TECHNICAL MEMORANDUM:

SWMM Modeling for Hydromodification Compliance of:

Skyline Retirement Center

Prepared For:

Skyline Wesleyan Church October 20, 2016 (Revision) September 15, 2017 (Update)

Prepared by:

Luis Parra, PhD, CPSWQ, ToR, D.WRE.

R.C.E. 66377

REC Consultants 2442 Second Avenue San Diego, CA 92101 Telephone: (619) 232-9200

TECHNICAL MEMORANDUM

TO: SKYLINE WESLEYAN CHURCH

FROM: Luis Parra, PhD, PE, CPSWQ, ToR, D.WRE.

David Edwards, PE.

DATE: April 27, 2016 (Revised October 20, 2016)(Updated September 15, 2017)

RE: Summary of SWMM Modeling for Hydromodification Compliance for Skyline Retirement

Center, La Mesa, CA.

INTRODUCTION

This memorandum summarizes the approach used to model the proposed residential development project site in the City of La Mesa using the Environmental Protection Agency (EPA) Storm Water Management Model 5.0 (SWMM). SWMM models were prepared for the pre and post-developed conditions at the site in order to determine if the proposed LID biofiltration facilities have sufficient volume to meet Order R9-2013-001 requirements of the California Regional Water Quality Control Board San Diego Region (SDRWQCB), as explained in the Final Hydromodification Management Plan (HMP), dated March 2011, prepared for the County of San Diego by Brown and Caldwell.

SWMM Model Development

The Skyline Retirement Center project comprises of single and attached proposed residential developments including associated roads and parking lots. Two (2) SWMM models were prepared for this study: the first for the pre-development and the second for the post-developed conditions. The project site drains to two (2) Points of Compliance (POC-1 and POC-2) located at two (2) existing different storm drain locations within the adjacent access road to the Skyline Church. Runoff from both storm drain systems are conveyed in a southerly direction, discharging to a creek adjacent to Campo Road at two (2) separate locations.

The SWMM model was used since we have found it to be more comparable to San Diego area watersheds than the alternative San Diego Hydrology Model (SDHM) and also because it is a non-proprietary model approved by the HMP document. For both SWMM models, flow duration curves were prepared to determine if the proposed HMP facilities are sufficient to meet the current HMP requirements.

The inputs required to develop SWMM models include rainfall, watershed characteristics, and BMP configurations. The inputs required to develop SWMM models include rainfall, watershed characteristics, and BMP configurations.

In regards to the proper rainfall station to use for this project, two factors are taken into account to select the most appropriate rainfall location, in agreement with the County of San Diego BMP Manual: Proximity of the project with the rainfall station (in terms of distance), and difference in elevation between the project and the rainfall station selected. Unfortunately, section G.1.3.1 of the BMP Manual

is not 100% reliable because (a) it includes rainfall stations in Figure G.1-1 whose data does not exists in the Project Clean Water web site (La Mesa) and it does not include rainfall stations in Figure G.1-1 whose data does exists (Borrego); (b) it assumes that all data sets are of the same quality, which is not the case (for example, data in Lindbergh is of much higher quality than data in the closed-by Fashion Valley station, and the later should never be used as a substitute of the former because most of its data is copied from Lindbergh and the elevation of both stations is the same; similarly quality of data for San Vicente and Santee is extremely poor and both should never be used) and (c) it lacks a methodological procedure on how to evaluate scenarios when the station that is closer in location, is not the same that the station that is closer in elevation, as in the case of this project.

As a consequence, the author of this study has decided to use a statistical methodology to evaluate the most appropriate rainfall station among a group of "n" candidates (stations), using 2 parameters: (1) the distance D_i between the station "i" and the location of the project and (2) the absolute difference in elevation between the station "i" considered and the project location, Z_i . Assuming that the importance of D_i is identical to the importance of Z_i (distance is as important as different in elevation) for each station considered the following parameter P_i is calculated:

$$P_i = \frac{D_i^{-1}}{2\sum_{i=1}^n D_i^{-1}} + \frac{Z_i^{-1}}{2\sum_{i=1}^n Z_i^{-1}}$$

The station whose parameter P_i is the highest is statistically more significant in terms of distance and difference in elevation respect to the location of the project. It should be noted that all P_i values added are equal to 1.

To evaluate the most appropriate rainfall station, the following stations were considered as potentially the most representative stations: Flinn, Lower Otay, Bonita, Santee. The distance of the project to each station is approximately 9.15 miles, 9.53 miles, 7.65 miles and 7.66 miles respectively, while the absolute difference in elevation between the station and the average elevation in the project is approximately 365 ft, 24 ft, 395 ft and 215 ft respectively. It seems evident that Lower Otay is the best station, because the distances are similar but its elevation is very close to that of the project. Applying the P_i equation we obtain the following values for Flinn, Lower Otay, Bonita and Santee: 0.142, 0.514, 0.162 and 0.182. Therefore, it is clear that the Lower Otay rain gauge is the most appropriate for this project.

In regards to evapotranspiration, per the California Irrigation Management Information System "Reference Evaporation Zones" (CIMIS ETo Zone Map), the project site is located within the Zone 9 Evapotranspiration Area. Thus evapotranspiration values for the site were modeled using Zone 9 average monthly values from Table G.1-1 from the City of San Diego 2016 BMP Design Manual. The site was modeled with Types A & D hydrologic soils as this is the existing soil determined from the NRCS Web Soil Survey. Soils have been assumed to be uncompacted in the existing condition to represent the natural condition of the site and fully compacted in the post developed conditions. Other SWMM inputs for the subareas are discussed in the appendices to this document, where the selection of the parameters is explained in detail.

HMP MODELING

EXISTING CONDITIONS

The current site is a mass graded lot that drains in a southerly direction to two (2) different receiving storm drains located within the adjacent access road to the existing Skyline Church. There is also a portion of the existing-offsite slope along the western property boundary that drains to one (1) of the receiving storm drains.

TABLE 1 – SUMMARY OF EXISTING CONDITIONS

DMA	Tributary Area, A (Ac)	Impervious Percentage, Ip
DMA-1-D	4.42	0.34% ⁽¹⁾
DMA-1-A	4.09	1.46% ⁽¹⁾
DMA-OFFSITE-A	0.37	0.00% ⁽¹⁾
DMA-OFFSITE-A	0.01	0.00% ⁽¹⁾
TOTAL POC 1	8.89	n/a
DMA-2-D	0.60	0.00% ⁽¹⁾
TOTAL POC 2	0.60	n/a
TOTAL	9.48	

Notes: (1) – Per the 2013 RWQCB permit, existing condition impervious surfaces are not to be accounted for in existing conditions analysis. However, as some of POC 1 will remain untouched this impervious % can be accounted for.

DEVELOPED CONDITIONS

Storm water runoff from the proposed project site is routed to two (2) POCs located at the discharge locations to the south east of the project site at the existing storm drain systems within the access road to the Skyline Church. For POC 1, the runoff from the developed project site is drained to three (3) onsite receiving biofiltration LID BMPs. Once flows are routed via the proposed LID BMPs, developed onsite flows are then conveyed to the aforementioned storm drain POC 1. Runoff from the offsite-slope previously described also drains to POC-1.

POC 2 does not need any treatment nor does it need hydromodification compliance for the following reasons. In existing conditions the area draining to POC 2 is 0.60 acres while in developed conditions the area is 0.59 acres, a reduction of 0.01 acres. Additionally the 0.59 acres draining to POC 2 remain unchanged and undisturbed from the existing condition, thus the land use is the same as in pre developed conditions. So given these two facts, there must be less runoff in post developed condition, therefore no analysis needs to undertaken for POC 2.

It is assumed all storm water quality requirements for the project will be met by the biofiltration LID BMPs. However, detailed water quality requirements are not discussed within this technical memo. For further information in regards to storm water quality requirements for the project, please refer to the site specific Storm Water Quality Management Plan (SWQMP).

TABLE 2 – SUMMARY OF DEVELOPED CONDITIONS

POC	DMA	Tributary Area, A (Ac) ⁽¹⁾	Impervious Percentage %, Ip	Basin
	1-1-D	0.89	32%	BMP-1
	1-1-A	1.31	43%	DIVIE-1
	1-D-BYPASS	0.37	0%	
	1-A-BYPASS	1.07	0%	n/2
POC-1	OFFSITE-A	0.37	27%	n/a
	OFFSITE-D	0.01	100%	
	2-1-A	1.60	77%	DMD 2
	2-1-D	1.95	58%	BMP-2
	3-1-A	0.11	100%	DMD 2
	3-1-D	1.22	33%	BMP-3
POC-2	2-1-D	0.59	0%	n/a
TOTAL		9.48		-

Notes: (1) – DMA areas include the area of the biofiltration.

Three (3) LID biofiltration basins with partial retention are located within the project site and are responsible for handling hydromodification requirements for the projects runoff to POC 1. In developed conditions, the basins will have a surface depth and a riser spillway structure (see dimensions in Table 3). Flows will then discharge from the basins via the outlet structure or infiltrate through the base of the facilities to the receiving amended soil and low flow orifice. The riser structure will act as a spillway such that peak flows can be safely discharged to the receiving storm drain systems.

Beneath the basins' invert lies the proposed LID biofiltration portion of the drainage facility. This portion of the basin is comprised of a 3-inch layer of mulch, an 18-inch layer of amended soil (a highly sandy, organic rich composite with an infiltration capacity of at least 5 inches/hr) and a layer of gravel. All BMPs will be unlined to allow for infiltration into the underlying soils.

The biofiltration basins were modeled using the biofiltration LID module within SWMM. The biofiltration module can model the amended soil layer, and a surface storage pond up to the elevation of the invert of the spillway. It should be noted that detailed outlet structure location and elevations will be shown on the construction plans based on the recommendations of this study.

4 w.o.979-01

BMP MODELING FOR HMP PURPOSES

Modeling of dual purpose Water Quality/HMP BMP

Three (3) LID BMP biofiltration basins are proposed for water quality treatment and hydromodification conformance for the project site. Tables 3 & 4 illustrate the dimensions required for HMP compliance according to the SWMM model that was undertaken for the project.

TABLE 3 – SUMMARY OF DEVELOPED DUAL PURPOSE BMP

			DIMENSIONS				
ВМР	Tributary Area (Ac)	BMP Area ⁽¹⁾ , (ft ²)	Low Flow Orifice (in)	Gravel Depth ⁽⁵⁾ (in)	Depth Riser Invert (ft) ⁽²⁾	Weir Perimeter Length ⁽³⁾ (ft)	Total Surface Depth ⁽⁴⁾ (ft)
BMP-1	2.20	1,509	1.0	27	2.25	8.00	2.50
BMP-2	3.55	4,364	1.5	27	2.00	12.00	2.50
BMP-3	1.33	1,411	0.875	30	2.00	8.00	2.50

Notes:

- (1): Area of amended soil = area of gravel = area of the BMP
- (2): Depth of ponding beneath riser structure's surface spillway to bottom of mulch layer.
- (3): Overflow length, the internal perimeter of the square riser
- (4): Total surface depth of BMP from bottom of mulch layer to crest elevation.
- (5): Gravel depth includes the dead storage below the LID orifice (9-inches for BMP 1 and 2. 12-inches for BMP-3) and 6 inches of gravel/sand filter layers. See Basin detail on attachment 5.

TABLE 4 – SUMMARY OF RISER DETAILS

Lower Outlet			Middle	Slot	Upper 9	Slot	Top R	iser	
Basin	Туре	B x H (in), #-Dia (in)	Elev. (ft) ⁽¹⁾	B x H (in), #-Dia (in)	Elev. (ft) ⁽¹⁾	B x H (in), #-Dia (in)	Elev. (ft) ⁽¹⁾	Length ⁽²⁾ (ft)	Elev. ⁽¹⁾ (ft)
BMP 1	Orifice	2 – 0.75	0.50	6 x 2	1.00	30 x 3	1.33	8	2.25
BMP 2	Slot	36 x 3	0.75	n/a	n/a	n/a	n/a	12	2.00
BMP 3	Slot	12 x 2	0.50	n/a	n/a	n/a	n/a	8	2.00

Notes:

- (1): Basin ground surface elevation assumed to be 0.00 ft elevation.
- (2): Overflow length is the internal perimeter of the riser structure.

FLOW DURATION CURVE COMPARISON

The Flow Duration Curve (FDC) for the site was compared at POC-1 by exporting the hourly runoff time series results from SWMM to a spreadsheet. The FDC was compared between 10% of the existing condition Q_2 up to the existing condition Q_{10} for POC-1. The Q_2 and Q_{10} were determined with a partial duration statistical analysis of the runoff time series in an Excel spreadsheet using the Cunnane plotting position method (which is the preferred plotting methodology in the HMP Permit). As the SWMM Model includes a statistical analysis based on the Weibull Plotting Position Method, the Weibull Method was also used within the spreadsheet to ensure that the results were similar to those obtained by the SWMM Model.

The range between 10% of Q_2 and Q_{10} was divided into 100 equal time intervals; the number of hours that each flow rate was exceeded was counted from the hourly series. Additionally, the intermediate peaks with a return period "i" were obtained (Q_i with i=3 to 9). For the purpose of the plot, the values were presented as percentage of time exceeded for each flow rate. FDC comparison at the POC is illustrated in Figures 1a and 1b in both normal and logarithmic scale. Attachment 5 provides a detailed drainage exhibit for the post-developed condition.

As can be seen in Figure 1, the FDC for the proposed condition with the HMP BMPs is within 110% of the curve for the existing condition in both peak flows and durations. The additional runoff volume generated from developing the site will be released to the existing point of discharge at a flow rate below the $10\%~Q_2$ lower threshold for the POC. Additionally, the project will also not increase peak flow rates between the Q_2 and the Q_{10} , as shown in the graphic and also in the peak flow tables in Attachment 1.

Discussion of the Manning's coefficient (Pervious Areas) for Pre and Post-Development Conditions

Typically the Manning's coefficient is selected as n = 0.10 for pervious areas and n = 0.012 for impervious areas. However, due to the impact that n has in the continuous simulation a more accurate value of the Manning's coefficient has been chosen for pervious areas. Taken into consideration the study prepared by TRWE (Reference [6]) a value of n = 0.05 has been selected (see Table 1 of Reference [6] included in Attachment 7). An average n value between average grass plus pasture (0.04) and dense grass (0.06) has been selected per the reference cited, for light rain (<0.8 in/hr) as more than 99% of the rainfall has been measured with this intensity.

SUMMARY

This study has demonstrated that the proposed HMP BMPs provided for the Skyline Retirement Center project site is sufficient to meet the current HMP criteria if the cross-section areas and volumes recommended within this technical memorandum, and the respective orifice and outlet structure are incorporated as specified within the proposed project site.

6 W.0.979-01

KEY ASSUMPTIONS

- 1. Types A & D Soil is representative of the existing condition site.
- 2. All basins will be unlined to allow for infiltration.

ATTACHMENTS

- 1. Q_2 to Q_{10} Comparison Tables
- 2. Flow Duration Curve Analysis
- 3. List of the "n" largest Peaks: Pre-Development and Post-Development Conditions
- 4. Area Vs Elevation & Discharge Vs Elevation
- 5. Pre & Post Development Maps, Project Plan and Section Sketches
- 6. SWMM Input Data in Input Format (Existing and Proposed Models)
- 7. EPA SWMM Figures and Explanations
- 8. Soil Maps & Geotechnical Investigation
- 9. Summary files from the SWMM Model

REFERENCES

- [1] "Review and Analysis of San Diego County Hydromodification Management Plan (HMP): Assumptions, Criteria, Methods, & Modeling Tools Prepared for the Cities of San Marcos, Oceanside & Vista", May 2012, TRW Engineering.
- [2] "Final Hydromodification Management Plan (HMP) prepared for the County of San Diego", March 2011, Brown and Caldwell.
- [3] Order R9-2013-001, California Regional Water Quality Control Board San Diego Region (SDRWQCB).
- [4] "Handbook of Hydrology", David R. Maidment, Editor in Chief. 1992, McGraw Hill.
- [5] "City of San Diego BMP Design Manual", February 2016.

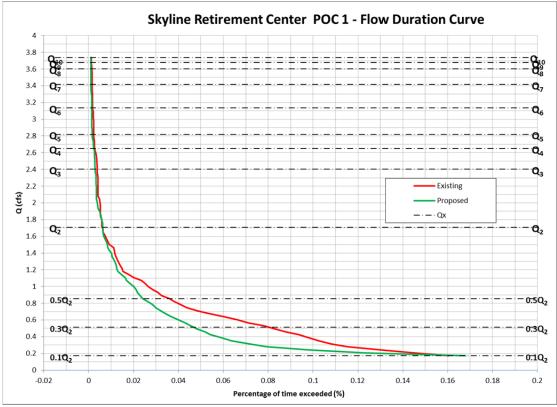


Figure 1a and 1b. Flow Duration Curve Comparison (logarithmic and normal "x" scale)

ATTACHMENT 1.

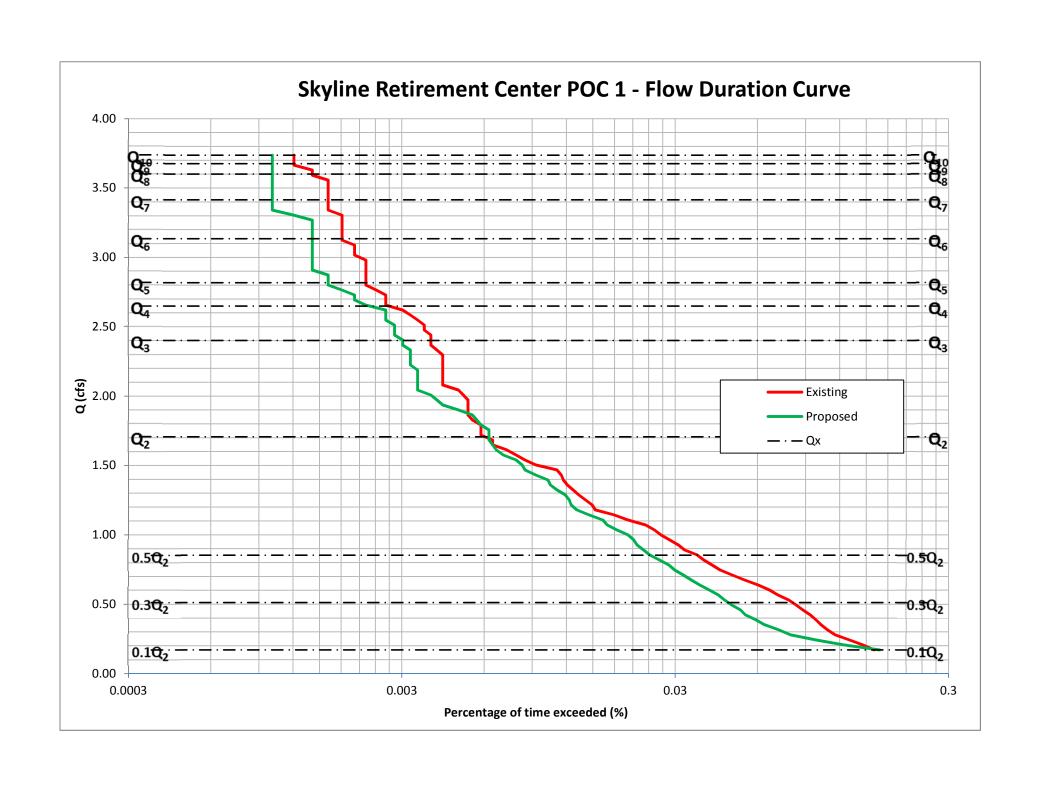
Q₂ to Q₁₀ Comparison Table – POC 1

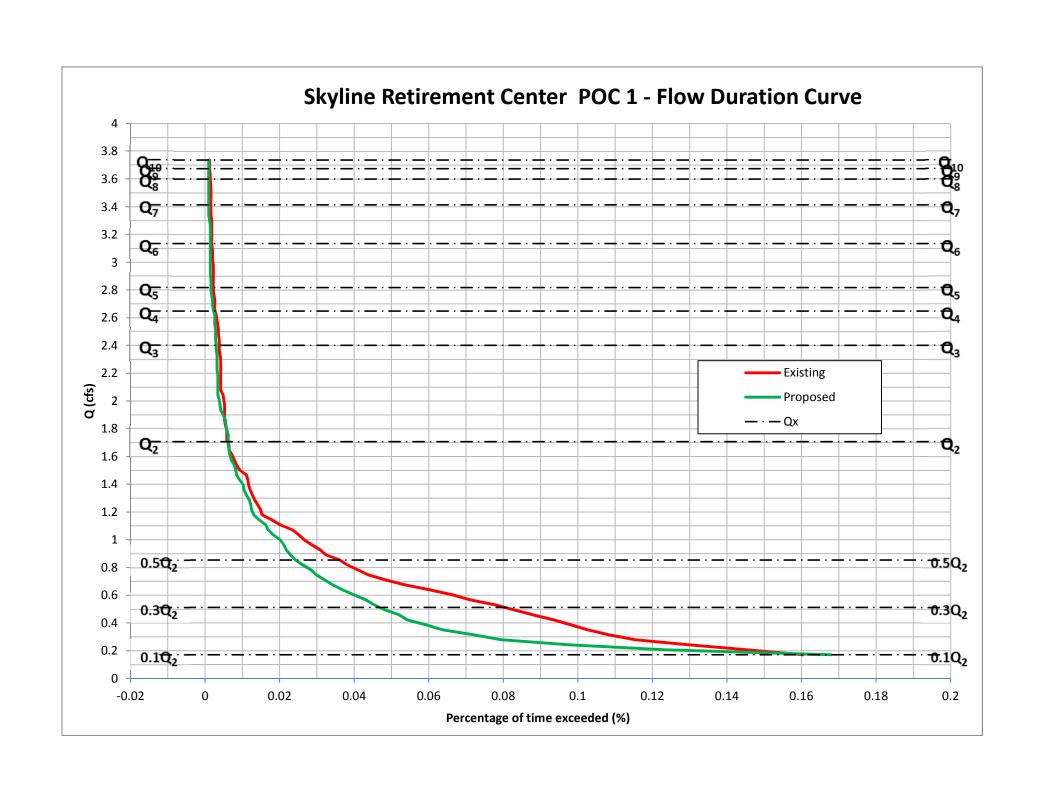
Return Period	Existing Condition (cfs)	Mitigated Condition (cfs)	Reduction, Exist - Mitigated (cfs)
2-year	1.707	1.564	0.143
3-year	2.401	1.916	0.485
4-year	2.649	2.306	0.342
5-year	2.818	2.629	0.188
6-year	3.135	2.756	0.378
7-year	3.415	2.828	0.587
8-year	3.601	3.063	0.538
9-year	3.675	3.299	0.377
10-year	3.737	3.328	0.409

ATTACHMENT 2

FLOW DURATION CURVE ANALYSIS

1) Flow duration curve shall not exceed the existing conditions by more than 10%, neither in peak flow nor duration.


