

<u>Appendix C –</u> <u>Proposed Hydrology</u> (Un-Mitigated Peak Flow)

Hydrologic Work Maps AES Output

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL

(c) Copyright 1982-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1264

Analysis prepared by:

* 1 * P * 2	**************************************
	TILE NAME: 614PRA.DAT TIME/DATE OF STUDY: 17:33 02/27/2024
U	SER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
2	2003 SAN DIEGO MANUAL CRITERIA
6 S S N *	JSER SPECIFIED STORM EVENT(YEAR) = 100.00 5-HOUR DURATION PRECIPITATION (INCHES) = 3.000 5-HOUR DURATION PRECIPITATION (INCHES) = 3.000 5-HOUR DURATION PRECIPITATION (INCHES) = 3.000 5-HOUR DURATION PRECIPITATION (INCHES) = 0.85 5-HOUR DURATION OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.85 5-HOUR DURATION OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.85 5-HOUR DURATION OF GRADIENTS (DECIMAL) TO USE FOR FRICTION HETHOD 1
	30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150
*	GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
B 	BEGIN AREA DRAINING TO NODE 106
***	*********************
	LOW PROCESS FROM NODE 100.00 TO NODE 102.00 IS CODE = 21
>	>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
*	GUSER SPECIFIED(SUBAREA):

```
USER-SPECIFIED RUNOFF COEFFICIENT = .2300
 S.C.S. CURVE NUMBER (AMC II) = 0
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 3720.00
 DOWNSTREAM ELEVATION(FEET) = 3710.00
 ELEVATION DIFFERENCE(FEET) = 10.00
 SUBAREA OVERLAND TIME OF FLOW(MIN.) =
                                  7.122
 WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN TC CALCULATION!
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.291
 SUBAREA RUNOFF(CFS) = 0.14
 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) =
********************************
 FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
_____
 ELEVATION DATA: UPSTREAM(FEET) = 3710.00 DOWNSTREAM(FEET) = 3690.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 363.00 CHANNEL SLOPE = 0.0551
 CHANNEL BASE(FEET) = 60.00 "Z" FACTOR = 99.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 2.00
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.006
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2300
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 0.84
 AVERAGE FLOW DEPTH(FEET) = 0.02 TRAVEL TIME(MIN.) = 7.22
 Tc(MIN.) = 14.34
 SUBAREA AREA(ACRES) = 1.71 SUBAREA RUNOFF(CFS) = 1.58
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.230
 TOTAL AREA(ACRES) = 1.8
                                PEAK FLOW RATE(CFS) = 1.67
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.03 FLOW VELOCITY(FEET/SEC.) = 1.04
 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 103.00 =
*********************************
 FLOW PROCESS FROM NODE 103.00 TO NODE 104.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 3690.00 DOWNSTREAM(FEET) = 3670.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 1099.00 CHANNEL SLOPE = 0.0182
 CHANNEL BASE(FEET) = 50.00 "Z" FACTOR = 99.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 2.00
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.493
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2300
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.18
 AVERAGE FLOW DEPTH(FEET) = 0.09 TRAVEL TIME(MIN.) = 15.58
 Tc(MIN.) = 29.92
 SUBAREA AREA(ACRES) = 14.45 SUBAREA RUNOFF(CFS) = 8.29
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.230
 TOTAL AREA(ACRES) = 16.3
                                PEAK FLOW RATE(CFS) = 9.32
```

