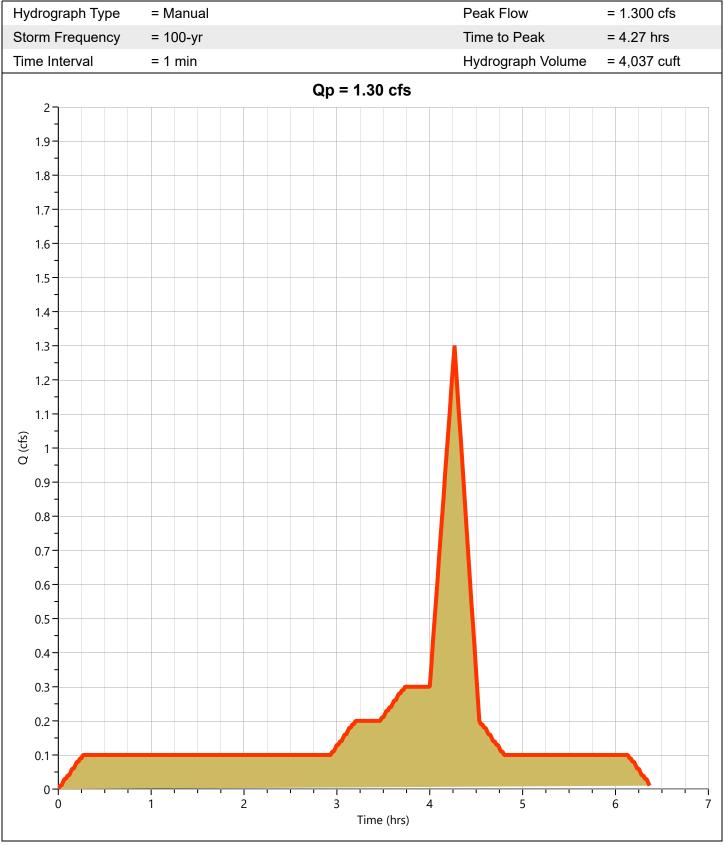
IMP-10.17

Stage-Discharge

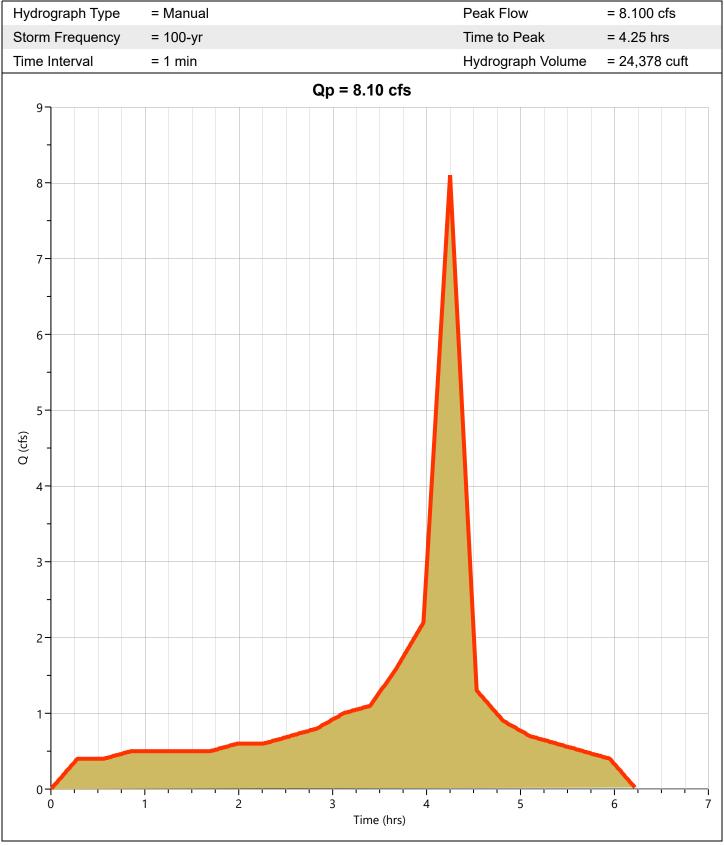
Cultivant / Onificas	Culvent		Orifices		Ovision Bloto	
Culvert / Orifices	Culvert	1	2	3	Orifice Plate	
Rise, in	12				Orifice Dia, in	
Span, in	12				No. Orifices	
No. Barrels	1				Invert Elevation, ft	
Invert Elevation, ft	875.25				Height, ft	
Orifice Coefficient, Co	0.60				Orifice Coefficient, Co	
Length, ft	40					
Barrel Slope, %	1					
N-Value, n	0.015					
Weirs	Riser*		Weirs		Anaillam	
vveirs	Kisei	1	2	3	Ancillary	
Shape / Type	Circular				Exfiltration, in/hr	0.30**
Crest Elevation, ft	878.5					
Crest Length, ft	3.14					
Angle, deg						
Weir Coefficient, Cw	3.3					


IMP-10.17

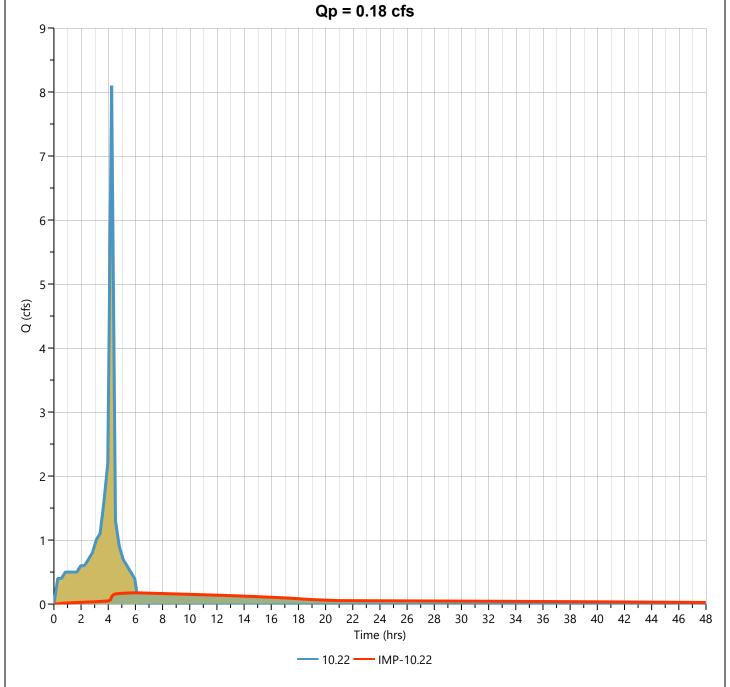
Stage-Storage-Discharge Summary


Stage	Elev.	Storage	Culvert	(Orifices, cf	s	Riser		Weirs, cfs	i	Pf Riser	Exfil	User	Total
(ft)	(ft)	(cuft)	(cfs)	1	2	3	(cfs)	1	2	3	(cfs)	(cfs)	(cfs)	(cfs)
0.00	878.00	0.000	0.000				0.000					0.000		0.000
0.75	878.75	826	1.295 oc				1.295					0.008		1.303
1.50	879.50	1,732	4.219 oc				4.219 ic					0.009		4.228
2.00	880.00	2,434	5.167 oc				5.167 ic					0.010		5.177

IMP-10.17

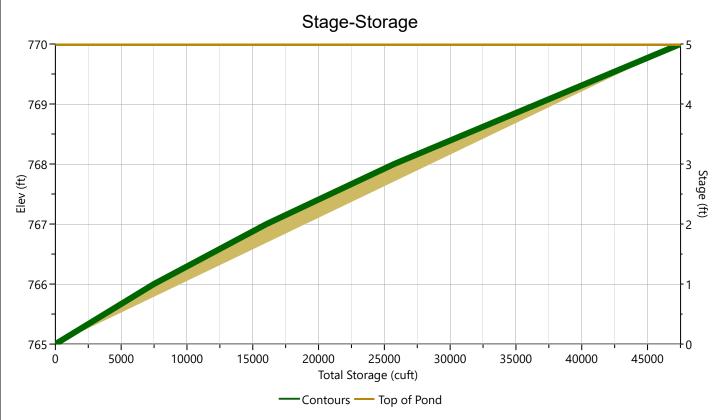

Pond Drawdown

Post 10.18 Hyd. No. 6



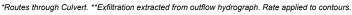
Post 10.22 Hyd. No. 7

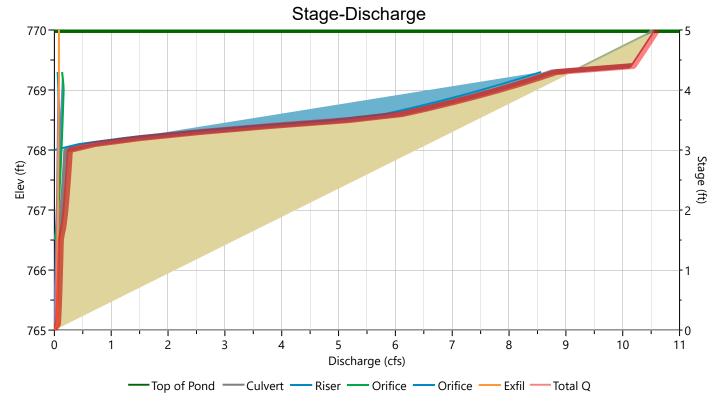
IMP-10.22 Hyd. No. 8


Hydrograph Type	= Pond Route	Peak Flow	= 0.176 cfs
Storm Frequency	= 100-yr	Time to Peak	= 6.07 hrs
Time Interval	= 1 min	Hydrograph Volume	= 12,073 cuft
Inflow Hydrograph	= 7 - 10.22	Max. Elevation	= 767.58 ft
Pond Name	= IMP-10.22	Max. Storage	= 21,624 cuft
Pond Routing by Storage Inc	dication Method	Center of mass	detention time = 14.44 hrs

IMP-10.22

Stage-Storage

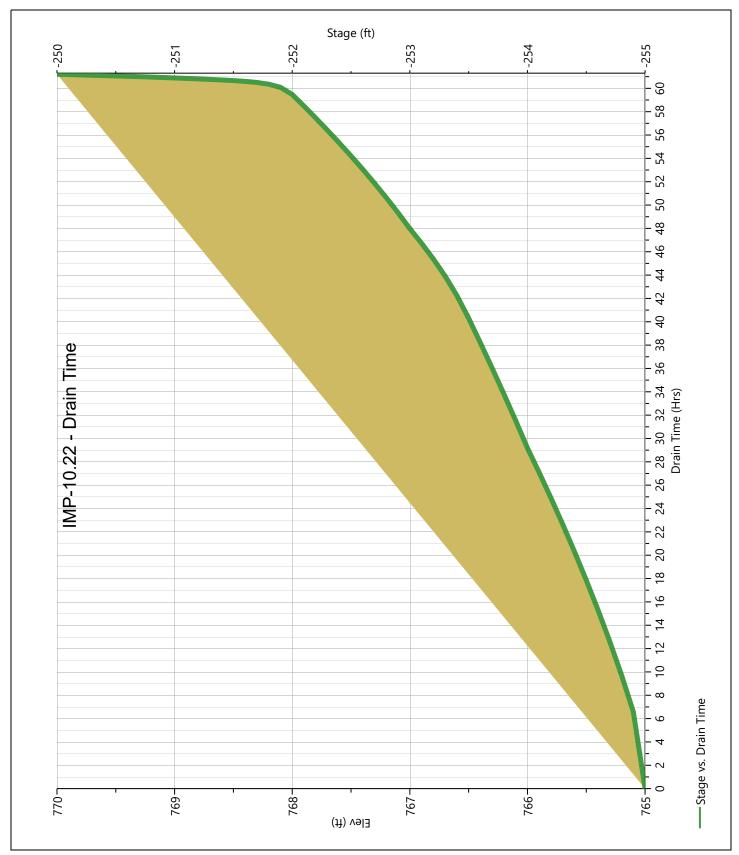

User Defined Contour	's	(ft) (ft) (sqft) (cuft) (cuft) 0.00 765.00 6,960 0.000 0.000							
Description	Input					Total Storage			
Bottom Elevation, ft	765.00								
Voids (%)	100.00								
Voids (70)	100.00								
Volume Calc	None								
		3.00	768.00	10,275	9,695	25,741			
		4.00	769.00	11,494	10,885	36,625			
		5.00	770.00	10,275	10,885	47,510			



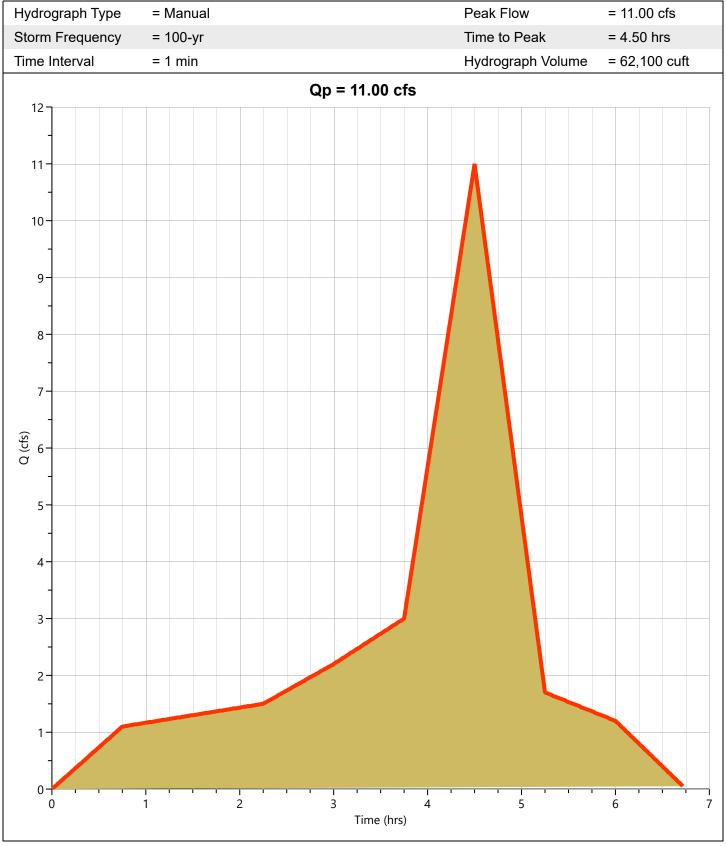
IMP-10.22

Stage-Discharge

Cultivant / Onificas	Cultivant		Orifices		Orifice Blots	
Culvert / Orifices	Culvert	1	2*	3*	Orifice Plate	
Rise, in	12		2	1.3	Orifice Dia, in	
Span, in	12		2	1.3	No. Orifices	
No. Barrels	1		1	1	Invert Elevation, ft	
Invert Elevation, ft	761.75		766.50	762.00	Height, ft	
Orifice Coefficient, Co	0.60		0.60	0.60	Orifice Coefficient, Co	
Length, ft	15					
Barrel Slope, %	1					
N-Value, n	0.013					
Waina	Riser*		Weirs		Anaillam	
Weirs	Riser	1	2	3	Ancillary	
Shape / Type	Circular				Exfiltration, in/hr	0.30**
Crest Elevation, ft	768					
Crest Length, ft	4.19					
Angle, deg						
Weir Coefficient, Cw	3.3					


IMP-10.22

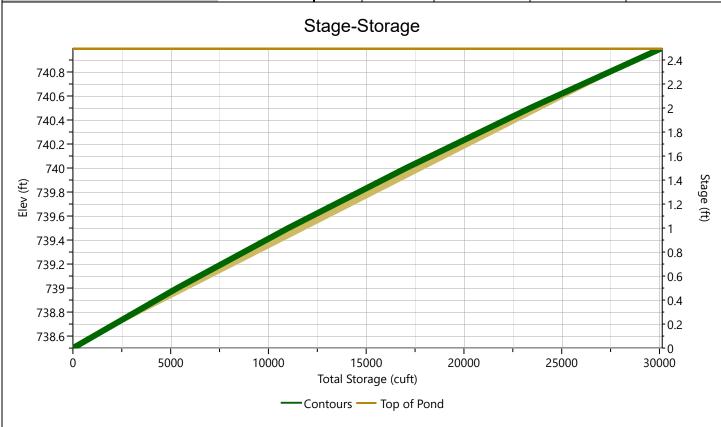
Stage-Storage-Discharge Summary


Stage	Elev.	Storage	Culvert	C	Orifices, cf	's	Riser		Weirs, cfs		Pf Riser	Exfil	User	Total
(ft)	(ft)	(cuft)	(cfs)	1	2	3	(cfs)	1	2	3	(cfs)	(cfs)	(cfs)	(cfs)
0.00	765.00	0.000	0.000		0.000	0.000	0.000					0.000		0.000
1.00	766.00	7,485	0.044 ic		0.000	0.044	0.000					0.056		0.100
2.00	767.00	16,046	0.131 ic		0.068	0.063	0.000					0.063		0.194
3.00	768.00	25,741	0.202 ic		0.125	0.077	0.000					0.071		0.273
4.00	769.00	36,625	7.746 ic		0.163	0.071	7.512 ic					0.080		7.826
5.00	770.00	47,510	10.53 ic		0.000	0.000	0.000					0.081		10.61

IMP-10.22

Pond Drawdown

Post 2.06 Hyd. No. 9

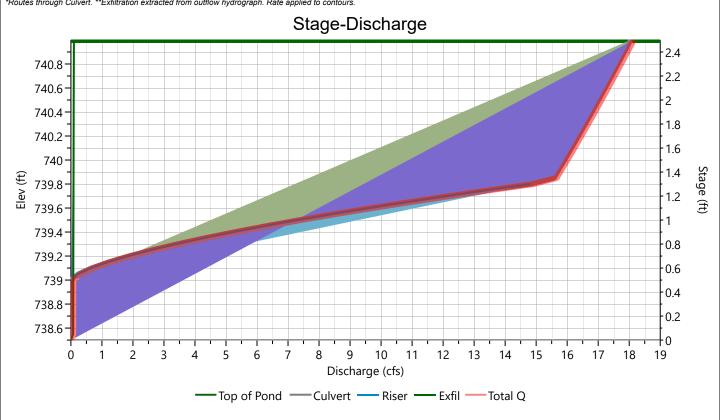

IMP-2.06 Hyd. No. 10

Hydrograph Type	= Pond Route		Peak Flow	= 9.804 cfs
Storm Frequency	= 100-yr		Time to Peak	= 4.58 hrs
Time Interval	= 1 min		Hydrograph Volume	= 54,646 cuft
Inflow Hydrograph	= 9 - 2.06		Max. Elevation	= 739.61 ft
Pond Name	= IMP-2.06		Max. Storage	= 12,307 cuft
Pond Routing by Storage In	dication Method		Center of ma	ss detention time = 32 min
		Qp = 9.80 cfs		
127		-		
1				
11				
10				
10				
9				
-				
8-				
-				
7 -				
-				
(\$ <u>f</u>)				
Q (cfs)				
5				
4				
-				
3				
-				
2				
-				
1				
0				
_1				
-1 	2	3 4	5 6	7 8
		Time (hrs)		
		— 2.06 — IMP-2.06		
		25		

IMP-2.06

Stage-Storage

User Defined Contou	rs			Stage / Stora	ge Table	
Description	Input	Stage (ft)	Elevation (ft)	Contour Area (sqft)	Incr. Storage (cuft)	Total Storage (cuft)
Bottom Elevation, ft	738.50					
Voids (%)	100.00	0.00	738.50	10,344	0.000	0.000
Volus (%)	100.00	0.50	739.00	11,014	5,340	5,340
Volume Calc	None	1.00	739.50	11,699	5,678	11,018
		1.50	740.00	12,397	6,024	17,042
		2.00	740.50	13,000	6,349	23,391
		2.50	741.00	14,000	6,750	30,141

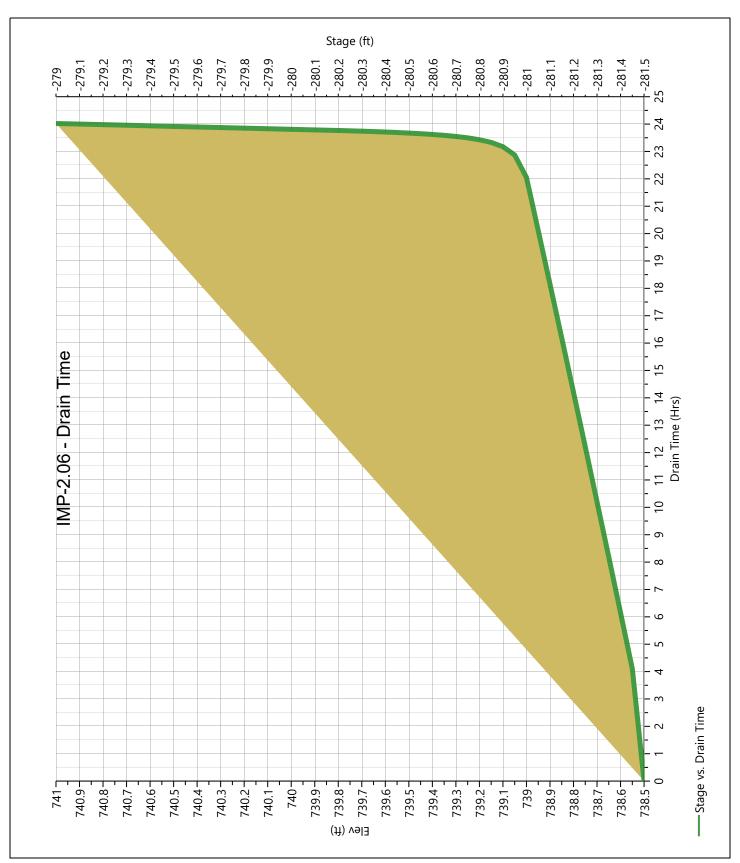


IMP-2.06

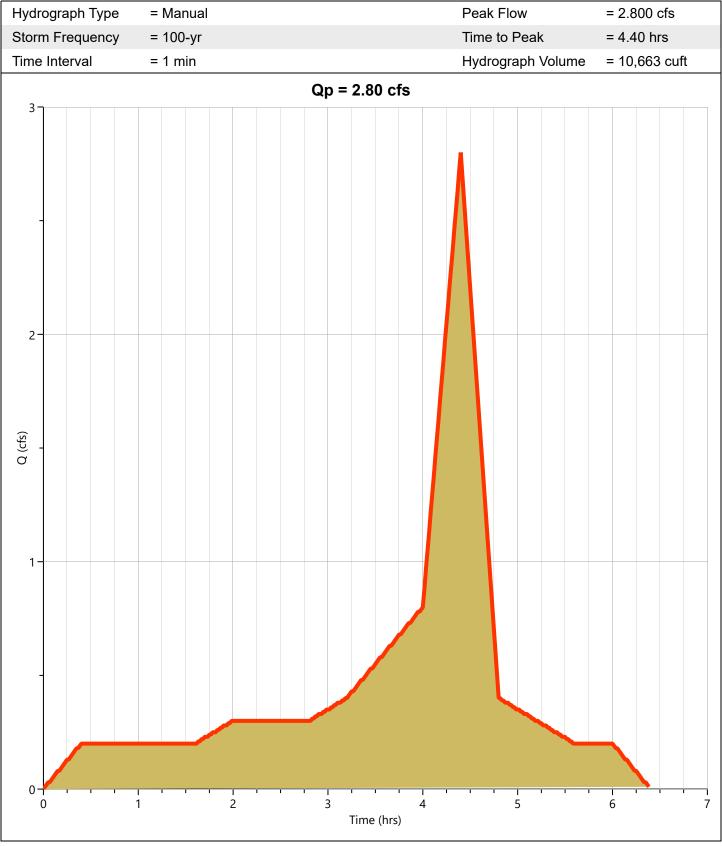
Stage-Discharge

Out out / Outlines	Ondrant		Orifices		Outtine Diete		
Culvert / Orifices	Culvert	1	2	3	Orifice Plate		
Rise, in	18				Orifice Dia, in		
Span, in	18				No. Orifices		
No. Barrels	1				Invert Elevation, ft		
Invert Elevation, ft	735.75				Height, ft		
Orifice Coefficient, Co	0.60				Orifice Coefficient, Co		
Length, ft	16						
Barrel Slope, %	1						
N-Value, n	0.012						
Weirs	Riser*		Weirs		Ancillon	No. Orifices nvert Elevation, ft Height, ft	
weirs	Riser	1	2	3	Ancillary		
Shape / Type	Circular				Exfiltration, in/hr	0.30**	
Crest Elevation, ft	739						
Crest Length, ft	6.28						
Angle, deg							
Weir Coefficient, Cw	3.3						

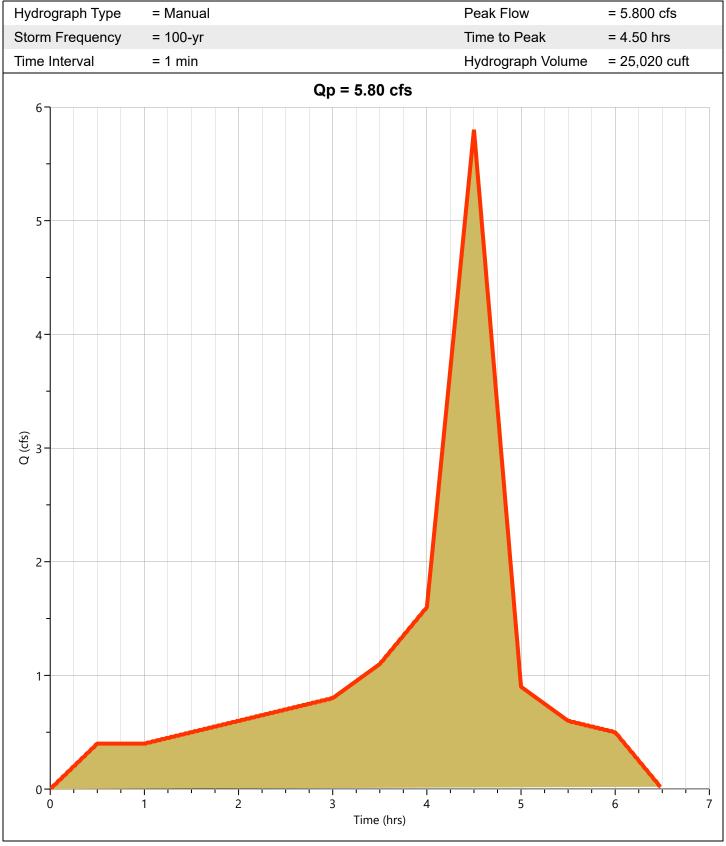
*Routes through Culvert. **Exfiltration extracted from outflow hydrograph. Rate applied to contours.