The figures on the following pages illustrate that the flow duration curve in post-development conditions after the proposed BMP is below the existing flow duration curve. The flow duration curve table following the curve shows that if the interval $0.10Q_2 - Q_{10}$ is divided in 100 sub-intervals, then a) the post development divided by pre-development durations are never larger than 110% (the permit allows up to 110%); and b) there are no more than 10 intervals in the range 101%-110% which would imply an excess over 10% of the length of the curve (the permit allows less than 10% of excesses measured as 101-110%).


Consequently, the design passes the hydromodification test.

It is important to note that the flow duration curve can be expressed in the "x" axis as percentage of time, hours per year, total number of hours, or any other similar time variable. As those variables only differ by a multiplying constant, their plot in logarithmic scale is going to look exactly the same, and compliance can be observed regardless of the variable selected. However, in order to satisfy the City of La Mesa HMP example, % of time exceeded is the variable of choice in the flow duration curve. The selection of a logarithmic scale in lieu of the normal scale is preferred, as differences between the predevelopment and post-development curves can be seen more clearly in the entire range of analysis. Both graphics are presented just to prove the difference.

In terms of the "y" axis, the peak flow value is the variable of choice. As an additional analysis performed by REC, not only the range of analysis is clearly depicted (10% of Q_2 to Q_{10}) but also all intermediate flows are shown (Q_2 , Q_3 , Q_4 , Q_5 , Q_6 , Q_7 , Q_8 and Q_9) in order to demonstrate compliance at any range $Q_x - Q_{x+1}$. It must be pointed out that one of the limitations of both the SWMM and SDHM models is that the intermediate analysis is not performed (to obtain Q_i from i = 2 to 10). REC performed the analysis using the Cunnane Plotting position Method (the preferred method in the HMP permit) from the "n" largest independent peak flows obtained from the continuous time series.

The largest "n" peak flows are attached in this appendix, as well as the values of Q_i with a return period "i", from i=2 to 10. The Q_i values are also added into the flow-duration plot.

Flow Duration Curve Data for Skyline Retirement Center POC-1, City of La Mesa, CA

Q2 = 1.71 cfs Fraction 10 %

Q10 = 3.74 cfs Step = 0.0360 cfs Count = 496008 hours 56.58 years

	E	xisting Cond	ition	De	tention Optimiz	ed	Pass or
Interval	Q (cfs)	Hours > Q	% time	Hours>Q	% time	Post/Pre	Fail?
1	0.171	796	1.60E-01	833	1.68E-01	105%	Pass
2	0.207	721	1.45E-01	613	1.24E-01	85%	Pass
3	0.243	644	1.30E-01	485	9.78E-02	75%	Pass
4	0.279	572	1.15E-01	394	7.94E-02	69%	Pass
5	0.315	537	1.08E-01	357	7.20E-02	66%	Pass
6	0.351	509	1.03E-01	316	6.37E-02	62%	Pass
7	0.387	487	9.82E-02	294	5.93E-02	60%	Pass
8	0.423	464	9.35E-02	269	5.42E-02	58%	Pass
9	0.459	436	8.79E-02	258	5.20E-02	59%	Pass
10	0.495	411	8.29E-02	239	4.82E-02	58%	Pass
11	0.531	386	7.78E-02	225	4.54E-02	58%	Pass
12	0.567	353	7.12E-02	214	4.31E-02	61%	Pass
13	0.603	329	6.63E-02	198	3.99E-02	60%	Pass
14	0.639	299	6.03E-02	183	3.69E-02	61%	Pass
15	0.675	266	5.36E-02	170	3.43E-02	64%	Pass
16	0.711	240	4.84E-02	159	3.21E-02	66%	Pass
17	0.747	217	4.37E-02	148	2.98E-02	68%	Pass
18	0.783	203	4.09E-02	141	2.84E-02	69%	Pass
19	0.819	189	3.81E-02	130	2.62E-02	69%	Pass
20	0.855	179	3.61E-02	120	2.42E-02	67%	Pass
21	0.891	161	3.25E-02	114	2.30E-02	71%	Pass
22	0.927	153	3.08E-02	108	2.18E-02	71%	Pass
23	0.963	142	2.86E-02	105	2.12E-02	74%	Pass
24	0.999	132	2.66E-02	100	2.02E-02	76%	Pass
25	1.035	125	2.52E-02	91	1.83E-02	73%	Pass
26	1.071	116	2.34E-02	84	1.69E-02	72%	Pass
27	1.107	100	2.02E-02	81	1.63E-02	81%	Pass
28	1.143	89	1.79E-02	72	1.45E-02	81%	Pass
29	1.179	76	1.53E-02	65	1.31E-02	86%	Pass
30	1.215	74	1.49E-02	62	1.25E-02	84%	Pass
31	1.251	70	1.41E-02	61	1.23E-02	87%	Pass
32	1.287	66	1.33E-02	59	1.19E-02	89%	Pass
33	1.323	63	1.27E-02	55	1.11E-02	87%	Pass
34	1.359	60	1.21E-02	52	1.05E-02	87%	Pass
35	1.395	58	1.17E-02	51	1.03E-02	88%	Pass
36	1.431	57	1.15E-02	46	9.27E-03	81%	Pass
37	1.467	55	1.11E-02	42	8.47E-03	76%	Pass

	E	xisting Cond	ition	Detention Optimized		Pass or	
Interval	Q (cfs)	Hours > Q	% time	Hours>Q	% time	Post/Pre	Fail?
38	1.504	46	9.27E-03	41	8.27E-03	89%	Pass
39	1.540	42	8.47E-03	39	7.86E-03	93%	Pass
40	1.576	39	7.86E-03	35	7.06E-03	90%	Pass
41	1.612	36	7.26E-03	33	6.65E-03	92%	Pass
42	1.648	32	6.45E-03	32	6.45E-03	100%	Pass
43	1.684	32	6.45E-03	31	6.25E-03	97%	Pass
44	1.720	29	5.85E-03	31	6.25E-03	107%	Pass
45	1.756	29	5.85E-03	31	6.25E-03	107%	Pass
46	1.792	29	5.85E-03	29	5.85E-03	100%	Pass
47	1.828	27	5.44E-03	28	5.65E-03	104%	Pass
48	1.864	26	5.24E-03	27	5.44E-03	104%	Pass
49	1.900	26	5.24E-03	24	4.84E-03	92%	Pass
50	1.936	26	5.24E-03	21	4.23E-03	81%	Pass
51	1.972	26	5.24E-03	20	4.03E-03	77%	Pass
52	2.008	25	5.04E-03	19	3.83E-03	76%	Pass
53	2.044	24	4.84E-03	17	3.43E-03	71%	Pass
54	2.080	21	4.23E-03	17	3.43E-03	81%	Pass
55	2.116	21	4.23E-03	17	3.43E-03	81%	Pass
56	2.152	21	4.23E-03	17	3.43E-03	81%	Pass
57	2.188	21	4.23E-03	17	3.43E-03	81%	Pass
58	2.224	21	4.23E-03	16	3.23E-03	76%	Pass
59	2.260	21	4.23E-03	16	3.23E-03	76%	Pass
60	2.296	21	4.23E-03	16	3.23E-03	76%	Pass
61	2.332	20	4.03E-03	16	3.23E-03	80%	Pass
62	2.368	19	3.83E-03	15	3.02E-03	79%	Pass
63	2.404	19	3.83E-03	15	3.02E-03	79%	Pass
64	2.440	19	3.83E-03	14	2.82E-03	74%	Pass
65	2.476	18	3.63E-03	14	2.82E-03	78%	Pass
66	2.512	18	3.63E-03	14	2.82E-03	78%	Pass
67	2.548	17	3.43E-03	13	2.62E-03	76%	Pass
68	2.584	16	3.23E-03	13	2.62E-03	81%	Pass
69	2.620	15	3.02E-03	13	2.62E-03	87%	Pass
70	2.656	13	2.62E-03	11	2.22E-03	85%	Pass
71	2.692	13	2.62E-03	10	2.02E-03	77%	Pass
72	2.728	13	2.62E-03	10	2.02E-03	77%	Pass
73	2.764	12	2.42E-03	9	1.81E-03	75%	Pass
74	2.800	11	2.22E-03	8	1.61E-03	73%	Pass
75	2.836	11	2.22E-03	8	1.61E-03	73%	Pass
76	2.872	11	2.22E-03	8	1.61E-03	73%	Pass
77	2.908	11	2.22E-03	7	1.41E-03	64%	Pass
78 79	2.944	11	2.22E-03	7	1.41E-03	64%	Pass
	2.980	11	2.22E-03	7	1.41E-03	64%	Pass
80	3.016	10	2.02E-03		1.41E-03	70%	Pass
81	3.052	10	2.02E-03	7	1.41E-03	70%	Pass
82	3.088	10	2.02E-03	7	1.41E-03	70%	Pass

	Ex	Existing Condition			Detention Optimized			
Interval	Q (cfs)	Hours > Q	% time	Hours>Q	% time	Post/Pre	Fail?	
83	3.124	9	1.81E-03	7	1.41E-03	78%	Pass	
84	3.160	9	1.81E-03	7	1.41E-03	78%	Pass	
85	3.197	9	1.81E-03	7	1.41E-03	78%	Pass	
86	3.233	9	1.81E-03	7	1.41E-03	78%	Pass	
87	3.269	9	1.81E-03	7	1.41E-03	78%	Pass	
88	3.305	9	1.81E-03	6	1.21E-03	67%	Pass	
89	3.341	8	1.61E-03	5	1.01E-03	63%	Pass	
90	3.377	8	1.61E-03	5	1.01E-03	63%	Pass	
91	3.413	8	1.61E-03	5	1.01E-03	63%	Pass	
92	3.449	8	1.61E-03	5	1.01E-03	63%	Pass	
93	3.485	8	1.61E-03	5	1.01E-03	63%	Pass	
94	3.521	8	1.61E-03	5	1.01E-03	63%	Pass	
95	3.557	8	1.61E-03	5	1.01E-03	63%	Pass	
96	3.593	7	1.41E-03	5	1.01E-03	71%	Pass	
97	3.629	7	1.41E-03	5	1.01E-03	71%	Pass	
98	3.665	6	1.21E-03	5	1.01E-03	83%	Pass	
99	3.701	6	1.21E-03	5	1.01E-03	83%	Pass	
100	3.737	6	1.21E-03	5	1.01E-03	83%	Pass	

Peak Flows calculated with Cunnane Plotting Position

Return Period (years)	Pre-dev. Q (cfs)	Post-Dev. Q (cfs)	Reduction (cfs)
10	3.737	3.328	0.409
9	3.675	3.299	0.377
8	3.601	3.063	0.538
7	3.415	2.828	0.587
6	3.135	2.756	0.378
5	2.818	2.629	0.188
4	2.649	2.306	0.342
3	2.401	1.916	0.485
2	1.707	1.564	0.143

ATTACHMENT 3

List of the "n" Largest Peaks: Pre & Post-Developed Conditions

Basic Probabilistic Equation:

R = 1/P

R: Return period (years).

P: Probability of a flow to be equaled or exceeded any given year (dimensionless).

Cunnane Equation:

Weibull Equation:

$$P = \frac{i-0.4}{n+0.2}$$

$$P = \frac{i}{n+1}$$

i: Position of the peak whose probability is desired (sorted from large to small).

n: Number of years analyzed.

Explanation of Variables for the Tables in this Attachment

Peak: Refers to the peak flow at the date given, taken from the continuous simulation hourly results of the n year analyzed.

Posit: If all peaks are sorted from large to small, the position of the peak in a sorting analysis is included under the variable Posit.

Date: Date of the occurrence of the peak at the outlet from the continuous simulation

Note: All peaks are not annual maxima; instead they are defined as event maxima, with a threshold to separate peaks of at least 12 hours. In other words, any peak P in a time series is defined as a value where dP/dt = 0, and the peak is the largest value in 25 hours (12 hours before, the hour of occurrence and 12 hours after the occurrence, so it is in essence a daily peak).

List of Peak events and Determination of Q2 and Q10 (Pre-Development)

Skyline R	Skyline Retirement Center - POC 1							
Т	Cunnane	Weibull	Peaks			Period c	f Return	
(Year)	(cfs)	(cfs)	(cfs)			(Ye	ars)	
10	3.74	3.82	(CIS)	Date	Posit	Weibull	Cunnane	
9	3.68	3.70	1.293	3/14/2003	57	1.02	1.01	
8	3.60	3.63	1.316	2/15/1992	56	1.04	1.03	
7	3.41	3.49	1.329	3/21/1983	55	1.05	1.05	
6	3.13	3.18	1.359	3/22/1954	54	1.07	1.07	
5	2.82	2.87	1.364	1/18/1973	53	1.09	1.09	
4	2.65	2.65	1.37	1/14/1969	52	1.12	1.11	
3	2.40	2.42	1.413	2/22/1969	51	1.14	1.13	
2	1.71	1.71	1.434	1/7/1993	50	1.16	1.15	
			1.467	11/21/1978	49	1.18	1.18	
			1.474	12/2/1952	48	1.21	1.20	
Note:			1.477	1/18/1952	47	1.23	1.23	

Cunnane is the preferred method by the HMP permit.

1.329	3/21/1983	55	1.05	1.05
1.359	3/22/1954	54	1.07	1.07
1.364	1/18/1973	53	1.09	1.09
1.37	1/14/1969	52	1.12	1.11
1.413	2/22/1969	51	1.14	1.13
1.434	1/7/1993	50	1.16	1.15
1.467	11/21/1978	49	1.18	1.18
1.474	12/2/1952	48	1.21	1.20
1.477	1/18/1952	47	1.23	1.23
1.487	12/20/1997	46	1.26	1.25
1.492	2/20/1993	45	1.29	1.28
1.495	12/18/1967	44	1.32	1.31
1.497	3/1/1983	43	1.35	1.34
1.498	11/28/1970	42	1.38	1.38
1.5	1/11/2001	41	1.41	1.41
1.503	1/4/1995	40	1.45	1.44
1.516	3/5/1970	39	1.49	1.48
1.517	1/31/1979	38	1.53	1.52
1.532	3/27/1992	37	1.57	1.56
1.541	2/8/1976	36	1.61	1.61
1.571	3/24/1983	35	1.66	1.65
1.574	1/4/2005	34	1.71	1.70
1.584	10/19/2004	33	1.76	1.75
1.601	10/27/2004	32	1.81	1.81
1.634	2/15/1986	31	1.87	1.87
1.701	2/16/1998	30	1.93	1.93
1.707	3/2/1983	29	2.00	2.00
1.713	2/16/1959	28	2.07	2.07
1.794	10/20/2004	27	2.15	2.15
1.812	11/21/1967	26	2.23	2.23
1.838	12/30/1951	25	2.32	2.33
1.998	1/18/1955	24	2.42	2.42
2.044	11/12/1976	23	2.52	2.53
2.049	2/6/1992	22	2.64	2.65
2.051	11/15/1965	21	2.76	2.78
2.331	1/29/1983	20	2.90	2.92
2.466	11/25/1985	19	3.05	3.08
2.539	2/6/1976	18	3.22	3.25
2.566	2/23/1998	17	3.41	3.45
2.604	3/1/1970	16	3.63	3.67
2.646	11/22/1996	15	3.87	3.92
2.655	2/23/2005	14	4.14	4.21
2.737	3/1/1978	13	4.46	4.54
2.784	3/27/1971	12	4.83	4.93
3.011	3/4/1978	11	5.27	5.40
3.123	2/22/2004	10	5.80	5.96
3.317	1/3/2005	9	6.44	6.65
3.562	12/21/1970	8	7.25	7.53
3.655	2/2/1988	7	8.29	8.67
3.75	10/14/2006	6	9.67	10.21
4.154	10/19/1972	5	11.60	12.43
4.572	2/2/1998	4	14.50	15.89
4.583	10/30/1998	3	19.33	22.00
4.836	2/7/1998	2	29.00	35.75
5.2	2/13/1998	1	58.00	95.33

List of Peak events and Determination of Q2 and Q10 (Post-Development)

Skyline	Retirement	Center -	POC 1
---------	------------	----------	-------

Skyllile K	okyline ketilelletit Center - POC 1									
T	Cunnane	Weibull				Period o	f Return			
(Year)	(cfs)	(cfs)	Peaks (cfs)			(Ye	ars)			
10	3.33	3.42		Date	Posit	Weibull	Cunnane			
9	3.30	3.31	0.826	3/4/1983	57	1.02	1.01			
8	3.06	3.18	0.84	12/7/1992	56	1.04	1.03			
7	2.83	2.86	0.855	1/23/1967	55	1.05	1.05			
6	2.76	2.76	0.869	2/16/1959	54	1.07	1.07			
5	2.63	2.64	0.881	3/24/1964	53	1.09	1.09			
4	2.31	2.37	0.924	2/28/1970	52	1.12	1.11			
3	1.92	1.92	1.008	1/29/1983	51	1.14	1.13			
2	1.56	1.56	1.019	1/7/1957	50	1.16	1.15			
		•	1.025	3/4/1978	49	1.18	1.18			
			1.025	3/18/1982	48	1.21	1.20			

Note:

Cunnane is the preferred method by the HMP permit.

0.84	12/7/1992	56	1.04	1.03
0.855	1/23/1967	55	1.05	1.05
0.869	2/16/1959	54	1.07	1.07
0.881	3/24/1964	53	1.09	1.09
0.924	2/28/1970	52	1.12	1.11
1.008	1/29/1983	51	1.14	1.13
1.019	1/7/1957	50	1.16	1.15
1.025	3/4/1978	49	1.18	1.18
1.025	3/18/1982	48	1.21	1.20
1.038	1/5/1974	47	1.23	1.23
1.051	3/5/1995	46	1.26	1.25
1.061	1/16/1993	45	1.29	1.28
1.108	10/19/2004	44	1.32	1.31
1.161	3/1/1970	43	1.35	1.34
1.166	1/15/1978	42	1.38	1.38
1.168	2/14/1995	41	1.41	1.41
1.173	3/27/1971	40	1.45	1.44
1.177	10/20/2004	39	1.49	1.48
1.256	2/23/2004	38	1.53	1.52
1.289	1/8/1993	37	1.57	1.56
1.406	3/1/1983	36	1.61	1.61
1.421	2/23/2005	35	1.66	1.65
1.435	1/18/1955	34	1.71	1.70
1.445	12/21/1970	33	1.76	1.75
1.48	11/23/1965	32	1.81	1.81
1.538	1/13/1997	31	1.87	1.87
1.555	2/8/1976	30	1.93	1.93
1.564	12/28/1984	29	2.00	2.00
1.587 1.625	10/27/2004 11/15/1965	28	2.07 2.15	2.07 2.15
1.663	1/29/1980	27 26	2.13	2.13
1.761	10/19/1972	25	2.23	2.23
1.789	1/18/1952	24	2.42	2.42
1.851	2/23/1998	23	2.52	2.53
1.867	3/22/1954	22	2.64	2.65
1.884	3/1/1991	21	2.76	2.78
1.912	1/7/1993	20	2.90	2.92
1.92	2/15/1986	19	3.05	3.08
1.934	1/3/2005	18	3.22	3.25
2.008	1/14/1969	17	3.41	3.45
2.031	2/6/1976	16	3.63	3.67
2.218	2/22/2004	15	3.87	3.92
2.528	3/2/1983	14	4.14	4.21
2.621	1/4/1995	13	4.46	4.54
2.624	2/6/1992	12	4.83	4.93
2.661	11/25/1985	11	5.27	5.40
2.755	12/30/1951	10	5.80	5.96
2.779	11/12/1976	9	6.44	6.65
2.902	3/1/1978	8	7.25	7.53
3.289	2/2/1988	7	8.29	8.67
3.334	11/22/1996	6	9.67	10.21
3.812	10/30/1998	5	11.60	12.43
4.28	10/14/2006	4	14.50	15.89
4.547	2/2/1998	3	19.33	22.00
4.923	2/7/1998	2	29.00	35.75
5.274	2/13/1998	1	58.00	95.33

ATTACHMENT 4

AREA VS ELEVATION

The storage provided by the LID BMPs is entered into the LID Module within SWMM – please refer to Attachment 7 for further information.

Volume provided above the first surface outlet is accounted for in the basins Module within SWMM. A stage-storage relationship is provided within this Module, a copy of which is located on the following pages.

DISCHARGE VS ELEVATION

The orifices have been selected to maximize its size while still restricting flows to conform with the required 10% of the Q2 event flow as mandated in the Final Hydromodification Management Plan by Brown & Caldwell, dated March 2011. While REC acknowledges that the orifices are small, to increase the size of the outlet would impact the basin's ability to restrict flows beneath the HMP thresholds, thus preventing the BMP from conformance with HMP requirements.

In order to further reduce the risk of blockage of the orifices, regular maintenance of the riser and orifices must be performed to ensure potential blockages are minimized. A detail of the orifices and riser structures is provided in Attachment 5 of this memorandum.

A stage-discharge relationship is provided on the following pages for the surface outlet structures. The LID low flow orifice discharge relationship is addressed within the LID Module within SWMM – please refer to Attachment 7 for further information.