END OF SUBAREA CHANNEL FLOW HYDRAULICS:

```
DEPTH(FEET) = 0.11 FLOW VELOCITY(FEET/SEC.) = 1.37
 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 104.00 = 1558.00 FEET.
*********************************
 FLOW PROCESS FROM NODE 104.00 TO NODE 106.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 3660.00 DOWNSTREAM(FEET) = 3554.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 1371.00 CHANNEL SLOPE = 0.0773
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 7.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) =
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.301
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2300
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 5.77
 AVERAGE FLOW DEPTH(FEET) = 0.55 TRAVEL TIME(MIN.) = 3.96
 Tc(MIN.) =
           33.88
 SUBAREA AREA(ACRES) = 11.27
                             SUBAREA RUNOFF(CFS) = 5.96
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.230
 TOTAL AREA(ACRES) = 27.5
                             PEAK FLOW RATE(CFS) = 14.57
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.58 FLOW VELOCITY(FEET/SEC.) = 6.09
 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 106.00 = 2929.00 FEET.
                                                                 Results here used to
*********************************
 FLOW PROCESS FROM NODE 106.00 TO NODE 106.00 IS CODE = 81
                                                                 developed 100yr inflow
                                                                 hydrograph for storage
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
                                                                 analysis.
 ._____<u>\</u>
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.301
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2300
 S.C.S. CURVE NUMBER (AMC II) = 0
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.2300
 SUBAREA AREA(ACRES) = 45.90 SUBAREA RUNOFF(CFS) = 24.29
                                                                   NODE 106
 TOTAL AREA(ACRES) =
                    73.4 TOTAL RUNOFF(CFS) =
 TC(MIN.) = 33.88
+-----
 BEGIN AREA DRAINING TO NODE 118
********************************
 FLOW PROCESS FROM NODE 110.00 TO NODE
                                    112.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2000
 S.C.S. CURVE NUMBER (AMC II) = 0
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 3720.00
 DOWNSTREAM ELEVATION(FEET) = 3710.00
 ELEVATION DIFFERENCE(FEET) = 10.00
```

```
SUBAREA OVERLAND TIME OF FLOW(MIN.) = 7.174
 WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN To CALCULATION!
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.262
 SUBAREA RUNOFF(CFS) = 0.13
 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) =
*******************************
 FLOW PROCESS FROM NODE 112.00 TO NODE 113.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 3710.00 DOWNSTREAM(FEET) = 3655.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 313.00 CHANNEL SLOPE = 0.1757
 CHANNEL BASE(FEET) = 50.00 "Z" FACTOR = 99.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 2.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.483
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2000
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.07
 AVERAGE FLOW DEPTH(FEET) = 0.02 TRAVEL TIME(MIN.) = 4.87
 Tc(MIN.) = 12.04
 SUBAREA AREA(ACRES) = 1.85 SUBAREA RUNOFF(CFS) = 1.66
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.200
 TOTAL AREA(ACRES) = 2.0
                                PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.02 FLOW VELOCITY(FEET/SEC.) = 1.68
 LONGEST FLOWPATH FROM NODE 110.00 TO NODE 113.00 = 404.00 FEET.
***********************************
 FLOW PROCESS FROM NODE 113.00 TO NODE 114.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 3655.00 DOWNSTREAM(FEET) = 3650.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 772.00 CHANNEL SLOPE = 0.0065
 CHANNEL BASE(FEET) = 23.00 "Z" FACTOR = 15.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 2.00
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.011
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2000
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.25
 AVERAGE FLOW DEPTH(FEET) = 0.19 TRAVEL TIME(MIN.) = 10.28
 Tc(MIN.) = 22.32
 SUBAREA AREA(ACRES) = 14.69 SUBAREA RUNOFF(CFS) = 8.85
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.200
 TOTAL AREA(ACRES) = 16.6
                                PEAK FLOW RATE(CFS) = 10.02
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.25 FLOW VELOCITY(FEET/SEC.) = 1.47
 LONGEST FLOWPATH FROM NODE 110.00 TO NODE 114.00 = 1176.00 FEET.
***********************************
 FLOW PROCESS FROM NODE 114.00 TO NODE 116.00 IS CODE = 51
```

```
>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 3650.00 DOWNSTREAM(FEET) = 3610.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 489.00 CHANNEL SLOPE = 0.0818
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 14.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 2.00
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.879
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2000
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 5.07
 AVERAGE FLOW DEPTH(FEET) = 0.43 TRAVEL TIME(MIN.) = 1.61
 Tc(MIN.) = 23.93
 SUBAREA AREA(ACRES) = 10.78 SUBAREA RUNOFF(CFS) = 6.21
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.200
 TOTAL AREA(ACRES) = 27.4
                             PEAK FLOW RATE(CFS) = 15.79
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.46 FLOW VELOCITY(FEET/SEC.) = 5.32
 LONGEST FLOWPATH FROM NODE 110.00 TO NODE 116.00 = 1665.00 FEET.
********************************
 FLOW PROCESS FROM NODE 116.00 TO NODE 118.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
_____
 ELEVATION DATA: UPSTREAM(FEET) = 3610.00 DOWNSTREAM(FEET) = 3570.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 1110.00 CHANNEL SLOPE = 0.0360
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 20.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 2.00
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.561
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2000
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.88
 AVERAGE FLOW DEPTH(FEET) = 0.53 TRAVEL TIME(MIN.) = 4.77
 Tc(MTN.) = 28.70
 SUBAREA AREA(ACRES) = 23.78 SUBAREA RUNOFF(CFS) = 12.18
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.200
 TOTAL AREA(ACRES) = 51.2
                             PEAK FLOW RATE(CFS) =
                                                      26.22
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.57 FLOW VELOCITY(FEET/SEC.) = 4.07
 LONGEST FLOWPATH FROM NODE 110.00 TO NODE 118.00 = 2775.00 FEET.
| BEGIN AREA DRAINING TO NODE 128
********************************
 FLOW PROCESS FROM NODE
                      120.00 TO NODE
                                    122.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
```