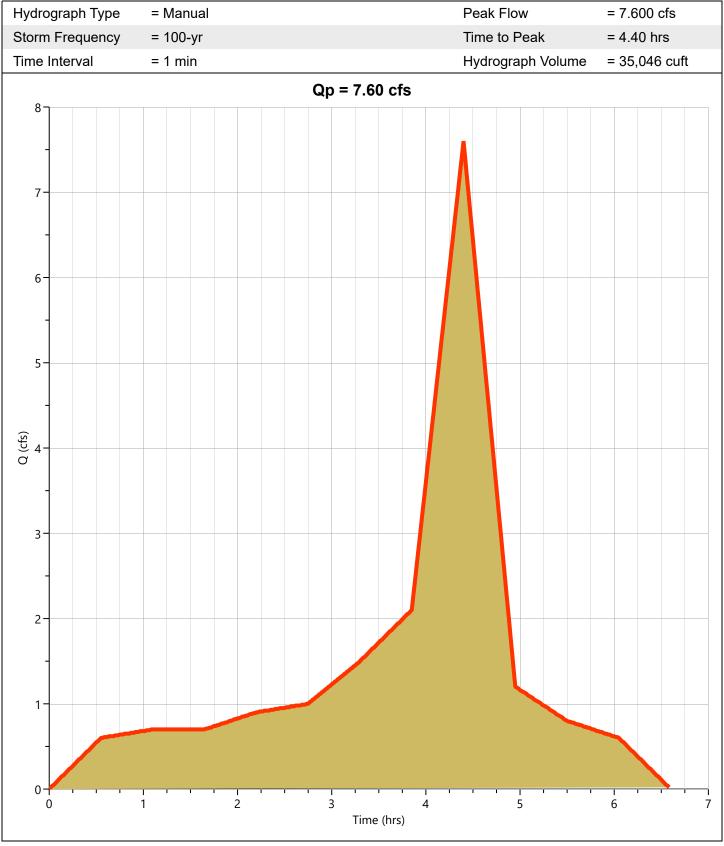


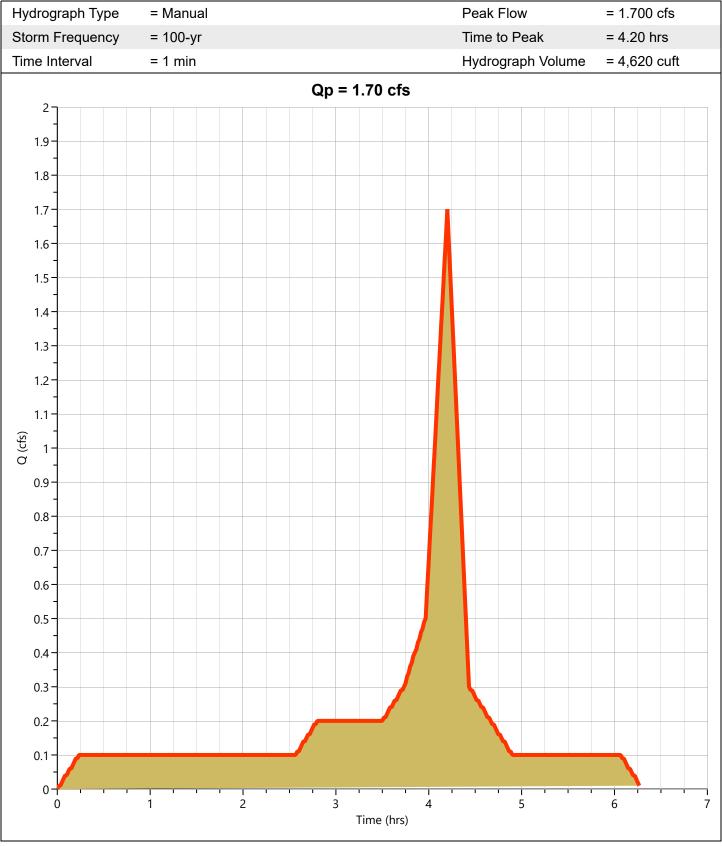
IMP-2.06


Stage-Storage-Discharge Summary

(ft) (ft) (cfs) (cfs) 1 2 3 (cfs) 1 2 3 (cfs) (c	Stage	Elev.	Storage	Culvert	(Orifices, cf	s	Riser		Weirs, cfs	i	Pf Riser	Exfil	User	Total
0.50 739.00 5,340 0.000 ic 0.000 0.000 1.00 739.50 11,018 7.327 ic 7.327 0.081 1.50 740.00 17,042 15.92 ic 0.000 0.000 0.006 2.00 740.50 23,391 17.02 ic 0.000 0.000	(ft)	(ft)	(cuft)	(cfs)	1	2	3	(cfs)	1	2	3	(cfs)	(cfs)	(cfs)	(cfs)
1.00 739.50 11,018 7.327 ic 7.327 0.081 1.50 740.00 17,042 15.92 ic 0.000 0.086 2.00 740.50 23,391 17.02 ic 0.000 0.090	0.00	738.50	0.000	0.000				0.000					0.000		0.000
1.50 740.00 17,042 15.92 ic 0.000 0.086 2.00 740.50 23,391 17.02 ic 0.000 0.090	0.50	739.00	5,340	0.000 ic				0.000					0.076		0.076
2.00 740.50 23,391 17.02 ic 0.000 0.000 0.090	1.00	739.50	11,018	7.327 ic				7.327					0.081		7.408
	1.50	740.00	17,042	15.92 ic				0.000					0.086		16.00
2.50 741.00 30,141 18.05 ic 0.000 0.	2.00	740.50	23,391	17.02 ic				0.000					0.090		17.11
	2.50	741.00	30,141	18.05 ic				0.000					0.097		18.14

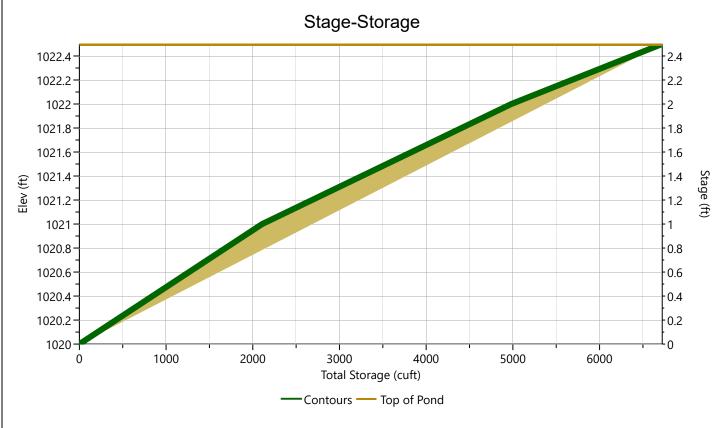

IMP-2.06 Pond Drawdown


Post 2.01 Hyd. No. 11


Post 2.02 Hyd. No. 12

Post 2.04 Hyd. No. 13

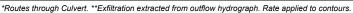
Post 10.21 Hyd. No. 14

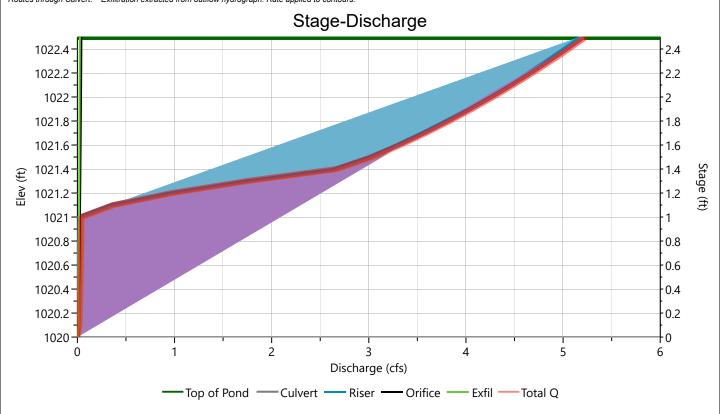

Post IMP 2.01 Hyd. No. 15

Hydrograph Type	= Pond Route	Peak Flow	= 2.456 cfs
Storm Frequency	= 100-yr	Time to Peak	= 4.45 hrs
Time Interval	= 1 min	Hydrograph Volume	= 9,303 cuft
Inflow Hydrograph	= 11 - 2.01	Max. Elevation	= 1021.38 ft
Pond Name	= IMP 2.01	Max. Storage	= 3,197 cuft
Pond Routing by Storage India	cation Method	Center of ma	ss detention time = 45 min
	Qp = 2.46 cfs		
2- (cts) O			
0 1 2 3	3 4 5 6 7 8 9 10 11 Time (hrs)	12 13 14 15 16	17 18 19 20
	—— 2.01 —— IMP 2.01		

IMP 2.01

Stage-Storage

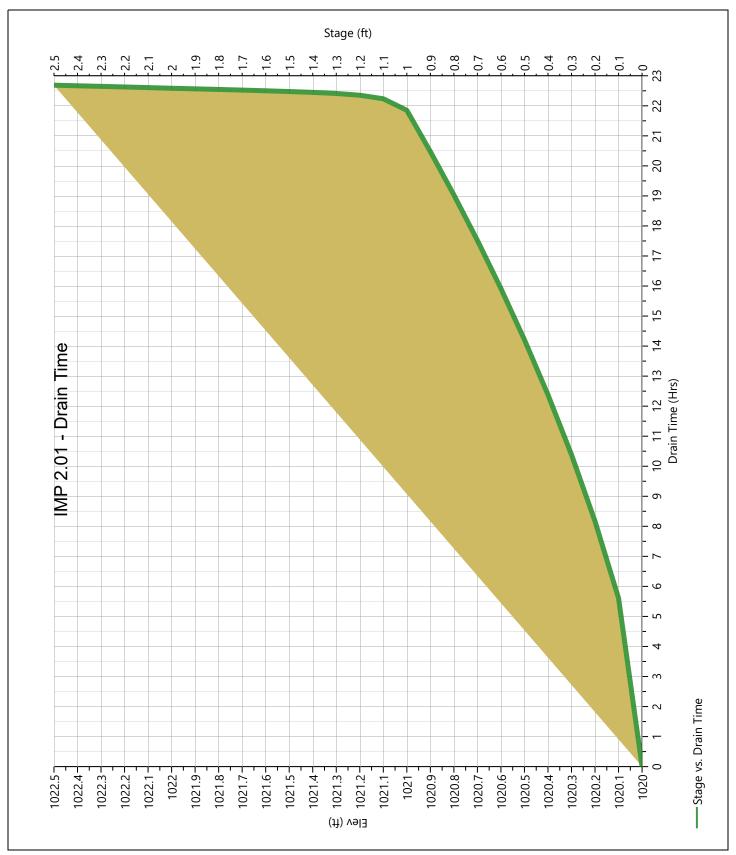

User Defined Contou			Stage / Stora	ge Table		
Description	Input	Stage (ft)	Elevation (ft)	Contour Area (sqft)	Incr. Storage (cuft)	Total Storage (cuft)
Bottom Elevation, ft	1020.00					
Voids (%)	100.00	0.00 1.00	1020.00 1021.00	1,740 2,477	0.000 2,109	0.000 2,109
		2.00	1021.00	3,271	2,874	4,983
Volume Calc	None	2.50	1022.50	3,690	1,740	6,723
				,	, -	-, -



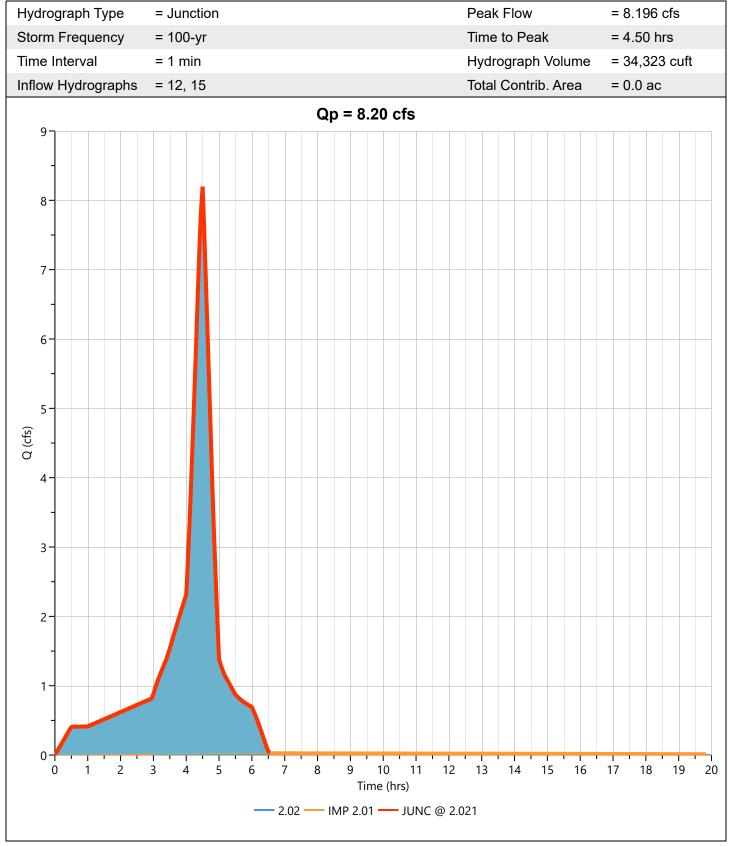
IMP 2.01

Stage-Discharge

Codecart / Outlines	Culvent		Orifices		Ovision Diete	- Dista	
Culvert / Orifices	Culvert	1*	2	3	Orifice Plate		
Rise, in	12	1			Orifice Dia, in		
Span, in	12	1			No. Orifices		
No. Barrels	1	1			Invert Elevation, ft		
Invert Elevation, ft	1015.50	1015.75			Height, ft		
Orifice Coefficient, Co	0.60	0.60			Orifice Coefficient, Co		
Length, ft	68						
Barrel Slope, %	2						
N-Value, n	0.013						
Weirs	Riser*		Weirs		Anoillant	:11 a m .	
weirs	Kiser	1	2	3	Ancillary		
Shape / Type	Circular				Exfiltration, in/hr	0.30**	
Crest Elevation, ft	1021						
Crest Length, ft	3.14						
Angle, deg							
Weir Coefficient, Cw	3.3						

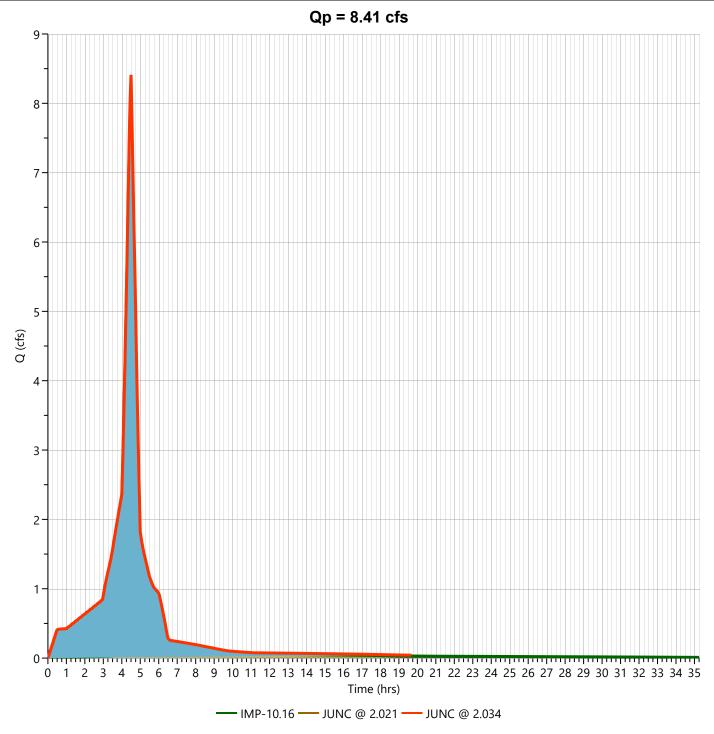


IMP 2.01

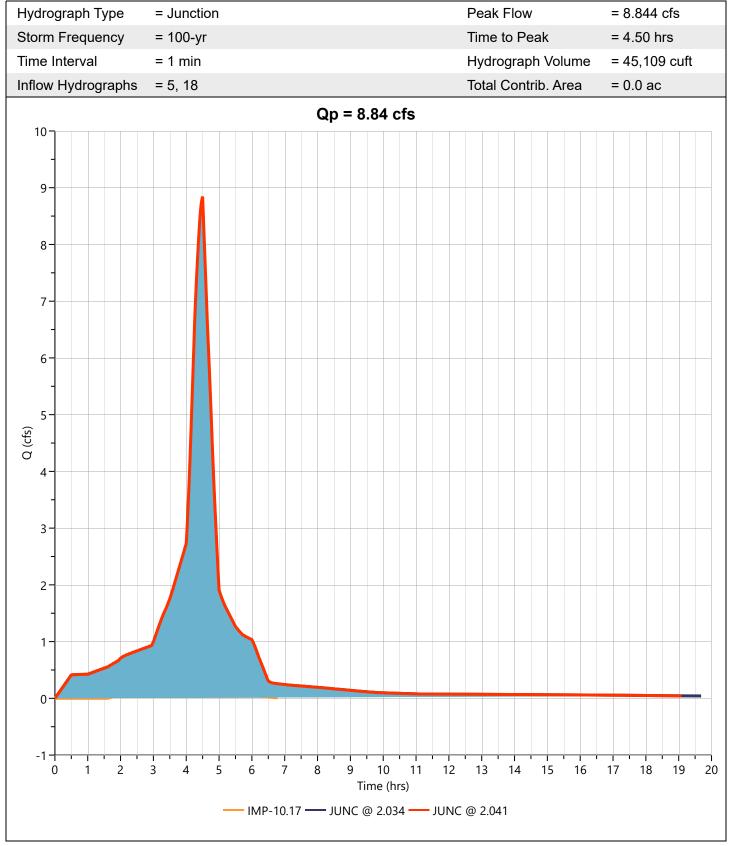

Stage-Storage-Discharge Summary

Stage	Elev.	Storage	Culvert	(Orifices, cf	s	Riser Weirs, cfs		Riser Weirs, cfs		Riser Weirs, cfs Pf Riser Exfi	Exfil	User	Total
(ft)	(ft)	(cuft)	(cfs)	1	2	3	(cfs)	1	2	3	(cfs)	(cfs)	(cfs)	(cfs)
0.00	1020.00	0.000	0.000	0.000			0.000					0.000		0.000
1.00	1021.00	2,109	0.026 oc	0.026			0.000					0.017		0.043
2.00	1022.00	4,983	4.256 oc	0.037			4.219 ic					0.023		4.278
2.50	1022.50	6,723	5.208 oc	0.042			5.167 ic					0.026		5.234

IMP 2.01 Pond Drawdown

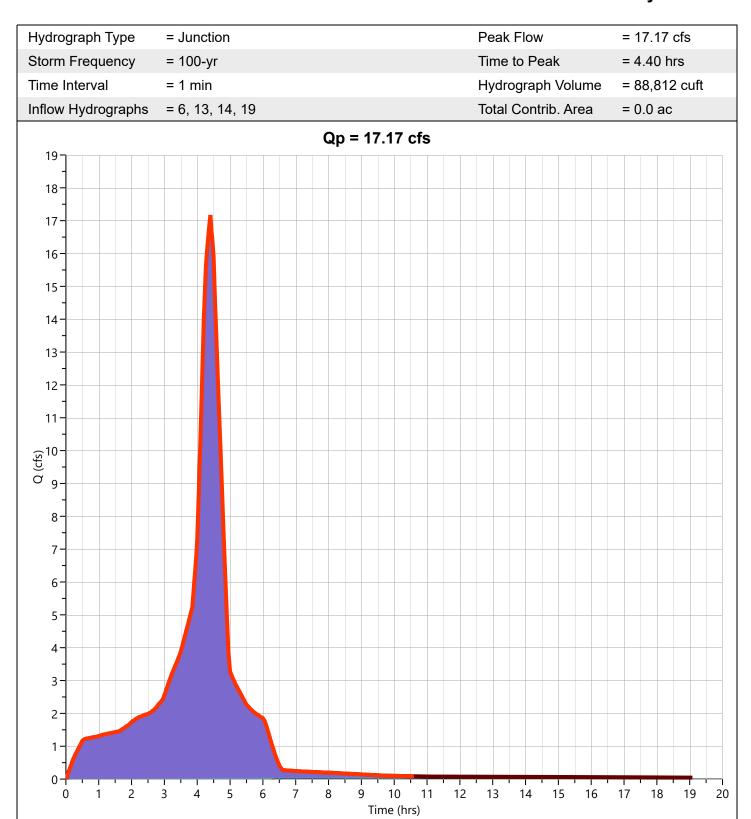


Post JUNC @ 2.021



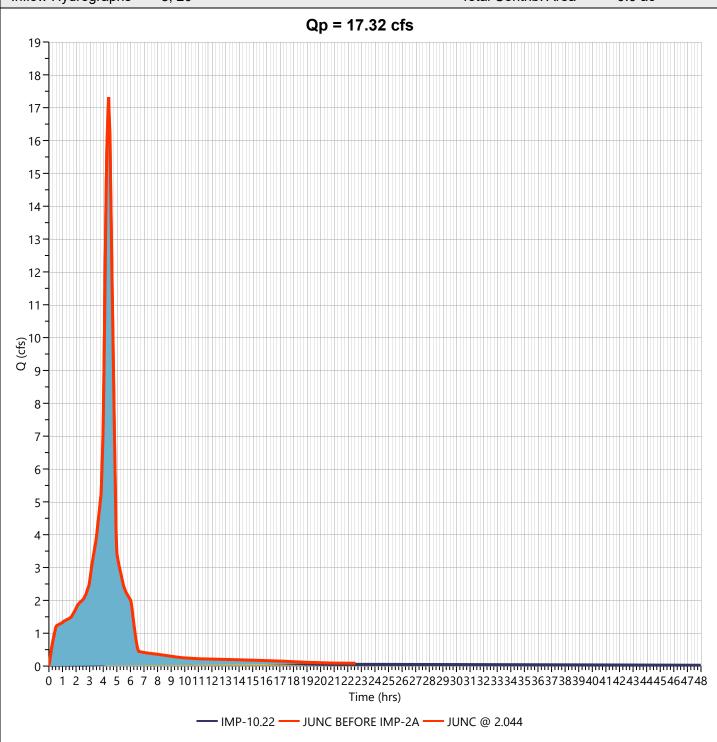
Post JUNC @ 2.034

Hydrograph Type	= Junction	Peak Flow	= 8.410 cfs
Storm Frequency	= 100-yr	Time to Peak	= 4.50 hrs
Time Interval	= 1 min	Hydrograph Volume	= 41,748 cuft
Inflow Hydrographs	= 3, 16	Total Contrib. Area	= 0.0 ac

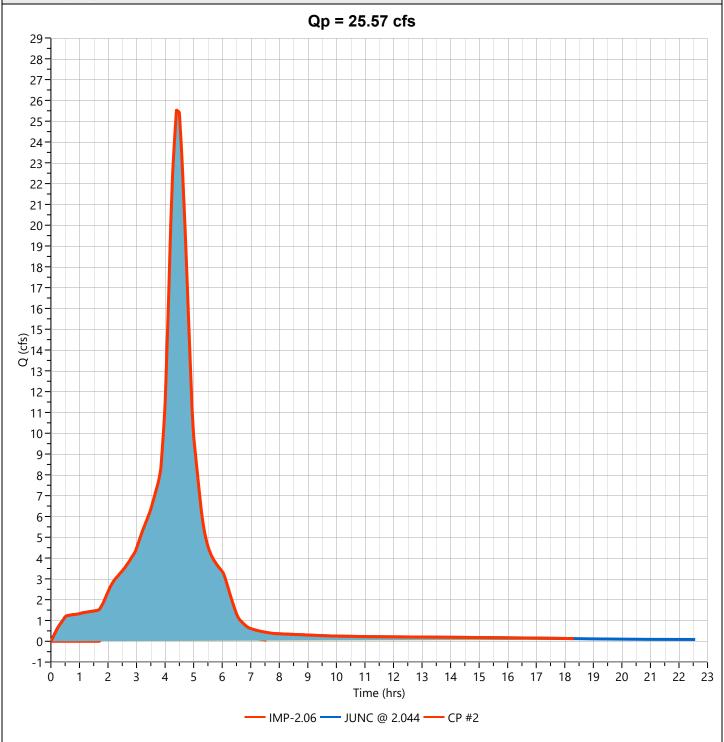


Post JUNC @ 2.041

Post JUNC BEFORE IMP-2A


Hyd. No. 20

— 10.18 — 2.04 — 10.21 — JUNC @ 2.041 — JUNC BEFORE IMP-2A


Post JUNC @ 2.044

Storm Frequency= 100-yrTime to Peak= 4.40 hrsTime Interval= 1 minHydrograph Volume= 100,885 cuftInflow Hydrographs= 8, 20Total Contrib. Area= 0.0 ac	Hydrograph Type	= Junction	Peak Flow	= 17.32 cfs
	Storm Frequency	= 100-yr	Time to Peak	= 4.40 hrs
Inflow Hydrographs = 8, 20 Total Contrib. Area = 0.0 ac	Time Interval	= 1 min	Hydrograph Volume	= 100,885 cuft
	Inflow Hydrographs	= 8, 20	Total Contrib. Area	= 0.0 ac

Post CP #2 Hyd. No. 22

Hydrograph Type	= Junction	Peak Flow	= 25.57 cfs
Storm Frequency	= 100-yr	Time to Peak	= 4.40 hrs
Time Interval	= 1 min	Hydrograph Volume	= 155,531 cuft
Inflow Hydrographs	= 10, 21	Total Contrib. Area	= 0.0 ac

Post-Development Hydrology Calculations Basins X

```
San Diego County Rational Hydrology Program
 CIVILCADD/CIVILDESIGN Engineering Software, (c) 1991-2005 Version 7.5
 Rational method hydrology program based on
 San Diego County Flood Control Division 2003 hydrology manual
     Rational Hydrology Study Date: 12/27/13
 ______
 Shadow Run Ranch - PN 4201
 Post Development Hydrology Calculations
 Sample lot
 File: hydlot4201.dwg
 _____
 ******* Hydrology Study Control Information ********
 _____
 Program License Serial Number 4065
 ._____
 Rational hydrology study storm event year is 100.0
 English (in-lb) input data Units used
 Map data precipitation entered:
 6 hour, precipitation(inches) = 3.700
 24 hour precipitation(inches) = 7.500
 P6/P24 = 49.3%
 San Diego hydrology manual 'C' values used
 Process from Point/Station 1.000 to Point/Station 2.000
 **** INITIAL AREA EVALUATION ****
 Decimal fraction soil group A = 1.000
 Decimal fraction soil group B = 0.000
 Decimal fraction soil group C = 0.000
 Decimal fraction soil group D = 0.000
 [LOW DENSITY RESIDENTIAL
                                    ]
 (1.0 DU/A or Less
 Impervious value, Ai = 0.100
 Sub-Area C Value = 0.270
 Initial subarea total flow distance = 166.000(Ft.)
 Highest elevation = 1000.000(Ft.)
 Lowest elevation = 999.000(Ft.)
 Elevation difference = 1.000(Ft.) Slope = 0.602 %
 Top of Initial Area Slope adjusted by User to 1.000 %
 INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
 The maximum overland flow distance is 70.00 (Ft)
```

```
for the top area slope value of 1.00 %, in a development type of
1.0 DU/A or Less
In Accordance With Figure 3-3
Initial Area Time of Concentration = 12.50 minutes
TC = [1.8*(1.1-C)*distance(Ft.)^.5)/(% slope^(1/3)]
TC = [1.8*(1.1-0.2700)*(70.000^{.5})/(1.000^{(1/3)}] = 12.50
Rainfall intensity (I) = 5.399(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.270
Subarea runoff = 0.583 (CFS)
Total initial stream area = 0.400 (Ac.)
Process from Point/Station 2.000 to Point/Station
**** IRREGULAR CHANNEL FLOW TRAVEL TIME ****
Estimated mean flow rate at midpoint of channel = 1.324(CFS)
Depth of flow = 0.087 (Ft.), Average velocity = 2.316 (Ft/s)
    ****** Irregular Channel Data *******
_____
Information entered for subchannel number 1:
Point number 'X' coordinate 'Y' coordinate
                               0.50
    1
                0.00
               47.00
                               0.00
                            0.50
        75.00
    3
Manning's 'N' friction factor = 0.025
_____
Sub-Channel flow = 1.324 (CFS)
 ' flow top width = 13.093(Ft.)
          velocity= 2.316(Ft/s)
        area = 0.571(Sq.Ft)
    ' Froude number = 1.954
Upstream point elevation = 999.000(Ft.)
Downstream point elevation = 956.500(Ft.)
Flow length = 430.000 (Ft.)
Travel time = 3.09 min.
Time of concentration = 15.59 \text{ min.}
Depth of flow = 0.087 (Ft.)
Average velocity = 2.316(Ft/s)
Total irregular channel flow = 1.324(CFS)
Irregular channel normal depth above invert elev. = 0.087(Ft.)
Average velocity of channel(s) = 2.316(Ft/s)
Adding area flow to channel
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
[UNDISTURBED NATURAL TERRAIN
(Permanent Open Space )
Impervious value, Ai = 0.000
Sub-Area C Value = 0.200
Rainfall intensity = 4.681(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for total area
```

```
(Q=KCIA) is C = 0.214 CA = 0.428
Subarea runoff = 1.420 (CFS) for 1.600 (Ac.)
Total runoff = 2.003 (CFS) Total area = 2.000 (Ac.)
Depth of flow = 0.102(Ft.), Average velocity = 2.569(Ft/s)
Process from Point/Station 3.000 to Point/Station 4.000
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation = 956.500(Ft.)
Downstream point/station elevation = 956.000(Ft.)
Pipe length = 49.00 (Ft.) Manning's N = 0.015
No. of pipes = 1 Required pipe flow = 2.003(CFS)
Nearest computed pipe diameter = 12.00(In.)
Calculated individual pipe flow = 2.003(CFS)
Normal flow depth in pipe = 7.00(In.)
Flow top width inside pipe = 11.83(In.)
Critical Depth = 7.25(In.)
Pipe flow velocity = 4.22(Ft/s)
Travel time through pipe = 0.19 min.
Time of concentration (TC) = 15.79 \text{ min.}
End of computations, total study area = 2.000 (Ac.)
```