Stage-Area for BMP 1

Elevation (ft)	Area (ft ²)	Volume (ft ³)	
0.00	1509	0	BIOFILTRATION ⁽¹⁾
0.08	1556	51	
0.17	1603	104	
0.25	1649	158	TOP OF MULCH ⁽²⁾
0.33	1694	297	
0.42	1740	440	
0.50	1784	587	SURFACE DISCHARGE ⁽³⁾
0.58	1829	738	
0.67	1872	892	
0.75	1916	1050	
0.83	1959	1211	
0.92	2001	1376	
1.00	2043	1545	SURFACE DISCHARGE
1.08	2085	1717	
1.17	2126	1892	
1.25	2167	2071	
1.33	2207	2253	SURFACE DISCHARGE
1.42	2247	2439	
1.50	2287	2628	
1.58	2326	2820	
1.67	2364	3015	
1.75	2402	3214	
1.83	2440	3416	
1.92	2477	3621	
2.00	2514	3829	
2.08	2550	4039	
2.17	2586	4253	
2.25	2621	4470	EMERGENCY WEIR ⁽⁴⁾
2.33	2656	4690	
2.42	2690	4913	
2.50	2725	5139	

SUB SURFACE STORAGE BMP 1

Elevation (ft)	Area (ft²)	Volume (ft ³)	
-1.50	1509	679	Amended Soil Base (0.3 voids)
-3.75	1509	1358	Gravel Base (0.4 voids) ⁽⁵⁾
Gravel & Amended Soil	TOTAL =	2037	(ft ³)
Surface Total	TOTAL =	1545	(ft ³)
IMP	TOTAL =	3582	(ft ³)

- (1): The area at this surface elevation corresponds to the area of gravel and amended soil (Bio-filtration layer)
- (2): The volume for the first 3 inches of surface depth accounts for the voids of mulch
- (3): Volume at this elevation coresponds with surface volume for WQ purposes (invert of lowest surface outlet)
- (4): This elevation corresponds to the top of the riser elevation.
- (5): Gravel Depth includes nine (9) inches of storage below the LID orifice.

Effective Depth:	4.67 in
------------------	---------

Stage-Area for BMP 2

Elevation (ft)	Area (ft²)	Volume (ft ³)	
0.00	4364	0	BIOFILTRATION ⁽¹⁾
0.08	4364	145	
0.17	4364	291	
0.25	4364	436	TOP OF MULCH ⁽²⁾
0.33	4364	800	
0.42	4364	1164	
0.50	4364	1527	
0.58	4364	1891	
0.67	4364	2255	
0.75	4364	2618	SURFACE DISCHARGE ⁽³⁾
0.83	4364	2982	
0.92	4364	3346	
1.00	4364	3709	
1.08	4364	4073	
1.17	4364	4437	
1.25	4364	4800	
1.33	4364	5164	
1.42	4364	5528	
1.50	4364	5891	
1.58	4364	6255	
1.67	4364	6619	
1.75	4364	6982	
1.83	4364	7346	
1.92	4364	7710	
2.00	4364	8073	EMERGENCY WEIR ⁽⁴⁾
2.08	4364	8437	
2.17	4364	8801	
2.25	4364	9164	
2.33	4364	9528	
2.42	4364	9892	
2.50	4364	10255	

SUB SURFACE STORAGE BMP 2

Elevation (ft)	Area (ft ²)	Volume (ft ³)	
-1.50	4364	1964	Amended Soil Base (0.3 voids)
-3.75	4364	3928	Gravel Base (0.4 voids) ⁽⁵⁾
Gravel & Amended Soil	TOTAL =	5891	(ft ³)
Surface Total	TOTAL =	3709	(ft ³)
IMP	TOTAL =	9601	(ft ³)

- (1): The area at this surface elevation corresponds to the area of gravel and amended soil (Bio-filtration layer)
- (2): The volume for the first 3 inches of surface depth accounts for the voids of mulch
- (3): Volume at this elevation coresponds with surface volume for WQ purposes (invert of lowest surface outlet)
- (4): This elevation corresponds to the top of the riser elevation.
- (5): Gravel Depth includes nine (9) inches of storage below the LID orifice.

Effective Depth:	7.20 in
------------------	---------

Stage-Area for BMP 3

Elevation (ft)	Area (ft²)	Volume (ft ³)	
0.00	1411	0	BIOFILTRATION ⁽¹⁾
0.08	1411	47	
0.17	1411	94	
0.25	1411	141	TOP OF MULCH ⁽²⁾
0.33	1411	259	
0.42	1411	376	
0.50	1411	494	SURFACE DISCHARGE ⁽³⁾
0.58	1411	611	
0.67	1411	729	
0.75	1411	847	
0.83	1411	964	
0.92	1411	1082	
1.00	1411	1199	
1.08	1411	1317	
1.17	1411	1435	
1.25	1411	1552	
1.33	1411	1670	
1.42	1411	1787	
1.50	1411	1905	
1.58	1411	2022	
1.67	1411	2140	
1.75	1411	2258	
1.83	1411	2375	
1.92	1411	2493	
2.00	1411	2610	EMERGENCY WEIR ⁽⁴⁾
2.08	1411	2728	
2.17	1411	2846	
2.25	1411	2963	
2.33	1411	3081	
2.42	1411	3198	
2.50	1411	3316	

SUB SURFACE STORAGE BMP 3

Elevation (ft)	Area (ft ²)	Volume (ft ³)	
-1.50	1411	635	Amended Soil Base (0.3 voids)
-4.00	1411	1411	Gravel Base (0.4 voids) ⁽⁵⁾
Gravel & Amended Soil	TOTAL =	2046	(ft ³)
Surface Total	TOTAL =	1199	(ft ³)
IMP	TOTAL =	3245	(ft ³)

- (1): The area at this surface elevation corresponds to the area of gravel and amended soil (Bio-filtration layer)
- (2): The volume for the first 3 inches of surface depth accounts for the voids of mulch
- (3): Volume at this elevation coresponds with surface volume for WQ purposes (invert of lowest surface outlet)
- (4): This elevation corresponds to the top of the riser elevation.
- (5): Gravel Depth includes twelve (12) inches of storage below the LID orifice.

Effective Depth: 4.20 in

Outlet structure for Discharge of Detention Basin 1

Discharge vs Elevation Table

Low orifice: 0.75 " Lower slot

Number: 2 Invert: 0.25 ft Invert: 1.750 ft Cg-low: 0.61 B 0.50 ft B: 8 ft

h 0.167 ft

(note: 0.0 elev = 2.75 ft actual elevation)

Emergency Weir

Middle orifice: 1 " Upper slot

h	H/D-low	H/D-mid	Qlow-orif	Qlow-weir	Qtot-low	Qmid-orif	Qmid-weir	Qtot-med	Qslot-low	Qslot-upp	Qemer	Qtot
(ft)	-	-	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.042	0.667	0.000	0.003	0.003	0.003	0.000	0.000	0.000	0.000	0.000	0.000	0.003
0.083	1.333	0.000	0.007	0.008	0.007	0.000	0.000	0.000	0.000	0.000	0.000	0.007
0.125	2.000	0.000	0.009	0.012	0.009	0.000	0.000	0.000	0.000	0.000	0.000	0.009
0.167	2.667	0.000	0.011	0.014	0.011	0.000	0.000	0.000	0.000	0.000	0.000	0.011
0.208	3.333	0.000	0.013	0.014	0.013	0.000	0.000	0.000	0.000	0.000	0.000	0.013
0.250	4.000	0.000	0.014	0.023	0.014	0.000	0.000	0.000	0.000	0.000	0.000	0.014
0.292	4.667	0.500	0.015	0.057	0.015	0.000	0.000	0.000	0.013	0.000	0.000	0.029
0.333	5.333	1.000	0.017	0.147	0.017	0.000	0.000	0.000	0.037	0.000	0.000	0.054
0.375	6.000	1.500	0.018	0.176	0.018	0.000	0.000	0.000	0.069	0.000	0.000	0.086
0.417	6.667	2.000	0.019	0.186	0.019	0.000	0.000	0.000	0.105	0.000	0.000	0.124
0.458	7.333	2.500	0.020	0.196	0.020	0.000	0.000	0.000	0.144	0.000	0.000	0.164
0.500	8.000	3.000	0.021	0.206	0.021	0.000	0.000	0.000	0.167	0.000	0.000	0.187
0.542	8.667	3.500	0.021	0.215	0.021	0.000	0.000	0.000	0.186	0.000	0.000	0.208
0.583	9.333	4.000	0.022	0.223	0.022	0.000	0.000	0.000	0.204	0.000	0.000	0.226
0.625	10.000	4.500	0.023	0.231	0.023	0.000	0.000	0.000	0.220	0.000	0.000	0.243
0.667	10.667	5.000	0.024	0.239	0.024	0.000	0.000	0.000	0.236	0.000	0.000	0.259
0.708	11.333	5.500	0.025	0.247	0.025	0.000	0.000	0.000	0.250	0.000	0.000	0.275
0.750	12.000	6.000	0.025	0.255	0.025	0.000	0.000	0.000	0.263	0.000	0.000	0.289
0.792	12.667	6.500	0.026	0.262	0.026	0.000	0.000	0.000	0.276	0.000	0.000	0.302
0.833	13.333	7.000	0.027	0.269	0.027	0.000	0.000	0.000	0.288	0.000	0.000	0.315
0.875	14.000	7.500	0.028	0.276	0.028	0.000	0.000	0.000	0.300	0.066	0.000	0.394
0.917	14.667	8.000	0.028	0.283	0.028	0.000	0.000	0.000	0.312	0.186	0.000	0.526
0.958	15.333	8.500	0.029	0.289	0.029	0.000	0.000	0.000	0.323	0.342	0.000	0.694
1.000	16.000	9.000	0.030	0.296	0.030	0.000	0.000	0.000	0.333	0.527	0.000	0.890
1.042	16.667	9.500	0.030	0.302	0.030	0.000	0.000	0.000	0.343	0.737	0.000	1.110
1.083	17.333	10.000	0.031	0.308	0.031	0.000	0.000	0.000	0.353	0.969	0.000	1.353
1.125	18.000	10.500	0.031	0.314	0.031	0.000	0.000	0.000	0.363	1.221	0.000	1.615
1.167	18.667	11.000	0.032	0.320	0.032	0.000	0.000	0.000	0.372	1.396	0.000	1.801
1.208	19.333	11.500	0.033	0.326	0.033	0.000	0.000	0.000	0.382	1.530	0.000	1.944
1.250	20.000	12.000	0.033	0.332	0.033	0.000	0.000	0.000	0.391	1.652	0.000	2.076
1.292	20.667	12.500	0.034	0.337	0.034	0.000	0.000	0.000	0.399	1.766	0.000	2.199
1.333	21.333	13.000	0.034	0.343	0.034	0.000	0.000	0.000	0.408	1.874	0.000	2.316
1.375	22.000	13.500	0.035	0.348	0.035	0.000	0.000	0.000	0.416	1.975	0.000	2.426
1.417	22.667	14.000	0.035	0.354	0.035	0.000	0.000	0.000	0.425	2.071	0.000	2.531
1.458	23.333	14.500	0.036	0.359	0.036	0.000	0.000	0.000	0.433	2.163	0.000	2.632
1.500	24.000	15.000	0.036	0.364	0.036	0.000	0.000	0.000	0.441	2.252	0.000	2.729
1.542	24.667	15.500	0.037	0.369	0.037	0.000	0.000	0.000	0.448	2.337	0.000	2.822
1.583	25.333	16.000	0.037	0.374	0.037	0.000	0.000	0.000	0.456	2.419	0.000	2.912
1.625	26.000	16.500	0.038	0.379	0.038	0.000	0.000	0.000	0.464	2.498	0.000	3.000
1.667	26.667	17.000	0.038	0.384	0.038	0.000	0.000	0.000	0.471	2.575	0.000	3.084
1.708	27.333	17.500	0.039	0.389	0.039	0.000	0.000	0.000	0.478	2.650	0.000	3.167
1.750	28.000	18.000	0.039	0.394	0.039	0.000	0.000	0.000	0.486	2.722	0.000	3.247
1.792	28.667	18.500	0.040	0.399	0.040	0.000	0.000	0.000	0.493	2.793	0.211	3.536
1.833	29.333	19.000	0.040	0.403	0.040	0.000	0.000	0.000	0.500	2.862	0.597	3.998
1.875	30.000	19.500	0.041	0.408	0.041	0.000	0.000	0.000	0.507	2.929	1.096	4.573
1.917	30.667	20.000	0.041	0.412	0.041	0.000	0.000	0.000	0.513	2.995	1.687	5.237
1.958	31.333	20.500	0.042	0.417	0.042	0.000	0.000	0.000	0.520	3.060	2.358	5.979
2.000	32.000	21.000	0.042	0.421	0.042	0.000	0.000	0.000	0.527	3.123	3.100	6.791

Outlet structure for Discharge of Detention Basin 2

Discharge vs Elevation Table

Low orifice: 1.5 " Lower slot

 Number:
 0
 Invert:
 0.00 ft
 Invert:
 1.500 ft

 Cg-low:
 0.61
 B
 3.00 ft
 B:
 12 ft

h 0.250 ft

(note: 0.0 elev = 2.75 ft actual elevation)

Emergency Weir

Middle orifice: 1 " Upper slot

h	H/D-low	H/D-mid	Qlow-orif	Qlow-weir	Qtot-low	Qmid-orif	Qmid-weir	Qtot-med	Qslot-low	Qslot-upp	Qemer	Qtot
(ft)	-	-	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.042	0.333	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.079	0.000	0.000	0.079
0.083	0.667	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.224	0.000	0.000	0.224
0.125	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.411	0.000	0.000	0.411
0.167	1.333	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.633	0.000	0.000	0.633
0.208	1.667	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.884	0.000	0.000	0.884
0.250	2.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.162	0.000	0.000	1.162
0.292	2.333	0.500	0.000	0.000	0.000	0.000	0.000	0.000	1.465	0.000	0.000	1.465
0.333	2.667	1.000	0.000	0.000	0.000	0.000	0.000	0.000	1.676	0.000	0.000	1.676
0.375	3.000	1.500	0.000	0.000	0.000	0.000	0.000	0.000	1.836	0.000	0.000	1.836
0.417	3.333	2.000	0.000	0.000	0.000	0.000	0.000	0.000	1.983	0.000	0.000	1.983
0.458	3.667	2.500	0.000	0.000	0.000	0.000	0.000	0.000	2.120	0.000	0.000	2.120
0.500	4.000	3.000	0.000	0.000	0.000	0.000	0.000	0.000	2.248	0.000	0.000	2.248
0.542	4.333	3.500	0.000	0.000	0.000	0.000	0.000	0.000	2.370	0.000	0.000	2.370
0.583	4.667	4.000	0.000	0.000	0.000	0.000	0.000	0.000	2.486	0.000	0.000	2.486
0.625	5.000	4.500	0.000	0.000	0.000	0.000	0.000	0.000	2.596	0.000	0.000	2.596
0.667	5.333	5.000	0.000	0.000	0.000	0.000	0.000	0.000	2.702	0.000	0.000	2.702
0.708	5.667	5.500	0.000	0.000	0.000	0.000	0.000	0.000	2.804	0.000	0.000	2.804
0.750	6.000	6.000	0.000	0.000	0.000	0.000	0.000	0.000	2.903	0.000	0.000	2.903
0.792	6.333	6.500	0.000	0.000	0.000	0.000	0.000	0.000	2.998	0.000	0.000	2.998
0.833	6.667	7.000	0.000	0.000	0.000	0.000	0.000	0.000	3.090	0.000	0.000	3.090
0.875	7.000	7.500	0.000	0.000	0.000	0.000	0.000	0.000	3.180	0.000	0.000	3.180
0.917	7.333	8.000	0.000	0.000	0.000	0.000	0.000	0.000	3.267	0.000	0.000	3.267
0.958	7.667	8.500	0.000	0.000	0.000	0.000	0.000	0.000	3.352	0.000	0.000	3.352
1.000	8.000	9.000	0.000	0.000	0.000	0.000	0.000	0.000	3.434	0.000	0.000	3.434
1.042	8.333	9.500	0.000	0.000	0.000	0.000	0.000	0.000	3.515	0.000	0.000	3.515
1.083	8.667	10.000	0.000	0.000	0.000	0.000	0.000	0.000	3.594	0.000	0.000	3.594
1.125	9.000	10.500	0.000	0.000	0.000	0.000	0.000	0.000	3.671	0.000	0.000	3.671
1.167	9.333	11.000	0.000	0.000	0.000	0.000	0.000	0.000	3.747	0.000	0.000	3.747
1.208	9.667	11.500	0.000	0.000	0.000	0.000	0.000	0.000	3.821	0.000	0.000	3.821
1.250	10.000	12.000	0.000	0.000	0.000	0.000	0.000	0.000	3.894	0.000	0.000	3.894
1.292	10.333	12.500	0.000	0.000	0.000	0.000	0.000	0.000	3.966	0.000	0.000	3.966
1.333	10.667	13.000	0.000	0.000	0.000	0.000	0.000	0.000	4.036	0.000	0.000	4.036
1.375	11.000	13.500	0.000	0.000	0.000	0.000	0.000	0.000	4.105	0.000	0.000	4.105
1.417	11.333	14.000	0.000	0.000	0.000	0.000	0.000	0.000	4.173	0.000	0.000	4.173
1.458	11.667	14.500	0.000	0.000	0.000	0.000	0.000	0.000	4.239	0.000	0.000	4.239
1.500	12.000	15.000	0.000	0.000	0.000	0.000	0.000	0.000	4.305	0.000	0.000	4.305
1.542	12.333	15.500	0.000	0.000	0.000	0.000	0.000	0.000	4.370	0.000	0.316	4.686
1.583	12.667	16.000	0.000	0.000	0.000	0.000	0.000	0.000	4.434	0.000	0.895	5.329
1.625	13.000	16.500	0.000	0.000	0.000	0.000	0.000	0.000	4.497	0.000	1.644	6.141
1.667	13.333	17.000	0.000	0.000	0.000	0.000	0.000	0.000	4.559	0.000	2.531	7.090
1.708	13.667	17.500	0.000	0.000	0.000	0.000	0.000	0.000	4.620	0.000	3.537	8.157
1.750	14.000	18.000	0.000	0.000	0.000	0.000	0.000	0.000	4.680	0.000	4.650	9.330

Outlet structure for Discharge of Detention Basin 3

(note: 0.0 elev = 2.75 ft actual elevation)

Discharge vs Elevation Table

0.75 " Low orifice: Lower slot

Emergency Weir Number: 0 Invert: 0.00 ft Invert: 1.500 ft 0.61 1.00 ft Cg-low: В B: 8 ft

h 0.167 ft

Middle orifice: 1 " Upper slot

number of orif: Invert: 0.000 ft 0 Cg-middle: 0.61 0.00 ft B: invert elev: 0.25 ft 0.000 ft

h	H/D-low	H/D-mid	Qlow-orif	Qlow-weir	Qtot-low	Qmid-orif	Qmid-weir	Qtot-med	Qslot-low	Qslot-upp	Qemer	Qtot	Total H	Total Q
(ft)	.,, 5 .011		(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(ft)	(cfs)
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	2.750	0.026
0.042	0.667	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.026	0.000	0.000	0.026	2.792	0.052
0.042	1.333	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.075	0.000	0.000	0.075	2.833	0.100
0.125	2.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.137	0.000	0.000	0.137	2.875	0.163
0.167	2.667	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.211	0.000	0.000	0.211	2.917	0.236
0.208	3.333	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.288	0.000	0.000	0.211	2.958	0.314
0.250	4.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.333	0.000	0.000	0.333	3.000	0.359
0.292	4.667	0.500	0.000	0.000	0.000	0.000	0.000	0.000	0.372	0.000	0.000	0.372	3.042	0.398
0.333	5.333	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.408	0.000	0.000	0.408	3.083	0.433
0.375	6.000	1.500	0.000	0.000	0.000	0.000	0.000	0.000	0.441	0.000	0.000	0.441	3.125	0.466
0.417	6.667	2.000	0.000	0.000	0.000	0.000	0.000	0.000	0.471	0.000	0.000	0.471	3.167	0.497
0.458	7.333	2.500	0.000	0.000	0.000	0.000	0.000	0.000	0.500	0.000	0.000	0.500	3.208	0.525
0.500	8.000	3.000	0.000	0.000	0.000	0.000	0.000	0.000	0.527	0.000	0.000	0.527	3.250	0.552
0.542	8.667	3.500	0.000	0.000	0.000	0.000	0.000	0.000	0.552	0.000	0.000	0.552	3.292	0.578
0.583	9.333	4.000	0.000	0.000	0.000	0.000	0.000	0.000	0.577	0.000	0.000	0.577	3.333	0.602
0.625	10.000	4.500	0.000	0.000	0.000	0.000	0.000	0.000	0.600	0.000	0.000	0.600	3.375	0.626
0.667	10.667	5.000	0.000	0.000	0.000	0.000	0.000	0.000	0.623	0.000	0.000	0.623	3.417	0.649
0.708	11.333	5.500	0.000	0.000	0.000	0.000	0.000	0.000	0.645	0.000	0.000	0.645	3.458	0.671
0.750	12.000	6.000	0.000	0.000	0.000	0.000	0.000	0.000	0.666	0.000	0.000	0.666	3.500	0.692
0.792	12.667	6.500	0.000	0.000	0.000	0.000	0.000	0.000	0.687	0.000	0.000	0.687	3.542	0.712
0.833	13.333	7.000	0.000	0.000	0.000	0.000	0.000	0.000	0.707	0.000	0.000	0.707	3.583	0.732
0.875	14.000	7.500	0.000	0.000	0.000	0.000	0.000	0.000	0.726	0.000	0.000	0.726	3.625	0.751
0.917	14.667	8.000	0.000	0.000	0.000	0.000	0.000	0.000	0.745	0.000	0.000	0.745	3.667	0.770
0.958	15.333	8.500	0.000	0.000	0.000	0.000	0.000	0.000	0.763	0.000	0.000	0.763	3.708	0.789
1.000	16.000	9.000	0.000	0.000	0.000	0.000	0.000	0.000	0.781	0.000	0.000	0.781	3.750	0.807
1.042	16.667	9.500	0.000	0.000	0.000	0.000	0.000	0.000	0.799	0.000	0.000	0.799	3.792	0.824
1.083	17.333	10.000	0.000	0.000	0.000	0.000	0.000	0.000	0.816	0.000	0.000	0.816	3.833	0.841
1.125	18.000	10.500	0.000	0.000	0.000	0.000	0.000	0.000	0.833	0.000	0.000	0.833	3.875	0.858
1.167	18.667	11.000	0.000	0.000	0.000	0.000	0.000	0.000	0.849	0.000	0.000	0.849	3.917	0.875
1.208	19.333	11.500	0.000	0.000	0.000	0.000	0.000	0.000	0.865	0.000	0.000	0.865	3.958	0.891
1.250	20.000	12.000	0.000	0.000	0.000	0.000	0.000	0.000	0.881	0.000	0.000	0.881	4.000	0.907
1.292	20.667	12.500	0.000	0.000	0.000	0.000	0.000	0.000	0.897	0.000	0.000	0.897	4.042	0.922
1.333	21.333	13.000	0.000	0.000	0.000	0.000	0.000	0.000	0.912	0.000	0.000	0.912	4.083	0.938
1.375	22.000	13.500	0.000	0.000	0.000	0.000	0.000	0.000	0.927	0.000	0.000	0.927	4.125	0.953
1.417	22.667	14.000	0.000	0.000	0.000	0.000	0.000	0.000	0.942	0.000	0.000	0.942	4.167	0.968
1.458	23.333	14.500	0.000	0.000	0.000	0.000	0.000	0.000	0.957	0.000	0.000	0.957	4.208	0.982
1.500	24.000	15.000	0.000	0.000	0.000	0.000	0.000	0.000	0.971	0.000	0.000	0.971	4.250	0.997
1.542	24.667	15.500	0.000	0.000	0.000	0.000	0.000	0.000	0.985	0.000	0.211	1.196	4.292	1.222
1.583	25.333	16.000	0.000	0.000	0.000	0.000	0.000	0.000	0.999	0.000	0.596	1.596	4.333	1.621
1.625	26.000	16.500	0.000	0.000	0.000	0.000	0.000	0.000	1.013	0.000	1.096	2.109	4.375	2.134
1.667	26.667	17.000	0.000	0.000	0.000	0.000	0.000	0.000	1.027	0.000	1.687	2.714	4.417	2.739
1.708	27.333	17.500	0.000	0.000	0.000	0.000	0.000	0.000	1.040	0.000	2.358	3.398	4.458	3.424
1.750	28.000	18.000	0.000	0.000	0.000	0.000	0.000	0.000	1.053	0.000	3.100	4.153	4.500	4.179
1.792	28.667	18.500	0.000	0.000	0.000	0.000	0.000	0.000	1.066	0.000	3.906	4.973	4.542	4.998
1.833	29.333	19.000	0.000	0.000	0.000	0.000	0.000	0.000	1.079	0.000	4.773	5.852	4.583	5.877
1.875	30.000	19.500	0.000	0.000	0.000	0.000	0.000	0.000	1.092	0.000	5.695	6.787	4.625	6.812
1.917	30.667	20.000	0.000	0.000	0.000	0.000	0.000	0.000	1.105	0.000	6.670	7.775	4.667	7.800
1.958	31.333	20.500	0.000	0.000	0.000	0.000	0.000	0.000	1.117	0.000	7.695	8.812	4.708	8.838
2.000	32.000	21.000	0.000	0.000	0.000	0.000	0.000	0.000	1.130	0.000	8.768	9.897	4.750	9.923