NODE 118

>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<

```
S.C.S. CURVE NUMBER (AMC II) = 0
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 UPSTREAM ELEVATION(FEET) = 3694.00
 DOWNSTREAM ELEVATION(FEET) = 3690.00
 ELEVATION DIFFERENCE(FEET) = 4.00
 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 9.866
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.099
 SUBAREA RUNOFF(CFS) = 0.13
 TOTAL AREA(ACRES) = 0.11 TOTAL RUNOFF(CFS) =
********************************
 FLOW PROCESS FROM NODE 122.00 TO NODE 123.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
_____
 ELEVATION DATA: UPSTREAM(FEET) = 3690.00 DOWNSTREAM(FEET) = 3674.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 251.00 CHANNEL SLOPE = 0.0637
 CHANNEL BASE(FEET) = 30.00 "Z" FACTOR = 10.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 2.00
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.158
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2300
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.14
 AVERAGE FLOW DEPTH(FEET) = 0.03 TRAVEL TIME(MIN.) = 3.67
 Tc(MIN.) = 13.53
 SUBAREA AREA(ACRES) = 1.73 SUBAREA RUNOFF(CFS) = 1.65
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.230
 TOTAL AREA(ACRES) = 1.8 PEAK FLOW RATE(CFS) = 1.76
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.04 FLOW VELOCITY(FEET/SEC.) = 1.41
 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 123.00 = 351.00 FEET.
********************************
 FLOW PROCESS FROM NODE 123.00 TO NODE 124.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
_____
 ELEVATION DATA: UPSTREAM(FEET) = 3674.00 DOWNSTREAM(FEET) = 3616.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 657.00 CHANNEL SLOPE = 0.0883
 CHANNEL BASE(FEET) = 35.00 "Z" FACTOR = 10.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 2.00
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.361
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2300
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.07
 AVERAGE FLOW DEPTH(FEET) = 0.06 TRAVEL TIME(MIN.) = 5.29
 Tc(MIN.) = 18.82
 SUBAREA AREA(ACRES) = 6.07 SUBAREA RUNOFF(CFS) = 4.69
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.230
 TOTAL AREA(ACRES) = 7.9 PEAK FLOW RATE(CFS) = 6.12
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.07 FLOW VELOCITY(FEET/SEC.) = 2.39
```