Post-Development hydrology Calculations - Basin-3

San Diego County Hydrology	Manual *	Section:	Appendix D
Date: June 2003		Page:	2 of 3
WORKSHEET 4-2	Shadest Par Reach, (name of project)	Curve Numb	er Worksheet

RUNOFF CURVE NUMBER: (for PZN Condition = 2.0). CN_2 :

					1 7 7
column 1	column 2	column 3	column 4	column 5	column 6
GROUND COVER/ LAND USE	HYDROLOGIC CONDITION (field in- spection)	SOIL GROUP	CN₂ From Hydrology Mänual, Table 4-2	FRACTION OF AREA A/A	PARTIAL CIN ₂ CIN ₂ X A _V A
0.B.		A	41	.012	0.49
OPEN BRUSH	67000	-	71	- 129	14 18
N.C.	-	A	55	.023	1.54
Nacrow Chaparen	Far	4	21	. 151	12:23
B.C.		B	57	. 206	11.74
Broad leas	6700d	C .	7/	- 185	13.14
W.0		AB	2.9 5.5	-007	7.59
Woodland	Good	3	77	. 138 .054	3-78
0.E.		£.	33	.6225	0.74
2002 0 15 11	Good	C-	72_	-0025	2-18
Residence in		12	54	.0005	0.24
1/2 Acre Pads	Good	<	8.0	22.05	0.04
-					
			Sums =	= 1.000	66

For entire basin CN₂ = 66

San Diego County Hydrology Manual Date: June 2003

Section: Page: Appendix D 3 of 3

WORKSHEET 4-3

Standow Ren Rench (name of project)

Peak Discharge Computation

*****For use with NRCS Hydrologic Method Computations*****

Items in boxes are required input parameters for the SDUH Peak Discharge Program.
Computed by: Musson & Associales, Inc. Date: 3/15/12
Project Identification (Drainage Area Name): Frye Zree &
Geographic location of center of drainage area: Long: "Lat: " Drainage Area: 4.0 - square miles
Drainage Area: 4-0 - square miles
Storm Frequency (Section 2.3) /00 - year
6-Hour Storm Duration Precipitation (Appendix B) 3 7 - inches
24-Hour Storm Duration Precipitation (Appendix B) 7.5 - inches
Precipitation Zone Number (PZN): PZN = 1.0 2.0 2.0 3.0 4.0 (Section 4.1.2.4 and Appendix C) PZN = 1.0 2.0 2.0 3.0 4.0
PZN Ajustment Factor for 5-year to 35-year storm frequency (interpolate): 1.5 2.5 2.0 1.5 (Section 4.1.2 4 and Table 4-6)
PZN Ajustment Factor for 35-year to 150-year storm frequency (interpolate): 2.0 3.0 3.0 3.0 2.0 (Section 4.1.2.4 and Table 4-6)
PZN Adjusted Runoff Curve Number (interpolate between nearest whole number PZN conditions): CN_{100} CN_{200} CN_{20
Watershed Length (L) (Section 4.3.1):
Length to Centroid (L_c) (Section 4.3.1): 3.55 – miles
Slope (s) (Section 4.3.1): 798 3 - feet/mile Basin n Factor (Section 4.3.5): .055
Corps lag $(T_L) = 24 \text{ n} ((L \times L_c)/s^{0.5})^m \text{ (Section 4.3.1.1)}$ OR
OR Corps lag $(T_L) = 0.8 T_c$ (Section 4.3.1.2) Lag Time: $/ \cdot Z$ - hours
Time to Peak = 0.862 x Corps lag (Section 4 1.5.5): Time to Peak : /- O - hours

Shadow Run Ranch Simulation Run: Run 1 Project:

26Feb2009, 00:00 Start of Run:

Basin 3 Basin Model:

27Feb2009, 06:00 End of Run: Compute Time: 26Feb2009, 16:06:40

Meteorologic Model: Met 1 Control Specifications: Control 1

Volume Units: 1N

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
Subbasin-1	4.0	3003.1	26Feb2009, 17:15	5.58

Shadow Run Ranch Project:

Subbasin-1 Simulation Run: Run 1 Subbasin:

Start of Run: 26Feb2009, 00:00 Basin Model:

Basin 3

End of Run:

27Feb2009, 06:00

Meteorologic Model: ...

Met 1

Compute Time:

26Feb2009, 16:06:40

Control Specifications:

Control 1

Volume Units: IN

Computed Results:

3003.1 (CFS) Peak Discharge:

Date/Time of Peak Discharge:

26Feb2009, 17:15

Total Precipitation:

7.46 (IN)

Total Direct Runoff:

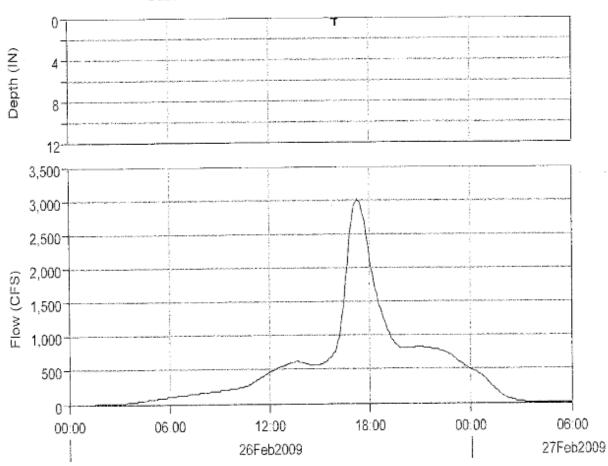
5.58 (IN)

Total Loss:

(N!) CO.0

Total Baseflow:

(NI) 00.0


Total Excess:

5.58 (IN)

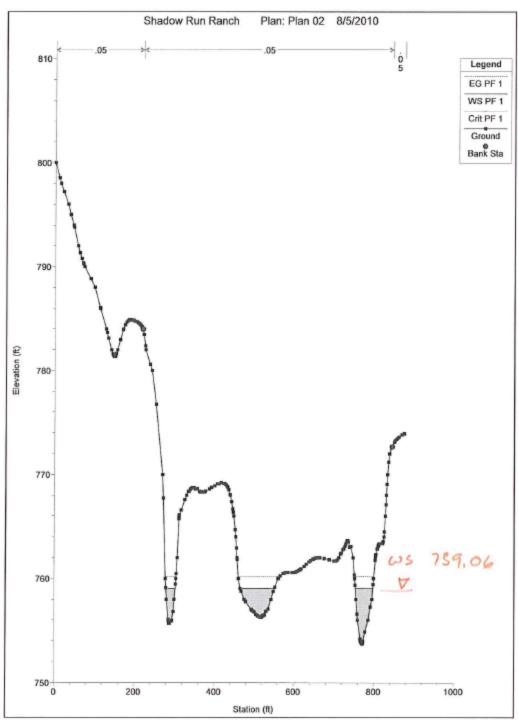
Discharge:

5.58 (IN)

Subbasin "Subbasin-1" Results for Run "Run 1"

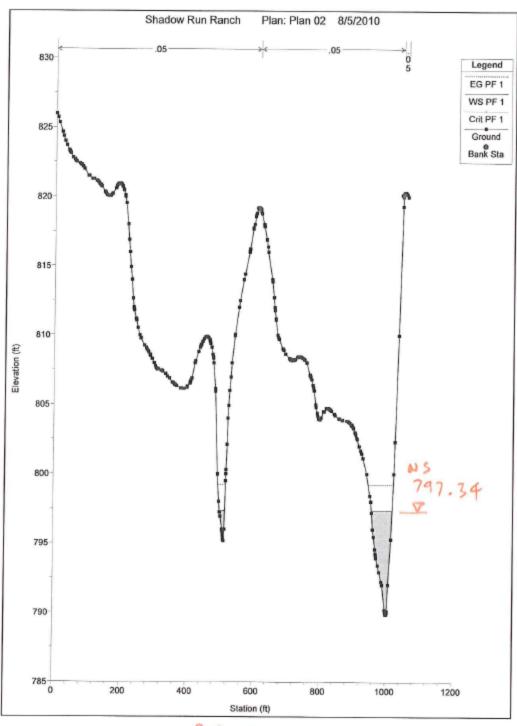
Run:Run 1 Element:SUBBASIN-1 Result:Precipitation

Run:Run 1 Element SUBBASIN-1 Result Precipitation Loss

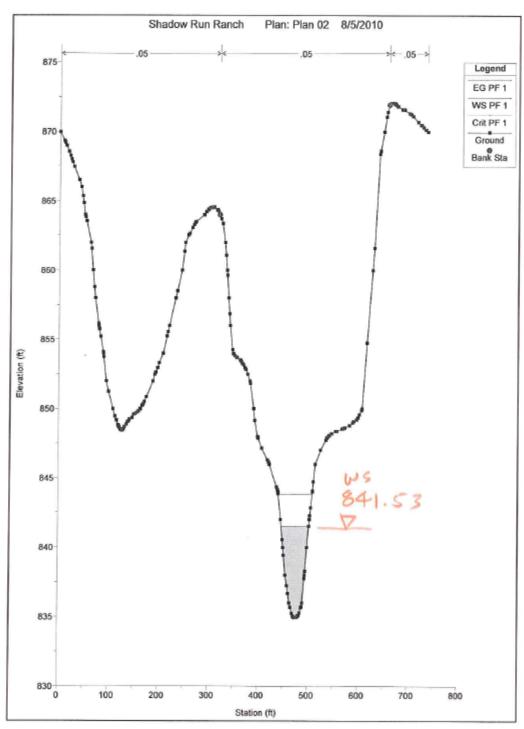

------ Run:Run 1 Element.SUBBASIN-1 Result:Outflow

--- - RundRun 1 Element: SUBBASIN-1 Result: Baseflow

APPENDIX "D"

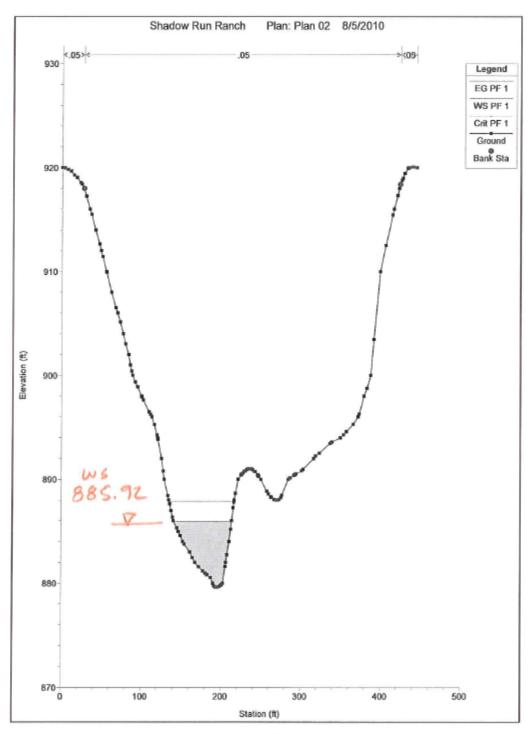

FREY CREEK HYDRAULICS BASIN – 3

HEC-2 Sections


25-1

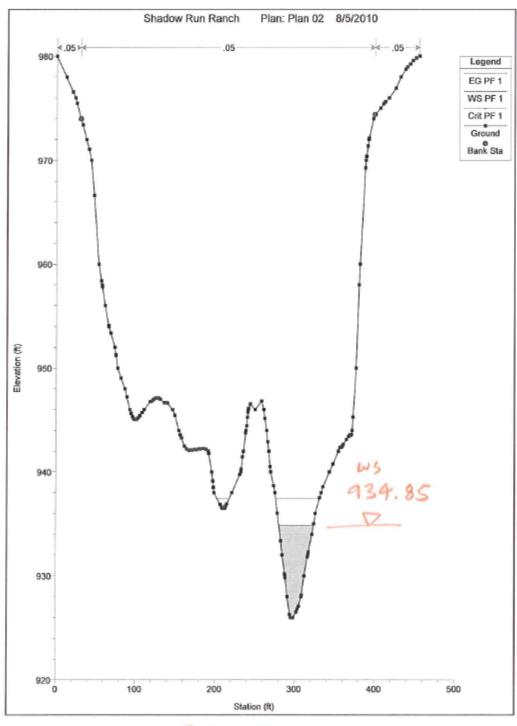
E.G. Elev (ft)	760.21	Element	Left OB	Channel	Right OB
Vel Head (ft)	1.14	Wt. n-Val.		0.050	
W.S. Elev (ft)	759.06	Reach Len. (ft)			
Crit W.S. (ft)	759.06	Flow Area (sq ft)		349.98	
E.G. Slope (ft/ft)	0.028600	Area (sq ft)		349.98	
Q Total (cfs)	3003.00	Flow (cfs)		3003.00	
Top Width (ft)	153.57	Top Width (ft)		153.57	
Vel Total (ft/s)	8.58	Avg. Vel. (ft/s)		8.58	
Max Chl Dpth (ft)	5.34	Hydr. Depth (ft)		2.28	
Conv. Total (cfs)	17757.2	Conv. (cfs)		17757.2	
Length Wtd. (ft)		Wetted Per. (ft)		156.88	
Min Ch El (ft)	753.72	Shear (lb/sq ft)		3.98	
Alpha	1.00	Stream Power (lb/ft s)	876.14	0.00	0.00
Frcin Loss (ft)		Curn Volume (acre-ft)			
C & E Loss (ft)		Cum SA (acres)			

25-2


E.G. Elev (ft) 799.20		Element	Left OB	Channel	Right OB
Vel Head (ft)	1.87	Wt. n-Val.	0.050	0.050	
W.S. Elev (ft)	797.34	Reach Len. (ft)	528.59	523.01	533.60
Crit W.S. (ft)	797.34	Flow Area (sq ft)	17.95	263.42	
E.G. Slope (ft/ft)	0.021556	Area (sq ft)	17.95	263.42	
Q Total (cfs)	3003.00	Flow (cfs)	82.54	2920.46	
Top Width (ft)	78.04	Top Width (ft)	15.56	62.48	
Vel Total (ft/s)	10.67	Avg. Vel. (ft/s)	4.60	11.09	
Max Chl Dpth (ft)	7.49	Hydr. Depth (ft)	1.15	4.22	
Conv. Total (cfs)	20453.9	Conv. (cfs)	562.2	19891.7	
Length Wtd. (ft)	523.09	Wetted Per. (ft)	16.59	65.03	
Min Ch El (ft)	789.85	Shear (lb/sq ft)	1.46	5.45	
Alpha	1.05	Stream Power (lb/ft s)	1060.68	0.00	0.00
Frctn Loss (ft)	12.92	Cum Volume (acre-ft)	0.11	3.68	
C & E Loss (ft)	0.22	Cum SA (acres)	0.09	1.30	

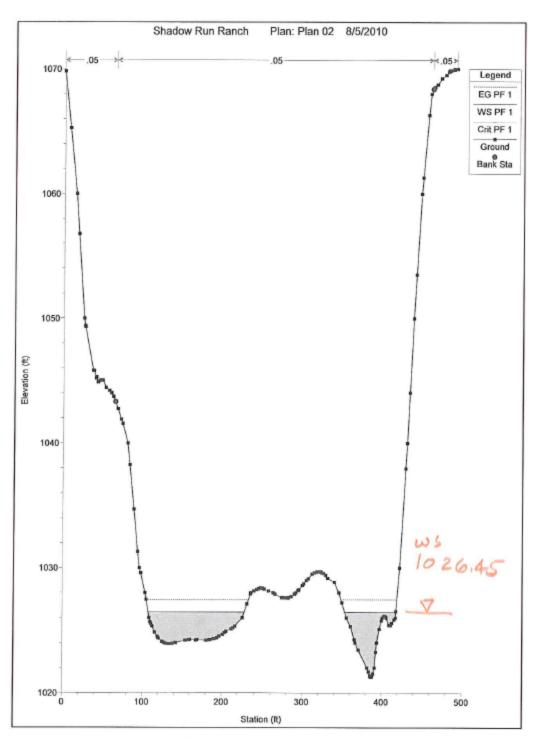
R5-3

Plan: Plan 02 RIVER-1 Reach-1 RS: 3 Profile: PF 1


E.G. Elev (ft)	843.81	Element	Element Left OB		Right OF
Vel Head (ft)	2.28	Wt. n-Val.		0.050	
W.S. Elev (ft)	841.53	Reach Len. (ft)	484.40	523.33	604.63
Crit W.S. (ft)	841.53	Flow Area (sq ft)		247.90	
E.G. Slope (ft/ft)	0.023602	Area (sq ft)		247.90	
Q Total (cfs)	3003.00	Flow (cfs)		3003.00	
Top Width (ft)	55.11	Top Width (ft)		55.11	
Vel Total (ft/s)	12.11	Avg. Vel. (ft/s)		12.11	
Max Chl Dpth (ft)	6.59	Hydr. Depth (ft)		4.50	
Conv. Total (cfs)	19547.1	Conv. (cfs)		19547.1	
Length Wtd. (ft)	522.80	Wetted Per. (ft)		57.36	
Min Ch El (ft)	834.94	Shear (lb/sq ft)		6.37	
Alpha	1.00	Stream Power (lb/ft s)	737.87	0.00	0.00
Frotn Loss (ft)	11.79	Curn Volume (acre-ft)	0.21	6.75	
C & E Loss (ft)	0.12	Cum SA (acres)	0.18	2.00	

RS-4

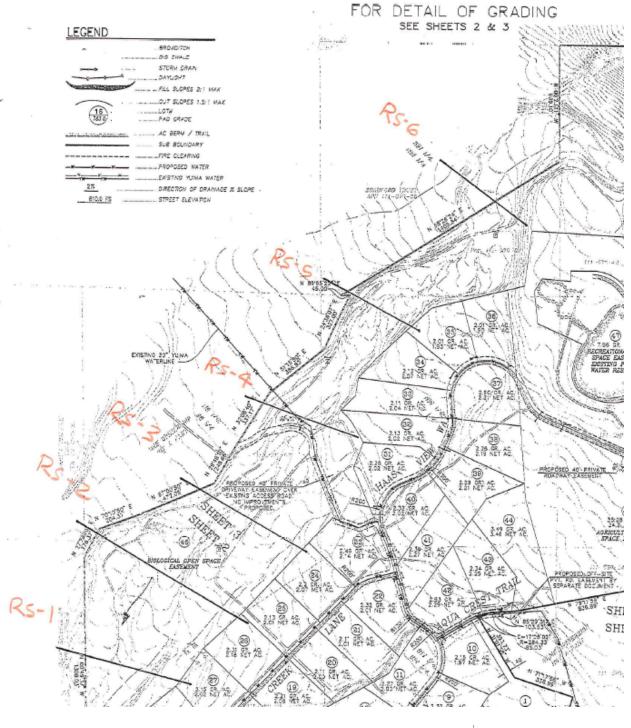
Plan: Plan 02 RIVER-1 Reach-1 RS: 4 Profile: PF 1


E.G. Elev (ft)	887.81	Element	Left OB	Channel	Right OF
Vel Head (ft)	1.89	Wt. n-Val.		0.050	
W.S. Elev (ft)	885.92	Reach Len. (ft)	676.63	613.71	584.87
Crit W.S. (ft)	885.92	Flow Area (sq ft)		272.26	
E.G. Slope (ft/ft)	0.024340	Area (sq ft)		272.26	
Q Total (cfs)	3003.00	Flow (cfs)		3003.00	
Top Width (ft)	72.23	Top Width (ft)		72.23	
Vel Total (ft/s)	11.03	Avg. Vel. (ft/s)		11.03	
Max Chl Dpth (ft)	6.31	Hydr. Depth (ft)		3.77	
Conv. Total (cfs)	19248.6	Conv. (cfs)		19248.6	
Length Wtd. (ft)	613.71	Wetted Per. (ft)		74.20	
Min Ch El (ft)	879.61	Shear (lb/sq ft)		5.58	
Alpha	1.00	Stream Power (lb/ft s)	444.76	0.00	0.00
Frctn Loss (ft)	14.71	Cum Volume (acre-ft)	0.21	10.42	
C & E Loss (ft)	0.04	Cum SA (acres)	0.18	2.90	

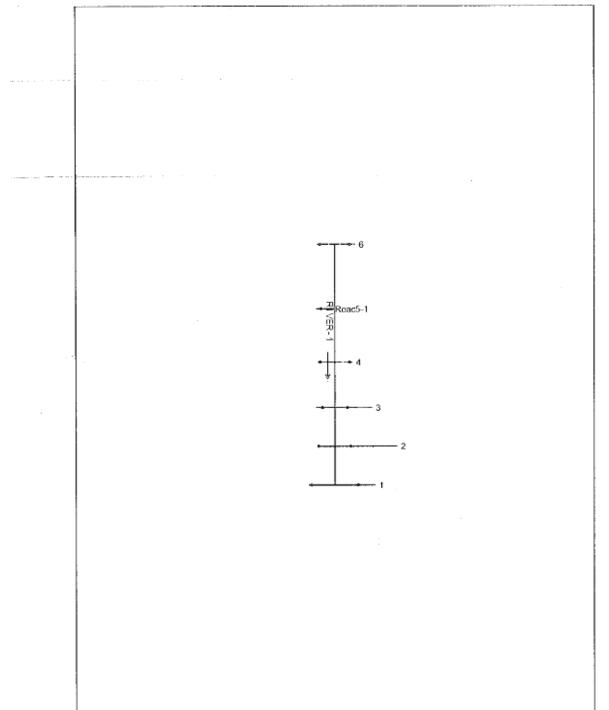
25-5

Plan: Plan 02	RIVER-1	Reach-1 RS	5 Profile: PF 1

E.G. Elev (ft)	937.49	Element	Element Left OB		
Vel Head (ft)	2.65	Wt. n-Val.		0.050	
W.S. Elev (ft)	934.85	Reach Len. (ft)	702.45	720.62	738.88
Crit W.S. (ft)	934.85	Flow Area (sq ft)		230.03	
E.G. Slope (ft/ft)	0.023728	Area (sq ft)		230.03	
Q Total (cfs)	3003.00	Flow (cfs)		3003.00	
Top Width (ft)	43.56	Top Width (ft)		43.56	
Vel Total (fl/s)	13.06	Avg. Vel. (ft/s)		13.06	
Max Chl Dpth (ft)	8.90	Hydr. Depth (ft)		5.28	
Conv. Total (cfs)	19494.9	Conv. (cfs)		19494.9	
Length Wtd. (ft)	720.62	Wetted Per. (ft)		47.76	
Min Ch El (ft)	925.95	Shear (lb/sq ft)		7.13	
Alpha	1.00	Stream Power (lb/ft s)	455.35	0.00	0.00
Frctn Loss (ft)	17.32	Cum Volume (acre-ft)	0.21	14.57	
C & E Loss (ft)	0.23	Cum SA (acres)	0.18	3.86	



RS-6


Plan: Plan 02 RIVER-1 Reach-1 RS: 6 Profile: PF 1

E.G. Elev (ft)	1027.47	Element	Left OB	Channel	Right OF
Vel Head (ft)	1.01	Wt. n-Val.		0.050	
W.S. Elev (ft)	1026.45	Reach Len. (ft)	841.04	872.80	905.28
Crit W.S. (ft)	1026.45	Flow Area (sq ft)		371.61	
E.G. Slope (ft/ft)	0.029544	Area (sq ft)		371.61	
Q Total (cfs)	3003.00	Flow (cfs)		3003.00	
Top Width (ft)	184.74	Top Width (ft)		184.74	
Vel Total (ft/s)	8.08	Avg. Vel. (ft/s)		8.08	
Max Chl Dpth (ft)	5.19	Hydr. Depth (ft)		2.01	
Conv. Total (cfs)	17471.0	Conv. (cfs)		17471.0	
Length Wtd. (ft)	872.80	Wetted Per. (ft)		186.76	
Min Ch El (ft)	1021.26	Shear (lb/sq ft)		3.67	
Alpha	1.00	Stream Power (lb/ft s)	491.17	0.00	0.00
Frctn Loss (ft)	23.04	Cum Volume (acre-ft)	0.21	20.60	
C & E Loss (ft)	0.16	Cum SA (acres)	0.18	6.15	

PRELIMINARY GRADING PLAN

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
ricadii	Taron old		(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
Reach-1	6	PF 1	3003.00	1021.26	1026,45		1027.47	0.029544	8.08	371.61	184.74	1.0
Reach-1	5	PF 1	3003.00	925.95	934.85	934.85	937.49	0.023728	13.06	230.03	43.56	1.00
Reach-1	4	PF 1	3003.00		885.92	885.92	887.81	0.024340	11.03	272.26	72.23	1.00
Reach-1	3	PF 1	3003.00		841,53	841.53	843.81	0.023602	12.11	247.90	55.11	1.01
Reach-1	0	PF 1	3003.00	789.85	797.34	797.34	799.20	0.021556	11.09	281.37	78.04	0.98
Reach-1	1	PF 1	3003.00	753.72	759.06	759.06		0.028600	8.58	349.98	153.57	1.00

None of the XS's are Geo-Referenced (- Geo-Ref user entered XS - Geo-Ref interpolated XS - Non Geo-Ref user entered XS - Non Geo-Ref interpolated XS)

APPENDIX "E"