DISCHARGE EQUATIONS

1) Weir:

$$Q_W = C_W \cdot L \cdot H^{3/2} \tag{1}$$

2) Slot:

As an orifice:
$$Q_S = B_S \cdot h_S \cdot c_g \cdot \sqrt{2g\left(H - \frac{h_S}{2}\right)}$$
 (2.a)

As a weir:
$$Q_s = C_W \cdot B_s \cdot H^{3/2} \tag{2.b}$$

For $H > h_s$ slot works as weir until orifice equation provides a smaller discharge. The elevation such that equation (2.a) = equation (2.b) is the elevation at which the behavior changes from weir to orifice.

3) Vertical Orifices

As an orifice:
$$Q_o = 0.25 \cdot \pi D^2 \cdot c_g \cdot \sqrt{2g\left(H - \frac{D}{2}\right)}$$
 (3.a)

As a weir: Critical depth and geometric family of circular sector must be solved to determined Q as a function of H:

$$\frac{Q_{0}^{2}}{g} = \frac{A_{cr}^{3}}{T_{cr}}; \quad H = y_{cr} + \frac{A_{cr}}{2 \cdot T_{cr}}; \quad T_{cr} = 2\sqrt{y_{cr}(D - y_{cr})}; \quad A_{cr} = \frac{D^{2}}{8} [\alpha_{cr} - \sin(\alpha_{cr})];$$

$$y_{cr} = \frac{D}{2}[1 - sin(0.5 \cdot \alpha_{cr})]$$
 (3.b.1, 3.b.2, 3.b.3, 3.b.4 and 3.b.5)

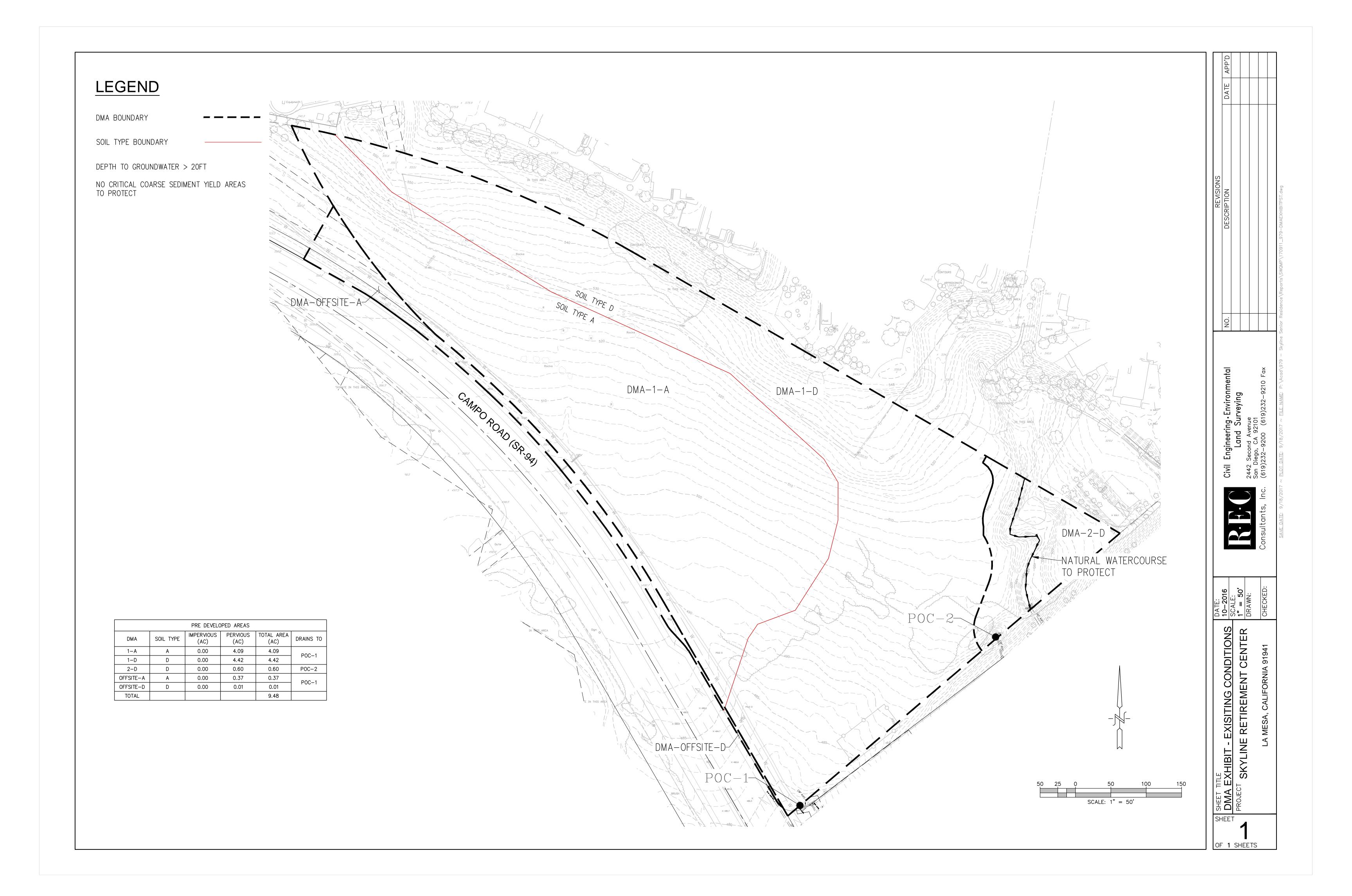
There is a value of H (approximately H = 110% D) from which orifices no longer work as weirs as critical depth is not possible at the entrance of the orifice. This value of H is obtained equaling the discharge using critical equations and equations (3.b).

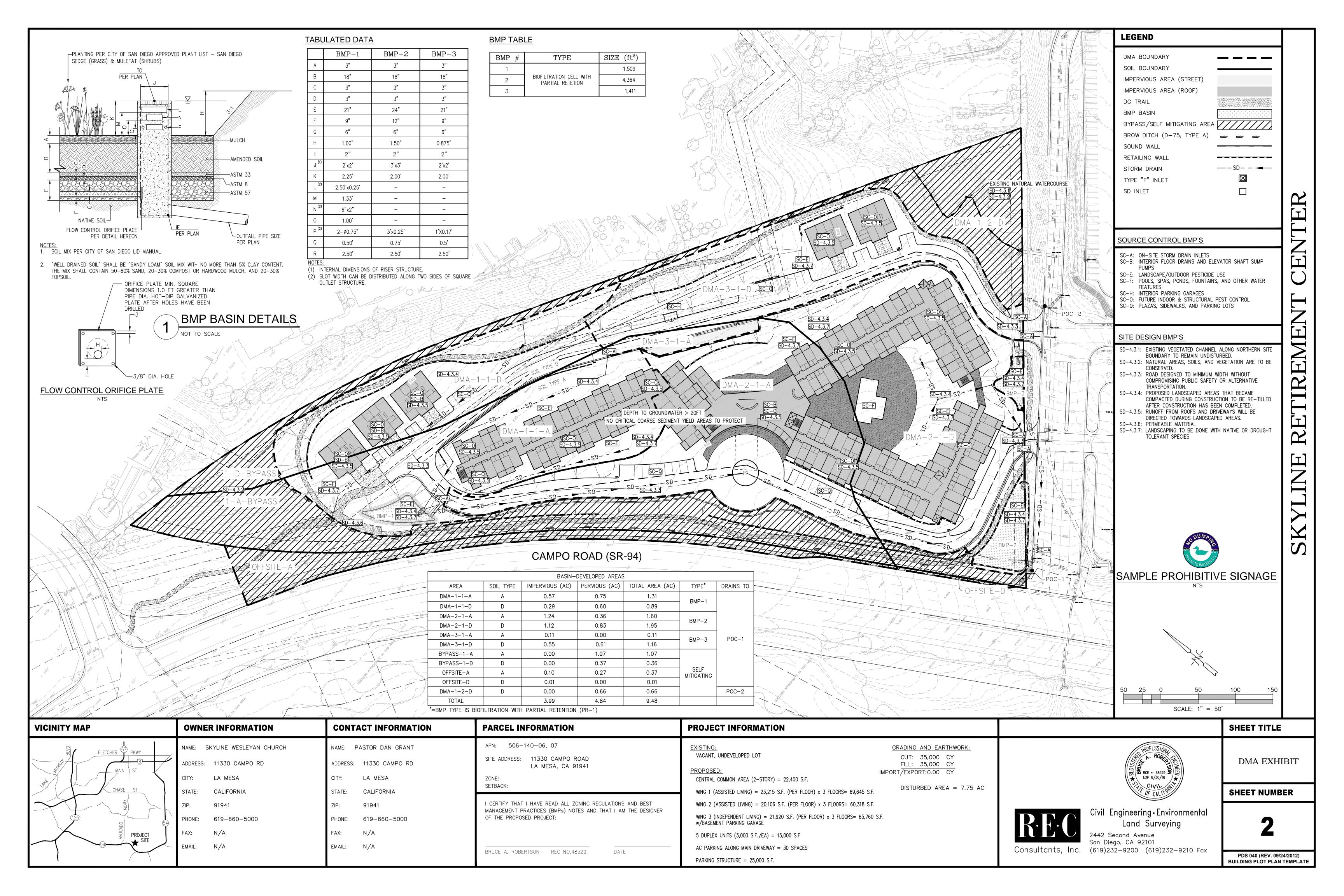
A mathematical model is prepared with the previous equations depending on the type of discharge.

The following are the variables used above:

 Q_W , Q_s , Q_O = Discharge of weir, slot or orifice (cfs)

C_w, c_g: Coefficients of discharge of weir (typically 3.1) and orifice (0.61 to 0.62)


L, B_s, D, h_s: Length of weir, width of slot, diameter of orifice and height of slot, respectively; (ft)


H: Level of water in the pond over the invert of slot, weir or orifice (ft)

 A_{cr} , T_{cr} , y_{cr} , α_{cr} : Critical variables for circular sector: area (sq-ft), top width (ft), critical depth (ft), and angle to the center, respectively.

ATTACHMENT 5

Pre & Post-Developed Maps, Project Plan and Detention Section Sketches

ATTACHMENT 6

SWMM Input Data in Input Format (Existing & Proposed Models)

[TITLE] [OPTIONS] FLOW_UNITS CFS GREEN_AMPT INFILTRATION FLOW_ROUTING KINWAVE START_DATE 08/29/1951 START_TIME 00:00:00 REPORT_START_DATE 08/29/1951 REPORT_START_TIME 00:00:00 END_DATE 03/29/2008 END_TIME 00:00:00 END_TIME 00:00:00 SWEEP_START 01/01 12/31 SWEEP_END

REPORT_STEP 01:00:00 00:15:00 WET_STEP DRY_STEP 04:00:00 0:01:00 ROUTING_STEP NO PARTIAL ALLOW_PONDING INERTIAL_DAMPING 0.75 VARIABLE_STEP LENGTHENING_STEP 0 MIN_SURFAREA 0 NORMAL_FLOW_LIMITED BOTH SKIP_STEADY_STATE NO FORCE_MAIN_EQUATION H-W LINK_OFFSETS DEPTH

[EVAPORATION]

MIN_SLOPE

DRY_DAYS

;;Type Parameters ;;-----

0.07 0.10 0.13 0.17 0.19 0.22 0.24 0.22 0.19 0.13 0.09 0.06 NO MONTHLY

DRY_ONLY

[RAINGAGES]

Rain Time Snow Data ;;Name Type Intrvl Catch Source ;;-----

Lower-Otay INTENSITY 1:00 1.0 TIMESERIES LowerOtay

[SUBCATCHMENTS]

;;			Total	Pcnt.		Pcnt.	Curb	Snow
;;Name	Raingage	Outlet	Area	Imperv	Width	Slope	Length	Pack
;;								
1-1-A	Lower-Otay	POC-1	4.086	0	820	13.50	0	
1-1-D	Lower-Otay	POC-1	4.417	0	796	14.10	0	
OFFSITE-A	Lower-Otay	POC-1	0.367	0	28	3.50	0	
OFFSITE-D	Lower-Otay	POC-1	0.012	0	20	3.90	0	

[SUBAREAS]

;;Subcatchment	N-Imperv	N-Perv	S-Imperv	S-Perv	PctZero	RouteTo	PctRouted
;;							
1-1-A	0.012	0.05	0.05	0.10	25	OUTLET	
1-1-D	0.012	0.05	0.05	0.10	25	OUTLET	
OFFSITE-A	0.012	0.05	0.05	0.10	25	OUTLET	
OFFSITE-D	0.012	0.05	0.05	0.10	25	OUTLET	

[INFILTRATION]

;;Subcatchment	Suction	HydCon	IMDmax
;;			
1-1-A	1.5	0.30	0.30
1-1-D	9.0	0.025	0.33
OFFSITE-A	1.5	0.30	0.30
OFFSITE-D	9.0	0.025	0.33

[OUTFALLS]

;;				
;;Name	Elev.	Type	Time Series	Gate
;;	Invert	Outfall	Stage/Table	Tide

POC-1	0	FREE		NO					
[TIMESERIES] ;;Name	Date	Time	Value						
LowerOtay	FILE "Lowe	r Otay.txt	. "						
[REPORT] INPUT NO CONTROLS NO SUBCATCHMENTS AL NODES ALL LINKS ALL	L								
[TAGS]									
[MAP] DIMENSIONS 1450.000 2925.000 2550.000 4575.000 Units None									
[COORDINATES] ;;Node ;;			7-Coord						
POC-1	2000.000		3000.000						
[VERTICES] ;;Link ;;		Y	7-Coord						
[Polygons] ;;Subcatchment ;;	X-Coord	Y	7-Coord						
1-1-A 1-1-A	1500.000 1500.000 2500.000 1500.000 2500.000	4 4 3	000.000 000.000 000.000 000.000						
[SYMBOLS] ;;Gage ;;	X-Coord	Y	/-Coord						
Lower-Otay		4	1500.000						

POST_DEV

[TITLE]

[OPTIONS] FLOW_UNITS CFS
INFILTRATION GREEN_AMPT
FLOW_ROUTING KINWAVE
START_DATE 08/29/1951 START_DATE START_TIME 00:00:00 REPORT_START_DATE 08/29/1951 REPORT_START_TIME 00:00:00 END_DATE 03/29/2008
END_TIME 00:00:00
SWEEP_START 01/01
SWEEP_END 12/31 0 DRY DAYS 04:00:00 DRY_STEP KOUTING_STEP
ALLOW_PONDING 0:01:00 ALLOW_PONDING
INERTIAL_DAMPING PARTIAL VARIABLE_STEP 0.75 LENGTHENING_STEP 0 MIN_SURFAREA 0 NORMAL_FLOW_LIMITED BOTH SKIP_STEADY_STATE NO FORCE_MAIN_EQUATION H-W LINK_OFFSETS DEPTH MIN_SLOPE

[EVAPORATION]

;;Type Parameters ;;------

MONTHLY 0.07 0.10 0.13 0.17 0.19 0.22 0.24 0.22 0.19 0.13 0.09 0.06

DRY_ONLY NO

[RAINGAGES]

LowerOtay INTENSITY 1:00 1.0 TIMESERIES LowerOtay

[SUBCATCHMENTS]

;;			Total	Pcnt.		Pcnt.	Curb	Snow
;;Name	Raingage	Outlet	Area	Imperv	Width	Slope	Length	Pack
;;								
1-1-D	LowerOtay	BR-1	0.888	32.4	363	50	0	
1-1-A	LowerOtay	BR-1	1.278	44.5	400	39.10	0	
1-2-A	LowerOtay	BR-2	1.600	77.17	598	12.50	0	
1-2-D	LowerOtay	BR-2	1.848	60.60	527	45	0	
1-3-A	LowerOtay	BR-3	0.106	100	214	6.12	0	
1-3-D	LowerOtay	BR-3	1.189	46.4	672	38.56	0	
BR-1	LowerOtay	DIV-1	0.03464	0	10	0	0	
BR-2	LowerOtay	DIV-2	0.10018	0	10	0	0	
BR-3	LowerOtay	DIV-3	0.03237	0	10	0	0	
1-1-D-BYPASS	LowerOtay	POC-1	0.365	0	423	14.10	0	
1-1-A-BYPASS	LowerOtay	POC-1	1.067	0	865	13.50	0	
OFFSITE-A	LowerOtay	POC-1	0.367	27.4	28	3.50	0	
OFFSITE-D	LowerOtay	POC-1	0.012	100	20	3.90	0	

[SUBAREAS]