USER-SPECIFIED RUNOFF COEFFICIENT = .2300

```
LONGEST FLOWPATH FROM NODE 120.00 TO NODE 124.00 = 1008.00 FEET.
********************************
 FLOW PROCESS FROM NODE 124.00 TO NODE 128.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 3616.00 DOWNSTREAM(FEET) = 3560.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 576.00 CHANNEL SLOPE = 0.0972
 CHANNEL BASE(FEET) = 13.00 "Z" FACTOR = 14.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 2.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.129
 *USER SPECIFIED(SUBAREA):
                                                                 Results here used to
 USER-SPECIFIED RUNOFF COEFFICIENT = .2300
                                                                 developed 100yr inflow
 S.C.S. CURVE NUMBER (AMC II) = 0
                                                                 hydrograph for storage
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                                 analysis.
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 4.34
 AVERAGE FLOW DEPTH(FEET) = 0.18 TRAVEL TIME(MIN.) = 2.21
 Tc(MIN.) = 21.04
 SUBAREA AREA(ACRES) = 16.34
                            SUBAREA RUNOFF(CFS) = 11.76
                                                                      NODE 128
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.230
 TOTAL AREA(ACRES) =
                               PEAK FLOW RATE(CFS) =
                     24.2
                                                    17.45
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.22 FLOW VELOCITY(FEET/SEC.) = 4.98
 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 128.00 = 1584.00 FEET.
+-----
 BEGIN AREA DRAINING TO NODE 138
**********************************
 FLOW PROCESS FROM NODE 130.00 TO NODE 132.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2000
 S.C.S. CURVE NUMBER (AMC II) = 0
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 3688.00
 DOWNSTREAM ELEVATION(FEET) = 3684.00
 ELEVATION DIFFERENCE(FEET) = 4.00
 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 9.865
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.099
 SUBAREA RUNOFF(CFS) = 0.19
 TOTAL AREA(ACRES) = 0.19 TOTAL RUNOFF(CFS) =
*******************************
 FLOW PROCESS FROM NODE 132.00 TO NODE 133.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 3684.00 DOWNSTREAM(FEET) = 3660.00
```

CHANNEL LENGTH THRU SUBAREA(FEET) = 396.00 CHANNEL SLOPE = 0.0606

CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 6.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 2.00

```
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.464
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2000
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.92
 AVERAGE FLOW DEPTH(FEET) = 0.24 TRAVEL TIME(MIN.) = 2.26
 Tc(MIN.) = 12.12
 SUBAREA AREA(ACRES) = 1.81
                              SUBAREA RUNOFF(CFS) = 1.62
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.200
 TOTAL AREA(ACRES) = 2.0 PEAK FLOW RATE(CFS) = 1.79
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.29 FLOW VELOCITY(FEET/SEC.) = 3.43
 LONGEST FLOWPATH FROM NODE 130.00 TO NODE 133.00 = 492.00 FEET.
********************************
 FLOW PROCESS FROM NODE 133.00 TO NODE 134.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 3660.00 DOWNSTREAM(FEET) = 3638.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 510.00 CHANNEL SLOPE = 0.0431
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 14.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 2.00
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.904
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2000
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.03
 AVERAGE FLOW DEPTH(FEET) = 0.32 TRAVEL TIME(MIN.) = 2.80
 Tc(MIN.) = 14.93
 SUBAREA AREA(ACRES) = 6.37 SUBAREA RUNOFF(CFS) = 4.97
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.200
 TOTAL AREA(ACRES) = 8.4
                                 PEAK FLOW RATE(CFS) = 6.54
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.37 FLOW VELOCITY(FEET/SEC.) = 3.39
 LONGEST FLOWPATH FROM NODE 130.00 TO NODE 134.00 = 1002.00 FEET.
********************************
 FLOW PROCESS FROM NODE 134.00 TO NODE 136.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 3638.00 DOWNSTREAM(FEET) = 3590.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 1409.00 CHANNEL SLOPE = 0.0341
 CHANNEL BASE(FEET) = 5.00 "Z" FACTOR = 20.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 2.00
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.054
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2000
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.40
 AVERAGE FLOW DEPTH(FEET) = 0.36 TRAVEL TIME(MIN.) = 6.91
 Tc(MIN.) = 21.84
 SUBAREA AREA(ACRES) = 27.56 SUBAREA RUNOFF(CFS) = 16.83
```

```
AREA-AVERAGE RUNOFF COEFFICIENT = 0.200
 TOTAL AREA(ACRES) = 35.9
                              PEAK FLOW RATE(CFS) = 21.95
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.43 FLOW VELOCITY(FEET/SEC.) = 3.75
 LONGEST FLOWPATH FROM NODE 130.00 TO NODE 136.00 = 2411.00 FEET.
********************************
 FLOW PROCESS FROM NODE 136.00 TO NODE 138.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 3590.00 DOWNSTREAM(FEET) = 3512.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 1556.00 CHANNEL SLOPE = 0.0501
 CHANNEL BASE(FEET) = 40.00 "Z" FACTOR = 25.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 2.00
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.555
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2000
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.72
 AVERAGE FLOW DEPTH(FEET) = 0.21 TRAVEL TIME(MIN.) = 6.96
 Tc(MIN.) =
          28.80
 SUBAREA AREA(ACRES) = 53.16 SUBAREA RUNOFF(CFS) = 27.16
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.200
 TOTAL AREA(ACRES) = 89.1 PEAK FLOW RATE(CFS) = 45.52
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.25 FLOW VELOCITY(FEET/SEC.) = 3.99
 LONGEST FLOWPATH FROM NODE 130.00 TO NODE 138.00 = 3967.00 FEET.
BEGIN AREA DRAINING TO NODE 149
**********************************
 FLOW PROCESS FROM NODE 140.00 TO NODE
                                   142.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2000
 S.C.S. CURVE NUMBER (AMC II) = 0
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 UPSTREAM ELEVATION(FEET) = 3698.00
 DOWNSTREAM ELEVATION(FEET) = 3690.00
 ELEVATION DIFFERENCE(FEET) =
                           8.00
 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 8.101
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.790
 SUBAREA RUNOFF(CFS) = 0.50
 TOTAL AREA(ACRES) =
                    0.43 TOTAL RUNOFF(CFS) =
********************************
 FLOW PROCESS FROM NODE 142.00 TO NODE 143.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
```