Existing / Proposed storm drain Hydraulics

Basin 1, 2 and 3

Culvert Calculator Report Existing 2-42" RCP

Solve For: Discharge

Culvert Summary					
Allowable HW Elevation	762.00	ft	Headwater Depth/Height	1.71	
Computed Headwater Ele	vi 762.00	ft .	Discharge	186.16	cfs
Inlet Control HW Elev.	762.00	ft	Tailwater Elevation	752.00	ft i
Outlet Control HW Elev.	761.63	ft	Control Type	Inlet Control	
Grades					
Upstream Invert	756.00	ft	Downstream Invert	752.00	ft
Length	100.00	ft	Constructed Slope	0.040000	ft/ft
Hydraulic Profile					
Profile	S2	-	Depth, Downstream	1.87	ft
Slope Type	Steep		Normal Depth	1.67	ft
Flow Regime	Supercritical		Critical Depth	2.98	ft
Velocity Downstream	17.78	ft/s	Critical Slope	0.008022	ft/ft
Section					
Section Shape	Circular		Mannings Coefficient	0.013	
Section Material	Concrete		Span	3.50	ft
Section Size 42 inch			Rise	3.50	ft
Number Sections	2				-
Outlet Control Properties					
Outlet Control HW Elev.	761.63	ft	Upstream Velocity Head	1.76	ft
Ke	0.50		Entrance Loss	0.88	ft
Inlet Control Properties					
Inlet Control HW Elev.	762.00	ft	Flow Control	Submerged	
Inlet Type Square edg	ge w/headwall		Area Full	19.2	ft²
K	0.00980		HDS 5 Chart	1	
M	2.00000		HDS 5 Scale	1	
C 0.03980			Equation Form 1		
Υ	0.67000				

Culvert Calculator Report Existing 36" RCP

Solve For: Discharge

Culvert Summary					
Allowable HW Elevation	739.00	ft	Headwater Depth/Height	1.67	
Computed Headwater Eleva	739.00	ft	Discharge	62.63	cfs
Inlet Control HW Elev.	739.00	ft	Tailwater Elevation	725.00	ft
Outlet Control HW Elev.	738.78	ft	Control Type	Inlet Control	
Grades					
Upstream Invert	734.00	ft .	Downstream Invert	725.00	ft
Length	100.00	ft	Constructed Slope	0.090000	ft/ft
Hydraulic Profile					
Profile	S2		Depth, Downstream	1.26	ft
Slope Type	Steep		Normal Depth	1.15	ft
Flow Regime	Supercritical		Critical Depth	2.55	ft
Velocity Downstream	22.22	ft/s	Critical Slope	0.008319	ft/ft
Section					-
Section Shape	Circular	1	Mannings Coefficient	0.013	
Section Material	Concrete		Span	3.00	ft
Section Size	36 inch		Rise	3.00	ft
Number Sections	1				
Outlet Control Properties					
Outlet Control HW Elev.	738.78	ft .	Upstream Velocity Head	1.49	ft
Ke	0.50		Entrance Loss	0.74	ft ,
Inlet Control Properties					
Inlet Control HW Elev.	739.00	ft	Flow Control	Submerged	
Inlet Type Square edge	w/headwall		Area Full	7.1	ft²
K	0.00980		HDS 5 Chart	1	
М	2.00000		HDS 5 Scale	1	
C	0.03980		Equation Form	1	
Υ	0.67000				

 Title: Shadow Run Ranch
 Project Engineer: slee

 i:\...\prod\reports\hydrology\4201culverts.cvm
 Masson & Associates Inc
 CulvertMaster v3.2 [03.02.00.01]

 02/26/09
 02:47:41 @Mentley Systems, Inc.
 Haestad Methods Solution Center
 Watertown, CT 06795 USA
 +1-203-755-1686
 Page 1 of 1

Worksheet for Existing Bridge basin 3

Project Description

Friction Method Manning Formula Solve For Normal Depth

Input Data

 Channel Slope
 0.05405
 ft/ft

 Discharge
 3003.10
 ft³/s

Section Definitions

Station (ft)		Elevation (ft)	
	0+00.00		16.00
	0+00.00		6.00
	0+04.00		4.00
	0+08.00		0.00
	0+18.00		0.00
	0+24.00		4.00
	0+30.00		5.00
	0+30.00		16.00

Roughness Segment Definitions

Start Station	Endin	g Station	Roughness Coefficient
(0+00.00,	16.00)	(0+00.00, 6.00)	0.01
(0+00.00, 6.00)		(0+30.00, 5.00)	0.04
(0+30.00	, 5.00)	(0+30.00, 16.00)	0.013
Options			
Current Roughness Weighted Method	Pavlovskii's Method		
Open Channel Weighting Method	Pavlovskii's Method		
Closed Channel Weighting Method	Pavlovskii's Method		
Results			
Normal Depth		7.17 ft	
Elevation Range	0.00 to 16.00 ft		
Flow Area		148.00 ft ²	

Bentley Systems, Inc. Haestad Methods Solution Center Be

Bentley FlowMaster [08.11.00.03]

3/4/2009 10:05:12 AM

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Page 1 of 2

	Worksheet for Exis	sting Br	idge basin 3
Results			
Wetted Perimeter		36.76	ft
Hydraulic Radius		4.03	ft
Top Width		30.00	ft
Normal Depth		7.17	ft
Critical Depth		9.01	ft
Critical Slope		0.02129	ft/ft
Velocity		20.29	ft/s
Velocity Head		6.40	ft
Specific Energy		13.57	ft
Froude Number		1.61	
Flow Type	Supercritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	ft
Profile Description			
Profile Headloss		0.00	ft
Downstream Velocity		Infinity	ft/s
Upstream Velocity		Infinity	ft/s
Normal Depth		7.17	ft
Critical Depth		9.01	ft
Channel Slope		0.05405	ft/ft
Critical Slope		0.02129	ft/ft

Bentley Systems, Inc. Haestad Methods Solution Center

Bentley FlowMaster [08.11.00.03]

3/4/2009 10:05:12 AM

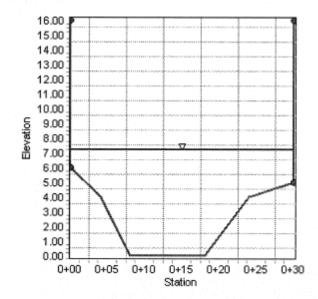
27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Page 2 of 2

Cross Section for Existing Bridge basin 3

Project Description

Friction Method Manning Formula Solve For Normal Depth


Input Data

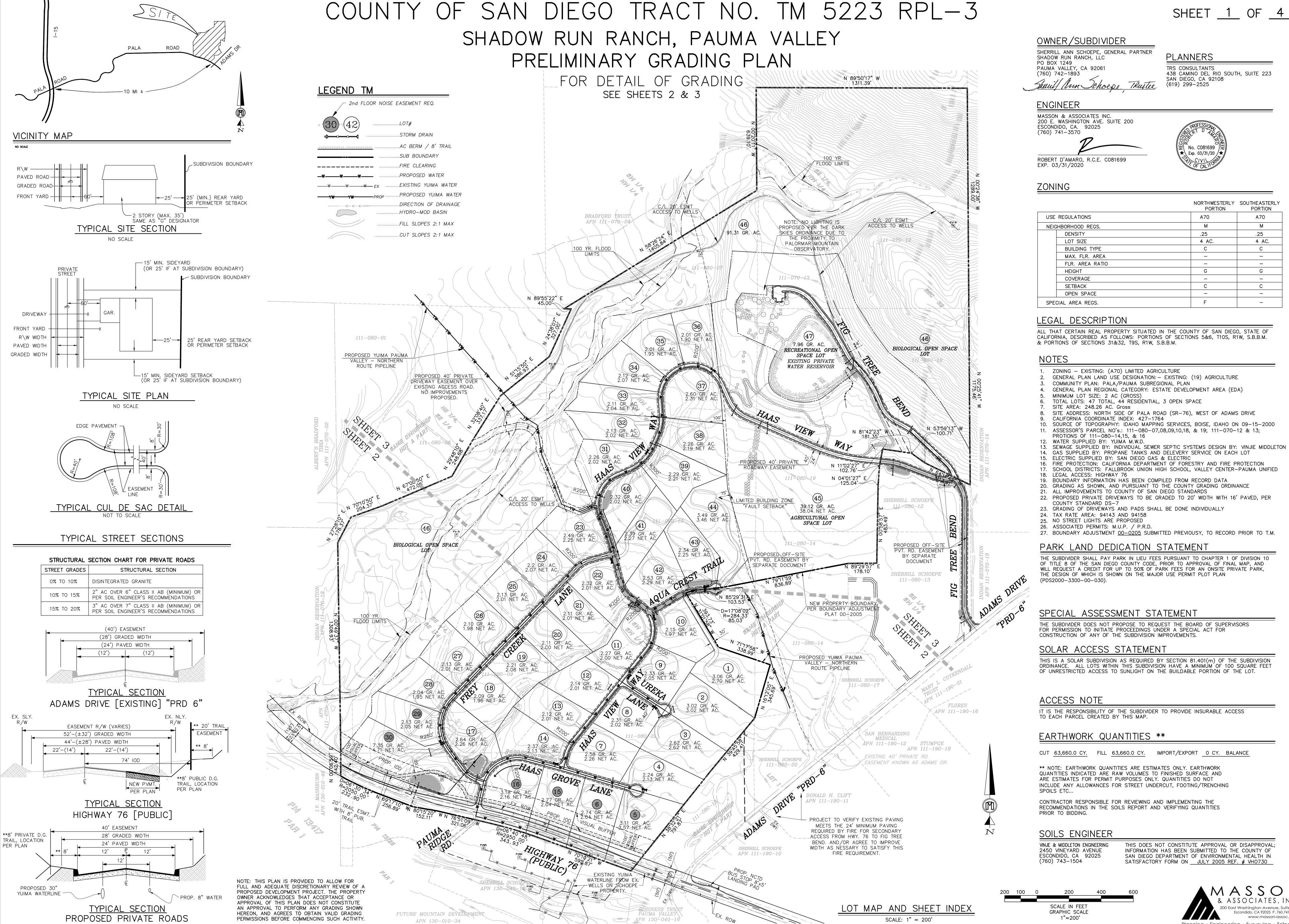
 Channel Slope
 0.05405
 ft/ft

 Normal Depth
 7.17
 ft

 Discharge
 3003.10
 ft³/s

Cross Section Image

Bentley Systems, Inc. Haestad Methods Solution Center


Bentley FlowMaster [08.11.00.03]

3/4/2009 10:04:10 AM

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Page 1 of 1

ATTACHMENT – 1

SHEET <u>1</u> OF <u>4</u>

438 CAMINO DEL RIO SOUTH, SUITE 223

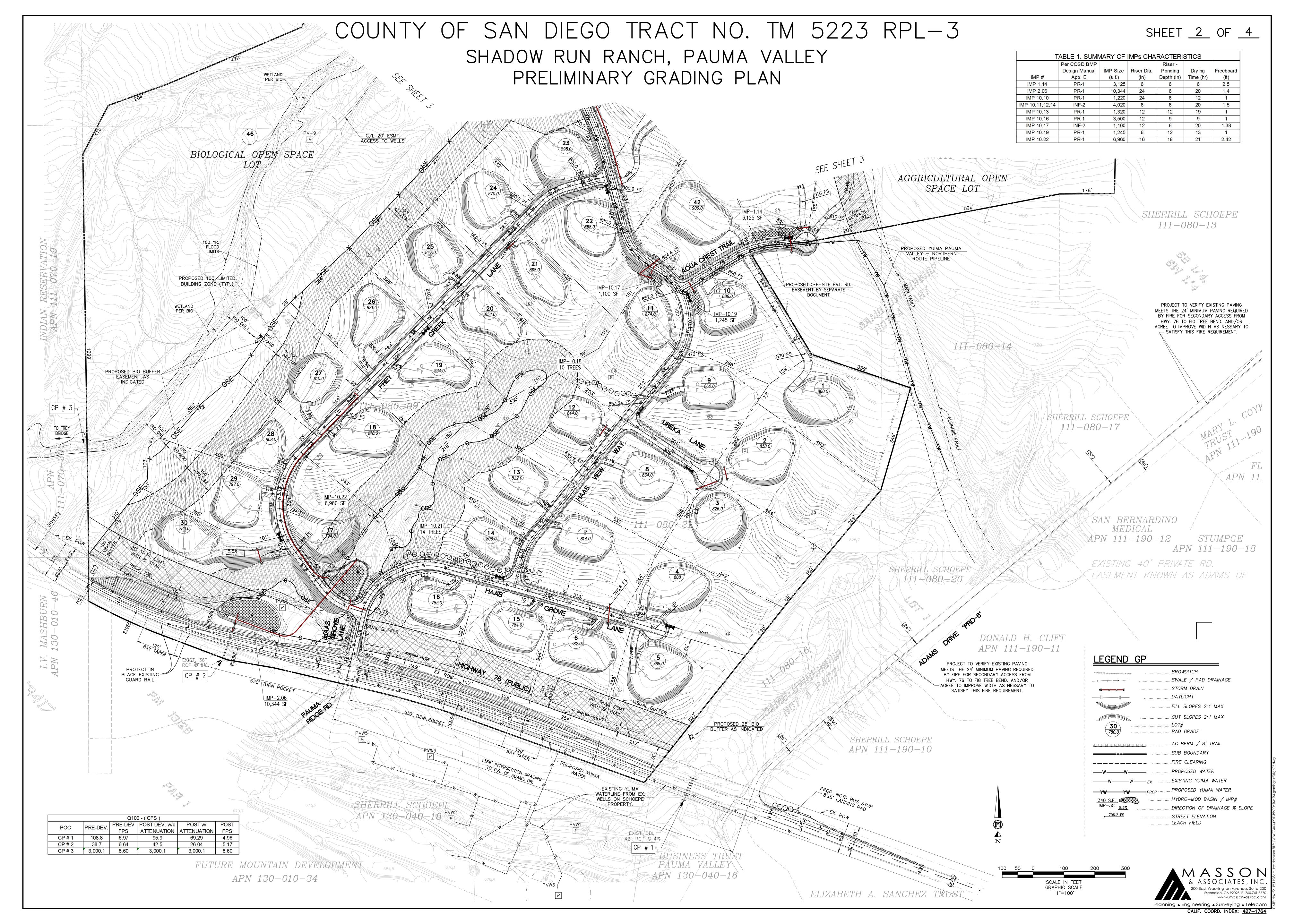
	NORTHWESTERLY PORTION	SOUTHEASTERLY PORTION
USE REGULATIONS	A70	A70
NEIGHBORHOOD REGS.	М	М
DENSITY	.25	.25
LOT SIZE	4 AC.	4 AC.
BUILDING TYPE	С	С
MAX. FLR. AREA	_	_
FLR. AREA RATIO	_	_
HEIGHT	G	G
COVERAGE	_	_
SETBACK	С	С
OPEN SPACE	_	_
SPECIAL AREA REGS.	F	_

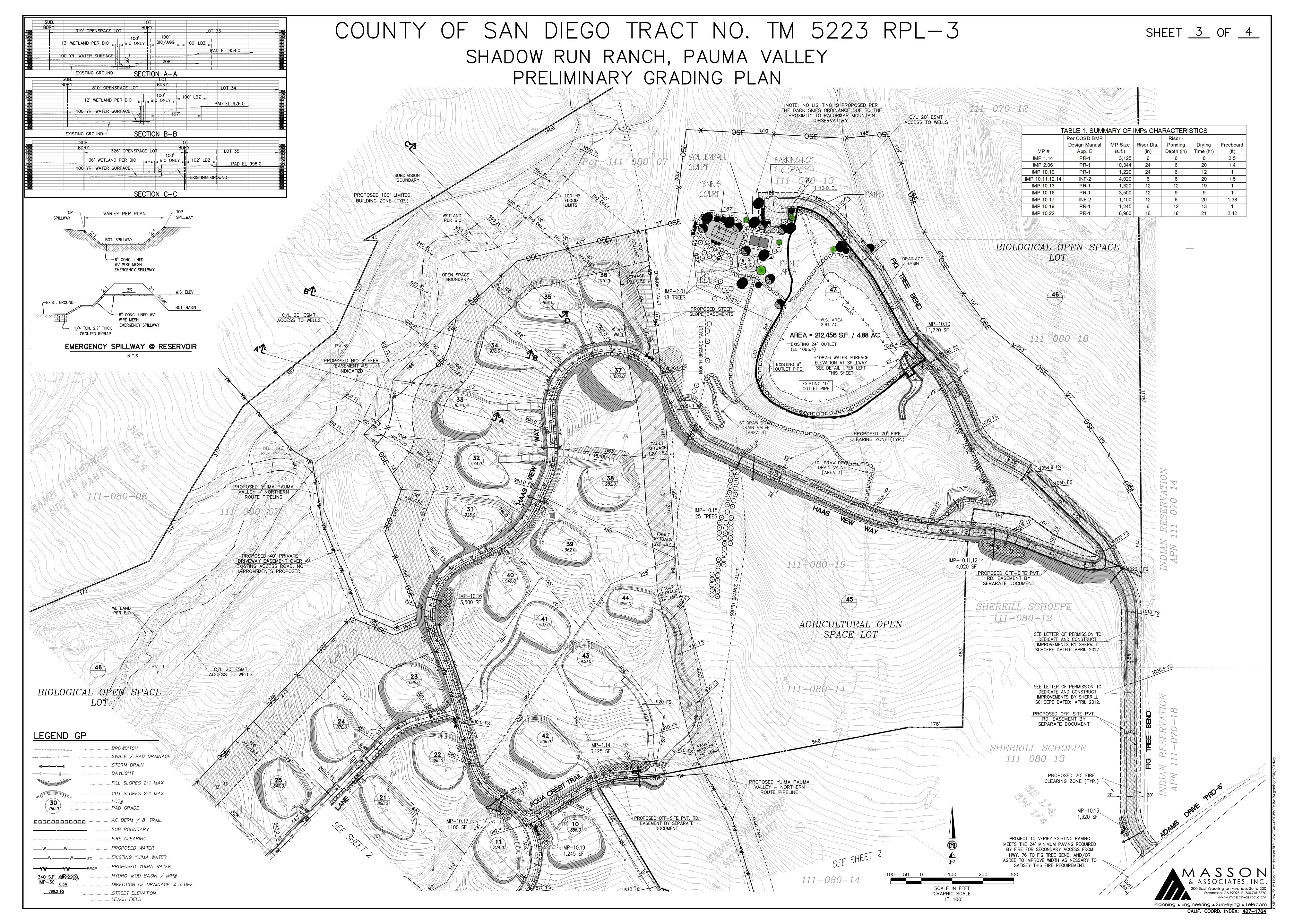
CALIFORNIA, DESCRIBED AS FOLLOWS: PORTIONS OF SECTIONS 5&6, T10S, R1W, S.B.B.M.

- 8. SITE ADDRESS: NORTH SIDE OF PALA ROAD (SR-76), WEST OF ADAMS DRIVE

- SCHOOL DISTRICTS: FALLBROOK UNION HIGH SCHOOL, VALLEY CENTER-PAUMA UNIFIED
- GRADING AS SHOWN, AND PURSUANT TO THE COUNTY GRADING ORDINANCE
- 22. PROPOSED PRIVATE DRIVEWAYS TO BE GRADED TO 20' WIDTH WITH 16' PAVED, PER
- 27. BOUNDARY ADJUSTMENT 00-0205 SUBMITTED PREVIOUSY, TO RECORD PRIOR TO T.M.

THE SUBDIVIDER SHALL PAY PARK IN LIEU FEES PURSUANT TO CHAPTER 1 OF DIVISION 10 OF TITLE 8 OF THE SAN DIEGO COUNTY CODE, PRIOR TO APPROVAL OF FINAL MAP, AND WILL REQUEST A CREDIT FOR UP TO 50% OF PARK FEES FOR AN ONSITE PRIVATE PARK,


THIS IS A SOLAR SUBDIVISION AS REQUIRED BY SECTION 81.401(m) OF THE SUBDIVISION ORDINANCE. ALL LOTS WITHIN THIS SUBDIVISION HAVE A MINIMUM OF 100 SQUARE FEET OF UNRESTRICTED ACCESS TO SUNLIGHT ON THE BUILDABLE PORTION OF THE LOT.


CUT 63,660.0 CY. FILL 63,660.0 CY. IMPORT/EXPORT 0 CY. BALANCE

INFORMATION HAS BEEN SUBMITTED TO THE COUNTY OF SAN DIEGO DEPARTMENT OF ENVIRONMENTAL HEALTH IN SATISFACTORY FORM ON _____JULY 2005 REF. # VHO730

CALIF. COORD. INDEX: 427-1764

"PRE-CONSTRUCTION MEETING: (Prior to Preconstruction Conference, and prior to any clearing, grubbing,

(BIOLOGIC AL RESOURCES)

BIO GR#1 — TEMPORARY FENCING: [PDS, PCC] [DPW,PDCI] [PC] [PDS, FEE]. INTENT: In order to prevent inadvertent disturbance to onsite open space and adjacent areas containing native habitat, temporary construction fencing shall be installed. DESCRIPTION OF REQUIREMENT: Prior to the commencement of any grading and or clearing in association with this grading plan, temporary orange construction fencing shall be placed to protect from inadvertent disturbance of proposed onsite open space and adjacent offsite native habitat. The placement of such fencing shall be approved by the PDS, Permit Compliance Section. Upon approval, the fencing shall remain in place until the conclusion of grading activities after which the fencing shall be removed. DOCUMENTATION: The applicant shall provide evidence that the fencing has been installed and have a California licensed surveyor certify that the fencing is located on the boundary of the open space easement(s). The applicant shall submit photos of the fencing along with the certification letter to the [PDS, PCC] for approval. TIMING: Prior to Preconstruction Conference, and prior to any clearing, grubbing, trenching, grading, or any land disturbances the fencing shall be installed, and shall remain for the duration of the grading and clearing. MONITORING: The [PDS PCC] shall either attend the preconstruction conference and approve the installation of the temporary fencing, or review the certification and pictures provided by the applicant.

BIO GR#2 - RESOURCE AVOIDANCE: [PDS, PCC] [DPW, PDCI] PDS, FEE X2].

INTENT: In order to avoid impacts to Least Bell's vireo and Southwestern willow flycatcher, which are a sensitive biological resource pursuant to the Migratory Bird Treaty Act (MBTA), a Resource Avoidance Area (RAA), shall be implemented on all plans. DESCRIPTION OF REQUIREMENT: There shall be no brushing, clearing and/or grading such that none will be allowed within 500 feet of raptor nesting habitat during the breeding season of Least Bell's vireo and Southwestern willow flycatcher within Resource Avoidance Area (RAA) as indicated on these plans. The breeding season is defined as occurring between March 15th and September 15th, and May 1st thru September 1st. The Director of Planning and Land Use [PDS, PCC] may waive this condition, through written concurrence from the US Fish and Wildlife Service and the California Department of Fish and Wildlife, provided that no raptors are present in the vicinity of the brushing, clearing or grading. DOCUMENTATION: The applicant shall provide a letter of agreement with this condition; alternatively, the applicant may submit a written request for waiver of this condition. Although, No Grading shall occur within the RAA until concurrence is received from the County and the Wildlife Agencies. TIMING: Prior to preconstruction conference and prior to any clearing, grubbing, trenching, grading, or any land disturbances and throughout the duration of the grading and construction, compliance with this condition is mandatory unless the requirement is waived by the County upon receipt of concurrence from the Wildlife Agencies. MONITORING: The [DPW, PDC/] shall not allow any grading in the RAA during the specified dates, unless a concurrence from the [PDS, PCC] is received. The [PDS, PCC] shall review the concurrence letter."

(CULTURAL RESOURCES)

CULT GR#-1-ARCHAELOGICAL MONITORING [PDS, FEE X2]

INTENT: In order to comply with the Mitigation Monitoring and Reporting Program for PDS2001-3100-5223 and the County of San Diego Guidelines for Significance - Cultural Resources, a Cultural Resource Grading Monitoring Program shall be implemented. DESCRIPTION OF REQUIREMENT: The County approved 'Project Archaeologist,' Luiseno Native American Monitor, and [PDS, PCC], shall attend the pre—construction meeting with the contractors to explain and coordinate the requirements of the grading monitoring program. The Project Archaeologist and Luiseno Native American Monitor shall monitor the original cutting of previously undisturbed deposits in all areas identified for development including off—site improvements. The archaeological grading monitoring program shall comply with the County of San Diego Guidelines for Determining Significance and Report Format and Content Requirements for Archeological and Historic Resources. DOCUMENTATION: The applicant shall have the contracted Project Archeologist and Luiseno Native American attend the preconstruction meeting to explain the monitoring requirements. TIMING: Prior to any clearing, grubbing, trenching, grading, or any land disturbances this condition shall be completed. MONITORING: The [DPW, PDC/] shall invite the [A ${\it PCC}$ ight] to the preconstruction conference to coordinate the Archaeological Monitoring requirements of this condition. The [PDS, PCC] shall attend the preconstruction conference and confirm the attendance of the approved Project Archeologist.

(PALEONTOLOGICAL RESOURCES)

PALEO GR#1 - PALEONTOLOGICAL MONITORING: [DPW, PDCI] [PDS, PCC] [PC] [PDS, FEE X2]

INTENT: In order to comply with the Mitigation Monitoring and Reporting Program pursuant to PDS2001–3100 5223, a Paleontological Resource Grading Monitoring Program shall be implemented. DESCRIPTION OF REQUIREMENT: The County approved Project Paleontologist, and the PDS Permit Compliance Coordinator (PCC), shall attend the pre-construction meeting with the contractors to explain and coordinate the requirements of the grading monitoring program. The Project Paleontologist shall monitor during the original cutting of previously undisturbed deposits for the project, both on and off site, the Qualified Paleontological Resources Monitor shall be on-site to monitor as determined necessary by the Qualified Paleontologist. The grading monitoring program shall comply with the County of San Diego Guidelines for Determining Significance and Report Format and Content Requirements for Paleontological Resources

http://www.sdcounty.ca.gov/dplu/procguid.html. DOCUMENTATION: The applicant shall have the contracted Project Paleontologist attend the preconstruction meeting to explain the monitoring requirements. TIMING: Prior to Preconstruction Conference, and prior to any clearing, grubbing, trenching, grading, or any land disturbances this condition shall be completed. MONITORING: The [DPW, PDCI] shall invite the [PDS, PCC] to the preconstruction conference to coordinate the Paleontological Resource Monitoring requirements of this condition. The [PDS, PCC] shall attend the preconstruction conference and confirm the attendance of the approved Project Paleontologist.

DURING CONTRUCTION: (The following actions shall occur throughout the duration of the grading construction).

(AIR QUALITY)

AIR GR#1-AIR QUALITY

INTENT: In order to mitigate for construction phase particulate emissions. DESCRIPTION OF REQUIREMENT: The project shall comply with the following Air Quality measures:

- a. All haul/dump trucks entering or leaving the site with soil or fill material must maintain at least 2 feet of freeboard or cover loads of all haul/dump trucks securely (unnumbered design measure).
- b. Dust control measures of the Grading Ordinance will be enhanced with a minimum of three (3) daily applications of water to the construction areas, between dozer/scraper passes and on any
- unpaved roads within the project limits.
 c. Grading is to be terminated in winds exceed 25 mph.
- d. Sweepers and water trucks shall be used to control dust and debris at public street access
- e. Dirt storage piles will be stabilized by chemical binders, tarps, fencing or other suppression
- f. Internal construction—roadways will be stabilized by paving, chip sealing or chemicals after rough aradina.
- g. A minimum of four 15 mph signs shall be posted and enforced on unpaved areas during
- h. Electricity from the utility grid shall be used to power construction equipment to the maximum extent feasible.