;;Subcatchment N-Imperv N-Perv S-Imperv S-Perv PctZero RouteTo PctRouted

POST_DEV

;;								
	0.010	0.05	0.05	0 10				
1-1-D	0.012	0.05	0.05	0.10	25	OUTLET		
1-1-A	0.012	0.05	0.05	0.10	25	OUTLET		
1-2-A	0.012	0.05	0.05	0.10	25	OUTLET		
1-2-D	0.012	0.05	0.05	0.10	25	OUTLET		
1-3-A	0.012	0.05	0.05	0.10	25	OUTLET		
1-3-D	0.012	0.05	0.05	0.10	25	OUTLET		
BR-1	0.012	0.05	0.05	0.10	25	OUTLET		
BR-2	0.012	0.05	0.05	0.10	25	OUTLET		
BR-3	0.012	0.05	0.05	0.10	25	OUTLET		
1-1-D-BYPASS	0.012	0.05	0.05	0.10	25	OUTLET		
1-1-A-BYPASS	0.012	0.05	0.05	0.10	25	OUTLET		
OFFSITE-A	0.012	0.05	0.05	0.10	25	OUTLET		
OFFSITE-D	0.012	0.05	0.05	0.10	25	OUTLET		
[INFILTRATION]								
;;Subcatchment	Suction	HydCon	IMDmax					
;;				-				
1-1-D	9	0.01875	0.33					
1-1-A	1.5	0.225	0.30					
1-2-A	1.5	0.225	0.30					
1-2-D	9	0.01875	0.33					
1-3-A	1.5	0.225	0.30					
1-3-A 1-3-D	9	0.01875	0.33					
BR-1	1.5	0.225	0.30					
	9							
BR-2		0.01875 0.01875	0.33					
BR-3	9		0.33					
1-1-D-BYPASS	9	0.025	0.33					
1-1-A-BYPASS	1.5	0.3	0.30					
OFFSITE-A	1.5		0.30					
OFFSITE-D	9	0.01875	0.33					
[r rp governor g]								
[LID_CONTROLS]	_ ,_	_						
;;	Type/Layer	Parameters						
;;								
BR-1								
	BC		0.05	0	0	5		
BR-1	SURFACE	4.67						
BR-1	SURFACE SOIL	18	0.4	0.2	0.1	5 5		1.5
BR-1 BR-1	SURFACE SOIL STORAGE	18 27	0.67	0.1018	0	5 5		1.5
BR-1	SURFACE SOIL	18				5 5		1.5
BR-1 BR-1	SURFACE SOIL STORAGE	18 27	0.67	0.1018	0	5 5		1.5
BR-1 BR-1 BR-2	SURFACE SOIL STORAGE DRAIN BC	18 27 0.2207	0.67 0.5	0.1018	0	5 5		1.5
BR-1 BR-1 BR-1	SURFACE SOIL STORAGE DRAIN	18 27 0.2207	0.67 0.5	0.1018	0 6	5 5		1.5
BR-1 BR-1 BR-2	SURFACE SOIL STORAGE DRAIN BC SURFACE SOIL	18 27 0.2207 7.2 18	0.67 0.5 0.05 0.4	0.1018 9 0 0.2	0 6	5		1.5
BR-1 BR-1 BR-1 BR-2 BR-2	SURFACE SOIL STORAGE DRAIN BC SURFACE	18 27 0.2207 7.2 18	0.67 0.5 0.05 0.4	0.1018 9 0 0.2	0 6	5		
BR-1 BR-1 BR-2 BR-2 BR-2	SURFACE SOIL STORAGE DRAIN BC SURFACE SOIL	18 27 0.2207 7.2 18 27	0.67 0.5 0.05 0.4 0.67	0.1018 9 0 0.2	0 6 0 0.1	5		
BR-1 BR-1 BR-2 BR-2 BR-2 BR-2 BR-2	SURFACE SOIL STORAGE DRAIN BC SURFACE SOIL STORAGE	18 27 0.2207 7.2 18 27	0.67 0.5 0.05 0.4 0.67	0.1018 9 0 0.2 0.0896	0 6 0 0.1	5		
BR-1 BR-1 BR-2 BR-2 BR-2 BR-2 BR-2	SURFACE SOIL STORAGE DRAIN BC SURFACE SOIL STORAGE	18 27 0.2207 7.2 18 27	0.67 0.5 0.05 0.4 0.67	0.1018 9 0 0.2 0.0896	0 6 0 0.1	5		
BR-1 BR-1 BR-2 BR-2 BR-2 BR-2 BR-2 BR-2	SURFACE SOIL STORAGE DRAIN BC SURFACE SOIL STORAGE DRAIN	18 27 0.2207 7.2 18 27 0.1717	0.67 0.5 0.05 0.4 0.67 0.5	0.1018 9 0 0.2 0.0896	0 6 0 0.1 0	5		
BR-1 BR-1 BR-2 BR-2 BR-2 BR-2 BR-2 BR-2	SURFACE SOIL STORAGE DRAIN BC SURFACE SOIL STORAGE DRAIN BC SURFACE	18 27 0.2207 7.2 18 27 0.1717	0.67 0.5 0.05 0.4 0.67 0.5	0.1018 9 0 0.2 0.0896 9	0 6 0 0.1 0	5 5 5		
BR-1 BR-1 BR-1 BR-2 BR-2 BR-2 BR-2 BR-2 BR-3 BR-3 BR-3	SURFACE SOIL STORAGE DRAIN BC SURFACE SOIL STORAGE DRAIN BC SURFACE SOIL STORAGE	18 27 0.2207 7.2 18 27 0.1717	0.67 0.5 0.05 0.4 0.67 0.5	0.1018 9 0 0.2 0.0896 9	0 6 0 0.1 0	5 5 5		1.5
BR-1 BR-1 BR-1 BR-2 BR-2 BR-2 BR-2 BR-2 BR-3 BR-3 BR-3	SURFACE SOIL STORAGE DRAIN BC SURFACE SOIL STORAGE DRAIN BC SURFACE SOIL STORAGE	18 27 0.2207 7.2 18 27 0.1717	0.67 0.5 0.05 0.4 0.67 0.5	0.1018 9 0 0.2 0.0896 9	0 6 0 0.1 0 6	5 5 5		1.5
BR-1 BR-1 BR-1 BR-2 BR-2 BR-2 BR-2 BR-2 BR-3 BR-3 BR-3	SURFACE SOIL STORAGE DRAIN BC SURFACE SOIL STORAGE DRAIN BC SURFACE SURFACE SOIL	18 27 0.2207 7.2 18 27 0.1717	0.67 0.5 0.05 0.4 0.67 0.5	0.1018 9 0 0.2 0.0896 9	0 6 0 0.1 0 6	5 5 5		1.5
BR-1 BR-1 BR-2 BR-2 BR-2 BR-2 BR-2 BR-3 BR-3 BR-3 BR-3 BR-3	SURFACE SOIL STORAGE DRAIN BC SURFACE SOIL STORAGE DRAIN BC SURFACE SOIL STORAGE	18 27 0.2207 7.2 18 27 0.1717	0.67 0.5 0.05 0.4 0.67 0.5	0.1018 9 0 0.2 0.0896 9	0 6 0 0.1 0 6	5 5 5		1.5
BR-1 BR-1 BR-1 BR-2 BR-2 BR-2 BR-2 BR-2 BR-3 BR-3 BR-3	SURFACE SOIL STORAGE DRAIN BC SURFACE SOIL STORAGE DRAIN BC SURFACE SOIL STORAGE DRAIN	18 27 0.2207 7.2 18 27 0.1717 4.20 18 30 0.1807	0.67 0.5 0.05 0.4 0.67 0.5 0.05 0.4 0.67 0.5	0.1018 9 0 0.2 0.0896 9 0 0.2 0.14	0 6 0 0.1 0 6	5 5 5 5		1.5
BR-1 BR-1 BR-2 BR-2 BR-2 BR-2 BR-2 BR-3 BR-3 BR-3 BR-3 BR-3	SURFACE SOIL STORAGE DRAIN BC SURFACE SOIL STORAGE DRAIN BC SURFACE SOIL STORAGE DRAIN	18 27 0.2207 7.2 18 27 0.1717 4.20 18 30 0.1807	0.67 0.5 0.05 0.4 0.67 0.5 0.05 0.4 0.67 0.5	0.1018 9 0 0.2 0.0896 9 0 0.2 0.14	0 6 0 0.1 0 6	5 5 5 5		1.5
BR-1 BR-1 BR-1 BR-2 BR-2 BR-2 BR-2 BR-3 BR-3 BR-3 BR-3 BR-3 BR-3 BR-3	SURFACE SOIL STORAGE DRAIN BC SURFACE SOIL STORAGE DRAIN BC SURFACE SOIL STORAGE DRAIN LID Process	18 27 0.2207 7.2 18 27 0.1717 4.20 18 30 0.1807	0.67 0.5 0.05 0.4 0.67 0.5 0.05 0.4 0.67 0.5	0.1018 9 0 0.2 0.0896 9 0 0.2 0.14 12	0 0 0.1 0 6	5 5 5 5		1.5
BR-1 BR-1 BR-1 BR-2 BR-2 BR-2 BR-2 BR-3 BR-3 BR-3 BR-3 BR-3 BR-3 BR-3	SURFACE SOIL STORAGE DRAIN BC SURFACE SOIL STORAGE DRAIN BC SURFACE SOIL STORAGE DRAIN LID Process	18 27 0.2207 7.2 18 27 0.1717 4.20 18 30 0.1807	0.67 0.5 0.05 0.4 0.67 0.5 0.05 0.4 0.67 0.5	0.1018 9 0 0.2 0.0896 9 0 0.2 0.14 12	0 0 0.1 0 6	5 5 5 5		1.5
BR-1 BR-1 BR-1 BR-2 BR-2 BR-2 BR-2 BR-3 BR-3 BR-3 BR-3 BR-3 [LID_USAGE] ;;Subcatchment File ;;	SURFACE SOIL STORAGE DRAIN BC SURFACE SOIL STORAGE DRAIN BC SURFACE SOIL STORAGE DRAIN LID Process	18 27 0.2207 7.2 18 27 0.1717 4.20 18 30 0.1807	0.67 0.5 0.05 0.4 0.67 0.5 0.05 0.4 0.67 0.5	0.1018 9 0 0.2 0.0896 9 0 0.2 0.14 12	0 0 0.1 0 6	5 5 5 5 wr FromImprv	ToPerv	1.5
BR-1 BR-1 BR-1 BR-2 BR-2 BR-2 BR-2 BR-3 BR-3 BR-3 BR-3 BR-3 [LID_USAGE] ;;Subcatchment File ;;	SURFACE SOIL STORAGE DRAIN BC SURFACE SOIL STORAGE DRAIN BC SURFACE SOIL STORAGE DRAIN LID Process BR-1	18 27 0.2207 7.2 18 27 0.1717 4.20 18 30 0.1807	0.67 0.5 0.05 0.4 0.67 0.5 0.05 0.4 0.67 0.5	0.1018 9 0 0.2 0.0896 9 0 0.2 0.14 12 Width	0 0 0.1 0 6 0 0.1 0 6	5 5 5 5 wr FromImprv 100	ToPerv 0	1.5
BR-1 BR-1 BR-1 BR-2 BR-2 BR-2 BR-2 BR-3 BR-3 BR-3 BR-3 BR-3 [LID_USAGE] ;;Subcatchment File ;;	SURFACE SOIL STORAGE DRAIN BC SURFACE SOIL STORAGE DRAIN BC SURFACE SOIL STORAGE DRAIN LID Process	18 27 0.2207 7.2 18 27 0.1717 4.20 18 30 0.1807	0.67 0.5 0.05 0.4 0.67 0.5 0.05 0.4 0.67 0.5	0.1018 9 0 0.2 0.0896 9 0 0.2 0.14 12 Width	0 0 0.1 0 6	5 5 5 5 wr FromImprv	ToPerv	1.5

POST_DEV

[OUTFALLS] ;; ;;Name	Elev.	Type		e Series	Tide Gate						
;; POC-1	0	FREE			NO						
[DIVIDERS]											
;;	Invert			Divider							
;;Name ;;	Elev.	Link		Туре 		meters					
DIV-1	0	BYPAS		CUTOFF			0	()		0
DIV-2	0	BYPAS	SS-2	CUTOFF	0.07	115 0	0	()		0
DIV-3	0	BYPAS	SS-3	CUTOFF	0.024	466 0	0	()		0
[STORAGE]											
;;	Invert	Max.	Init.	Storage	Curve			Ponded	Evap	٠.	
		Depth	Depth	Curve	Params	3		Area	Frac	١.	
Infiltration Par											
BASIN-1	0	2	0	TABULAR	BASIN-	-1		2725	0		
BASIN-2	0	1.75	0	TABULAR	BASIN-	-2		4364	0		
BASIN-3	0	2	0	TABULAR	BASIN-	-3		1411	1		
[CONDUITS]											
;;	Inlet		Outlet			Manning	Inlet	Outlet		Init.	
Max. ;;Name	Node		Node	T.e	ength	N	Offset	Offset	-	Flow	
Flow	noac		Node	100	2119 011	11	Ollbec	OTIBE		110	
;;											
BYPASS-1	DIV-1		DACIN 1	10	1	0.01	0	0		0	
0	DIV-I		BASIN-1	10	J	0.01	U	U		U	
U-DRAIN-1	DIV-1		POC-1	10)	0.01	0	0		0	
0 U-DRAIN-2	DIV-2		DOC 1	10	1	0.01	0	0		0	
0-DRAIN-2 0	DIV-Z		POC-1	10	J	0.01	U	U		U	
BYPASS-2	DIV-2		BASIN-2	10)	0.01	0	0		0	
0 U-DRAIN-3	DIV-3		POC-1	10	1	0.01	0	0		0	
0 DRAIN-3	DIV-3		FOC-1	10	,	0.01	O	O		O	
BYPASS-3	DIV-3		BASIN-3	10)	0.01	0	0		0	
0											
[OUTLETS]											
;;	Inlet		Outlet	Ou	utflow	Outlet	Qc	oeff/			
Flap											
;;Name Gate	Node		Node	Не	eight	Type	QT	able		Qexpo	n
;;											
OUTLET-1 NO	BASIN-1		POC-1	0		TABULAR/	HEAD OU	T-1			
OUTLET-2	BASIN-2		POC-1	0		TABULAR/	HEAD OU	T-2			
NO OUTLET-3 NO	BASIN-3		POC-1	0		TABULAR/l	HEAD OU	T-3			
[XSECTIONS] ;;Link ;;	Shape	Geo	om1	Geom2	Geo	om3 Ge		Barrels			
BYPASS-1	DUMMY	0		0	0	0		1			

U-DRAIN-1	DUMMY	0	0	0	0	1
U-DRAIN-2	DUMMY	0	0	0	0	1
BYPASS-2	DUMMY	0	0	0	0	1
U-DRAIN-3	DUMMY	0	0	0	0	1
BYPASS-3	DUMMY	0	0	0	0	1

[LOSSES]

;;Link Inlet Outlet Average Flap Gate

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	111100	Oucicc	mvcrage
;;			
[CURVES]			
;;Name	Type	X-Value	V-Value
;;			·
OUT-1	Rating	0.000	0.000
OUT-1	_	0.042	0.003
OUT-1		0.083	0.007
OUT-1		0.125	0.009
OUT-1		0.167	0.011
OUT-1		0.208	0.013
OUT-1		0.250	0.014
OUT-1		0.292	0.029
OUT-1		0.333	0.054
OUT-1		0.375	0.086
OUT-1		0.417	0.124
OUT-1		0.458	0.164
OUT-1		0.500	0.187
OUT-1		0.542	0.208
OUT-1		0.583	0.226
OUT-1		0.625	0.243
OUT-1		0.667	0.259
OUT-1		0.708	0.275
OUT-1		0.750	0.289
OUT-1		0.792	0.302
OUT-1		0.833	0.315
OUT-1 OUT-1		0.875 0.917	0.394 0.526
OUT-1		0.917	0.526
OUT-1		1.000	0.890
OUT-1		1.042	1.110
OUT-1		1.083	1.353
OUT-1		1.125	1.615
OUT-1		1.167	1.801
OUT-1		1.208	1.944
OUT-1		1.250	2.076
OUT-1		1.292	2.199
OUT-1		1.333	2.316
OUT-1		1.375	2.426
OUT-1		1.417	2.531
OUT-1		1.458	2.632
OUT-1		1.500	2.729
OUT-1		1.542	2.822
OUT-1		1.583	2.912
OUT-1		1.625	3.000
OUT-1		1.667	3.084
OUT-1		1.708	3.167
OUT-1		1.750	3.247
OUT-1		1.792	3.536
OUT-1		1.833	3.998
OUT-1		1.875	4.573
OUT-1		1.917	5.237
OUT-1		1.958	5.979
OUT-1		2.000	6.791

OUT-2	Rating	0.000	0.000
OUT-2	Racing	0.042	0.079
OUT-2		0.083	0.224
OUT-2		0.125	0.411
OUT-2		0.167	0.633
OUT-2		0.208	0.884
OUT-2		0.250	1.162
OUT-2		0.292	1.465
OUT-2		0.333	1.676
OUT-2		0.375	1.836
OUT-2		0.417	1.983
OUT-2		0.458	2.120
OUT-2		0.500	2.248
OUT-2		0.542	2.370
OUT-2		0.583	2.486
OUT-2		0.625	2.596
OUT-2		0.667	2.702
OUT-2		0.708	2.804
OUT-2		0.750	2.903
OUT-2		0.792	2.998
OUT-2		0.833	3.090
OUT-2		0.875	3.180
OUT-2		0.917	3.267
OUT-2		0.958	3.352
OUT-2		1.000	3.434
OUT-2		1.042	3.515
OUT-2		1.083	3.594
OUT-2		1.125	3.671
OUT-2 OUT-2		1.167 1.208	3.747 3.821
OUT-2		1.250	3.894
OUT-2		1.292	3.966
OUT-2		1.333	4.036
OUT-2		1.375	4.105
OUT-2		1.417	4.173
OUT-2		1.458	4.239
OUT-2		1.500	4.305
OUT-2		1.542	4.686
OUT-2		1.583	5.329
OUT-2		1.625	6.141
OUT-2		1.667	7.090
OUT-2		1.708	8.157
OUT-2		1.750	9.330
OUT-3	Rating	0.000	0.000
OUT-3	10001119	0.042	0.000
OUT-3		0.083	0.025
OUT-3		0.125	0.137
OUT-3		0.167	0.211
OUT-3		0.208	0.288
OUT-3		0.250	0.333
OUT-3		0.292	0.372
OUT-3		0.333	0.408
OUT-3		0.375	0.441
OUT-3		0.417	0.471
OUT-3		0.458	0.500
OUT-3		0.500	0.527
OUT-3		0.542	0.552
OUT-3		0.583	0.577
OUT-3		0.625	0.600
OUT-3		0.667	0.623

OUT-3			
		0.708	0.645
OUT-3		0.750	0.666
OUT-3		0.792	0.687
OUT-3		0.833	0.707
OUT-3		0.875	0.726
OUT-3		0.917	0.745
OUT-3		0.958	0.763
OUT-3		1.000	0.781
OUT-3		1.042	0.799
OUT-3		1.083	0.816
OUT-3		1.125	0.833
OUT-3		1.167	0.849
OUT-3		1.208	0.865
OUT-3		1.250	0.881
		1.292	0.897
OUT-3			
OUT-3		1.333	0.912
OUT-3		1.375	0.927
OUT-3		1.417	0.942
OUT-3		1.458	0.957
OUT-3		1.500	0.971
OUT-3		1.542	1.196
OUT-3		1.583	1.596
OUT-3		1.625	2.109
OUT-3		1.667	2.714
OUT-3		1.708	3.398
OUT-3		1.750	4.153
OUT-3		1.792	4.973
		1.833	5.852
OUT-3			
OUT-3		1.875	6.787
OUT-3		1.917	7.775
OUT-3		1.958	8.812
OUT-3		2.000	9.897
BASIN-1	Storage	0.00	
			1784
			1784
BASIN-1		0.25	1784 1829
BASIN-1 BASIN-1			
		0.25	1829
BASIN-1 BASIN-1		0.25 0.50 0.75	1829 1872 1916
BASIN-1 BASIN-1		0.25 0.50 0.75 1.00	1829 1872 1916 1959
BASIN-1 BASIN-1		0.25 0.50 0.75	1829 1872 1916
BASIN-1 BASIN-1		0.25 0.50 0.75 1.00	1829 1872 1916 1959
BASIN-1 BASIN-1 BASIN-1 BASIN-1		0.25 0.50 0.75 1.00 1.25	1829 1872 1916 1959 2001 2043
BASIN-1 BASIN-1 BASIN-1 BASIN-1 BASIN-1		0.25 0.50 0.75 1.00 1.25 1.50	1829 1872 1916 1959 2001 2043 2085
BASIN-1 BASIN-1 BASIN-1 BASIN-1		0.25 0.50 0.75 1.00 1.25	1829 1872 1916 1959 2001 2043
BASIN-1 BASIN-1 BASIN-1 BASIN-1 BASIN-1	Storage	0.25 0.50 0.75 1.00 1.25 1.50	1829 1872 1916 1959 2001 2043 2085
BASIN-1 BASIN-1 BASIN-1 BASIN-1 BASIN-1 BASIN-1 BASIN-1		0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00	1829 1872 1916 1959 2001 2043 2085 2126
BASIN-1 BASIN-1 BASIN-1 BASIN-1 BASIN-1 BASIN-1 BASIN-2 BASIN-2		0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 0.00 0.25	1829 1872 1916 1959 2001 2043 2085 2126
BASIN-1 BASIN-1 BASIN-1 BASIN-1 BASIN-1 BASIN-1 BASIN-1		0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00	1829 1872 1916 1959 2001 2043 2085 2126
BASIN-1 BASIN-1 BASIN-1 BASIN-1 BASIN-1 BASIN-1 BASIN-2 BASIN-2		0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 0.00 0.25	1829 1872 1916 1959 2001 2043 2085 2126
BASIN-1 BASIN-1 BASIN-1 BASIN-1 BASIN-1 BASIN-1 BASIN-2 BASIN-2 BASIN-2 BASIN-2 BASIN-2		0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 0.00 0.25 0.50 0.75	1829 1872 1916 1959 2001 2043 2085 2126 4364 4364 4364 4364
BASIN-1 BASIN-1 BASIN-1 BASIN-1 BASIN-1 BASIN-1 BASIN-2 BASIN-2 BASIN-2 BASIN-2 BASIN-2 BASIN-2 BASIN-2		0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 0.00 0.25 0.50 0.75 1.00	1829 1872 1916 1959 2001 2043 2085 2126 4364 4364 4364 4364 4364
BASIN-1 BASIN-1 BASIN-1 BASIN-1 BASIN-1 BASIN-1 BASIN-2 BASIN-2 BASIN-2 BASIN-2 BASIN-2 BASIN-2 BASIN-2 BASIN-2		0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 0.00 0.25 0.50 0.75 1.00 1.25	1829 1872 1916 1959 2001 2043 2085 2126 4364 4364 4364 4364 4364 4364
BASIN-1 BASIN-1 BASIN-1 BASIN-1 BASIN-1 BASIN-1 BASIN-2 BASIN-2 BASIN-2 BASIN-2 BASIN-2 BASIN-2 BASIN-2		0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 0.00 0.25 0.50 0.75 1.00	1829 1872 1916 1959 2001 2043 2085 2126 4364 4364 4364 4364 4364
BASIN-1 BASIN-1 BASIN-1 BASIN-1 BASIN-1 BASIN-1 BASIN-2 BASIN-2 BASIN-2 BASIN-2 BASIN-2 BASIN-2 BASIN-2 BASIN-2		0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 0.00 0.25 0.50 0.75 1.00 1.25	1829 1872 1916 1959 2001 2043 2085 2126 4364 4364 4364 4364 4364 4364
BASIN-1 BASIN-1 BASIN-1 BASIN-1 BASIN-1 BASIN-1 BASIN-2	Storage	0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 0.00 0.25 0.50 0.75 1.00 1.25 1.50	1829 1872 1916 1959 2001 2043 2085 2126 4364 4364 4364 4364 4364 4364 4364
BASIN-1 BASIN-1 BASIN-1 BASIN-1 BASIN-1 BASIN-1 BASIN-2		0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75	1829 1872 1916 1959 2001 2043 2085 2126 4364 4364 4364 4364 4364 4364 4364
BASIN-1 BASIN-1 BASIN-1 BASIN-1 BASIN-1 BASIN-1 BASIN-2	Storage	0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 0.00 0.25 0.50 0.75 1.00 1.25 1.50	1829 1872 1916 1959 2001 2043 2085 2126 4364 4364 4364 4364 4364 4364 4364
BASIN-1 BASIN-1 BASIN-1 BASIN-1 BASIN-1 BASIN-1 BASIN-2 BASIN-3 BASIN-3	Storage	0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75	1829 1872 1916 1959 2001 2043 2085 2126 4364 4364 4364 4364 4364 4364 1411 1411
BASIN-1 BASIN-1 BASIN-1 BASIN-1 BASIN-1 BASIN-1 BASIN-2 BASIN-3 BASIN-3 BASIN-3	Storage	0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75	1829 1872 1916 1959 2001 2043 2085 2126 4364 4364 4364 4364 4364 4364 1411 1411
BASIN-1 BASIN-1 BASIN-1 BASIN-1 BASIN-1 BASIN-1 BASIN-2 BASIN-3 BASIN-3 BASIN-3 BASIN-3	Storage	0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75	1829 1872 1916 1959 2001 2043 2085 2126 4364 4364 4364 4364 4364 4364 1411 1411 1411
BASIN-1 BASIN-1 BASIN-1 BASIN-1 BASIN-1 BASIN-1 BASIN-2 BASIN-3 BASIN-3 BASIN-3	Storage	0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75	1829 1872 1916 1959 2001 2043 2085 2126 4364 4364 4364 4364 4364 4364 1411 1411
BASIN-1 BASIN-1 BASIN-1 BASIN-1 BASIN-1 BASIN-1 BASIN-2 BASIN-3 BASIN-3 BASIN-3 BASIN-3	Storage	0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75	1829 1872 1916 1959 2001 2043 2085 2126 4364 4364 4364 4364 4364 4364 1411 1411 1411
BASIN-1 BASIN-1 BASIN-1 BASIN-1 BASIN-1 BASIN-1 BASIN-2 BASIN-2 BASIN-2 BASIN-2 BASIN-2 BASIN-2 BASIN-2 BASIN-2 BASIN-2 BASIN-3 BASIN-3 BASIN-3 BASIN-3 BASIN-3 BASIN-3 BASIN-3 BASIN-3	Storage	0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75	1829 1872 1916 1959 2001 2043 2085 2126 4364 4364 4364 4364 4364 1411 1411 1411 1411 1411
BASIN-1 BASIN-1 BASIN-1 BASIN-1 BASIN-1 BASIN-1 BASIN-1 BASIN-2 BASIN-2 BASIN-2 BASIN-2 BASIN-2 BASIN-2 BASIN-2 BASIN-2 BASIN-3	Storage	0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 0.00 0.25 1.50 1.75	1829 1872 1916 1959 2001 2043 2085 2126 4364 4364 4364 4364 4364 1411 1411 1411 1411 1411 1411
BASIN-1 BASIN-1 BASIN-1 BASIN-1 BASIN-1 BASIN-1 BASIN-2 BASIN-2 BASIN-2 BASIN-2 BASIN-2 BASIN-2 BASIN-2 BASIN-2 BASIN-2 BASIN-3 BASIN-3 BASIN-3 BASIN-3 BASIN-3 BASIN-3 BASIN-3 BASIN-3	Storage	0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75	1829 1872 1916 1959 2001 2043 2085 2126 4364 4364 4364 4364 4364 1411 1411 1411 1411 1411