NODE 138

```
ELEVATION DATA: UPSTREAM(FEET) = 3690.00 DOWNSTREAM(FEET) = 3680.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 169.00 CHANNEL SLOPE = 0.0592
 CHANNEL BASE(FEET) = 30.00 "Z" FACTOR = 7.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 2.00
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.932
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2000
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.23
 AVERAGE FLOW DEPTH(FEET) = 0.03 TRAVEL TIME(MIN.) = 2.29
 Tc(MIN.) = 10.39
 SUBAREA AREA(ACRES) = 1.09 SUBAREA RUNOFF(CFS) = 1.08
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.200
 TOTAL AREA(ACRES) = 1.5
                              PEAK FLOW RATE(CFS) = 1.50
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.04 FLOW VELOCITY(FEET/SEC.) = 1.40
 LONGEST FLOWPATH FROM NODE 140.00 TO NODE 143.00 = 269.00 FEET.
************************************
 FLOW PROCESS FROM NODE 143.00 TO NODE 144.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 3680.00 DOWNSTREAM(FEET) = 3640.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 409.00 CHANNEL SLOPE = 0.0978
 CHANNEL BASE(FEET) = 12.00 "Z" FACTOR = 6.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 2.00
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.368
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2000
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.17
 AVERAGE FLOW DEPTH(FEET) = 0.10 TRAVEL TIME(MIN.) = 2.15
 Tc(MIN.) = 12.54
 SUBAREA AREA(ACRES) = 5.35 SUBAREA RUNOFF(CFS) = 4.67
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.200
 TOTAL AREA(ACRES) = 6.9
                              PEAK FLOW RATE(CFS) = 6.00
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.12 FLOW VELOCITY(FEET/SEC.) = 3.77
 LONGEST FLOWPATH FROM NODE 140.00 TO NODE 144.00 = 678.00 FEET.
********************************
 FLOW PROCESS FROM NODE 144.00 TO NODE 146.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 3640.00 DOWNSTREAM(FEET) = 3564.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 872.00 CHANNEL SLOPE = 0.0872
 CHANNEL BASE(FEET) = 10.00 "Z" FACTOR = 14.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 2.00
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.746
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2000
 S.C.S. CURVE NUMBER (AMC II) = 0
```

```
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 4.31
 AVERAGE FLOW DEPTH(FEET) = 0.19 TRAVEL TIME(MIN.) = 3.37
 Tc(MIN.) = 15.91
 SUBAREA AREA(ACRES) = 11.26
                              SUBAREA RUNOFF(CFS) = 8.44
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.200
 TOTAL AREA(ACRES) = 18.1 PEAK FLOW RATE(CFS) = 13.58
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.22 FLOW VELOCITY(FEET/SEC.) = 4.61
 LONGEST FLOWPATH FROM NODE 140.00 TO NODE 146.00 = 1550.00 FEET.
*********************************
 FLOW PROCESS FROM NODE 146.00 TO NODE 148.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
_____
 ELEVATION DATA: UPSTREAM(FEET) = 3564.00 DOWNSTREAM(FEET) = 3516.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 774.00 CHANNEL SLOPE = 0.0620
 CHANNEL BASE(FEET) = 18.00 "Z" FACTOR = 9.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 2.00
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.361
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2000
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 4.42
 AVERAGE FLOW DEPTH(FEET) = 0.24 TRAVEL TIME(MIN.) = 2.92
 Tc(MIN.) = 18.83
 SUBAREA AREA(ACRES) = 23.02 SUBAREA RUNOFF(CFS) = 15.47
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.200
 TOTAL AREA(ACRES) = 41.2 PEAK FLOW RATE(CFS) = 27.66
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.28 FLOW VELOCITY(FEET/SEC.) = 4.86
 LONGEST FLOWPATH FROM NODE 140.00 TO NODE 148.00 = 2324.00 FEET.
*********************************
 FLOW PROCESS FROM NODE 148.00 TO NODE 149.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
_____
 ELEVATION DATA: UPSTREAM(FEET) = 3516.00 DOWNSTREAM(FEET) = 3490.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 742.00 CHANNEL SLOPE = 0.0350
 CHANNEL BASE(FEET) = 9.00 "Z" FACTOR = 20.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 2.00
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.062
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2000
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 4.22
 AVERAGE FLOW DEPTH(FEET) = 0.46 TRAVEL TIME(MIN.) = 2.93
 Tc(MIN.) = 21.76
 SUBAREA AREA(ACRES) = 25.43 SUBAREA RUNOFF(CFS) = 15.57
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.200
 TOTAL AREA(ACRES) = 66.6
                           PEAK FLOW RATE(CFS) = 40.77
```