DOCUMENTATION: The applicant shall comply with the Air Quality requirements of this condition. TIMING: The following actions shall occur throughout the duration of the grading construction. MONITORING: The [DPW, PDC/] shall make sure that the grading contractor complies with the Air Quality requirements of this condition. The [DPW, PDC/] shall contact the [PDS, PCC] if the applicant fails to comply with this

(BIOLOGICAL RESOURCES)

BIO GR#3 - BIOLOGICAL MONITORING [PDS, FEE X3]

INTENT: In order to prevent inadvertent disturbance to Least Bell's vireo and Southwestern willow flycatcher, all grading located adjacent to Frey creek shall be monitored by a biological monitor. DESCRIPTION OF REQUIREMENT: A County approved biologist shall perform biological monitoring during all grading, clearing, grubbing, trenching, and construction activities. The Project Biologist shall supervise and monitor grading activities to ensure against damage to biological resources that are intended to be protected and preserved. The monitor(s) shall be on site during all grading and clearing activities that are in or adjacent to any wetland or potential occupied habitat, Biological open space areas or sensitive habitats. If there are disturbances, the monitor must report them immediately to the [PDS PCC]. Additionally, the biologist shall perform the following duties:

COUNTY OF SAN DIEGO TRACT NO. TM 5223 RPL-3

SHADOW RUN RANCH, PAUMA VALLEY PRELIMINARY GRADING PLAN

- 1. Perform weekly inspection of fencing and erosion control measures (daily during rain events) near proposed preservation areas and report deficiencies immediately to the DPW Construction Inspector;

 2. Perform periodically monitor the work area for excessive dust generation in compliance with the
- County grading ordinance and report deficiencies immediately to the DPW Construction Inspector;

 3. Monitor construction lighting periodically to ensure lighting is the lowest illumination possible allowed for safety, selectively placed, shielded, and directed away from preserved habitat;
- 4. Monitor equipment maintenance, staging, and fuel dispensing areas to ensure there is no runoff to Waters of the US:
- 5. Monitor noise levels to ensure they are not in excess of 60 decibels during the breeding season of Least Bell's vireo and Southwestern willow flycatcher defined as April 15 and September 15;
 6. Stop or divert all work when deficiencies require mediation and notify DPW Construction Inspector

and [PDS PCC] within 24 hours; (8) produce periodic (monthly during grading) and final reports

- and submit to the Wildlife Agencies and the PDS (final report will release bond);
 7. Confer with the Wildlife Agencies and [PDS PCC] within 24 hours any time protected habitat or Least Bell's vireo and Southwestern willow flycatcher are being affected by construction;
- 8. Attend construction meetings and other meetings as necessary.

DOCUMENTATION: The Project Biologist shall prepare and submit to the satisfaction the [PDS, PCC] monitoring reports, which indicate that the monitoring has occurred as indicated above. TIMING: The following actions shall occur throughout the duration of the grading construction. MONITORING: The [DPW, PDCI] shall assure that the Project Biologist is on—site performing the Monitoring duties of this condition during all applicable grading activities as determined by the Biologist. The [DPW, PDCI] shall contact the [PDS, PCC] if the Project Biologist or applicant fails to comply with this condition. The [PDS, PCC] shall review and approve the monitoring reports for compliance with this condition.

(CULTURAL RESOURCES)

CULT #GR-2-ARCHAEOLOGICAL MONITORING [PDS, FEE X2]

In order to comply with the Mitigation Monitoring and Reporting Program for PDS2001—3100—5223 and the County of San Diego Guidelines for Determining Significance and Report Format and Content

Requirements for Archeological and Historic Resources http://www.sdcounty.ca.gov/dplu/procguid.html, a

Cultural Resource Grading Monitoring Program shall be implemented. DESCRIPTION OF REQUIREMENT: The Project Archaeologist and Luiseno Native American Monitor shall monitor the original cutting of previously undisturbed deposits in all areas identified for development including off—site improvements. The archaeological grading monitoring program shall comply with the following requirements during earth—disturbing activities:

- a. During the original cutting of previously undisturbed deposits, the Project Archaeologist and Luiseno Native American Monitor shall be onsite as determined necessary by the Project Archaeologist. Inspections will vary based on the rate of excavation, the materials excavated, and the presence and abundance of artifacts and features. The frequency and location of inspections will be determined by the Project Archaeologist in consultation with the Luiseno Native American Monitor. Monitoring of the cutting of previously disturbed deposits will be determined by the Project Archaeologist in consultation with the Luiseno Native American Monitor.
- In the event that previously unidentified potentially significant cultural resources are discovered, the Project Archaeologist or the Native American monitor, shall have the authority to divert or temporarily halt ground disturbance operations in the area of discovery to allow evaluation of potentially significant cultural resources. At the time of discovery, the Project Archaeologist shall contact the PDS Staff Archaeologist. The Project Archaeologist, in consultation with the PDS Staff Archaeologist and the Luiseno Native American monitor, shall determine the significance of the discovered resources. Construction activities will be allowed to resume in the affected area only after the PDS Staff Archaeologist has concurred with the evaluation. Isolates and clearly non-significant deposits shall be minimally documented in the field. Should the cultural materials for isolates and non-significant deposits not be collected by the Project Archaeologist, then the Native American monitor may collect the cultural material for transfer to a Tribal Curation facility or repatriation program. A Research Design and Data Recovery Program to mitigate impacts to significant cultural resources shall be prepared by the Project Archaeologist in coordination with the Luiseno Native American monitor. The County Archaeologist shall review and approve the Program, which shall be carried out using professional archaeological methods. The Research Design and Data Recovery Program shall include (1) pursuant to CEQA \$21083.2(g), reasonable efforts to preserve (avoidance) "unique" cultural resources or Sacred Sites; (2) the capping of identified Sacred Sites or unique cultural resources and placement of development over the cap. if avoidance is infeasible: and (3) data recovery for non-unique cultural resources. The preferred option is preservation (avoidance).
- c. "If any human remains are discovered, the Property Owner or their representative shall contact the County Coroner and the PDS Staff Archaeologist. Upon identification of human remains, no further disturbance shall occur in the area of the find until the County Coroner has made the necessary findings as to origin. If the remains are determined to be of Native American origin, the Most Likely Descendant, as identified by the Native American Heritage Commission, shall be contacted by the Property Owner or their representative in order to determine proper treatment and disposition of the remains. The immediate vicinity where the Native American human remains are located is not to be damaged or disturbed by further development activity until consultation with the MLD regarding their recommendations as required by Public Resources Code Section 5097.98 has been conducted. Public Resources Code §5097.98, CEQA §15064.5 and Health & Safety Code §7050.5 shall be followed in the event that human remains are discovered.
- d. The Project Archaeologist shall submit monthly status reports to the Director of PDS starting from the date of the Notice to Proceed to termination of implementation of the grading monitoring program. The reports shall briefly summarize all activities during the period and the status of progress on overall plan implementation. Upon completion of the implementation phase, a final report shall be submitted describing the plan compliance procedures and site conditions before and after construction.

DOCUMENTATION: The applicant shall implement the archaeological grading monitoring program pursuant to this condition. TIMING: The following actions shall occur throughout the duration of the grading construction. MONITORING: The [DPW, PDCI] shall make sure that the Project Archeologist is on—site performing the monitoring duties of this condition. The [DPW, PDCI] shall contact the [PDS, PCC] if the Project Archeologist or applicant fails to comply with this condition.

(PALEONTOLOGIC AL RESOURCES)

PALEO GR#2 - PALEONTOLOGICAL MONITORING: [DPW, PDCI] [PDS, PCC] [PC] [PDS, FEE X2]

INTENT: In order to comply with Mitigation Monitoring and Reporting Program pursuant to 3100–5223, and the County of San Diego Guidelines for Determining Significance and Report Format and Content Requirements for Paleontological Resources http://www.sdcounty.ca.gov/dplu/procguid.html, a Grading Monitoring Program shall be implemented. DESCRIPTION OF REQUIREMENT: The Project Paleontologist shall monitor During the original cutting of previously undisturbed deposits for the project, both on and off site, the Qualified Paleontological Resources Monitor shall be on—site to monitor as determined necessary by the Qualified Paleontologist. The grading monitoring program shall comply with the following requirements during grading:

- Paleontologist. The grading monitoring program shall comply with the following requirements during grading:

 a. If paleontological resources are encountered during grading/excavation, the following shall be completed:
- 1. The Qualified Paleontological Resources Monitor shall have the authority to direct, divert, or halt any grading/excavation activity until such time that the sensitivity of the resource can be determined and the appropriate salvage implemented.
- 3. The Qualified Paleontologist shall contact the County's Permit Compliance Coordinator immediately.
 4. The Qualified Paleontologist shall determine if the discovered resource is significant. If it is not

The Qualified Monitor shall immediately contact the Qualified Paleontologist.

- significant, grading/excavation shall resume."

 b. If the paleontological resource is significant or potentially significant, the Qualified Paleontologist or Qualified Paleontological Resources Monitor, under the supervision of the Qualified Paleontologist,
- shall complete the following tasks in the field:

 Salvage unearthed fossil remains, including simple excavation of exposed specimens or, if necessary,

 plaster—jacketing of large and/or fragile specimens or more elaborate quarry excavations of richly
 fossiliferous deposits:
- 2. Record stratigraphic and geologic data to provide a context for the recovered fossil remains, typically including a detailed description of all paleontological localities within the project site, as well as the lithology of fossil—bearing strata within the measured stratigraphic section, if feasible, and photographic documentation of the geologic setting; and
- 3. Transport the collected specimens to a laboratory for processing (cleaning, curation, cataloging, etc.).

DOCUMENTATION: The applicant shall implement the grading monitoring program pursuant to this condition. TIMING: The following actions shall occur throughout the duration of the grading construction.

MONITORING: The [DPW, PDC/] shall make sure that the Project Archeologist is on—site performing the Monitoring duties of this condition. The [DPW, PDC/] shall contact the [PDS, PCC] if the Project Paleontologist or applicant fails to comply with this condition.

ROUGH GRADING: (Prior to rough grading approval and issuance of any building permit).

(BIOLOGIC AL RESOURCES)

BIO GR#4 - BIOLOGICAL MONITORING [PDS, FEE]

In order to comply with the adopted Mitigation Monitoring and Reporting Program (MMRP) pursuant to PDS2001-3100-5223 and the County of San Diego Guidelines for Determining Significance and Report Format and Content Requirements for Biological Resources, http://www.sdcounty.ca.gov/dplu/procguid.html a Grading Monitoring Program shall be implemented. DESCRIPTION OF REQUIREMENT: The Project Biologist shall prepare and submit a final letter report substantiating his/her supervision of the grading activities and substantiating that grading did not impact additional areas of Least Bell's vireo and Southwestern willow flycatcher or other sensitive biological resources. The report shall conform to the County of San Diego Report Format Guidelines for Biological Resources http://www.sdcounty.ca.gov/dplu/procguid.html. It shall also include but not be limited to the following items:

- a. Photos of the temporary fencing that was installed during the trenching, grading, or clearing
- b. Monitoring logs showing the date and time that the monitor was on site. c. Photos of the site after the grading and clearing activities.

DOCUMENTATION: The applicant shall submit the final biological monitoring report to the [PDS, PCC] for review and approval. TIMING: Upon completion of all grading activities, and prior to Rough Grading final Inspection (Grading Ordinance SEC 87.421.a.2), http://www.sdcounty.ca.gov/dpw/docs/propgradord.pdf the final report shall be completed. MONITORING: The [PDS, PCC] shall review the final report for compliance with the project MMRP, and inform [DPW, PDCI] that the requirement is completed.

(CULTURAL RESOURCES)

CULT #GR-3-ARCHAEOLOGICAL MONITORING [PDS, FEE]

INTENT: In order to comply with the adopted Mitigation Monitoring and Reporting Program (MMRP) pursuant to PDS2001—3100—5223, and the <u>County of San Diego Guidelines for Determining Significance and Report Format and Content Requirements for Archaeological Resources,</u>

http://www.sdcounty.ca.gov/dplu/procguid.html an Archaeological Grading Monitoring Program shall be implemented. DESCRIPTION OF REQUIREMENT: The Project Archaeologist shall prepare one of the following reports upon completion of the grading activities that require monitoring:
a. If no archaeological resources are encountered during earth—disturbing activities, then submit a property of the program of the program of the following activities.

- a. If no archaeological resources are encountered during earth—disturbing activities, then submit a final Negative Monitoring Report substantiating that earth—disturbing activities are completed and no cultural resources were encountered. Archaeological monitoring logs showing the date and time that the monitor was on site and any comments from the Luiseno Native American monitor must be included in the Negative Monitoring Report.
- b. If archaeological resources were encountered during the earth—disturbing activities, the Project Archaeologist shall provide an Archaeological Monitoring Report stating that the field monitoring activities have been completed, and that resources have been encountered. The report shall detail all cultural artifacts and deposits discovered during monitoring and the anticipated time schedule for completion of the curation phase of the monitoring.

DOCUMENTATION: The applicant shall submit the Archaeological Monitoring report to the [PDS, PCC] for review and approval. TIMING: Upon completion of all earth—disturbing activities, and prior to Rough Grading final Inspection (Grading Ordinance SEC 87.421.a.2 http://www.sdcounty.ca.gov/dpw/docs/propgradord.pdf), the report shall be completed. MONITORING: The [PDS, PCC] shall review the report or field monitoring memo for compliance with the project MMRP, and inform [DPW, PDCI] that the requirement is completed.

(PALEONTOLOGICAL RESOURCES)

PALEO GR#3 — PALEONTOLOGICAL MONITORING: [PDS, PCC] [RG, BP] [PDS, FEE].

INTENT: In order to comply with the adopted Mitigation Monitoring and Reporting Program (MMRP) pursuant to PDS2001—3100 5223, and the <u>County of San Diego Guidelines for Determining Significance and Report Format and Content Requirements for Paleontological Resources,</u>

- a. If no paleontological resources were discovered, submit a "No Fossils Found" letter from the grading contractor to the [FDS, FCC] stating that the monitoring has been completed and that no fossils were discovered, and including the names and signatures from the fossil monitors. The letter shall be in the format of Attachment E of the County of San Diego Guidelines for Determining Significance for Paleontological Resources.
- b. If Paleontological resources were encountered during grading, a letter shall be prepared stating that the field grading monitoring activities have been completed, and that resources have been encountered. The letter shall detail the anticipated time schedule for completion of the curation phase of the monitoring.

DOCUMENTATION: The applicant shall submit the letter report to the [PDS, PCC] for review and approval. TIMING: Upon completion of all grading activities, and prior to Rough Grading final Inspection (Grading Ordinance SEC 87.421.a.2) <http://www.sdcounty.ca.gov/dpw/docs/propgradord.pdf>, the letter report shall be completed. MONITORING: The [PDS, PCC] shall review the final negative letter report or field monitoring memo for compliance with the project MMRP, and inform [DPW, PDCI] that the requirement is completed.

FINAL GRADING RELEASE: (Prior to any occupancy, final grading release, or use of the premises in reliance of this permit).

(BIOLOGIC AL RESOURCES)

BIO GR#5 - OPEN SPACE SIGNAGE & FENCING [PDS, FEE]

INTENT: In order to comply with Condition BIO# 4, 5 pursuant to the adopted Mitigation Monitoring and Reporting Program (MMRP) for PDS2001-3100-5223, the fencing and signage shall be installed. DESCRIPTION OF REQUIREMENT: The permanent fences or walls, and open space signs shall be placed along the open space boundary of lots(s) 12-24, 17-20, 23-36, and 45 as shown on Figure 5 - Open Space, Fencing, and Signage Exhibit of the approved Biological Resources Survey Report for the Shadow Run Ranch Project, prepared by Vincent Scheidt

surveyor that the permanent walls or fences, and open space signs have been installed.

b. The signs must be corrosion resistant, a minimum of 6" x 9" in size, on posts not less than three (3) feet in height from the ground surface, and must state the following:

a. Evidence shall be site photos and a statement from a California Registered Engineer, or licensed

three (3) feet in height from the ground surface, and must state the following:

Sensitive Environmental Resources

Area Restricted by Easement Entry without express written permission from the County of San Diego

is prohibited. To report a violation or for more information about easement restrictions and exceptions contact the County of San Diego,

Planning & Development Services

Reference: (PDS2001-3100 5223, Env. Log. 3910-00-02-035)

DOCUMENTATION: The applicant shall install the fencing and signage and provide the documentation photos and certification statement to the [PDS, PCC]. TIMING: Prior to the occupancy of any structure or prior to Final Grading Release (Grading Ordinance Sec. 87.421.a.3)

http://www.sdcounty.ca.gov/dpw/docs/propgradord.pdf the fencing and signage shall be installed.

MONITORING: The [PDS, PCC] shall review the photos and statement for compliance with this condition.

BIO GR#6 - EASEMENT AVOIDANCE [PDS, FEE]

In order to protect sensitive resources, pursuant to <u>County Grading Ordinance Section 87.112</u>

http://www.sdcounty.ca.gov/dpw/docs/propgradord.pdf the open space easements shall be avoided.

DESCRIPTION OF REQUIREMENT: The easement indicated on this plan is for the protection of native habitat within Frey creek that is a sensitive environmental resources and prohibits all of the following on any portion of the land subject to said easement: grading; excavation; placement of soil, sand, rock, gravel, or other material; clearing of vegetation; construction, erection, or placement of any building or structure; vehicular activities; trash dumping; or use for any purpose other than as open space. It is unlawful to grade or clear within an open space easement; any disturbance shall constitute a violation of the <u>County Grading Ordinance Section 87.112 http://www.sdcounty.ca.gov/dpw/docs/propgradord.pdf and will result in enforcement action and restoration. DOCUMENTATION: The applicant shall provide a letter statement to the [PDS, PCC] stating that all Sensitive Resource Easements were avoided during the grading construction, and that no impacts or encroachment into the open space occurred. TIMING: Prior to Final Grading Release the letter verifying the easements were not disturbed shall be submitted. MONITORING: The [DPW, PDCI] shall not allow any grading, clearing or encroachment into the open space easement."</u>

(CULTURAL RESOURCES)

CULT #GR-4-ARCHAEOLOGICAL MONITORING [PDS, FEE]

INTENT: In order to comply with the adopted Mitigation Monitoring and Reporting Program (MMRP) pursuant to PDS2001—3100—5223, and the <u>County of San Diego Guidelines for Determining Significance and Report</u>
Format and Content Requirements for Archaeological Resources

SHEET <u>4</u> OF <u>4</u>

http://www.sdcounty.ca.gov/dplu/procguid.html, an Archaeological Grading Monitoring Program shall be implemented. DESCRIPTION OF REQUIREMENT: The Project Archaeologist shall prepare a final report that documents the results, analysis, and conclusions of all phases of the Archaeological Monitoring Program if cultural resources were encountered during earth—disturbing activities. The report shall include the following:

- a. Department of Parks and Recreation Primary and Archaeological Site forms.
- c. Evidence that all prehistoric cultural resources collected during the archaeological grading monitoring program have been submitted to a San Diego curation facility or a culturally affiliated Tribal curation facility that meets federal standards per 36 CFR Part 79, and, therefore, would be professionally curated and made available to other archaeologists/researchers for further study. The collections and associated records, including title, shall be transferred to the San Diego curation facility and shall be accompanied by payment of the fees necessary for permanent curation. Evidence shall be in the form of a letter from the curation facility stating that

archaeological materials have been received and that all fees have been paid.

Evidence that all historic cultural resources collected during the archaeological grading monitoring program have been submitted to a San Diego curation facility that meets federal standards per 36 CFR Part 79, and, therefore, would be professionally curated and made available to other archaeologists/researchers for further study. The collections and associated records, including title,

shall be transferred to the San Diego curation facility and shall be accompanied by payment of the fees necessary for permanent curation. Evidence shall be in the form of a letter from the curation facility stating that archaeological materials have been received and that all fees have been paid.

d. If no cultural resources are discovered, a brief letter to that effect must be submitted stating that the archaeological grading monitoring activities have been completed. Daily Monitoring Logs must be submitted with the negative monitoring report.

DOCUMENTATION: The applicant shall submit the report to the [PDS, PCC] for review and approval. Once approved, a final copy of the report shall be submitted to the South Coastal Information Center (SCIC) and the culturally—affiliated Tribe. TIMING: Prior to the occupancy of any structure or use of the premises in reliance of PDS2000—3300—030, and prior to Final Grading Release (Grading Ordinance Sec. 87.421.a.3 http://www.sdcounty.ca.gov/dpw/docs/propgradord.pdf), the final report shall be completed. MONITORING: The [PDS, PCC] shall review the final report for compliance with the project MMRP and the report format

[PDS, PCC] shall review the final report for compliance with the project MMRP and the report format guidelines. Upon acceptance of the report, [PDS, PCC] shall inform [PDS, LDR] and [DPW, PDC] that the requirement is complete and the bond amount can be relinquished. If the monitoring was bonded separately, then [PDS, PCC] shall inform [PDS or DPW FISCAL] to release the bond back to the applicant.

(PALEONTOLOGIC AL RESOURCES)

PALEO GR#5 - PALEONTOLOGICAL MONITORING: [PDS, PCC] [RG, BP] [PDS, FEE].

In order to comply with the adopted Mitigation Monitoring and Reporting Program (MMRP) pursuant to PDS2001-3100 5223, and the County of San Diego Guidelines for Determining Significance and Report Format and Content Requirements for Paleontological Resources

<http://www.sdcounty.ca.gov/dplu/procguid.html>, a Grading Monitoring Program shall be implemented.
DESCRIPTION OF REQUIREMENT: The Project Paleontologist shall prepare a final report that documents the results, analysis, and conclusions of all phases of the Paleontological Monitoring Program if resources were encountered during grading. The report shall include the following:

- countered during grading. The report shall include the following:

 a. If paleontological resources were discovered, the Following tasks shall be completed by or under
- the supervision of the Project Paleontologist:

 1. Prepare collected fossil remains for curation, to include cleaning the fossils by removing the enclosing rock material, stabilizing fragile specimens using glues and other hardeners, if necessary, and repairing broken specimens;
- 2. Curate, catalog and identify all fossil remains to the lowest taxon possible, inventory specimens, assigning catalog numbers, and enter the appropriate specimen and locality data into a collection
- 3. Submit a detailed report prepared by the Project Paleontologist in the format provided in Appendix D of the County of San Diego's Guidelines for Determining Significance for Paleontological Resources and identifying which accredited institution has agreed to accept the curated fossils. Submit TWO hard copies of the final Paleontological Resources Mitigation Report to the Director of PDS for final approval of the mitigation, and submit an electronic copy of the complete report in Microsoft Word on a CD. In addition, submit one copy of the report to the San Diego Natural History Museum and one copy to the institution that received the fossils.
- 4. Transfer the cataloged fossil remains and copies of relevant field notes, maps, stratigraphic sections, and photographs to an accredited institution (museum or university) in California that maintains paleontological collections for archival storage and/or display, and submit Proof of Transfer of Paleontological Resources, in the form of a letter, from the director of the paleontology department of the accredited institution to the Director of PDS verifying that the
- curated fossils from the project site have been received by the institution."

 b. If no resources were discovered, a brief letter to that effect and stating that the grading monitoring activities have been completed, shall be sent to the Director of Planning and Land Use by the Project Paleontologist.

DOCUMENTATION: The applicant shall submit the letter report to the [PDS, PCC] for review and approval.

TIMING: Prior to the Final Grading Release (Grading Ordinance Sec. 87.421.a.3)

http://www.sdcounty.ca.gov/dpw/docs/propgradord.pdf, the final report shall be completed. MONITORING.

The [PDS, PCC] shall review the final report for compliance with the project MMRP, and inform [DPW,

PDCI] that the requirement is completed."

Planning ▲ Engineering ▲ Surveying ▲ Telecom

CALIF. COORD. INDEX: 427-1764

ATTACHMENT – 2

1,000 YR. RESERVOIR CALCULATIONS

For SHADOW RUN RANCH TM 5223

Preparation/Revision Date:

November 25, 2013

Prepared for:

Sherrill Ann Schoepe, General Partner

Shadow Run Ranch, LLC

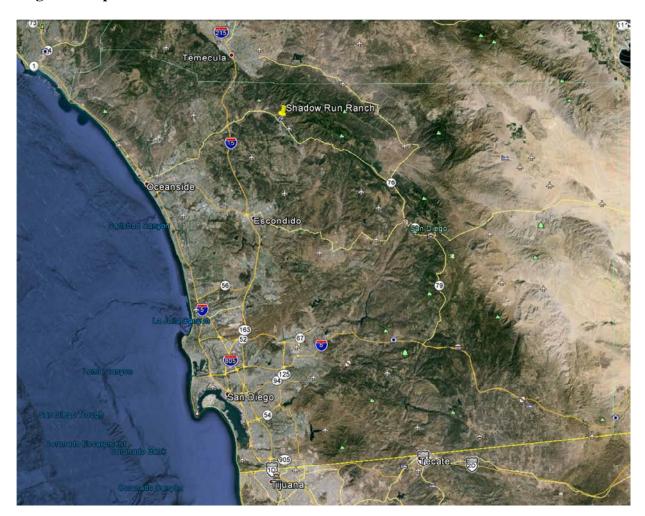
P.O. Box 1249

Pauma Valley, CA 92061

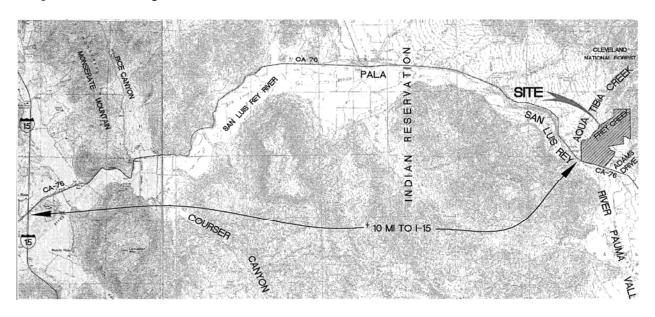
Telephone: (760) 742-1893

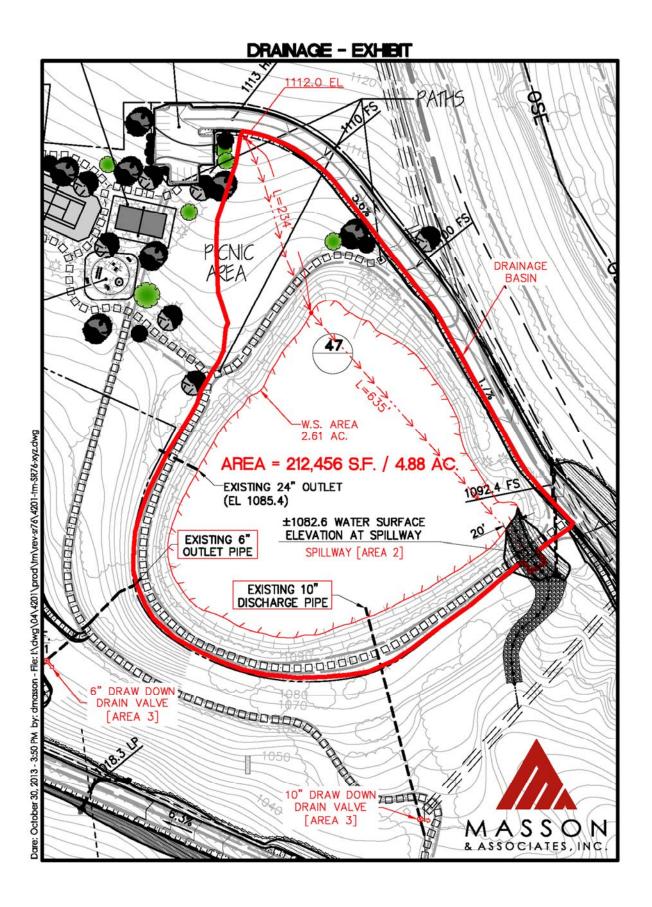
Prepared by:

Masson & Associates, Inc.