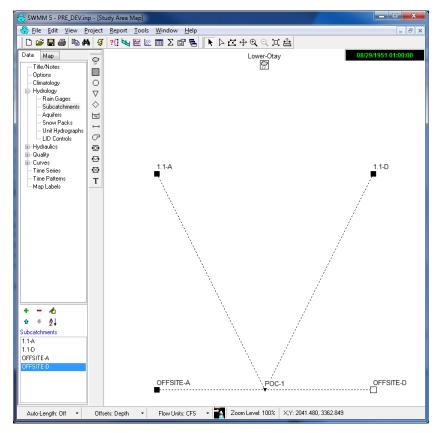
[TIMESERIES]

;;Name	Date	Time	Value
	FILE "Lower	r Otay.tx	t"
[REPORT] INPUT NO CONTROLS NO SUBCATCHMENTS ALI NODES ALL LINKS ALL	L		
[TAGS]			
[MAP] DIMENSIONS -400. Units None	000 175.000	8400.000	7325.000
[COORDINATES]			
;;Node ;;	X-Coord		Y-Coord
POC-1 DIV-1 DIV-2 DIV-3 BASIN-1 BASIN-2 BASIN-3	4000.000 500.000 5000.000 7500.000 500.000 3000.000 7500.000		1000.000 4000.000 4000.000 4000.000 1000.000 4000.000 1000.000
[VERTICES] ;;Link ;;	X-Coord		Y-Coord
[Polygons] ;;Subcatchment	X-Coord		Y-Coord
1-1-D 1-1-D 1-1-A 1-2-A 1-2-D 1-3-A 1-3-D BR-1 BR-2 BR-3 1-1-D-BYPASS 1-1-A-BYPASS OFFSITE-A OFFSITE-D	1000.000 1000.000 0.000 3500.000 4500.000 8000.000 500.000 4000.000 7500.000 7500.000 500.000 2250.000 5750.000		6000.000 6000.000 6000.000 6000.000 6000.000 6000.000 5000.000 5000.000 500.000 500.000
;;Gage ::	X-Coord		Y-Coord
;; LowerOtay	4000.000		7000.000

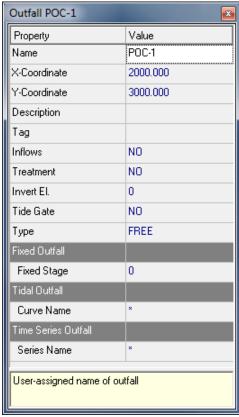
ATTACHMENT 7

EPA SWMM FIGURES AND EXPLANATIONS

Per the attached, the reader can see the screens associated with the EPA-SWMM Model in both predevelopment and post-development conditions. Each portion, i.e., sub-catchments, outfalls, storage units, weir as a discharge, and outfalls (point of compliance), are also shown.

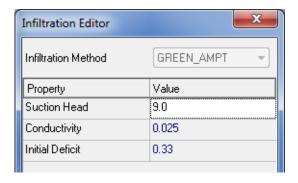

Variables for modeling are associated with typical recommended values by the EPA-SWMM model, typical values found in technical literature (such as Maidment's Handbook of Hydrology). Recommended values for the SWMM model have been attained from the Model BMP Design Manual San Diego Region.

Soil characteristics of the existing soils were determined from the NRCS Web Soil Survey (located in Attachment 8 of this report).

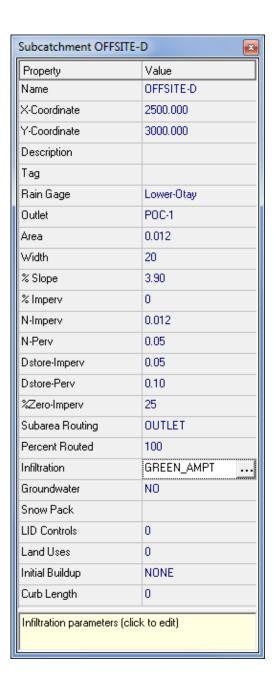

Some values incorporated within the SWMM model have been determined from the professional experience of REC using conservative assumptions that have a tendency to increase the size of the needed BMP and also generate a long-term runoff as a percentage of rainfall similar to those measured in gage stations in Southern California by the USGS.

A technical document prepared by Tory R Walker Engineering for the Cities of San Marcos, Oceanside and Vista (Reference [1]) can also be consulted for additional information regarding typical values for SWMM parameters.

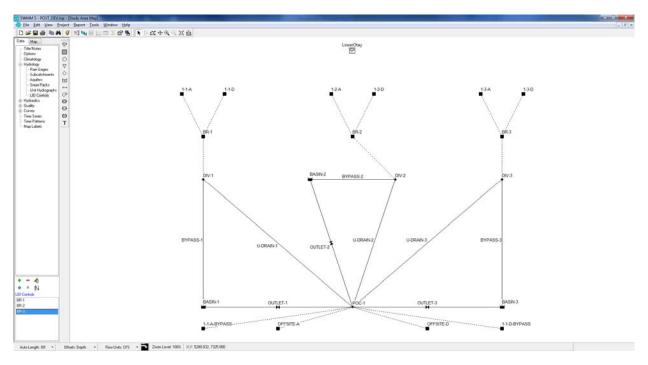
PRE-DEVELOPED CONDITION



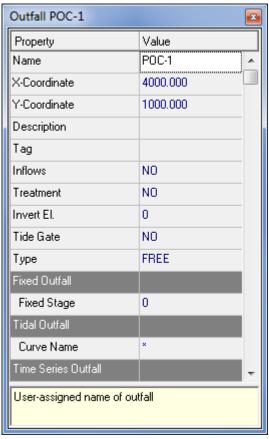
Property	Value
Name	1-1-A
X-Coordinate	1500.000
Y-Coordinate	4000.000
Description	
Tag	
Rain Gage	Lower-Otay
Outlet	P0C-1
Area	4.086
Width	820
% Slope	13.50
% Imperv	0
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	0
Land Uses	0
Initial Buildup	NONE
Curb Length	0
User-assigned name o	of subcatchment


Infiltration Editor	X
Infiltration Method	GREEN_AMPT ▼
Property	Value
Suction Head	1.5
Conductivity	0.30
Initial Deficit	0.30

Subcatchment 1-1-D	Value
Name	1-1-D
X-Coordinate	2500.000
Y-Coordinate	4000.000
Description	
Tag	
Rain Gage	Lower-Otay
Outlet	P0C-1
Area	4.417
Width	796
% Slope	14.10
% Imperv	0
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	0
Land Uses	0
Initial Buildup	NONE
Curb Length	0
User-assigned name o	of subcatchment


Subcatchment OFFS	
Property	Value
Name	OFFSITE-A
X-Coordinate	1500.000
Y-Coordinate	3000.000
Description	
Tag	
Rain Gage	Lower-Otay
Outlet	P0C-1
Area	0.367
Width	28
% Slope	3.50
% Imperv	0
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	0
Land Uses	0
Initial Buildup	NONE
Curb Length	0
Infiltration parameters	(click to edit)

Infiltration Editor	X
Infiltration Method	GREEN_AMPT ▼
Property	Value
Suction Head	1.5
Conductivity	0.30
Initial Deficit	0.30



POST-DEVELOPED CONDITION

Rain Gage LowerOta	y
Property	Value
Name	LowerOtay
X-Coordinate	4000.000
Y-Coordinate	7000.000
Description	
Tag	
Rain Format	INTENSITY
Time Interval	1:00
Snow Catch Factor	1.0
Data Source	TIMESERIES
TIME SERIES:	
- Series Name	LowerOtay
DATA FILE:	
- File Name	×
- Station ID	×
- Rain Units	IN
User-assigned name of	frain gage

Property	Value
Name	1-1-A
X-Coordinate	0.000
Y-Coordinate	6000.000
Description	
Tag	
Rain Gage	LowerOtay
Outlet	BR-1
Area	1.278
Width	400
% Slope	39.10
% Imperv	44.5
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	0
Land Uses	0
Initial Buildup	NONE
Curb Length	0
User-assigned name (

Area	0.888
Width	363
% Slope	50
% Imperv	32.4
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	0
Land Uses	0
Initial Buildup	NONE
Curb Length	0
Infiltration parameters	s (click to edit)
Infiltration Editor	
Infiltration Method	GREEN_AMPT
Property	Value
Suction Head	9
Conductivity	0.01875

Subcatchment 1-1-D

Value 1-1-D

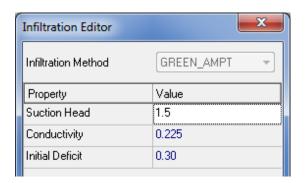
1000.000

6000.000

LowerOtay BR-1

Property

X-Coordinate Y-Coordinate

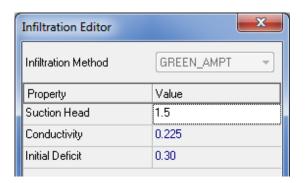

Description

Tag Rain Gage

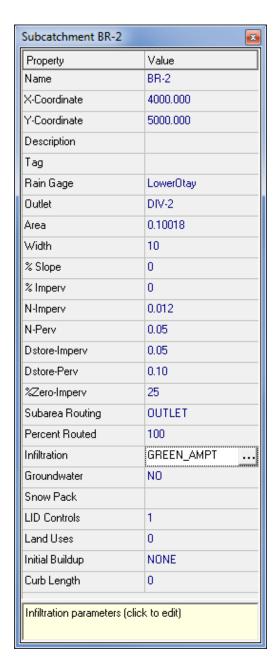
Outlet

Name

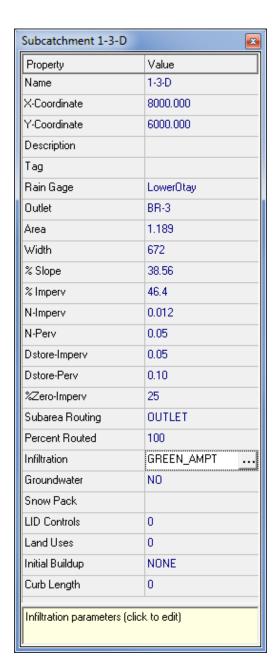
×



Property	Value
Name	BR-1
X-Coordinate	500.000
Y-Coordinate	5000.000
Description	
Tag	
Rain Gage	LowerOtay
Outlet	DIV-1
Area	0.03464
Width	10
% Slope	0
% Imperv	0
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	1
Land Uses	0
Initial Buildup	NONE
Curb Length	0
Optional comment or de	ecciption

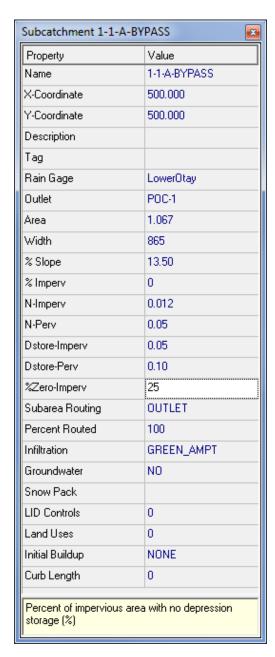

Subcatchment 1-2-A Property	Value
Name	1-2-A
X-Coordinate	3500.000
Y-Coordinate	6000.000
Description	0000.000
Tag	
Rain Gage	LowerOtay
Outlet	BB-2
Area Width	1.600
	598
% Slope	12.50
% Imperv	77.17
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	0
Land Uses	0
Initial Buildup	NONE
Curb Length	0
Infiltration parameters (click to edit)	

Property	Value
Name	1-2-D
X-Coordinate	4500.000
Y-Coordinate	6000.000
Description	
Tag	
Rain Gage	LowerOtay
Outlet	BR-2
Area	1.848
Width	527
% Slope	45
% Imperv	60.60
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	0
Land Uses	0
Initial Buildup	NONE
Curb Length	0
Infiltration parameters (click to edit)


Infiltration Editor	×
Infiltration Method	GREEN_AMPT ▼
Property	Value
Suction Head	9
Conductivity	0.01875
Initial Deficit	0.33

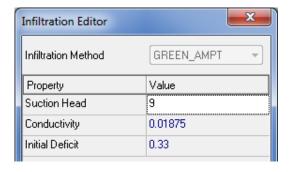


Property	Value
Name	1-3-A
X-Coordinate	7000.000
Y-Coordinate	6000.000
Description	
Tag	
Rain Gage	LowerOtay
Outlet	BR-3
Area	0.106
Width	214
% Slope	6.12
% Imperv	100
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	0
Land Uses	0
Initial Buildup	NONE
Curb Length	0
Infiltration parameters (c	lick to edit)


Infiltration parameters	s (click to edit)
Infiltration Editor	X
Infiltration Method	GREEN_AMPT ▼
Property	Value
Suction Head	1.5
Conductivity	0.225
Initial Deficit	0.30

Property	Value
Name	BR-3
X-Coordinate	7500.000
Y-Coordinate	5000.000
Description	
Tag	
Rain Gage	LowerOtay
Outlet	DIV-3
Area	0.03237
Width	10
% Slope	0
% Imperv	0
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	1
Land Uses	0
Initial Buildup	NONE
Curb Length	0
Infiltration parameters	(click to edit)

Infiltration Editor	×
Infiltration Method	GREEN_AMPT ▼
Property	Value
Suction Head	9
Conductivity	0.01875
Initial Deficit	0.33



Subcatchment OFFSITE-A	
Property	Value
Name	OFFSITE-A
X-Coordinate	2250.000
Y-Coordinate	500.000
Description	
Tag	
Rain Gage	LowerOtay
Outlet	P0C-1
Area	0.367
Width	28
% Slope	3.50
% Imperv	27.4
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	0
Land Uses	0
Initial Buildup	NONE
Curb Length	0
Infiltration parameters (click to edit)	

X
GREEN_AMPT ▼
Value
1.5
0.225
0.30

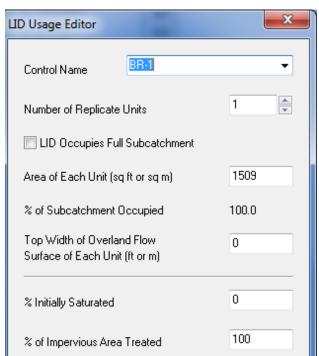
Subcatchment OFFSITE-D	
Property	Value
Name	OFFSITE-D
X-Coordinate	5750.000
Y-Coordinate	500.000
Description	
Tag	
Rain Gage	LowerOtay
Outlet	P0C-1
Area	0.012
Width	20
% Slope	3.90
% Imperv	100
N-Imperv	0.012
N-Perv	0.05
Dstore-Imperv	0.05
Dstore-Perv	0.10
%Zero-Imperv	25
Subarea Routing	OUTLET
Percent Routed	100
Infiltration	GREEN_AMPT
Groundwater	NO
Snow Pack	
LID Controls	0
Land Uses	0
Initial Buildup	NONE
Curb Length	0
Infiltration parameters (click to edit)	

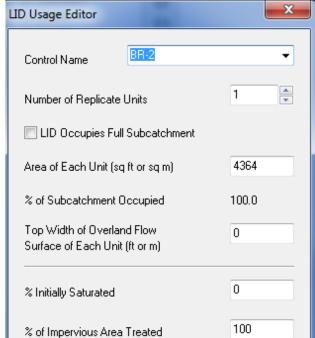
Property	Value	
Name	1-1-D-BYPASS	
X-Coordinate	7500.000	
Y-Coordinate	500.000	
Description		
Tag		
Rain Gage	LowerOtay	
Outlet	P0C-1	
Area	0.365	
Width	423	
% Slope	14.10	
% Imperv	0	
N-Imperv	0.012	
N-Perv	0.05	
Dstore-Imperv	0.05	
Dstore-Perv	0.10	
%Zero-Imperv	25	
Subarea Routing	OUTLET	
Percent Routed	100	
Infiltration	GREEN_AMPT	
Groundwater	NO	
Snow Pack		
LID Controls	0	
Land Uses	0	
Initial Buildup	NONE	
Curb Length	0	
Infiltration parameters	(click to edit)	

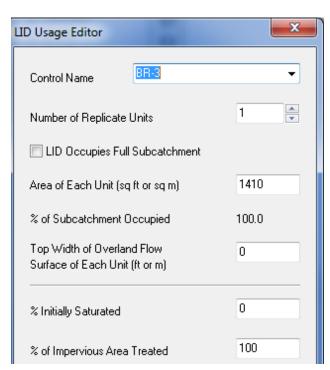
EXPLANATION OF SELECTED VARIABLES

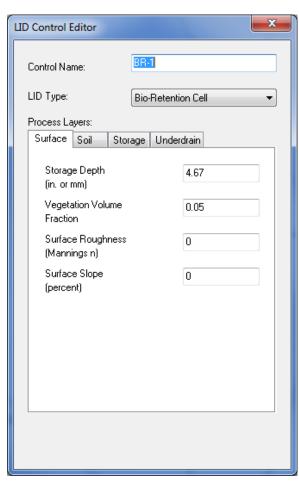
Sub-Catchment Areas:

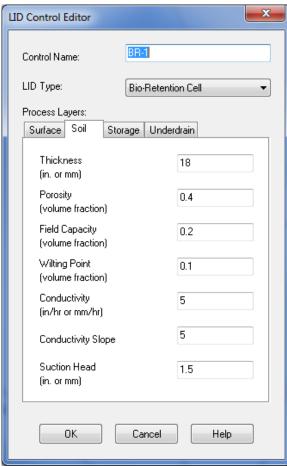
Please refer to the attached diagrams that indicate the DMA and Bio-Retention BMPs (BMPs) sub areas modeled within the project site at both the pre and post developed conditions draining to the POC.

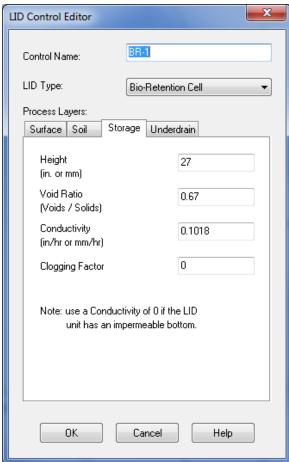

Parameters for the pre- and post-developed models include soil types A & D as determined from the site specific Natural Resources Conservation Service (NRCS) geologic review (attached at the end of this appendix). Suction head, conductivity and initial deficit corresponds to average values expected for these soils types, according to sources consulted, professional experience, and approximate values obtained by the interim Orange County modeling approach.

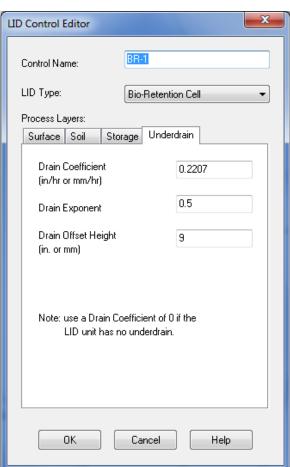

REC selected infiltration values, such that the percentage of total precipitation that becomes runoff, is realistic for the soil types and slightly smaller than measured values for Southern California watersheds.