END OF SUBAREA CHANNEL FLOW HYDRAULICS:

```
DEPTH(FEET) = 0.49 FLOW VELOCITY(FEET/SEC.) = 4.38
 LONGEST FLOWPATH FROM NODE 140.00 TO NODE 149.00 = 3066.00 FEET.
*********************************
 FLOW PROCESS FROM NODE 149.00 TO NODE 149.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.062
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2000
 S.C.S. CURVE NUMBER (AMC II) = 0
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.2000
 SUBAREA AREA(ACRES) = 42.04 SUBAREA RUNOFF(CFS) = 25.74
 TOTAL AREA(ACRES) = 108.6 TOTAL RUNOFF(CFS) = TC(MIN.) = 21.76
+-----
 BEGIN AREA DRAINING TO NODE 156
********************************
 FLOW PROCESS FROM NODE 150.00 TO NODE
                                    152.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2300
 S.C.S. CURVE NUMBER (AMC II) = 0
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 UPSTREAM ELEVATION(FEET) = 3690.00
 DOWNSTREAM ELEVATION(FEET) = 3680.00
 ELEVATION DIFFERENCE(FEET) = 10.00
 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 7.269
 WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN TC CALCULATION!
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.209
 SUBAREA RUNOFF(CFS) = 1.43
 TOTAL AREA(ACRES) = 1.00 TOTAL RUNOFF(CFS) =
********************************
 FLOW PROCESS FROM NODE 152.00 TO NODE 153.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 3680.00 DOWNSTREAM(FEET) = 3668.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 431.00 CHANNEL SLOPE = 0.0278
 CHANNEL BASE(FEET) = 14.00 "Z" FACTOR = 9.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 2.00
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.561
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2300
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.61
 AVERAGE FLOW DEPTH(FEET) = 0.09 TRAVEL TIME(MIN.) = 4.46
 Tc(MIN.) =
          11.73
 SUBAREA AREA(ACRES) = 1.57 SUBAREA RUNOFF(CFS) = 1.65
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.230
```