200 East Washington Avenue, Suite 200

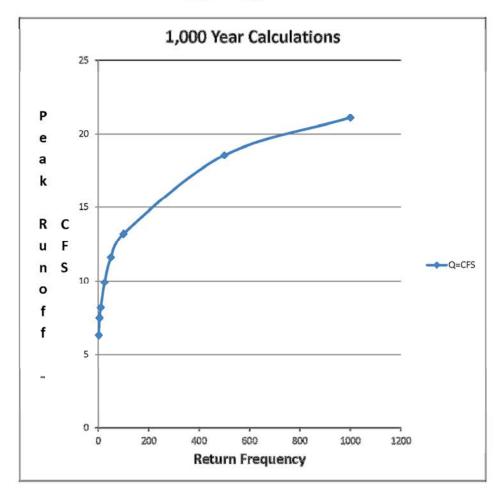
Escondido, CA 92025


Telephone: (760) 741-3570


Tuesday, November 26, 2013

Regional map:

Project location Map:



	PROJECT NO.:	
	DESCRIPTION:	
	CALCULATED BY:	DATE:
	CHECKED BY:	DATE:
MASSON	SHEET	OF
& ASSOCIATES, INC.	SCALE:	
	oo years	
bil type p = c=	.35 Fran Table	31 A=4.88 Ac
7, 10		
= 6.9 min from Table	8-2 (for 10%	
T = 6.9	in	
calculation of for	yeag 9,5,10, \$5,50	, og, we will find the
tartion for a perve	en 02,5,10,5,100	to Estimate the a
		laoc
ear 9		
1.68 in 1995	·7: 168 100	0 = 621 r . Pg= 1 - 8814
I = 3.7 ml From Fig	ura 3.1)	
2-CIA 0-0-1	35 x 3. 7 x 4.88 = 6.	3 695
ear 5		
58.2 m P2 = 4.1 in	Pá 2.2	× 00 = 53.77 V = 0 = 22;
7 14 4 6	3-1)	16
1 = 4.4 in/hy (figure		
D=CTA G-0.35x4	4 x 4.88 = 7.5 Cfs	

	Page (2)	
	PROJECT NO.:	
	DESCRIPTION:	
	CALCULATED BY:	DATE:
	CHECKED BY:	DATE:
MASSON	SHEET,	OF
& ASSOCIATES, INC.	SCALE:	
veer 10		
Pb-243 in Pay 5	1.9 in P6 2 42 10	00 = 44 7 V : P = 9.93 m
7 = 4 - 8 m/hr (figu	2 3 1)	
	 	
OFCIA PO 0.3	5 4 8 4 88 8 2	de.
Vegr 25		+ - + + + + + +
Par 25 61	1 Ps 5-0 x 100 = 5	0 5 2 9
I = 5.8 mll (Figure	3-1)	
		ds d
25		
Year 50		
4-4-4		
Ca=2-914 Pay= 5-7/1	PE 33 10= 47 3 7	P6 3 3 C4
 		
D-CIA Q-0.85	x 6.8 x 4.88 = 11.6 CAS	
year los	-	
9 - 3. 7 in Pag = 7.5 in	P6 = 3.* × 100 =	193% 1.As 37 in
FF Taller (Figur	(3-1) 7.5	
		
O-PTA O	0.35×77+488 = 13.9	425
200 EAST WASHINGTON AVENUE, SUI	TE 200 ESCONDIDO, CA 92025 TEL	(760) 741-3570 FAX (760) 741-1786

Q=CFS Yr 6.3 2 7.5 5 10 8.2 25 9.9 50 11.6 100 13.2 500 18.56 1000 21.1

Methodology:

The peak runoff for the 2, 5, 10, 25, 50 and 100 year frequency storms have been calculated on the previous page and summarize on this page, in accordance with the requirements of the County of San Diego Hydrology Manual. The relationship between the values of the storms remains fairly consistent. The relationship between runoff intensity / flow is 1.6:1 for storm frequencies that have a return frequency that is 10:1. For example:

The flow for a 50 year storm is 1.6 times the flow rate for a 5 year storm and the flow rate for a 100 year storm is 1.6 times the flow rate for a 10 year storm.

Using this relationship we can extrapolate and calculate the peak flow rate for a 1000 year storm, which would be 1.6 times the 100 year storm (or 21.1 cfs).

	PROJECT NO.: DESCRIPTION: CALCULATED BY:	DATE:
	CHECKED BY:	DATE:
14022416	SHEET	OF_
MASSON 8 ASSOCIATES, INC.	SCALE:	
	raction between 50/	loor to find out
Fraction between 1000	100	
50 - 116 -1155	100 3 13.9 -1 6	
1000	c+s	
va use oveirs equalic	on for trapesoidal C	coss section to
1 100	3/3 / 2/1 3/2 = (2/1)/3	0.5 88
	2:1	
	1=9018	
for C value please	afar to table 5.7 from	Hend Book of

Therefore, we have shown that the spillway is more than sufficient to convey the $1000\,\mathrm{year}$ storm.

ATTACHMENT – 3

P. 760.741.3570 F. 760.741.1786

www.masson-assoc.com

May 31, 2013

Sherrill Schoepe Shadow Run Ranch, LLC Post Office Box 1249 Pauma Valley, CA 92061

RE: Scoping letter comment DPLU 20-5

Dear Ms. Schoepe:

This letter is to address DPLU Comment #20-5, in the County of San Diego EIR Scoping Letter dated December 14, 2012, it states:

Page 6-7, Other Hazards. The geotechnical report states that the project drainage system should be checked for its ability to handle short-term, concentrated flows if significant reservoir overtopping were to occur during an earthquake. Please include an addendum to the geotechnical report which provides a detailed evaluation of the project drainage system and whether it can handle short-term concentrated flows if significant reservoir overtopping were to occur. The addendum should consider the worst case scenario of failure of the existing reservoir embankment in its evaluation. The addendum should include specific design measures as necessary to dissipate and/or divert flows to levels that ensure the safety of all proposed house pads to be placed below the dam. The addendum shall include the following concluding statement and must be signed and stamped by a California Certified Engineering Geologist and if necessary a California Licensed Civil Engineer: "Based on the available information described in this addendum, it is the opinion of the undersigned, that the measures described herein are sufficient to assure the house pads would be safe from the potential effects of dam inundation at the site." 12/14/2012 2nd Request. This comment was not addressed.

Per this request we have looked into the proposed downstream drainage system and have determined that the proposed downstream drainage system is sized appropriately to convey the water outlined in the seiche overtopping scenario italicized below for the short term concentrated flow.

From URS - We modeled the reservoir water level like a seiche, with a 1-ft wave running up the inner slope of the reservoir. Based on this we estimate the reservoir could overflow (or overtop) at a rate of about 0.2 ft3/ft-sec.

The area of most concern is the southwesterly portion of the reservoir facing the proposed project. This area has a total overtopping rate of 62 cfs. This area is upstream from a proposed 1,415 s.f. hydro-modification basin 2A.1. HMP basin 2A.1 has been designed to accommodate water storage of 1,179 cubic feet, which is several times the amount of the overtopping volume. This basin has a 36" stand pipe and an outlet flow capacity of 24 cfs. Therefore, the overtopping flows would not exceed the original design capacity of the proposed drainage system.

Sherrill Schoepe Shadow Run Ranch, LLC PN 4021, Shadow Run

Date: May 31, 2013

Page 2 of 3

With regard to the worst case scenario of failure, by piping, we reference the URS letter dated May 22, 2013 which includes a proposal for a synthetic liner system. Preliminary recommendations for the liner, based on input from URS and liner manufacturers, are attached. In our opinion, a properly designed and installed impervious liner system would be sufficient to mitigate the hazard of piping related seepage from the reservoir.

Sincerely,

Bruce A. Tait, QSP/QSD Director of Engineering

Cc: David Schug
Cc: Robert Hingtgen

ATTACHMENT – 4

N/A

OPERATION & MAINTENANCE PLAN

For SHADOW RUN RANCH TM 5223

Preparation/Revision Date:

November 21, 2013

May 19, 2014

Prepared for:

Sherrill Ann Schoepe, General Partner

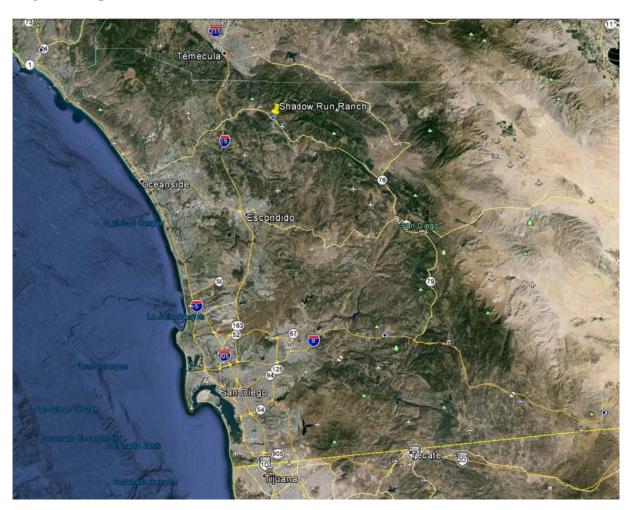
Shadow Run Ranch, LLC

P.O. Box 1249

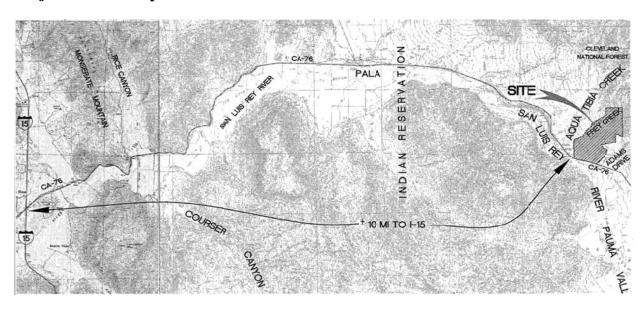
Pauma Valley, CA 92061

Telephone: (760) 742-1893

Prepared by:


Masson & Associates, Inc.

200 East Washington Avenue, Suite 200


Escondido, CA 92025

Telephone: (760) 741-3570

Regional map:

Project location Map:

Attachment 5 - Reservoir O M - (06-30-2014).docx

Reservoir area:

1.0 Purpose of Document

The proposed project's HOA, County of San Diego as well as the ongoing agricultural operations and future home owners of the project are stakeholders in this Operations and Maintenance Plan (O&M). The following is an outline of the system and elements affected by this O&M. The operation and maintenance of the existing reservoir are the responsibility of the project proponent and their successors in title. The operation and maintenance associated with the existing reservoir are discussed below. The discussion includes a routine action, maintenance indicator, field observation methods, frequency, and maintenance activity. Costs associated with each activity are included. The scope and purpose of this O&M is to ensure the operational items associated with the existing reservoir are working properly and the safety and stability of the reservoir are maintained at optimum working levels.

The Four primary maintenance areas for the reservoir are as follows:

- 1. Reservoir embankment [AREA 1]
 - a. Stability
 - b. Landscaping
 - c. Irrigation
 - d. Burrowing animals
- 2. Reservoir spillway [AREA 2]
 - a. Stability
 - b. Energy dissipaters
 - c. Scour
- 3. Reservoir drain lines [AREA-3]
 - a. Pipeline condition
 - b. Shutoff valves
 - c. Drain valves
- 4. Monitoring wells [AREA-4]
 - a. Depth to ground water

The landscape architect should choose plant coverage for slope protection and erosion control along the outer edge of the reservoir embankment that will be high in erosion control value with shallow root systems and which will deter small burrowing animals. The reservoir slope embankment shall be watered sparingly to maintain landscape coverage for erosion control.

2.0 Facilities and Resources

The facilities and resources identified to be managed and inspected are shown above and attached as graphic **EXHIBIT** "A" - "**RESERVOIR AREAS**". The management and inspection of the reservoir will be the responsibility of the ownership of the recreational open space lot 47 of TM 5223 (the homeowners association (HOA)). The property manager(s) of the HOA shall at all times have a qualified grove manager(s) that will be employed by said HOA and have a set number of hours dedicated monthly to inspect and fill out inspection reports in

conformance with this Operations and Maintenance Plan. The Grove Manager will receive onsite training in the proper maintenance and repair of the facility. The HOA shall dedicate \$6,000 yearly and have a reserve fund to anticipate any startup and ongoing maintenance of the reservoir systems. Additionally the reservoir shall be inspected by a registered Civil Engineer or registered Geologist on a yearly basis for any additional recommendations.

3.0 Operations

The goal of this O&M is to ensure safety and operational conditions of all reservoir systems on a monthly basis. This includes; testing the valves on the two (2) 6" irrigation/down drain lines and the one (1) 10" down drain line. These valves and pipes shall be maintained and operational so that they can be utilized in case of an emergency to drawdown ½ the reservoir capacity within 7 days, and completely drain the reservoir within 20 days.

The report shall contain, at a minimum, the following items: Example inspection report attached as Exhibit "B".

Inspection Protocol: Inspections will include:

- Date of inspection
- Reservoir level
- Water use in previous month
- Note any unusual signs of changed water levels
- Condition of the spillway
- Check scour and erosion
- Condition of the 6" drain line
- Condition of the 10" drain line

- Overall embankment stability
- Any signs of slope movement
- Any signs of seepage around or below reservoir
- Any rock falls nearby
- Vegetation control
- Control of burrowing animals
- Irrigation control
- Three existing monitoring wells

Inspections:

The grove manager shall visually inspect on a monthly basis, the entire slope embankment [Area 1] of the reservoir including the spillway [Area 2] looking for any settlement, surface cracking, burrowing animals, overwatering and seepage. In addition the (2) 6" drain line pipes and (1) 10" drain line pipe [Area 3] shall be tested monthly, to ensure the valves and drain capacities are working properly.

On a monthly basis, or if an earthquake is felt at or near the reservoir (as outlined below), measure and record the depth to groundwater in the three existing monitoring wells at the top of the reservoir embankment [Area 4]. The HOA shall be notified immediately if any substantially changed groundwater levels are indicated. The reports shall be submitted to the HOA and COSD within 10 working days of the date of the inspection and will be filed in the HOA manager's office and shall be stored for 5 years.

Special inspections:

If an earthquake occurs at or near the reservoir, or has been reported to occur, within the following criteria, immediate inspection shall be required:

- $M \ge 4.0$ w/in 25 miles,
- $M \ge 5.0$ w/in 50 miles,
- M > 6.0 w/in 75 miles
- $M \ge 7.0 \text{ w/in } 125 \text{ miles},$
- $M \ge 8.0$ w/in 200 miles,

If such an earthquake occurs, the following items shall be inspected and reported upon:

- Date of inspection
- Reservoir level
- Water use in previous month
- Note any unusual signs of changed water levels
- Condition of the spillway
- Check scour and erosion
- Condition of the 6" drain line
- Condition of the 10" drain line

- Overall embankment stability
- Any signs of slope movement
- Any signs of seepage around or below reservoir
- Any rock falls nearby
- Vegetation control
- Control of burrowing animals
- Irrigation control
- Three existing monitoring wells

Repairs recommended in the inspection reports shall be accomplished within: 10 working days, or immediately for repairs that are mandated by reservoir stability issues.

4.0 Maintenance / Repair

IMPLEMENTATION AND MAINTENANCE REQUIREMENTS

The primary maintenance requirements for the reservoir are as follows:

- Weed, prune, and water, especially during plant establishment
- Keep landscape healthy and clean
- The grounds, consisting of the inner embankment and the perimeter pad, shall be free of large deep rooted trees and bushes
- Maintain control of small burrowing animals
- When encountered burrowing animals shall be removed and any holes filled in

Aesthetic and Functional Maintenance:

Aesthetic maintenance is important for public acceptance of facilities. Functional maintenance is important for performance and safety reasons.

Both forms of maintenance will be combined into overall system maintenance.

Aesthetic Maintenance

The following activities will be included in the aesthetics maintenance program:

- Replace dead or dying plants.
- Weed Control.
- Weeds will be removed through mechanical means.
- Herbicide will not be used because these chemicals impact the water quality.
- Prune overgrown plants.

Functional Maintenance

Components of a Functional Maintenance program include Preventive Maintenance and Corrective Maintenance.

- a. **Preventive Maintenance -** Preventive maintenance activities to be instituted are:
 - Trash and Debris. During each inspection, debris and trash removal will be conducted.
 - Down drain outlet piping: Visual inspection of (2) 6" drain line pipes and (1) 10" drain line pipe shall be inspected and checked for leaking and or corrosive condition.
 - Test down drain system. During each inspection, each down drain pipe shall be tested. Open valves and check valves and piping for any leaking.

- Sediment Removal. Sediment accumulation, as part of the operation and maintenance program at the spillway, will be monitored quarterly during the dry season, and after every large storm (0.50 inch), and monthly during the wet season. If accumulation of debris or sediment is determined to cause of decline in design performance, prompt action (i.e., within ten working days) will be taken to restore to design performance standards. Actions will include removal of sediment. Characterization and appropriate disposal of sediment will comply with applicable local, county, state, or federal requirements.
- Removal of Standing Water Standing water must be removed if it contributes to the development of aquatic plant communities or mosquito breeding areas. Water standing for more than 96 hours will be removed.
- Fertilization Any vegetation seed mix will be designed so that fertilization and irrigation (after establishment of the planting) is not necessary. Fertilizers will not be used to maintain the vegetation.
- On a monthly basis, and if an earthquake is felt at or near the reservoir (as outlined above) measure and record the depth to groundwater in the three existing monitoring wells at the top of the reservoir embankment. Notify the HOA and the Geotechnical Engineer of Record immediately if any substantially changed groundwater levels are indicated.
- b. **Corrective Maintenance -** Corrective maintenance is required on an emergency or non-routine basis to correct problems and to restore the intended operation and safe function

Corrective maintenance activities include:

- Removal of Debris and Sediment Sediment, debris and trash, which impede the hydraulic functioning of reservoir spillway and vegetative growth, will be removed and properly disposed.
- Down drain outlet piping two (2) 6" drain line pipes and one (1) 10" drain line pipe. Paint exposed piping, poly-wrap pipe protection if necessary, replace damaged sections.
- Test down drain system. Replace valves if necessary.
- Embankment and Slope Repairs Damaged to slopes and embankments will be evidenced by erosion or collapsed surface areas. Once deemed necessary, damage to the slopes of the reservoir embankment will be repaired (within 10 working days).
- Erosion Repair Erosion will be evident by rills or small gullies in the surfaces of
 the reservoir embankment slope. Corrective steps will be taken to prevent loss of
 soil and any subsequent danger to the performance of the reservoir embankment.
 There are a number of corrective actions that can be taken. These include
 temporary measures such as erosion control blankets or reducing flow through the
 area. Designers or contractors will be consulted to address erosion problems if the
 solution is not evident.
- Elimination of Animal Burrows Animal burrows (evidenced by holes & mounds) will be filled and steps taken to remove the animals if burrowing

- problems continue to occur (filling and compacting). If the problem persists, vector control specialists will be consulted regarding removal steps. This consulting is necessary as the threat of rabies in some areas may necessitate the animals being destroyed rather than relocated. If the reservoir embankment performance is affected, abatement will begin. Otherwise, abatement will be performed annually in September.
- General Facility Maintenance In addition to the above elements of corrective maintenance, general corrective maintenance will address the overall facility and its associated components. If corrective maintenance is being done to one component, other components will be inspected to see if maintenance is needed.
- Replace dead or dying plant material.

Table 1: Shadow Run Ranch Reservoir Operations and Maintenance Plan Schedule

Action	Responsible	Frequency	Threshold for Action	Reporting
	Party			Requirement
Inspect	HOA, Grove	Monthly or	As regularly scheduled for	Reservoir
Embankment,	Manager	as needed	the month or after any	Maintenance
Reservoir,			ground shaking,	Record
Spillway			unexpected change in	Monthly
			water level, reported	Entry or after
			change in embankment	specific
			vegetation cover or report	incident
			of changes by residences.	
Inspect	HOA,	Annually	As regularly scheduled for	Reservoir
Embankment,	Geotechnical	or as	the year or as requested	Maintenance
Reservoir,	Engineer	needed	by HOA	Record
Spillway				Annual Entry
				or after
				specific call

 Table 2: Observations Triggering Non-Routine Maintenance and Repairs

No.	Inspection	Procedure	Trigger	Follow-up
1	Reservoir level	Determine normal range of elevation changes considering rainfall, humidity, temperature, grove irrigation rates, etc.	If the reservoir level drops more than 15% beyond the expected amount, and there is no visible leakage or seepage, or pipe leakage, contact the Geotechnical Engineer of Record (GER) immediately.	Geotechnical Engineer of Record shall perform an inspection within 10 calendar days and determine the cause of the unexpected drop in reservoir level. The GER shall recommend a repair and specify a deadline for the repair, based on the level of urgency of the problem.
2	Water use in previous month	C.F	See Item 1, above	
3	Note any unusual signs of changed water levels		See Item 1, above	
4	Condition of the spillway	Inspect per Section 4 of the report.	If there are any cracks, or leaks in the spillway, contact the Civil Engineer of Record (CER) immediately.	The CER shall perform an inspection within 10 calendar days and determine the cause of the leaks or cracks. The CER shall recommend a repair and specify a deadline for the repair, based on the level of urgency of the problem.
5	Check scour and erosion	Inspect per Section 4 of the report.	If there is any evidence of excessive (more than 6") scour or erosion below the	The CER shall perform an inspection within 10 calendar days and determine the cause of the excessive scour or

			spillway, or on the embankment, contact the Civil Engineer of Record (CER). Otherwise, follow the procedures in Section 4 of the report.	erosion. The CER shall recommend a repair and specify a deadline for the repair, based on the level of urgency of the problem.
6	Condition of the 6" drain line	Inspect per Section 4 of the report.	If valves do not operate properly, repair or replace within 14 calendar days.	
7	Condition of the 10" drain line	Inspect per Section 4 of the report.	If valves do not operate properly, repair or replace within 14 calendar days.	
8	Overall embankment stability	Inspect per Section 4 of the report.	If there are signs of movement of the embankment, contact the GER immediately.	Consult with the GER immediately to determine if an immediate evacuation is necessary. Otherwise the GER shall perform an inspection within 24 hours and determine the cause of the embankment movement. The GER shall recommend a repair and specify a deadline for the repair, based on the level of urgency of the problem.
9	Any signs of slope movement	See Item 8, above.		

10	Any signs of seepage around or below reservoir	Inspect per Section 4 of the report.	If there are signs of excessive seepage of the embankment, contact the GER immediately.	Consult with the GER immediately to determine if an immediate evacuation is necessary. Otherwise the GER shall perform an inspection within 24 hours and determine the cause of the seepage. The GER shall recommend a repair and specify a deadline for the repair, based on the level of urgency of the problem.
11	Any rock falls nearby	Inspect per Section 4 of the report.	If the rock falls are indicative of movement of the embankment or the immediately adjacent soils or rocks, contact the GER immediately.	Consult with the GER immediately to determine if an immediate evacuation is necessary. Otherwise the GER shall perform an inspection within 24 hours and determine the cause of the rockfall. The GER shall recommend a repair and specify a deadline for the repair, based on the level of urgency of the problem.
12	Vegetation control	Inspect, maintain and repair per Section 4 of the report.		
13	Control of burrowing animals	Inspect, maintain and repair per		

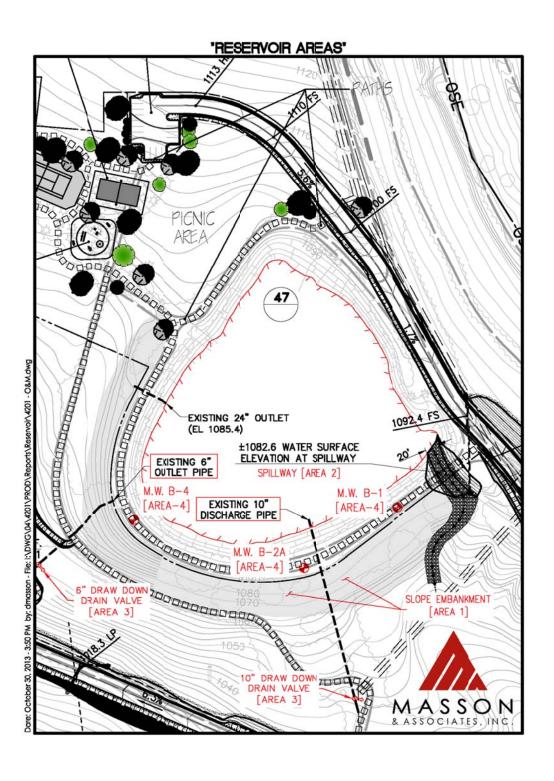
		Section 4 of the report.		
14	Irrigation control	Check for overwatering.	Adjust irrigation rate.	
15	Three existing monitoring wells	Inspect, maintain and repair per Section 4 of the report. Determine the normal relationship between the water level in the wells and the reservoir.	If the water level in the wells does not follow the normal relationship between the wells and the reservoir, contact the GER immediately.	Consult with the GER immediately to determine if an immediate evacuation is necessary. Otherwise the GER shall perform an inspection within 10 calendar days and determine the cause of the rockfall. The GER shall recommend a repair and specify a deadline for the repair, based on the level of urgency of the problem.

Regulatory Assurance

Implementation of this Operation and Maintenance plan is assured through an ongoing condition of Major Use Permit # 3300-00-030 .

Maintenance Costs

A detailed cost breakdown for the operation & maintenance of each area / system are attached and made part of this document. Total estimated annual costs for each are:


Reservoir embankment = \$2000 Down drain piping = \$500 Water valves = \$500 Landscaping = \$2000 Irrigation = \$500 Burrowing animals = \$500 Total -------\$6000 yearly.

Inspection Frequency

- All items above will be monitored monthly and after every large storm (rainfall of 0.50 inch or more).
- After each seismic event as listed above.

Each inspection will be fully documented and made available upon request. Records will be kept for a minimum of 5 years.