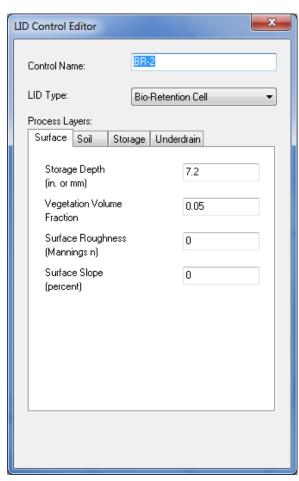

Selection of a Kinematic Approach: As the continuous model is based on hourly rainfall, and the time of concentration for the pre-development and post-development conditions is significantly smaller than 60 minutes, precise routing of the flows through the impervious surfaces, the underdrain pipe system, and the discharge pipe was considered unnecessary. The truncation error of the precipitation into hourly steps is much more significant than the precise routing in a system where the time of concentration is much smaller than 1 hour.

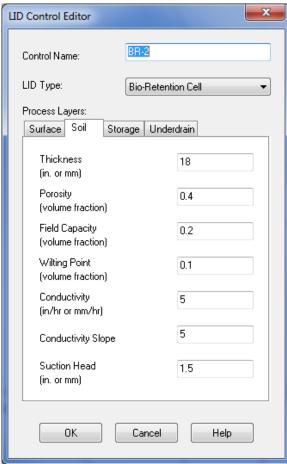

Sub-Catchment BMP:

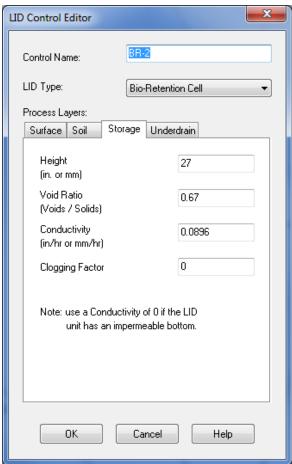

The area of bio-filtration must be equal to the area of the development tributary to the bioretention facility (area that drains into a biofiltration, equal external area plus bio-filtration itself). Five (5) decimal places were given regarding the areas of the bio-filtration to insure that the area used by the program for the LID subroutine corresponds exactly with this tributary.

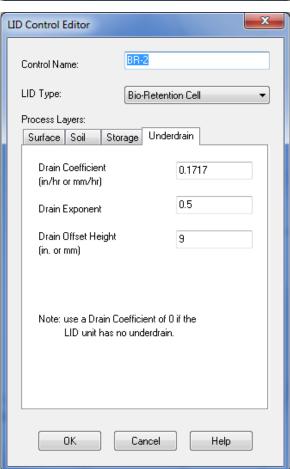


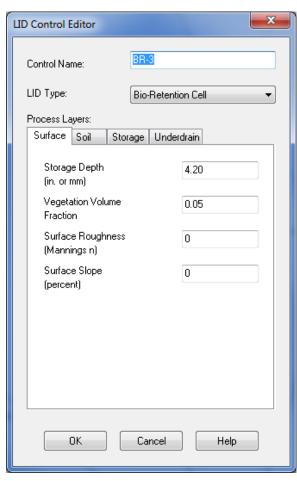


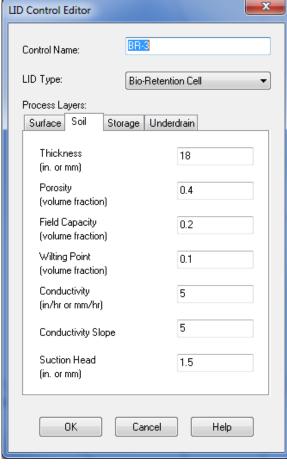


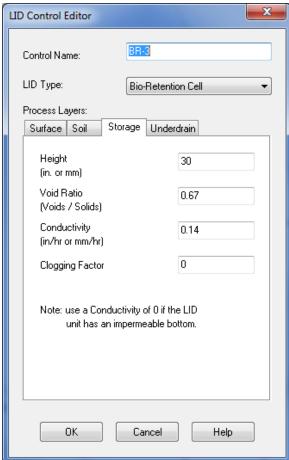


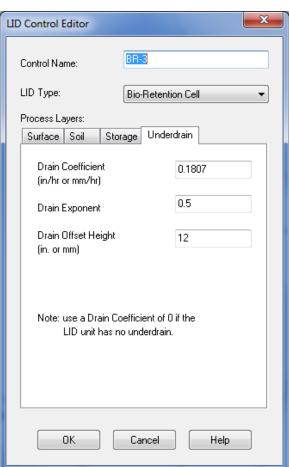












LID Control Editor: Explanation of Significant Variables

Storage Depth:

The storage depth variable within the SWMM model is representative of the storage volume provided beneath the first surface riser outlet and the engineered soil and mulch components of the bioretention facilities.

In those cases where the surface storage has a variable area that is also different to the area of the gravel and amended soil, the SWMM model needs to be calibrated as the LID module will use the storage depth multiplied by the BMP area as the amount of volume stored at the surface.

Let A_{BMP} be the area of the BMP (area of amended soil and area of gravel). The proper value of the storage depth S_D to be included in the LID module can be calculated by using geometric properties of the surface volume. Let A_0 be the surface area at the bottom of the surface pond, and let A_i be the surface area at the elevation of the invert of the first row of orifices (or at the invert of the riser if not surface orifices are included). Finally, let h_i be the difference in elevation between A_0 and A_i . By volumetric definition:

$$A_{BMP} \cdot S_D = \frac{(A_0 + A_i)}{2} h_i \tag{1}$$

Equation (1) allows the determination of S_D to be included as Storage Depth in the LID module.

<u>Porosity</u>: A porosity value of 0.4 has been selected for the model. The amended soil is to be highly sandy in content in order to have a saturated hydraulic conductivity of approximately 5 in/hr.

REC considers such a value to be slightly high; however, in order to comply with the HMP Permit, the value recommended by the Copermittees for the porosity of amended soil is 0.4, per Appendix A of the Final Hydromodification Management Plan by Brown & Caldwell, dated March 2011. Such porosity is equal to the porosity of the gravel per the same document.

<u>Void Ratio</u>: The ratio of the void volume divided by the soil volume is directly related to porosity as n/(1-n). As the underdrain layer is composed of gravel, a porosity value of 0.4 has been selected (also per Appendix A of the Final HMP document), which results in a void ratio of 0.4/(1-0.4) = 0.67 for the gravel detention layer.

<u>Conductivity:</u> All basins will be unlined to allow for infiltration into the underlying soils. Conductivity values are taken from the Percolation test found in attachment 8 and a factor of safety of 2 was applied to them. The conductivity values can be seen in the screen shot of the LID in the previous pages.

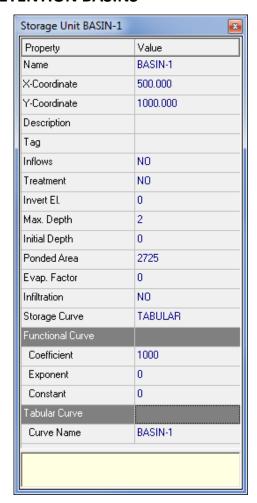
<u>Cloqqinq factor</u>: A clogging factor was not used (0 indicates that there is no clogging assumed within the model). The reason for this is related to the fairness of a comparison with the SDHM model and the HMP sizing tables: a clogging factor was not considered, and instead, a conservative value of infiltration was recommended.

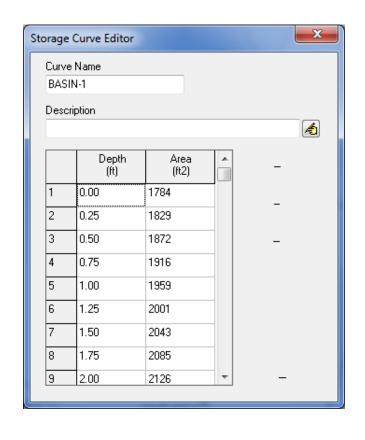
<u>Drain (Flow) coefficient</u>: The flow coefficient C in the SWMM Model is the coefficient needed to transform the orifice equation into a general power law equation of the form:

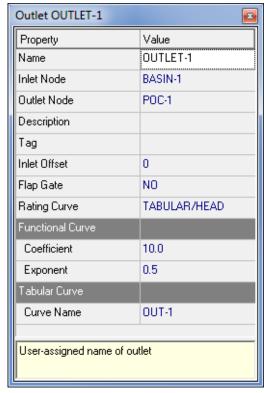
$$q = C(H - H_D)^n \tag{2}$$

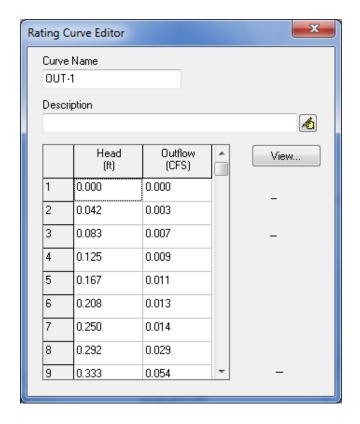
where q is the peak flow in in/hr, n is the exponent (typically 0.5 for orifice equation), H_D is the elevation of the centroid of the orifice in inches (assumed equal to the invert of the orifice for small orifices and in our design equal to 0) and H is the depth of the water in inches.

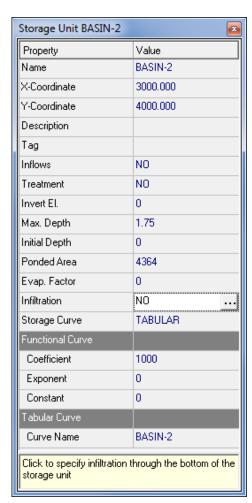
The general orifice equation can be expressed as:

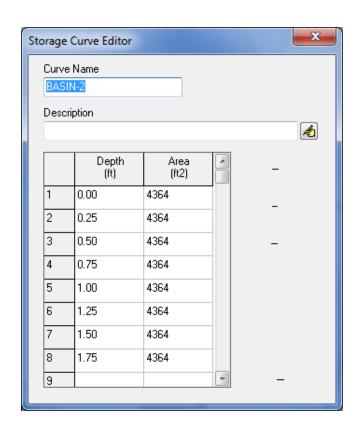

$$Q = \frac{\pi}{4} c_g \frac{D^2}{144} \sqrt{2g \frac{(H - H_D)}{12}} \tag{3}$$

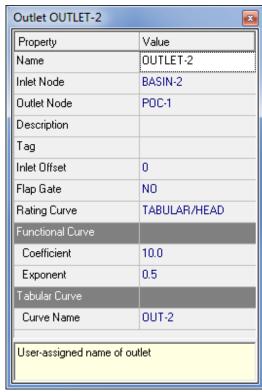

where Q is the peak flow in cfs, D is the diameter in inches, c_g is the typical discharge coefficient for orifices (0.61-0.63 for thin walls and around 0.75-0.8 for thick walls), g is the acceleration of gravity in ft/s², and H and H_D are defined above and are also used in inches in Equation (3).

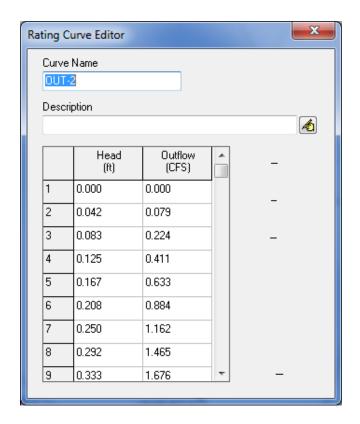

It is clear that:

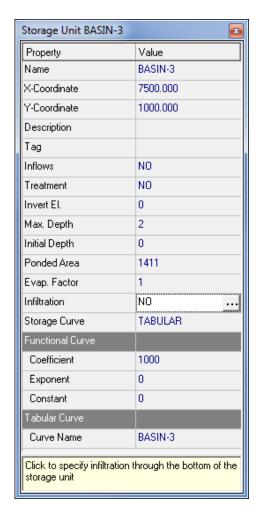

$$q\left(\frac{in}{hr}\right)X\frac{A_{BMP}}{12X3600} = Q\left(cfs\right) \tag{4}$$

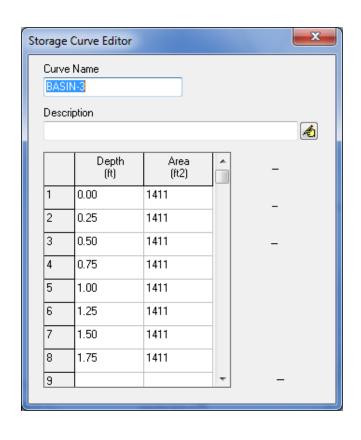

DETENTION BASINS

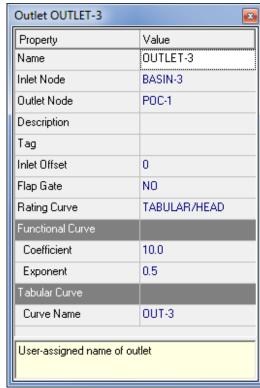


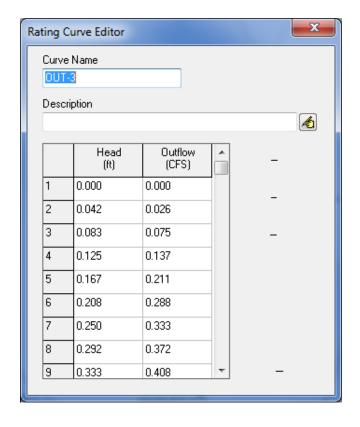












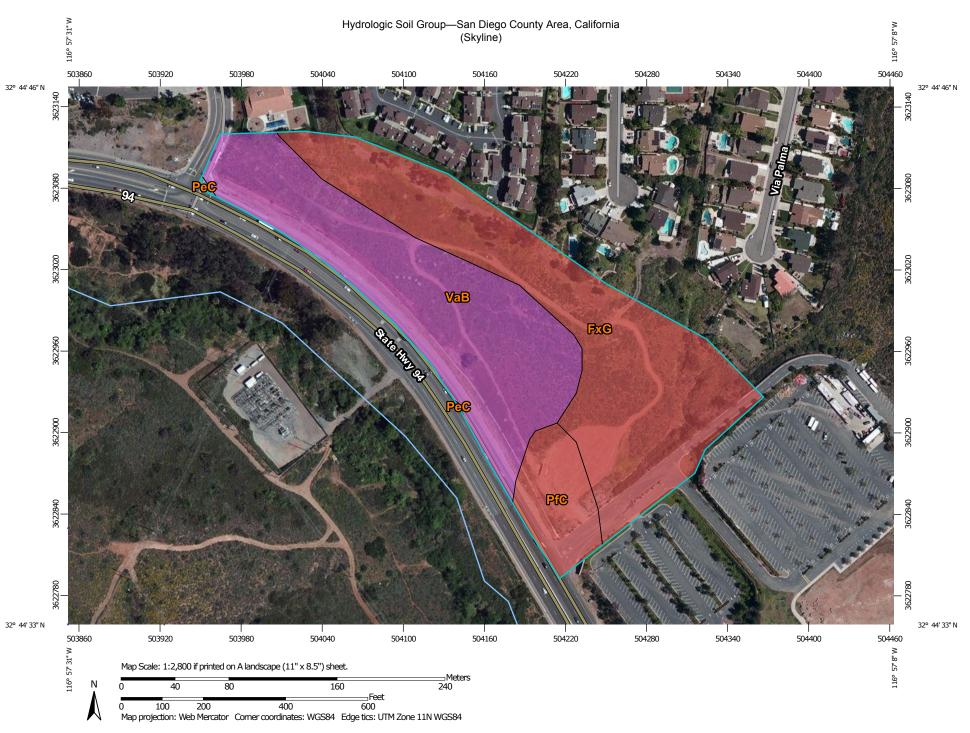
Overland Flow Manning's Coefficient per TRWE (Reference [6])

appeal of a de facto value, we anticipate that jurisdictions will not be inclined to approve land surfaces other than short prairie grass. Therefore, in order to provide SWMM users with a wider range of land surfaces suitable for local application and to provide Copermittees with confidence in the design parameters, we recommend using the values published by Yen and Chow in Table 3-5 of the EPA SWMM Reference Manual Volume I – Hydrology.

SWMM-Endorsed Values Will Improve Model Quality

In January 2016, the EPA released the SWMM Reference Manual Volume I – Hydrology (SWMM Hydrology Reference Manual). The SWMM Hydrology Reference Manual complements the SWMM 5 User's Manual and SWMM 5 Applications Manual by providing an in-depth description of the program's hydrologic components (EPA 2016). Table 3-5 of the SWMM Hydrology Reference Manual expounds upon SWMM 5 User's Manual Table A.6 by providing Manning's *n* values for additional overland flow surfaces³. The values are provided in Table 1:

Table 1: Manning's n Values for Overland Flow (EPA, 2016; Yen 2001; Yen and Chow, 1983).


Overland Surface	Light Rain (< 0.8 in/hr)	Moderate Rain (0.8-1.2 in/hr)	Heavy Rain (> 1.2 in/hr)		
Smooth asphalt pavement	0.010	0.012	0.015		
Smooth impervious surface	0.011	0.013	0.015		
Tar and sand pavement	0.012	0.014	0.016		
Concrete pavement	0.014	0.017	0.020		
Rough impervious surface	0.015	0.019	0.023		
Smooth bare packed soil	0.017	0.021	0.025		
Moderate bare packed soil	0.025	0.030	0.035		
Rough bare packed soil	0.032	0.038	0.045		
Gravel soil	0.025	0.032	0.045		
Mowed poor grass	0.030	0.038	0.045		
Average grass, closely clipped sod	0.040	0.050	0.060		
Pasture	0.040	0.055	0.070		
Timberland	0.060	0.090	0.120		
Dense grass	0.060	0.090	0.120		
Shrubs and bushes	0.080	0.120	0.180		
Land Use					
Business	0.014	0.022	0.035		
Semibusiness	0.022	0.035	0.050		
Industrial	0.020	0.035	0.050		
Dense residential	0.025	0.040	0.060		
Suburban residential	0.030	0.055	0.080		
Parks and lawns	0.040	0.075	0.120		

For purposes of local hydromodification management BMP design, these Manning's n values are an improvement upon the values presented by Engman (1986) in SWMM 5 User's Manual Table A.6. Values from SWMM 5 User's Manual Table A.6, while completely suitable for the intended application to certain agricultural land covers, comes with the disclaimer that the provided Manning's n values are valid for shallow-depth overland flow that match the conditions in the experimental plots (Engman,

 $^{^3}$ Further discussion is provided on page 6 under "Discussion of Differences Between Manning's n Values"

ATTACHMENT 8

Soils Maps

MAP LEGEND MAP INFORMATION The soil surveys that comprise your AOI were mapped at 1:24,000. Area of Interest (AOI) С Area of Interest (AOI) C/D Warning: Soil Map may not be valid at this scale. Soils D Enlargement of maps beyond the scale of mapping can cause Soil Rating Polygons misunderstanding of the detail of mapping and accuracy of soil line Not rated or not available Α placement. The maps do not show the small areas of contrasting **Water Features** soils that could have been shown at a more detailed scale. A/D Streams and Canals В Please rely on the bar scale on each map sheet for map Transportation measurements. B/D +++ Rails Source of Map: Natural Resources Conservation Service Interstate Highways Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov C/D **US Routes** Coordinate System: Web Mercator (EPSG:3857) D Major Roads Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts Not rated or not available Local Roads distance and area. A projection that preserves area, such as the Soil Rating Lines Albers equal-area conic projection, should be used if more accurate Background calculations of distance or area are required. Aerial Photography A/D This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. Soil Survey Area: San Diego County Area, California Survey Area Data: Version 8, Sep 17, 2014 Soil map units are labeled (as space allows) for map scales 1:50,000 C/D or larger. Date(s) aerial images were photographed: May 2, 2010—Jun 7, 2012 Not rated or not available The orthophoto or other base map on which the soil lines were Soil Rating Points compiled and digitized probably differs from the background Α imagery displayed on these maps. As a result, some minor shifting A/D of map unit boundaries may be evident. В B/D

Hydrologic Soil Group

Hydrologic Soil Group— Summary by Map Unit — San Diego County Area, California (CA638)					
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI	
FxG	Friant rocky fine sandy loam, 30 to 70 percent slopes	D	6.4	48.5%	
PeC	Placentia sandy loam, 2 to 9 percent slopes, warm MAAT, MLRA 19	С	0.0	0.2%	
PfC	Placentia sandy loam, thick surface, 2 to 9 percent slo pes	D	1.2	9.0%	
VaB	Visalia sandy loam, 2 to 5 percent slopes	А	5.6	42.3%	
Totals for Area of Inte	rest		13.3	100.0%	

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition

Aggregation is the process by which a set of component attribute values is reduced to a single value that represents the map unit as a whole.

A map unit is typically composed of one or more "components". A component is either some type of soil or some nonsoil entity, e.g., rock outcrop. For the attribute being aggregated, the first step of the aggregation process is to derive one attribute value for each of a map unit's components. From this set of component attributes, the next step of the aggregation process derives a single value that represents the map unit as a whole. Once a single value for each map unit is derived, a thematic map for soil map units can be rendered. Aggregation must be done because, on any soil map, map units are delineated but components are not.

For each of a map unit's components, a corresponding percent composition is recorded. A percent composition of 60 indicates that the corresponding component typically makes up approximately 60% of the map unit. Percent composition is a critical factor in some, but not all, aggregation methods.

The aggregation method "Dominant Condition" first groups like attribute values for the components in a map unit. For each group, percent composition is set to the sum of the percent composition of all components participating in that group. These groups now represent "conditions" rather than components. The attribute value associated with the group with the highest cumulative percent composition is returned. If more than one group shares the highest cumulative percent composition, the corresponding "tie-break" rule determines which value should be returned. The "tie-break" rule indicates whether the lower or higher group value should be returned in the case of a percent composition tie. The result returned by this aggregation method represents the dominant condition throughout the map unit only when no tie has occurred.