Sherrill Schoepe Shadow Run Ranch, LLC Post Office Box 1249 Pauma Valley, CA 92061

ENGINEERS INSPECTION REPORT
OFFICE OF THE STATE ENGINEER-DIVISION OF WATER RESOURCES - DAM SAFETY BRANCH
1313 Sherman Street, Room 818, Denver, CO 80203, (303) 866-3581

AM NAME	W. DIV.	W. DIST.	DATE OF INSPECTION		1	1	
AM ID FILE NO. C-					1	/	'
WNER NAME			OWNER PHONE				= 3
DORESS			ZIP CODE				
			CONTACT PHONE				
ASS CAPACITYAF SURFACE AREA							
URRENT RESTRICTION INO) (YES) LEVEL							
DIRECTIONS: MARK AN Y EDRECONDITIONS FOR	UND AND UNDERLINE WORDS THAT S SLOPE, OR SHOW IT ON SKETCH	APPLY, GIVE LOCATION A	ND EXTENT WITH NUMBER	_			_
EIELD C	ONDITIONS OBSERVED		201	Г			
	BELOW SPILLWAY		HUU	1			tions
	SNOWCOVER	OTHER		1			rved
- Communication - Communication	ARSE DISPLACED, WEATHERED (5) APPEARS TOO STEEP (6) (6) (7) (9) OTHER) DEPRESSIONS OR BUL			G005	ACCEPTABLE	UPSTREAM
PROBLEMS NOTED: 110) NONE (11) RUIS OR PUODLES (15) NOT WIDE ENOUGH (16) LOW AREA (17) MISA (19) OTHER Comments:			MENT (14) SINKHOLES	Sheet	0000	ACCEPTABLE	CREST
PROBLEMS NOTED: (20) NONE (21) LIVESTOCK DAMAGE				of this	П	\perp	AM
25) APPEARS TOO STEEP (26) DEPRESSION OR BULGES Comments:	(27) SUDE (28) SOFT AF	IEAS LJ (29) OTHER_		delines on Back	G000	ACCEPTABLE	DOWNSTRE
PROBLEMS NOTED: (30) NONE (31) SATURATED EMBANKM (33) SEEPAGE EXITS AT POINT SOURCE (14) SEEPAGE AR DRAIN OUTFALLS SEENNOYes (37) F.OW INCREASED (39) OTHER Comments	MENT AREA (32) SEEPAGE EA AT TOE (35) FLOW ADJACE D/MUDDY (38) DRAIN DRY/C Show location of	EXIFS ON EMBANKMENT NT TO OUTLET (36) S BSTRUCTED	SEEPAGE INCREASED/MUDDY	See Guidelines on		3	SEEPAGE DOWNSTRE
Comments: PROBLEMS NOTED: (30) NONE (31) SATUFATED EMBANKM (33) SEEPAGE EXITS AT POINT SOURCE (44) SEEPAGE ARI BRAIN OUTFALLS SEEN NO YES (37) F.OW INCREASED (39) OTHER	MENT AREA (32) SEEPAGE JEA AT TOE (35) FLOW ADJACE MUDDY (38) DRAIN DRY/C Show location of (42) POOR OPERATING ACC (45) OUTLET NOT OPERATE UIT DETERIORATED OR COLLAPSED	EXITS ON EMBANKMENT NT TO OUTLET (36) S BSTRUCTED drans on sketch and indi ESS (43) INOPERA D DIRING INSPECTION	EEPAGE INCREASED/MUDDY Sate amount and quality of discharge	See Guidelines on		LE ACCEPTABLE	DOW

GUIDELINES FOR DETERMINING CONDITIONS

CONDITIONS OBSERVED - APPLIES TO UPSTREAM SLOPE, CREST, DOWNSTREAM SLOPE, OUTLET, SPILLWAY

GOOD

ACCEPTABLE

POOF

POOR

POOR

In general, this part of the structure has a near new appearance, and conditions observed in this area do not appear to threater the safety of the dam. Although general cross-section is maintained, surfaces may be irregular, eroded, rutted, spalled, or otherwise not in new condition. Conditions in this area do not currently appear to threa:en the safety of the dam.

Conditions observed in this area appear to threaten the safety of the dam.

CONDITIONS OBSERVED - APPLIES TO SEEPAGE

GOOD

ACCEPTABLE

No evidence of uncontrolled seepage. No unexplained increase in flows from designed drains. All seepage is clear. Seepage conditions do not appear to threaten the safety of the dam.

Seepage conditions observed appear to threaten the safety of the dam. Examples: 1) Designed drain or seepage flows have increased without increase in reservoir level. 2) Drain or seepage flows contain sediment, i.e., muddy water or particles in jar samples. 3) Widespread seepage, concertrated seepage or ponding appears to threaten the safety of the dam.

CONDITIONS OBSERVED - APPLIES TO MONITORING

GOOD

ACCEPTABLE

Monitoring includes movement surveys and leakage measurements for Class I & II dams; leakage measurements for Class III dams. Instrumentation is in serviceable condition. A plan for monitoring instrumentation is in effect by owner. Periodic inspections by owner or representative. OR, NO MONITORING REQUIRED.

All instrumentation and monitoring described under "ACCEPTABLE" here for each class of dam, are not provided, or required periodic readings are not being made, or unexplained changes in readings are not reacted to by the

CONDITIONS OBSERVED - APPLIES TO MAINTENANCE AND REPAIR

GOOD

engineer.

ACCEPTABLE

POOR

Dam appears to receive effective on-going maintenance and repeir, and only a few minor items may need to be addressed.

Monitoring includes movement surveys and leakage measurements for all dams, and

leakage measurements for all dams, and piezometer readings for Class I dams. Instrumentation is in reliable, working condition. A plan for monitoring the instrumentation and analyzing results by the owner's engineer is in effect. Periodic inspections by owner's

Dam appears to receive maintenance, but some maintenance items need to be addressed. No major repairs are required.

Dam does not appear to receive adequate maintenance. One or more items needing maintenance or repair has begun to threaten the safety of the dam.

OVERALL CONDITIONS

SATISFACTORY

The safety inspection indicates no conditions that appear to threaten the safety of the dan, and the dam is expected to perform satisfactorily under all design loading conditions. Most of the required monitoring is being performed.

CONDITIONALLY SATISFACTORY

The safety inspection indicates symptoms of possible structural distress (seepage, evidence of minor displacements, etc.), which, if conditions worsen could lead to the failure of the dam. Essential monitoring, inspection, and maintenance must be performed as a requirement for continued full or reduced storage in the reservoir.

UNSATISFACTORY

The safely inspection indicates definite signs of structural distress (excessive seepage, cracks, slides, sinkholes, severe deterioration, etc.), which could lead to the failure of the dam if the reservoir is used to full capacity. The dam is judged unsafe for full storage of water.

SAFE STORAGE LEVEL

FULL STORAGE

Dam may be used to full capacity with no con-

Class I - Loss of human life is expected in the event of failure of the dam, while the reservoir is at the high water line.

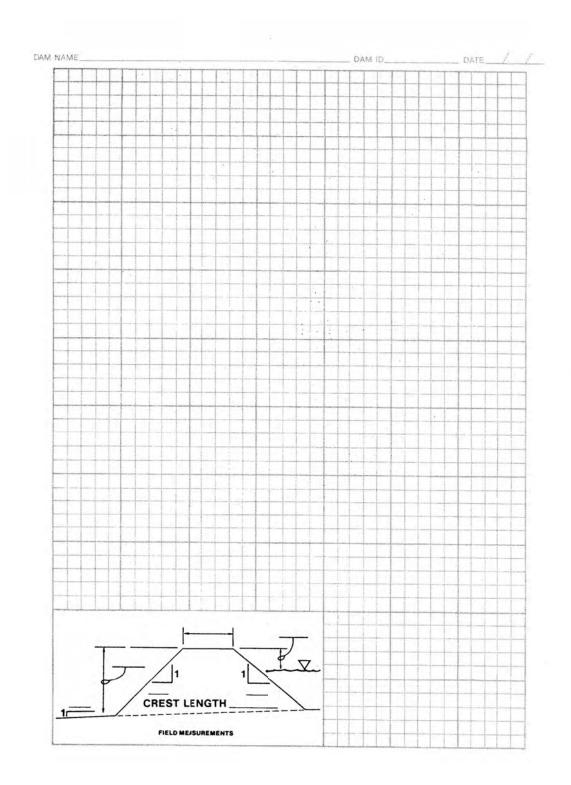
CONDITIONAL FULL STORAGE

Dam may be used to full storage if certain monitoring, maintenance, or operational conditions are met.

RESTRICTION

Dam may not be used to full capacity, but must be operated at some reduced level in the interest of public safety.

CLASSIFICATION OF DAMS


CLASS I

CLASS

CLASS

Class II - Significant damage to improved property is expected in the event of failure of the dam while the reservoir is at the high water line, but no loss of human life is expected, while the reservoir is at high water line.

NAME:		DAM I.D.:	DATE/_/
		RCD (112) PIEZOMETERS (113) SEEPAGE WEIRS/FLU	MES
(114) SURVEY MONUNEN	TS (115) OTHER	DIC INSPECTIONS BY: (118) OWNER (119) ENGINEER	
Comments:	VIATION: 11 (110) NO 11 (117) TES PERIO	DIG INSPECTIONS BY: [(118) OWNER [(119) ENGINEER	GOOD ACCEPTABLE POOR
Comments.			
PROBLEMS NOTED: 1 60	NONE (61) ACCESS ROAD NEEDS MAINTE	NANCE (62) CATTLE DAMAGE	
		(64) TREES ON UPSTREAM SLOPE, CREST, DOWNSTREAM SLOPE	E, TOE
(65) RODENT ACTIVITY OF	UPSTREAM SLOPE, CREST, DOWNSTREAM SLOP	PE, TOE (66) DETERIORATED CONCRETE-FACING, OUTLET, SP	
(67) GATE AND OPERATIN	G MECHANISM NEED MAINTENANCE (68) 0	THER	Q 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
Comments:			GOOD ACCEPTABL
REMARKS:			
REMARKS:			
Based on this Safety Inspection	on and recent file review, he overall condition is deter	ermined to be:	
71 SATISFACTORY		ATISFACTORY 73 UNSATISFACTOR	DV .
LI 71 SATISFACTORI		RING ACTION BY OWNER	sr
i i		THE SAFETY OF THE DAM	
MAINTENANCE - MINO	R REPAIR - MONITORING		
(80) PROVIDE AL			
205	AND OPERATE OUTLET (ATES THROUGH FULL CY ES AND/OR BRUSH FROM:	/CLE:	
202	DENT CONTROL PROGRAM AND PROPERLY BACK	FILL EXISTING HOLES:	
(84) GRADE CRE	ST TO A UNIFORM ELEWTION WITH DRAINAGE T	O THE UPSTREAM SLOPE:	
(85) PROVIDE SU	RFACE DRAINAGE FOR:		
(85) PROVIDE SU	and the second s		
(88) OTHER:		N	
THER			
ENGINEERING - EMILO	Y AN ENGINEER EXPERIENCED IN DESIGN AND CONST	TRICTION OF DAMS TO: (Plans & Specification must be approved by Sta	ate Engineer prior to construction)
		ATION OF THE DAM:	
100	S-BUILT DRAWINGS OF:		
700	HYDROLOGIC STUDY TO DETERMINE REQUIRED	HE STABILITY OF THE DAM:	
102	LANS AND SPECIFICATIONS FOR AN ADEQUATE S	C. C. Lander and C.	
200		REDUCED DATA AND GRAPHED RESULTS:	
	N INTERNAL INSPECTION OF THE OUTLET:		
(97) OTHER:			
(98) OTHER	-		
(33) OINE	SAFE STORAGE LEVEL RECOM	MMENDED AS A RESULT OF THIS INSPECTION	
(101) FULL S	TORAGE	ET HELOW DAMS COEST	
	ONAL FULL STORAGE RESTRICTED LEVEL	FT. BELOW SPILLWAY CREST	
(103) RECOM	MENDED RESTRICTION	OLLOW FT. GAGE HEIGHT NO STORAGE-MAINTAIN OUTLET FULLY OPE	N.
SON FOR RESTRICTION			
OVS REQUIRED FOR CONDITION	AL FULL STORAGE OR (ONTINUED STORAGE AT	THE DESTRICTED LEVEL	
and negotined you donot not	ACTUAL OF CONTROL OF CONTROLS STORAGE AT	THE RESTRICTED LEVEL	
ett's		Owner's	
tore		Signature	DATE/

ATTACHMENT – 5

OPERATION & MAINTENANCE PLAN

For SHADOW RUN RANCH TM 5223

Preparation/Revision Date:

November 21, 2013

May 19, 2014

Prepared for:

Sherrill Ann Schoepe, General Partner

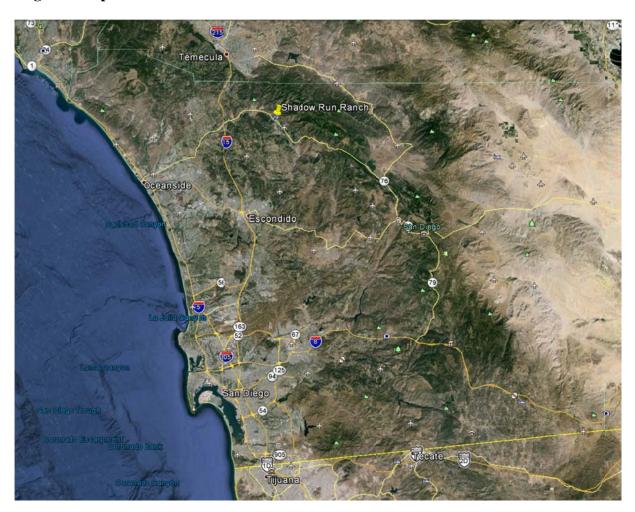
Shadow Run Ranch, LLC

P.O. Box 1249

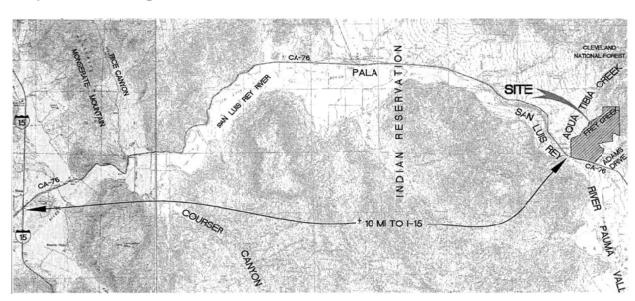
Pauma Valley, CA 92061

Telephone: (760) 742-1893

Prepared by:


Masson & Associates, Inc.

200 East Washington Avenue, Suite 200


Escondido, CA 92025

Telephone: (760) 741-3570

Regional map:

Project location Map:

Attachment 5 - Reservoir O M - (06-30-2014).docx

Reservoir area:

1.0 Purpose of Document

The proposed project's HOA, County of San Diego as well as the ongoing agricultural operations and future home owners of the project are stakeholders in this Operations and Maintenance Plan (O&M). The following is an outline of the system and elements affected by this O&M. The operation and maintenance of the existing reservoir are the responsibility of the project proponent and their successors in title. The operation and maintenance associated with the existing reservoir are discussed below. The discussion includes a routine action, maintenance indicator, field observation methods, frequency, and maintenance activity. Costs associated with each activity are included. The scope and purpose of this O&M is to ensure the operational items associated with the existing reservoir are working properly and the safety and stability of the reservoir are maintained at optimum working levels.

The Four primary maintenance areas for the reservoir are as follows:

- 1. Reservoir embankment [AREA 1]
 - a. Stability
 - b. Landscaping
 - c. Irrigation
 - d. Burrowing animals
- 2. Reservoir spillway [AREA 2]
 - a. Stability
 - b. Energy dissipaters
 - c. Scour
- 3. Reservoir drain lines [AREA-3]
 - a. Pipeline condition
 - b. Shutoff valves
 - c. Drain valves
- 4. Monitoring wells [AREA-4]
 - a. Depth to ground water

The landscape architect should choose plant coverage for slope protection and erosion control along the outer edge of the reservoir embankment that will be high in erosion control value with shallow root systems and which will deter small burrowing animals. The reservoir slope embankment shall be watered sparingly to maintain landscape coverage for erosion control.

2.0 Facilities and Resources

The facilities and resources identified to be managed and inspected are shown above and attached as graphic **EXHIBIT** "A" - "**RESERVOIR AREAS**". The management and inspection of the reservoir will be the responsibility of the ownership of the recreational open space lot 47 of TM 5223 (the homeowners association (HOA)). The property manager(s) of the HOA shall at all times have a qualified grove manager(s) that will be employed by said HOA and have a set number of hours dedicated monthly to inspect and fill out inspection reports in

conformance with this Operations and Maintenance Plan. The Grove Manager will receive onsite training in the proper maintenance and repair of the facility. The HOA shall dedicate \$6,000 yearly and have a reserve fund to anticipate any startup and ongoing maintenance of the reservoir systems. Additionally the reservoir shall be inspected by a registered Civil Engineer or registered Geologist on a yearly basis for any additional recommendations.

3.0 Operations

The goal of this O&M is to ensure safety and operational conditions of all reservoir systems on a monthly basis. This includes; testing the valves on the two (2) 6" irrigation/down drain lines and the one (1) 10" down drain line. These valves and pipes shall be maintained and operational so that they can be utilized in case of an emergency to drawdown ½ the reservoir capacity within 7 days, and completely drain the reservoir within 20 days.

The report shall contain, at a minimum, the following items: Example inspection report attached as Exhibit "B".

Inspection Protocol: Inspections will include:

- Date of inspection
- Reservoir level
- Water use in previous month
- Note any unusual signs of changed water levels
- Condition of the spillway
- Check scour and erosion
- Condition of the 6" drain line
- Condition of the 10" drain line

- Overall embankment stability
- Any signs of slope movement
- Any signs of seepage around or below reservoir
- Any rock falls nearby
- Vegetation control
- Control of burrowing animals
- Irrigation control
- Three existing monitoring wells

Inspections:

The grove manager shall visually inspect on a monthly basis, the entire slope embankment [Area 1] of the reservoir including the spillway [Area 2] looking for any settlement, surface cracking, burrowing animals, overwatering and seepage. In addition the (2) 6" drain line pipes and (1) 10" drain line pipe [Area 3] shall be tested monthly, to ensure the valves and drain capacities are working properly.

On a monthly basis, or if an earthquake is felt at or near the reservoir (as outlined below), measure and record the depth to groundwater in the three existing monitoring wells at the top of the reservoir embankment [Area 4]. The HOA shall be notified immediately if any substantially changed groundwater levels are indicated. The reports shall be submitted to the HOA and COSD within 10 working days of the date of the inspection and will be filed in the HOA manager's office and shall be stored for 5 years.

Special inspections:

If an earthquake occurs at or near the reservoir, or has been reported to occur, within the following criteria, immediate inspection shall be required:

- $M \ge 4.0$ w/in 25 miles,
- $M \ge 5.0$ w/in 50 miles,
- M > 6.0 w/in 75 miles
- $M \ge 7.0 \text{ w/in } 125 \text{ miles},$
- $M \ge 8.0$ w/in 200 miles,

If such an earthquake occurs, the following items shall be inspected and reported upon:

- Date of inspection
- Reservoir level
- Water use in previous month
- Note any unusual signs of changed water levels
- Condition of the spillway
- Check scour and erosion
- Condition of the 6" drain line
- Condition of the 10" drain line

- Overall embankment stability
- Any signs of slope movement
- Any signs of seepage around or below reservoir
- Any rock falls nearby
- Vegetation control
- Control of burrowing animals
- Irrigation control
- Three existing monitoring wells

Repairs recommended in the inspection reports shall be accomplished within: 10 working days, or immediately for repairs that are mandated by reservoir stability issues.

4.0 Maintenance / Repair

IMPLEMENTATION AND MAINTENANCE REQUIREMENTS

The primary maintenance requirements for the reservoir are as follows:

- Weed, prune, and water, especially during plant establishment
- Keep landscape healthy and clean
- The grounds, consisting of the inner embankment and the perimeter pad, shall be free of large deep rooted trees and bushes
- Maintain control of small burrowing animals
- When encountered burrowing animals shall be removed and any holes filled in

Aesthetic and Functional Maintenance:

Aesthetic maintenance is important for public acceptance of facilities. Functional maintenance is important for performance and safety reasons.

Both forms of maintenance will be combined into overall system maintenance.

Aesthetic Maintenance

The following activities will be included in the aesthetics maintenance program:

- Replace dead or dying plants.
- Weed Control.
- Weeds will be removed through mechanical means.
- Herbicide will not be used because these chemicals impact the water quality.
- Prune overgrown plants.

Functional Maintenance

Components of a Functional Maintenance program include Preventive Maintenance and Corrective Maintenance.

- a. **Preventive Maintenance -** Preventive maintenance activities to be instituted are:
 - Trash and Debris. During each inspection, debris and trash removal will be conducted.
 - Down drain outlet piping: Visual inspection of (2) 6" drain line pipes and (1) 10" drain line pipe shall be inspected and checked for leaking and or corrosive condition.
 - Test down drain system. During each inspection, each down drain pipe shall be tested. Open valves and check valves and piping for any leaking.

- Sediment Removal. Sediment accumulation, as part of the operation and maintenance program at the spillway, will be monitored quarterly during the dry season, and after every large storm (0.50 inch), and monthly during the wet season. If accumulation of debris or sediment is determined to cause of decline in design performance, prompt action (i.e., within ten working days) will be taken to restore to design performance standards. Actions will include removal of sediment. Characterization and appropriate disposal of sediment will comply with applicable local, county, state, or federal requirements.
- Removal of Standing Water Standing water must be removed if it contributes to the development of aquatic plant communities or mosquito breeding areas. Water standing for more than 96 hours will be removed.
- Fertilization Any vegetation seed mix will be designed so that fertilization and irrigation (after establishment of the planting) is not necessary. Fertilizers will not be used to maintain the vegetation.
- On a monthly basis, and if an earthquake is felt at or near the reservoir (as outlined above) measure and record the depth to groundwater in the three existing monitoring wells at the top of the reservoir embankment. Notify the HOA and the Geotechnical Engineer of Record immediately if any substantially changed groundwater levels are indicated.
- b. **Corrective Maintenance -** Corrective maintenance is required on an emergency or non-routine basis to correct problems and to restore the intended operation and safe function

Corrective maintenance activities include:

- Removal of Debris and Sediment Sediment, debris and trash, which impede the hydraulic functioning of reservoir spillway and vegetative growth, will be removed and properly disposed.
- Down drain outlet piping two (2) 6" drain line pipes and one (1) 10" drain line pipe. Paint exposed piping, poly-wrap pipe protection if necessary, replace damaged sections.
- Test down drain system. Replace valves if necessary.
- Embankment and Slope Repairs Damaged to slopes and embankments will be evidenced by erosion or collapsed surface areas. Once deemed necessary, damage to the slopes of the reservoir embankment will be repaired (within 10 working days).
- Erosion Repair Erosion will be evident by rills or small gullies in the surfaces of
 the reservoir embankment slope. Corrective steps will be taken to prevent loss of
 soil and any subsequent danger to the performance of the reservoir embankment.
 There are a number of corrective actions that can be taken. These include
 temporary measures such as erosion control blankets or reducing flow through the
 area. Designers or contractors will be consulted to address erosion problems if the
 solution is not evident.
- Elimination of Animal Burrows Animal burrows (evidenced by holes & mounds) will be filled and steps taken to remove the animals if burrowing

- problems continue to occur (filling and compacting). If the problem persists, vector control specialists will be consulted regarding removal steps. This consulting is necessary as the threat of rabies in some areas may necessitate the animals being destroyed rather than relocated. If the reservoir embankment performance is affected, abatement will begin. Otherwise, abatement will be performed annually in September.
- General Facility Maintenance In addition to the above elements of corrective maintenance, general corrective maintenance will address the overall facility and its associated components. If corrective maintenance is being done to one component, other components will be inspected to see if maintenance is needed.
- Replace dead or dying plant material.

Table 1: Shadow Run Ranch Reservoir Operations and Maintenance Plan Schedule

Action	Responsible	Frequency	Threshold for Action	Reporting
	Party			Requirement
Inspect	HOA, Grove	Monthly or	As regularly scheduled for	Reservoir
Embankment,	Manager	as needed	the month or after any	Maintenance
Reservoir,			ground shaking,	Record
Spillway			unexpected change in	Monthly
			water level, reported	Entry or after
			change in embankment	specific
			vegetation cover or report	incident
			of changes by residences.	
Inspect	HOA,	Annually	As regularly scheduled for	Reservoir
Embankment,	Geotechnical	or as	the year or as requested	Maintenance
Reservoir,	Engineer	needed	by HOA	Record
Spillway				Annual Entry
				or after
				specific call

 Table 2: Observations Triggering Non-Routine Maintenance and Repairs

No.	Inspection	Procedure	Trigger	Follow-up
1	Reservoir level	Determine normal range of elevation changes considering rainfall, humidity, temperature, grove irrigation rates, etc.	If the reservoir level drops more than 15% beyond the expected amount, and there is no visible leakage or seepage, or pipe leakage, contact the Geotechnical Engineer of Record (GER) immediately.	Geotechnical Engineer of Record shall perform an inspection within 10 calendar days and determine the cause of the unexpected drop in reservoir level. The GER shall recommend a repair and specify a deadline for the repair, based on the level of urgency of the problem.
2	Water use in previous month	C.F	See Item 1, above	
3	Note any unusual signs of changed water levels		See Item 1, above	
4	Condition of the spillway	Inspect per Section 4 of the report.	If there are any cracks, or leaks in the spillway, contact the Civil Engineer of Record (CER) immediately.	The CER shall perform an inspection within 10 calendar days and determine the cause of the leaks or cracks. The CER shall recommend a repair and specify a deadline for the repair, based on the level of urgency of the problem.
5	Check scour and erosion	Inspect per Section 4 of the report.	If there is any evidence of excessive (more than 6") scour or erosion below the	The CER shall perform an inspection within 10 calendar days and determine the cause of the excessive scour or

			spillway, or on the embankment, contact the Civil Engineer of Record (CER). Otherwise, follow the procedures in Section 4 of the report.	erosion. The CER shall recommend a repair and specify a deadline for the repair, based on the level of urgency of the problem.
6	Condition of the 6" drain line	Inspect per Section 4 of the report.	If valves do not operate properly, repair or replace within 14 calendar days.	
7	Condition of the 10" drain line	Inspect per Section 4 of the report.	If valves do not operate properly, repair or replace within 14 calendar days.	
8	Overall embankment stability	Inspect per Section 4 of the report.	If there are signs of movement of the embankment, contact the GER immediately.	Consult with the GER immediately to determine if an immediate evacuation is necessary. Otherwise the GER shall perform an inspection within 24 hours and determine the cause of the embankment movement. The GER shall recommend a repair and specify a deadline for the repair, based on the level of urgency of the problem.
9	Any signs of slope movement	See Item 8, above.		

10	Any signs of seepage around or below reservoir	Inspect per Section 4 of the report.	If there are signs of excessive seepage of the embankment, contact the GER immediately.	Consult with the GER immediately to determine if an immediate evacuation is necessary. Otherwise the GER shall perform an inspection within 24 hours and determine the cause of the seepage. The GER shall recommend a repair and specify a deadline for the repair, based on the level of urgency of the problem.
11	Any rock falls nearby	Inspect per Section 4 of the report.	If the rock falls are indicative of movement of the embankment or the immediately adjacent soils or rocks, contact the GER immediately.	Consult with the GER immediately to determine if an immediate evacuation is necessary. Otherwise the GER shall perform an inspection within 24 hours and determine the cause of the rockfall. The GER shall recommend a repair and specify a deadline for the repair, based on the level of urgency of the problem.
12	Vegetation control	Inspect, maintain and repair per Section 4 of the report.		
13	Control of burrowing animals	Inspect, maintain and repair per		

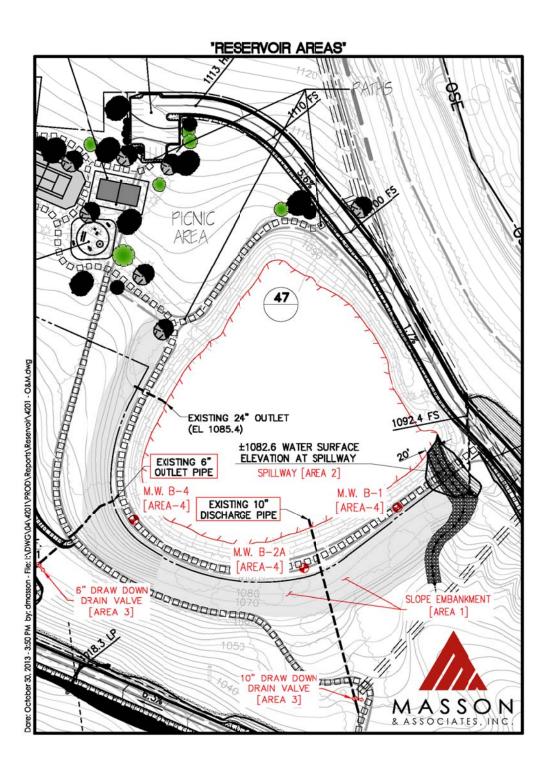
		Section 4 of the report.		
14	Irrigation control	Check for overwatering.	Adjust irrigation rate.	
15	Three existing monitoring wells	Inspect, maintain and repair per Section 4 of the report. Determine the normal relationship between the water level in the wells and the reservoir.	If the water level in the wells does not follow the normal relationship between the wells and the reservoir, contact the GER immediately.	Consult with the GER immediately to determine if an immediate evacuation is necessary. Otherwise the GER shall perform an inspection within 10 calendar days and determine the cause of the rockfall. The GER shall recommend a repair and specify a deadline for the repair, based on the level of urgency of the problem.

Regulatory Assurance

Implementation of this Operation and Maintenance plan is assured through an ongoing condition of Major Use Permit # 3300-00-030 .

Maintenance Costs

A detailed cost breakdown for the operation & maintenance of each area / system are attached and made part of this document. Total estimated annual costs for each are:


Reservoir embankment = \$2000 Down drain piping = \$500 Water valves = \$500 Landscaping = \$2000 Irrigation = \$500 Burrowing animals = \$500 Total -------\$6000 yearly.

Inspection Frequency

- All items above will be monitored monthly and after every large storm (rainfall of 0.50 inch or more).
- After each seismic event as listed above.

Each inspection will be fully documented and made available upon request. Records will be kept for a minimum of 5 years.

Sherrill Schoepe Shadow Run Ranch, LLC Post Office Box 1249 Pauma Valley, CA 92061

ENGINEERS INSPECTION REPORT
OFFICE OF THE STATE ENGINEER-DIVISION OF WATER RESOURCES - DAM SAFETY BRANCH
1313 Sherman Street, Room 818, Denver, CO 80203, (303) 866-3581

M NAME W. DIV W. DIST DATE OF INSPECTION		1	1	
M ID FILE NO. C FOREST LD DATE OF LAST INSPECTION		/	/	
WER NAMEOWNER PHONE				
DORESS ZIP CODE			_	
DITACT NAMECONTACT PHONE				
ASS CAPACITYAF SURFAC: AREA AC. HEIGHTFT. CREST LENGTHFT CREST WIDTH_		_		_FT.
BRENT RESTRICTION NO) (YES) LEVEL PP ON FILE (NO) (YES) SPWY WIDTH FT. FBD. FT. FBD. FT. FBD. FT. FBD.	FT.	Z _	_	
DIRECTIONS: MARK AN X FORCONDITIONS FOUND AND UNDERLINE WORDS THAT APPLY, GIVE LOCATION AND EXTENT WITH NUMBER REFERENCE IE (25) ALL ALONG SLOPE, OR SHOW IT ON SKETCH.				
FIELD CONDITIONS OBSERVED ATER LEVEL - BELOW DAM CREST				
RIUND MOISTURE CONDITION: DRY WET SNOWCOVER OTHER				tions
PROBLEMS NOTED: (0) NONE (1) RIPRA? - MISSING, SPARSE, DISPLACED, WEATHERED (2) WAVE EROSION-WITH SCARPS (3) CRACKS-WITH DISPLACEMENT (4) SINIHOLE (5) APPEARS TOO STEEP (6) DEPRESSIONS OR BULGES (7) SLIDES (8) CONCRETE FACING-HOLES, CRACKS, DISPLACED, UNDERMINED (9) OTHER (7) COMMENTS (7) COMMENT			ACCEPTABLE	EAM
PROBLEMS NOTED: 10) NONE (11) RUTS OR PUDDLES (12 EROSION (13) CRACKS - WITH DISPLACEMENT (14) SINKHOLES (15) NOT WIDE ENOUGH (16) LOW AREA (17) MISALIGNMENT (18) INADEQUATE SURFACE DRAINAGE (19) OTHER	Sheet	0000	ACCEPTABLE	CBEST
PROBLEMS NOTED: (23) NONE (21) LIVESTOOK DAMAGE (22) EROSION OR GULLIES (23) CRACKS WITH DISPLACEMENT (24) SINKHOLE (25) APPEARS TOO STEEP (26) DEPRESSION OR BULGES (27) SLIDE (28) SOFT AREAS (29) OTHER (Guidelines on Back of this	0000	ACCEPTABLE	DOWNSTREAM
PROBLEMS NOTED: (30) NONE (31) SATURATED EMBANKMENT AREA (32) SEEPAGE EXITS ON EMBANKMENT (33) SEEPAGE EXITS AT POINT SOURCE (14) SEEPAGE AREA AT TOE (35) FLOW ADJACENT TO OUTLET (36) SEEPAGE INCREASED/MUDDY (38) DRAIN DRY/OBSTRUCTED (39) OTHER Show location of drans on sketch and indicate amount and quality of discharge Comments (37) F.OW INCREASED/MUDDY (38) DRAIN DRY/OBSTRUCTED (39) OTHER Show location of drans on sketch and indicate amount and quality of discharge	See Gu	G00D	ACCEPTABLE	POOG
PROBLEMS NOTES: (40) NONE (41) NO (UTLET FOUND (42) POOR OPERATING ACCESS (43) INOPERABLE (44) UPSTREAM OR COWNSTREAM STRUCTURE DETERIORATED (45) OUTLET NOT OPERATED DURING INSPECTION	200	GOOD	ACCEPTABLE	POOR
INTERIOR INSPECTED (120) NO (121) YES (46) CONDUIT DETERIORATED OR COLLAPSED (47) JOINTS DISPLACED (48) VALVE LEAKAGE (49) OTHER Comments		Ö	ACC	

GUIDELINES FOR DETERMINING CONDITIONS

CONDITIONS OBSERVED - APPLIES TO UPSTREAM SLOPE, CREST, DOWNSTREAM SLOPE, OUTLET, SPILLWAY

GOOD

ACCEPTABLE

POOR

POOR

POOR

In general, this part of the structure has a near new appearance, and conditions observed in this area do not appear to threater the safety of the dam. Although general cross-section is maintained, surfaces may be irregular, eroded, rutted, spalled, or otherwise not in new condition. Conditions in this area do not currently appear to threa:en the safety of the dam.

Conditions observed in this area appear to threaten the safety of the dam.

CONDITIONS OBSERVED - APPLIES TO SEEPAGE

GOOD

ACCEPTABLE

No evidence of uncontrolled seepage. No unexplained increase in flows from designed drains. All seepage is clear. Seepage conditions do not appear to threaten the safety of the dam.

Some seepage exists at areas other than the drain outfalls, α other designed drains. No unexplained increase in seepage. All seepage is clear. Seepage conditions observed do not currently appear to threaten the safety of the dam.

Seepage conditions observed appear to threaten the safety of the dam. Examples: 1) Designed drain or seepage flows have increased without increase in reservoir level. 2) Drain or seepage flows contain sediment, i.e., muddy water or particles in jar samples. 3) Widespread seepage, concertrated seepage or ponding appears to threaten the safety of the dam.

CONDITIONS OBSERVED - APPLIES TO MONITORING

GOOD

ACCEPTABLE

Monitoring includes movement surveys and leakage measurements for Class I & II dams, leakage measurements for Class II dams. Instrumentation is in serviceable condition. A plan for monitoring instrumentation is in effect by owner. Periodic inspections by owner or representative. OR, NO MONITORING REQUIRED. All instrumentation and monitoring described under "ACCEPTABLE" here for each class of dam, are not provided, or required periodic readings are not being made, or unexplained changes in readings are not reacted to by the

CONDITIONS OBSERVED - APPLIES TO MAINTENANCE AND REPAIR

GOOD

engineer.

ACCEPTABLE

POOR

Dam appears to receive effective on-going maintenance and repair, and only a few minor items may need to be addressed.

Monitoring includes movement surveys and leakage measurements for all dams, and

leakage measurements for all dams, and piezometer readings for Class I dams. Instrumentation is in reliable, working condition. A plan for monitoring the instrumentation and analyzing results by the owner's engineer is in effect. Periodic inspections by owner's

Dam appears to receive maintenance, but some maintenance items need to be addressed. No major repairs are required.

Dam does not appear to receive adequate maintenance. One or more items needing maintenance or repair has begun to threaten the safety of the dam.

OVERALL CONDITIONS

SATISFACTORY

The safety inspection indicates no conditions that appear to threaten the safety of the dan, and the dam is expected to perform satisfactorily under all design loading conditions. Most of the required monitoring is being performed.

CONDITIONALLY SATISFACTORY

The safety inspection indicates symptoms of possible structural distress (seepage, evidence of minor displacements, etc.), which, if conditions worsen could lead to the failure of the dam. Essential monitoring, inspection, and maintenance must be performed as a requirement for continued full or reduced storage in the reservoir.

UNSATISFACTORY

The safely inspection indicates definite signs of structural distress (excessive seepage, cracks, slides, sinkholes, severe deterioration, etc.), which could lead to the failure of the dam if the reservoir is used to full capacity. The dam is judged unsafe for full storage of water.

SAFE STORAGE LEVEL

FULL STORAGE

Dam may be used to full capacity with no con-

Class I - Loss of human life is expected in the event of failure of the dam, while the reservoir is at the high water line.

CONDITIONAL FULL STORAGE

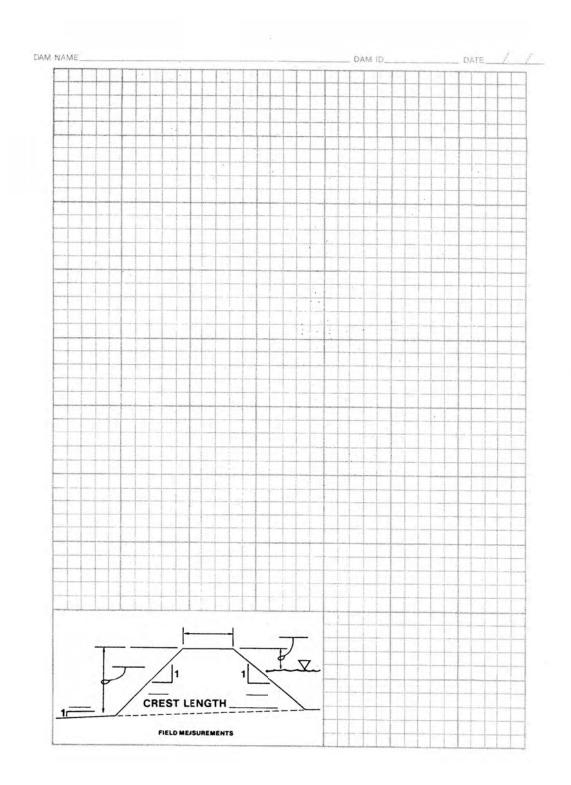
Dam may be used to full storage if certain monitoring, maintenance, or operational conditions are met.

RESTRICTION

Dam may not be used to full capacity, but must be operated at some reduced level in the interest of public safety.

CLASSIFICATION OF DAMS

CLASS I


CLASS

CLA

Class II - Significant damage to improved property is expected in the event of failure of the dam while the reservoir is at the high water line, but no loss of human life is expected.

Class III - Loss of human life is not expected, and damage to improved property is expected to be snall, in the event of failure of the dam while the reservoir is at high water line.

NAME:					_ DAM I.D.:	DATE_	_/	_	1
444.50.000.000			(111) GAGE ROD	(112) PIEZOMETERS	(113) SEEPAGE WEIRS/FI	UMES	F		
(114) SURVE	Y MONUNENTS (1	15) OTHER	7: VEC 05010010 11	IONESTICUS DV. T. MAN	OWNER (119) ENGINEER			BLE	
Comments:	INSTRUMENTATION: L	(110) NO LI	17) TES PERIODIC IN	ISPECTIONS BY: LI (118)	OWNER LI (119) ENGNEER		0000	ACCEPTABLE	POOR
Comments.							10	ACC	
PROBLEMS NOT	ED: 0 60) NONE C	(61) ACCESS ROA	AD NEEDS MAINTENANC	E (62) CATTLE DA	MAGE		-	Н	\dashv
					SLOPE, CREST, DOWNSTREAM SLO	OPE, TOE		Н	
(65) RODENT	ACTIVITY ON UPSTREAM	A SLOPE, CREST, DO	DWNSTREAM SLOPE, TO	E (66) DETERIORAT	ED CONCRETE-FACING, OUTLET, S	SPILLWAY		ш	
☐ (67) GATE AI	D OPERATING MECHANI	SM NEED MAINTEN	IANCE (68) OTHER				9	TABL	æ
Comments:							G000	ACCEPTABL	POOR
								¥	
									_!
REMARKS:									
REMARKS:									
									- [
Based on this Sa	fety Inspection and recent	t file review, he over	rall condition is determine	d to be:			_	_	- 1
71 SATISFAC				ACTORY	☐ 73 UNSATISFACT	OBY			
L / I SATISTAL	TONT			IG ACTION BY C		UNT		-	
in E				SAFETY OF TH					
MAINTEN	ANCE - MINOR BEPAIR - N	IONITORING							
200	PROVIDE ADDITIONAL R						_	_	
E45	CLEAR TREES AND/OR		HROUGH FULL CYCLE:				_	_	-
202	INITIATE RODENT CONT		PROPERLY BACKFILL	XISTING HOLES:					
23 E □ (84)	GRADE CREST TO A UN	IFORM ELEWTION	WITH DRAINAGE TO THE	UPSTREAM SLOPE:					
(85)	PROVIDE SURFACE DRA	INAGE FOR:							_
.0.	MONITOF:		SEALDED WEEK ON A M				_		_
[(87)	OTHER:	AN EMERGENCY PR	EPAHEUNESS PLAN					_	_
1 D (89)	OTHER:								
ENGINEE	ING - EMPLOY AN ENGINE	ER EXPERIENCED IN	DESIGN AND CONSTRUCT	ION OF DAMS TO: (Plans & S	Specification must be approved by S	tate Engineer prior to o	onstr	ection	0)
				OF THE DAM:					"
200	PREPARE AS-BUILT DRA	X 100 00 00 00 00 00 00 00 00 00 00 00 00		Secretary Control			_		
700	PERFORM A HYDROLOG							-	_
105	PREPARE PLANS AND S								
					RESULTS:				
	PERFORM AN INTERNAL		HE OUTLET:						
c == _	OTHER:								_
(98)	OTHER	-					_	_	_
- (ve)		AFF STORAGE	LEVEL RECOMME	NOED AS A DESILIT	OF THIS INSPECTION		_		_
□ (1	1) FULL STORAGE			ET HELD	OW DAMS CREST				
	2) CONDITIONAL FULL	OFFI	RESTRICTED LEVEL ICIAL ORDER TO FOLLOW	FT. BELL	OW SPILLWAY CREST				
U (1	3) RECOMMENDED RE	STRICTION		- FI. 010	E HEIGHT RAGE-MAINTAIN OUTLET FULLY OF	PEN			
SON FOR RESTRICT	ON:								
							_		
IONS REQUIRED FO	CONDITIONAL FULL ST	ORAGE OR CONTINU	HED STORAGE AT THE	DESTRICTED LEVEL					
io to tie dome o to	TOOLOTTORAL TOLL ST	ORAGE OF CORTING	DED STORAGE AT THE P	SESTRICIED LEVEL				_	
									_
etr's				Owner					
ature		CTED BY		Owner's Signature		DATE	1		/

ATTACHMENT - 6

RESERVOIR DRAWDOWN CALCULATIONS

For SHADOW RUN RANCH TM 5223

Preparation/Revision Date:

November 25, 2013

Prepared for:

Sherrill Ann Schoepe, General Partner Shadow Run Ranch, LLC

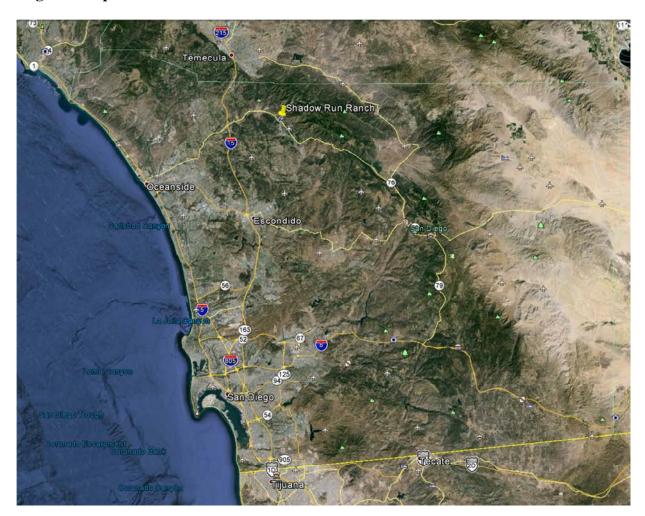
P.O. Box 1249

Pauma Valley, CA 92061

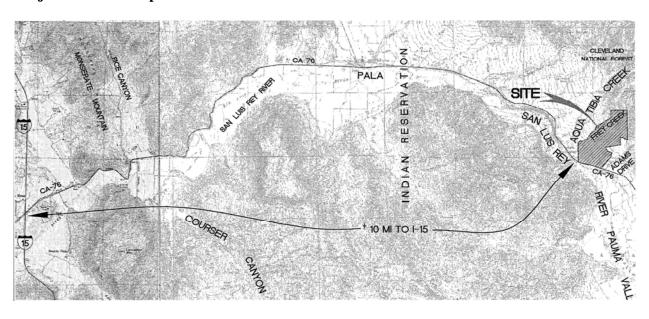
Telephone: (760) 742-1893

Prepared by:

Masson & Associates, Inc.

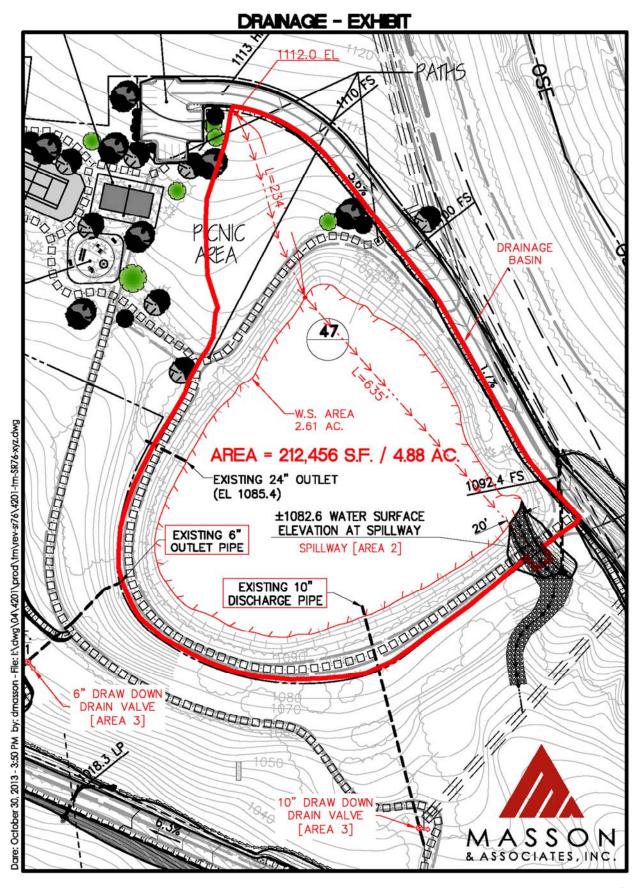

200 East Washington Avenue, Suite 200

Escondido, CA 92025


Telephone: (760) 741-3570

Tuesday, November 26, 2013

Regional map:



Project location Map:

Attachment 6 - RESERVOIR Drawdown-Drain-Calculations.docx

Page **2** of **4**

Attachment 6 - RESERVOIR Drawdown-Drain-Calculations.docx

Per the exhibit above there are two existing drawdown pipes 6" and 10" that can be used to drain the entire reservoir within 3 days per the calculations provided below.

A	PROJECT NO.:	
	DESCRIPTION:	
	CALCULATED BY:	DATE:
	CHECKED BY:	DATE:
14 0 2 2 4 44	SHEET	OF
MASSON	SCALE:	
& ASSOCIATES, INC.	TALL ALL ALL ALL ALL ALL ALL ALL ALL ALL	
Calculation for Two	res 6", 10" that wil	Il drain the the total solu
of the reservior in &	days:	
n=0.017 steel C	1.49 AR 5 2	
n=0.017 steel C	1 1 1	
	+ ! ``	
Piper, DEK YES" = Y	30.25.PE	
	5 1062-1050	= 0-1/x10 0 = 10/
	120	
RA ITT	0.25	
N = 1 2	12	
0-ip.125 14		
	1 21 40	
0-1-49 y3 14 (025) x		= 1-36 (fs
1 6.617 X - 1 X	(9125) X (917)	7-19/61
	+ - + + + + + + + + + + + + + + + +	
Pipe: 0=10 - 1=5 =	1 r= 042 ft, S.	1068-1043 = 0 064 00 =
		295
R - A - 11/2 = r = 0.5	2 = a, 2) ft	
P 2/7/ 2 2		
	2 9/3	42
Q5 1-49 - x 3.14 (0.42)	x(0.1) x (0.064)	= 4.36 CP5
2001		
0-0 0 = 1364 4	01 6 40 000	V - 34 5 Ar fort
434 + 12 5 1-76 1-7	P6-50-77 1-10 /	
		V=1,502,800 Cubic feet
V 1,502,820	2697305	
0+9 5.72	W 2 7 8 mill	
	73 78 M/A	
	T2-78, AC	
++++++	2 days	
. There top 0:00 69 and	to will drain the to	Servior, valune 34.5 Ac fo
in 2 days		

Pre development Hydrology Map

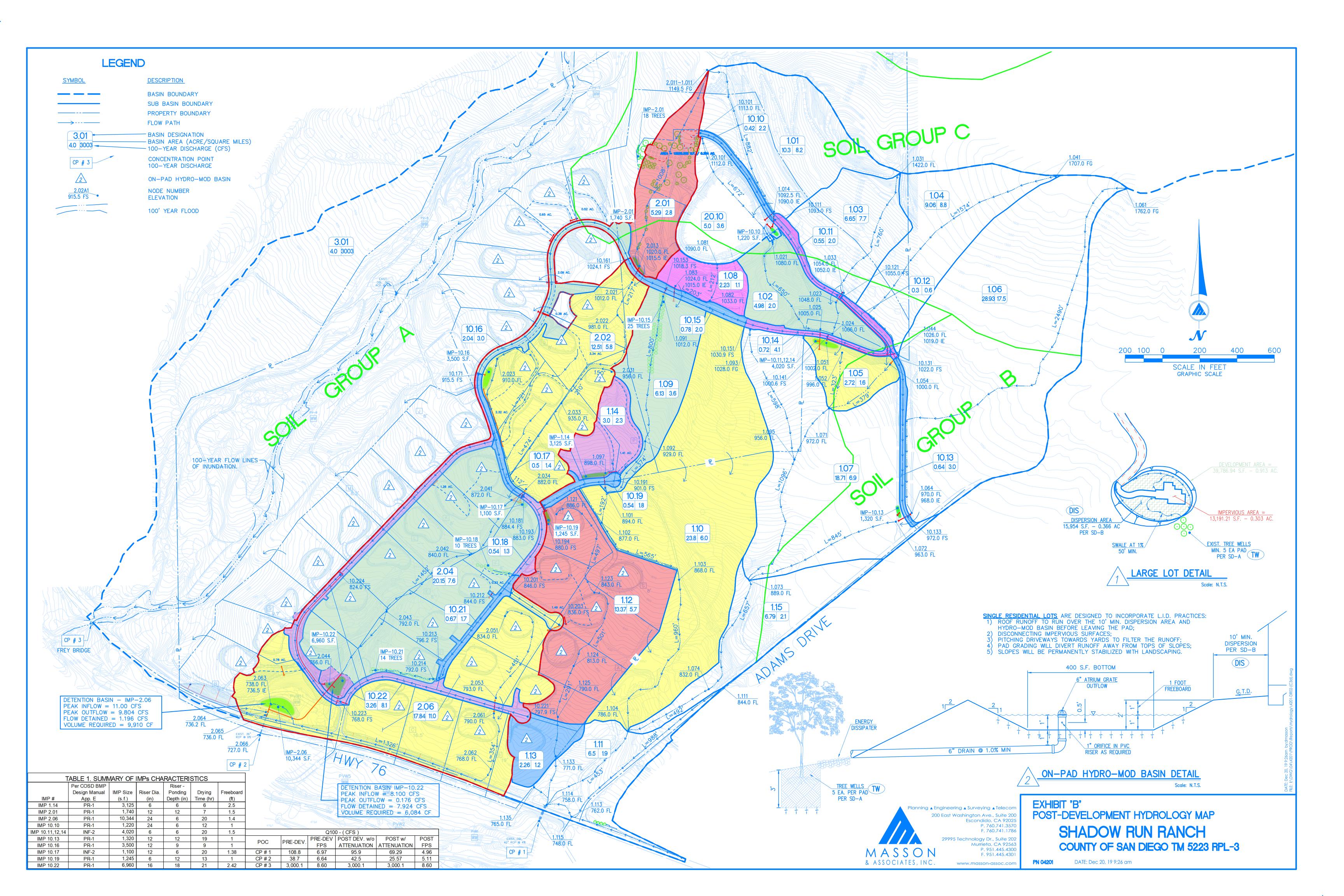

LEGEND DESCRIPTION BASIN BOUNDARY PROPERTY BOUNDARY SOIL GROUP BOUNDARY FLOW PATH ${\color{red} \boldsymbol{\rightarrow}} \cdots {\color{red} \boldsymbol{\rightarrow}} \cdots {\color{red} \boldsymbol{\rightarrow}} \cdots$ BASIN DESIGNATION BASIN AREA (ACRE/SQUARE MILES)/100-YEAR DISCHARGE (CFS) CONCENTRATION POINT 100-YEAR DISCHARGE VELOCITY NODE NUMBER ELEVATION 100 YR FLOOD MISSINGW YNDIAN SOIL GROUP G CURVEL SOF NATURE ALL REPRESE SOIL CROUP B BASIN AREA = 4.0 SQUARE MILES WATERSHED LENGTH = 6.0 MILES 4.0 3003 LENGTH TO CENTROID = 3.55 MILES ADJUSTED RUNOFF CURVE NUMBER = 82 BASIN n = 0.055 SOIL GROUP C LAC TIME = 12 HOURS TIME TO PEAK = 10 HOURS PEAK 100 - YEAR DISCHARGE = 3003.1 CFS 1000 2000 3000 GRAPHIC SCALE $\begin{array}{c} \text{CP} + 3 \\ \text{Q}_{100} - 3003.1_{\text{CFS}} \\ \text{V}_{100} = 8.6 \\ \text{PS}. \end{array}$ 2.022 736.00 FL 2.023 727.00 FL CP #1 Q₁₀₀ 108.8_{CFS} V₁₀₀ 6.97 _{PPS} EXISTING 36" REP DATE: Nov 22, 19 1:13pm by:rthigpen FILE:I:\DWG\04\4201\PROD\Reports\Hydrology\4201-DR01 - (C3d).dwg Planning ▲ Engineering ▲ Surveying ▲ Telecom 200 East Washington Ave., Suite 200 Escondido, CA 92025 P. 760.741.3570 F. 760.741.1786 29995 Technology Dr., Suite 202 Murrieta, CA 92563 MASSON & ASSOCIATES, INC. P. 951.445.4300 F. 951.445.4301

EXHIBIT "A" PAGE OF 2
PRE-DEVELOPMENT HYDROLOGY MAP

SHADOW RUN RANCH
COUNTY OF SAN DIEGO TM 5223RPL

PN 04201 DATE: Nov 22, 19 1:13 pm

Post development Hydrology Map