Component Percent Cutoff: None Specified

Components whose percent composition is below the cutoff value will not be considered. If no cutoff value is specified, all components in the database will be considered. The data for some contrasting soils of minor extent may not be in the database, and therefore are not considered.

Tie-break Rule: Higher

The tie-break rule indicates which value should be selected from a set of multiple candidate values, or which value should be selected in the event of a percent composition tie.

Construction Testing & Engineering, Inc.

Inspection | Testing | Geotechnical | Environmental & Construction Engineering | Civil Engineering | Surveying

GEOTECHNICAL INVESTIGATION PROPOSED SKYLINE RETIREMENT CENTER NORTHWEST OF 11330 CAMPO ROAD LA MESA, CALIFORNIA 91941

PREPARED FOR:

SKYLINE WESLEYAN CHURCH ATTENTION: MR. DANIEL GRANT 11330 CAMPO ROAD LA MESA, CALIFORNIA 91941

PREPARED BY:

CONSTRUCTION TESTING & ENGINEERING, INC. 1441 MONTIEL ROAD, SUITE 115 ESCONDIDO, CALIFORNIA 92026

CTE JOB NO. 10-13295G

OCTOBER 3, 2016

Worksheet C.4-1: Categorization of Infiltration Feasibility Condition

Categor	ization of Infiltration Feasibility Condition	Worksheet C.4-1			
Part 1 - Full Infiltration Feasibility Screening Criteria Would infiltration of the full design volume be feasible from a physical perspective without any undesirable consequences that cannot be reasonably mitigated?					
Criteria	Screening Question		Yes	No	
1	Is the estimated reliable infiltration rate below proposed facility locations greater than 0.5 inches per hour? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.2 and Appendix D.			Х	
Provide basis: No, calculated infiltration rates for all three proposed basins were less than 0.5 inches per hour. Review the CTE document "Preliminary Geotechnical Report, Proposed Skyline Retirement Center" dated October 3, 2016 for subsurface conditions, applicable maps and cross sections, and exploration logs. Appendix E of the Preliminary Geotechnical Report provides percolation rates and infiltration rate calculations.					
	ze findings of studies; provide reference to studies, calculations discussion of study/data source applicability.	s, maps, data sources	s, etc. Pro	ovide	
2	Can infiltration greater than 0.5 inches per hour be allowed we risk of geotechnical hazards (slope stability, groundwater mounted factors) that cannot be mitigated to an acceptable level? this Screening Question shall be based on a comprehensive enfactors presented in Appendix C.2.	anding, utilities, or The response to	X		
Provide basis: Infiltrate from proposed basins is anticipate to move downslope to the southwest where major electrical utilities such as electrical, cable service, and natural gas are located. Infiltrate over time could impact these infrastructure facilities. As such, the sidewalls of the basin should be lined at a minimum of three feet or the depth of the deepest utility or foundation excavation within 100 feet of basin to minimize such potential adverse impacts. The basin bottom should remain unlined.					
	ze findings of studies; provide reference to studies, calculations discussion of study/data source applicability.	s, maps, data sources	s, etc. Pro	ovide	

Appendix C: Geotechnical and Groundwater Investigation Requirements

	Worksheet C.4-1 Page 2 of 4						
Criteria	Screening Question	Yes	No				
3	Can infiltration greater than 0.5 inches per hour be allowed without increasing risk of groundwater contamination (shallow water table, storm water pollutants or other factors) that cannot be mitigated to an acceptable level? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.3.						
Provide basis: Calculated infiltration is less than 0.5 inches per hour. Groundwater is anticipated to be deep than at least 10 feet below the bottom of planned basins bottoms based upon test borings plac within 50 feet of the basins (see the Preliminary Geotechnical Report dated October 3, 2016 f boring logs). The site and up-gradient properties are not known contaminated sites according Geotracker, a State of California on line resource for listings of regulated contaminated sites.							
	ze findings of studies; provide reference to studies, calculations, maps, data sources discussion of study/data source applicability.	s, etc. Pro	ovide				
4	Can infiltration greater than 0.5 inches per hour be allowed without causing potential water balance issues such as change of seasonality of ephemeral streams or increased discharge of contaminated groundwater to surface waters? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.3.	X					
Provide basis: Calculated infiltration rates are less than 0.5 inches per hour. However, it is anticipated that a amount of infiltration at the site would not increase the risk of changing the seasonality of ephemeral streams or increase the risk of contaminating surface waters than currently exists. blue line stream is approximately 150 feet southwest of the site across Campo Road. Potential impacts of the proposed basins to the blue line creek are low due to distance in combination construction of the recommended lining of basin sidewalls to the maximum depth of adjacen utility trench and foundation excavations within 100 feet of the basins. The site and up-gradic properties are not known contaminated sites according to Geotracker, a State of California or resource for listings of regulated contaminated sites. As such there is minimal potential contamination impacts to the blue line creek with installation of the proposed basins. Summarize findings of studies; provide reference to studies, calculations, maps, data sources, etc. Propagation of study/data source applicability.							
Part 1 Result*	If all answers to rows 1 - 4 are "Yes" a full infiltration design is potentially feasible feasibility screening category is Full Infiltration If any answer from row 1-4 is "No", infiltration may be possible to some extent be would not generally be feasible or desirable to achieve a "full infiltration" design. Proceed to Part 2		NO				

^{*}To be completed using gathered site information and best professional judgment considering the definition of MEP in the MS4 Permit. Additional testing and/or studies may be required by City Engineer to substantiate findings.

Appendix C: Geotechnical and Groundwater Investigation Requirements

	Worksheet C.4-1 Page 3 of 4		
Would in	Partial Infiltration vs. No Infiltration Feasibility Screening Criteria nfiltration of water in any appreciable amount be physically feasible without any neg ences that cannot be reasonably mitigated?	gative	
Criteria	Screening Question	Yes	No
5	Do soil and geologic conditions allow for infiltration in any appreciable rate or volume? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.2 and Appendix D.	X	
	On site calculated infiltration rates are less than 0.5 inches/hour. See Appendix E 2016 Preliminary Geotechnical Report to which this Worksheet is attached. The r infiltration rates including a safety factor of 2.25 per Worksheet D.5-1 are: BMP Basin 1: 0.1018 inches/hour BMP Basin 2: 0.0896 inches/hour BMP Basin 3: 0.1400 inches/hour As such there was infiltration in all three basins. The determination of "appreciab of interpretation by the County of San Diego and project designers. CTE has state because infiltration has been recorded at the site.	ecommer le" is a fu ed "Yes"	nded inction simply
	ze findings of studies; provide reference to studies, calculations, maps, data source discussion of study/data source applicability and why it was not feasible to mitigat on rates.		ovide
6	Can Infiltration in any appreciable quantity be allowed without increasing risk of geotechnical hazards (slope stability, groundwater mounding, utilities, or other factors) that cannot be mitigated to an acceptable level? The response to this Screening Question shall be based on a comprehensive evaluation of the	X	

factors presented in Appendix C.2.

Provide basis: See Question 2, Part 1. Potential adverse geotechnical impacts to geotechnical hazards may be minimized by installation of an impermeable liner on the sidewalls of the proposed BMP basins. Such impermeable liners should extend to the maximum depth of all utility infrastructure and foundations excavations within 100 feet of the closest approximation to the BMP basins.

Summarize findings of studies; provide reference to studies, calculations, maps, data sources, etc. Provide narrative discussion of study/data source applicability and why it was not feasible to mitigate low infiltration rates.

Appendix C: Geotechnical and Groundwater Investigation Requirements

	Worksheet C.4-1 Page 4 of 4					
Criteria	Screening Question	Yes	No			
7	Can Infiltration in any appreciable quantity be allowed without posing significant risk for groundwater related concerns (shallow water table, storm water pollutants or other factors)? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.3.	X				
Provide basis: Groundwater is not present within at least 10 feet of the bottom of the BMP basins. The site and upslope properties are not known contaminated sites based upon reference to Geotracker, an on line source for regulatory listed known contaminated properties. Mounding and lateral infiltration of infiltrate is to be mitigated by recommended lining of BMP basin sidewalls with an impereable geotextile. The impermeable liner should extend to the maximum depth of utility infrastructure and foundation excavations for these facilities within 100 feet of the closest approximation to a BMP basin. Summarize findings of studies; provide reference to studies, calculations, maps, data sources, etc. Provide narrative discussion of study/data source applicability and why it was not feasible to mitigate low						
infiltratio	n rates.					
8	Can infiltration be allowed without violating downstream water rights? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.3.	X				
Provide	pasis: To CTE's knowledge there is no downstream water rights violation as the site infinanticipated to remain within or relatively close to the property.	ltrate is				
	ze findings of studies; provide reference to studies, calculations, maps, data sources discussion of study/data source applicability and why it was not feasible to mitigat on rates.		ovide			

*To be completed using gathered site information and best professional judgment considering the definition of MEP in the MS4 Permit. Additional testing and/or studies may be required by City Engineer to substantiate findings

Appendix D: Approved Infiltration Rate Assessment Methods

Worksheet D.5-1: Factor of Safety and Design Infiltration Rate Worksheet

Fact	Factor of Safety and Design Infiltration Rate Worksheet Worksheet D.5-1						
Facto	or Category	Factor Description	Assigned Weight (w)				$\begin{array}{c} Product (p) \\ p = w \times v \end{array}$
		Soil assessment methods	0.25			1	0.25
		Predominant soil texture	0.25			1	0.25
A	Suitability	Site soil variability	0.25			1	0.25
	Assessment	Depth to groundwater / impervious layer	0.25		1		0.25
		Suitability Assessment Safety Factor, $S_A = \Sigma p$ 1.0					
		Level of pretreatment/ expected sediment loads				0.5	
В	Design	Redundancy/resiliency	0.25		1		0.25
		Compaction during construction	0.25		2		0.5
		Design Safety Factor, $S_B = \Sigma_P$					1.25
Com	Combined Safety Factor, $S_{total} = S_A \times S_B$ 2.25						
	Observed Infiltration Rate, inch/hr, K _{observed} (corrected for test-specific bias) See Below					٧.	
Desig	gn Infiltration Rat	e, in/hr, $K_{design} = K_{observed} / S_{total}$				See Belov	V
l c	wi D						

Supporting Data

Briefly describe infiltration test and provide reference to test forms:

Reference CTE October 3, 2016 "Preliminary Geotechnical Report, Proposed Skyline Retirement Center" to include Appendix E Percolation Test Results and Calculated Infiltration Rates. Lowest of two calculated infiltration rates are: BMP Basin 1=0.1018 in/hr, BMP Basin 2=0.0896 in/hr, BMP Basin 3=0.1400 in/hr.

ATTACHMENT 9

Summary Files from the SWMM Model

NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step.

Analysis Options **********

Flow Units CFS

Process Models:

Rainfall/Runoff YES
Snowmelt NO
Groundwater NO
Flow Routing NO
Water Quality NO

Infiltration Method GREEN_AMPT

Antecedent Dry Days 0.0
Report Time Step 01:00:00

*******	Volume	Depth
Runoff Quantity Continuity	acre-feet	inches
* * * * * * * * * * * * * * * * * * * *		
Total Precipitation	437.920	591.650
Evaporation Loss	9.958	13.454
Infiltration Loss	398.914	538.952
Surface Runoff	35.069	47.379
Final Surface Storage	0.000	0.000
Continuity Error (%)	-1.375	

* * * * * * * * * * * * * * * * * * * *	Volume	Volume
Flow Routing Continuity	acre-feet	10^6 gal

Dry Weather Inflow	0.000	0.000
Wet Weather Inflow	35.069	11.428
Groundwater Inflow	0.000	0.000
RDII Inflow	0.000	0.000
External Inflow	0.000	0.000
External Outflow	35.069	11.428
Internal Outflow	0.000	0.000
Storage Losses	0.000	0.000
Initial Stored Volume	0.000	0.000
Final Stored Volume	0.000	0.000
Continuity Error (%)	0.000	

Subcatchment Runoff Summary ************

Subcatchment	Total Precip in	Total Runon in	Total Evap in	Total Infil in	Total Runoff in	Total Runoff 10^6 gal	Peak Runoff CFS	Runoff Coeff
1.1-A	591.65	0.00	0.36	589.16	2.65	0.29	1.88	0.004

PRE_DEV

1.1-D	591.65	0.00	26.62	488.42	92.42	11.09	3.17	0.156
OFFSITE-A	591.65	0.00	0.38	589.89	1.58	0.02	0.15	0.003
2	591.65	0.00	26.47	485.43	98.79	0.03	0.01	0.167

Analysis begun on: Fri Sep 15 10:09:30 2017 Analysis ended on: Fri Sep 15 10:09:45 2017

Total elapsed time: 00:00:15

 ${\tt EPA} {\tt STORM} {\tt WATER} {\tt MANAGEMENT} {\tt MODEL} {\tt - VERSION} {\tt 5.0} {\tt (Build} {\tt 5.0.022)}$

NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step.

Flow Units CFS

Process Models:

Rainfall/Runoff YES
Snowmelt NO
Groundwater NO
Flow Routing YES
Ponding Allowed NO
Water Quality NO

Infiltration Method GREEN_AMPT Flow Routing Method KINWAVE

Antecedent Dry Days 0.0

Report Time Step 01:00:00

Wet Time Step 00:15:00

Dry Time Step 04:00:00
Routing Time Step 60.00 sec

WARNING 04: minimum elevation drop used for Conduit BYPASS-1

WARNING 04: minimum elevation drop used for Conduit U-DRAIN-1

WARNING 04: minimum elevation drop used for Conduit U-DRAIN-2

WARNING 04: minimum elevation drop used for Conduit BYPASS-2

WARNING 04: minimum elevation drop used for Conduit U-DRAIN-3

WARNING 04: minimum elevation drop used for Conduit BYPASS-3

*******	Volume	Depth
Runoff Quantity Continuity	acre-feet	inches

Total Precipitation	438.175	591.650
Evaporation Loss	53.699	72.508
Infiltration Loss	266.988	360.502
Surface Runoff	123.845	167.223
Final Surface Storage	0.000	0.000
Continuity Error (%)	-1.451	
*******	Volume	Volume
Flow Routing Continuity	acre-feet	10 ^ 6 gal

Dry Weather Inflow	0.000	0.000

Wet Weather Inflow

Groundwater Inflow

123.716

0.000

40.315

0.000

RDII Inflow	0.000	0.000
External Inflow	0.000	0.000
External Outflow	123.680	40.303
Internal Outflow	0.000	0.000
Storage Losses	0.014	0.004
Initial Stored Volume	0.000	0.000
Final Stored Volume	0.000	0.000
Continuity Error (%)	0.018	

All links are stable.

Minimum Time Step : 60.00 sec
Average Time Step : 60.00 sec
Maximum Time Step : 60.00 sec
Percent in Steady State : 0.00
Average Iterations per Step : 1.00

	Total	Total	Total	Total	Total	Total	Peak
Runoff	Dwogin	Dunon	Erron	Tofil	Dunoff	Runoff	Dunoff
Coeff	Precip	Runon	ьvар	THLIT	RUNOLL	RUHOLL	RUHOLL
Subcatchment						10^6 gal	
1-1-D	591.65	0.00	50.17	306.64	246.15	5.94	0.66
0.416							
1-1-A	591.65	0.00	48.01	324.06	226.46	7.86	0.82
0.383 1-2-A	591.65	0.00	83.83	122 27	384.82	16.72	1.21
0.650	391.03	0.00	03.03	133.27	304.02	10.72	1.21
1-2-D	591.65	0.00	74.26	178.69	350.73	17.60	1.45
0.593							
1-3-A	591.65	0.00	106.63	0.00	498.86	1.44	0.09
0.843							
1-3-D	591.65	0.00	61.79	242.92	299.41	9.67	0.91
0.506	501 65	14665 13	085.65	1004 55	10012 60	0.40	1 40
BR-1 0.656	591.65	14665.13	975.65	4284.55	10013.60	9.42	1.49
BR-2	591.65	12615.86	972.47	4121.48	8110.93	22.06	2.59
0.614	371.03	12013.00	J.2.1.	1121.10	0110.73	22.00	2.00
BR-3	591.65	12631.22	965.59	5051.35	7116.38	6.25	0.98
0.538							
1-1-D-BYPASS	591.65	0.00	18.53	482.28	98.98	0.98	0.26
0.167							
1-1-A-BYPASS	591.65	0.00	0.36	588.75	3.22	0.09	0.49
0.005							

OFFSITE-A	591.65	0.00	31.19	425.33	138.47	1.38	0.21
0.234							
OFFSITE-D	591.65	0.00	107.21	0.00	497.81	0.16	0.01
0.841							

			Total	Evap	Infil	Surface	Drain	Init.	
Final P	cnt.								
			Inflow	Loss	Loss	Outflow	Outflow	Storage	
Storage	Error								
Subcatchm	nent	LID Control	in	in	in	in	in	in	
in									
BR-1		BR-1	15256.78	975.63	4284.48	2718.49	7294.94	0.00	
0.00 -0).11								
BR-2		BR-2	13207.51	972.47	4121.48	1370.10	6740.83	0.00	
0.00 0	0.02								
BR-3		BR-3	13222.87	965.65	5051.67	2141.37	4975.46	0.00	
0.00 0	.67								

 Node
 Type
 Feet
 <th

	Maximum	Maximum		Lateral	Total
	Lateral	Total	Time of Max	Inflow	Inflow
	Inflow	Inflow	Occurrence	Volume	Volume
Type	CFS	CFS	days hr:min	10 ^ 6 gal	10 ^ 6 gal
OUTFALL	0.97	5.27	16970 17:00	2.616	40.300
DIVIDER	1.49	1.49	16970 17:00	9.406	9.406
DIVIDER	2.59	2.59	16970 17:00	22.037	22.037
DIVIDER	0.98	0.98	16970 17:00	6.253	6.253
STORAGE	0.00	1.46	16970 17:00	0.000	2.508
STORAGE	0.00	2.52	16970 17:00	0.000	3.847
STORAGE	0.00	0.96	16970 17:00	0.000	1.835
	OUTFALL DIVIDER DIVIDER DIVIDER STORAGE STORAGE	Lateral Inflow Type CFS OUTFALL 0.97 DIVIDER 1.49 DIVIDER 2.59 DIVIDER 0.98 STORAGE 0.00 STORAGE 0.00	Lateral Total Inflow Inflow Type CFS CFS OUTFALL 0.97 5.27 DIVIDER 1.49 1.49 DIVIDER 2.59 2.59 DIVIDER 0.98 0.98 STORAGE 0.00 1.46 STORAGE 0.00 2.52	Lateral Total Time of Max Inflow Inflow Occurrence Type CFS CFS days hr:min OUTFALL 0.97 5.27 16970 17:00 DIVIDER 1.49 1.49 16970 17:00 DIVIDER 2.59 2.59 16970 17:00 DIVIDER 0.98 0.98 16970 17:00 STORAGE 0.00 1.46 16970 17:00 STORAGE 0.00 2.52 16970 17:00	Lateral Total Time of Max Inflow Inflow Inflow Occurrence Volume Type CFS CFS days hr:min 10^6 gal OUTFALL 0.97 5.27 16970 17:00 2.616 DIVIDER 1.49 1.49 16970 17:00 9.406 DIVIDER 2.59 2.59 16970 17:00 22.037 DIVIDER 0.98 0.98 16970 17:00 6.253 STORAGE 0.00 1.46 16970 17:00 0.000 STORAGE 0.00 2.52 16970 17:00 0.000

Surcharging occurs when water rises above the top of the highest conduit.

Node	Type	Hours Surcharged	Max. Height Above Crown Feet	Min. Depth Below Rim Feet
4				
DIV-1	DIVIDER	496008.02	0.000	0.000
DIV-2	DIVIDER	496008.02	0.000	0.000
DIV-3	DIVIDER	496008.02	0.000	0.000
BASIN-1	STORAGE	496008.02	1.099	0.901
BASIN-2	STORAGE	496008.02	0.524	1.226
BASIN-3	STORAGE	496008.02	0.922	1.078

No nodes were flooded.

Average Avg E&I Maximum Max Time of Max Maximum Volume Pcnt Pcnt Volume Pcnt Occurrence Outflow Storage Unit 1000 ft3 Full Loss 1000 ft3 Full days hr:min CFS

BASIN-1 0.002 0 0 2.067 53 16970 17:11 1.45
BASIN-2 0.001 0 0 2.289 30 16970 17:17 2.32
BASIN-3 0.000 0 0 1.302 46 16970 17:22 0.75

Maximum Time of Max Maximum Max/ Max/ |Flow| Occurrence |Veloc| Full Full

Link	Type	CFS	days hr:min	ft/sec	Flow	Depth
BYPASS-1	DUMMY	1.46	16970 17:00			
U-DRAIN-1	DUMMY	0.03	123 09:30			
U-DRAIN-2	DUMMY	0.07	123 09:59			
BYPASS-2	DUMMY	2.52	16970 17:00			
U-DRAIN-3	DUMMY	0.02	123 09:40			
BYPASS-3	DUMMY	0.96	16970 17:00			
OUTLET-1	DUMMY	1.45	16970 17:12			
OUTLET-2	DUMMY	2.32	16970 17:18			
OUTLET-3	DUMMY	0.75	16970 17:23			

Hours Hours ----- Hours Full ----- Above Full Capacity Conduit Both Ends Upstream Dnstream Normal Flow Limited ______
 0.01
 0.01
 0.01
 496008.02

 0.01
 0.01
 0.01
 496008.02

 0.01
 0.01
 0.01
 496008.02

 0.01
 0.01
 0.01
 496008.02

 0.01
 0.01
 0.01
 496008.02

 0.01
 0.01
 0.01
 496008.02

 0.01
 0.01
 0.01
 496008.02

 0.01
 0.01
 0.01
 496008.02
 BYPASS-1 0.01 0.01 U-DRAIN-1 0.01 U-DRAIN-2 0.01 BYPASS-2 0.01 U-DRAIN-3 0.01 BYPASS-3

Analysis begun on: Fri Sep 15 14:20:38 2017 Analysis ended on: Fri Sep 15 14:21:28 2017

Total elapsed time: 00:00:50