NODE 149

```
TOTAL AREA(ACRES) = 2.6 PEAK FLOW RATE(CFS) = 2.70
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.10 FLOW VELOCITY(FEET/SEC.) = 1.74
 LONGEST FLOWPATH FROM NODE 150.00 TO NODE 153.00 = 531.00 FEET.
********************************
 FLOW PROCESS FROM NODE 153.00 TO NODE 154.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 3668.00 DOWNSTREAM(FEET) = 3616.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 723.00 CHANNEL SLOPE = 0.0719
 CHANNEL BASE(FEET) = 30.00 "Z" FACTOR = 15.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 2.00
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.645
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2300
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.47
 AVERAGE FLOW DEPTH(FEET) = 0.09 TRAVEL TIME(MIN.) = 4.88
 Tc(MIN.) = 16.60
 SUBAREA AREA(ACRES) = 9.50
                             SUBAREA RUNOFF(CFS) = 7.96
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.230
 TOTAL AREA(ACRES) = 12.1
                                PEAK FLOW RATE(CFS) = 10.12
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.11 FLOW VELOCITY(FEET/SEC.) = 2.92
 LONGEST FLOWPATH FROM NODE 150.00 TO NODE 154.00 = 1254.00 FEET.
***********************************
 FLOW PROCESS FROM NODE 154.00 TO NODE 156.00 IS CODE = 51
------
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 3616.00 DOWNSTREAM(FEET) = 3570.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 591.00 CHANNEL SLOPE = 0.0778
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 10.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 2.00
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.411
 *USER SPECIFIED(SUBAREA):
                                                                      Results here used to
 USER-SPECIFIED RUNOFF COEFFICIENT = .2300
                                                                      developed 100yr inflow
 S.C.S. CURVE NUMBER (AMC II) = 0
                                                                      hydrograph for storage
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                                      analysis.
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 5.47
 AVERAGE FLOW DEPTH(FEET) = 0.50 TRAVEL TIME(MIN.) = 1.80
 Tc(MIN.) = 18.40
 SUBAREA AREA(ACRES) = 8.89
                             SUBAREA RUNOFF(CFS) = 6.97
                                                                        NODE 156
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.230
 TOTAL AREA(ACRES) =
                                 PEAK FLOW RATE(CFS) =
                      21.0
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.54 FLOW VELOCITY(FEET/SEC.) = 5.70
 LONGEST FLOWPATH FROM NODE 150.00 TO NODE 156.00 = 1845.00 FEET.
BEGIN AREA DRAINING TO NODE 166
```

```
***********************************
 FLOW PROCESS FROM NODE 160.00 TO NODE 162.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2300
 S.C.S. CURVE NUMBER (AMC II) = 0
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 3644.00
 DOWNSTREAM ELEVATION(FEET) = 3630.00
 ELEVATION DIFFERENCE(FEET) = 14.00
 SUBAREA OVERLAND TIME OF FLOW(MIN.) =
                                 7.010
 WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN To CALCULATION!
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.356
 SUBAREA RUNOFF(CFS) = 0.92
 TOTAL AREA(ACRES) = 0.63 TOTAL RUNOFF(CFS) =
                                                0.92
*******************************
 FLOW PROCESS FROM NODE 162.00 TO NODE 163.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 3630.00 DOWNSTREAM(FEET) = 3610.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 213.00 CHANNEL SLOPE = 0.0939
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 10.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 2.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.860
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2300
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.77
 AVERAGE FLOW DEPTH(FEET) = 0.25 TRAVEL TIME(MIN.) = 0.94
 Tc(MIN.) =
            7.95
 SUBAREA AREA(ACRES) = 2.10 SUBAREA RUNOFF(CFS) = 2.83
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.230
 TOTAL AREA(ACRES) = 2.7
                              PEAK FLOW RATE(CFS) = 3.68
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.29 FLOW VELOCITY(FEET/SEC.) = 4.24
 LONGEST FLOWPATH FROM NODE 160.00 TO NODE 163.00 = 306.00 FEET.
**********************************
 FLOW PROCESS FROM NODE 163.00 TO NODE 164.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 3610.00 DOWNSTREAM(FEET) = 3560.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 562.00 CHANNEL SLOPE = 0.0890
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 10.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 2.00
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.158
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2300
 S.C.S. CURVE NUMBER (AMC II) = 0
```

```
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 5.38
 AVERAGE FLOW DEPTH(FEET) = 0.44 TRAVEL TIME(MIN.) = 1.74
 Tc(MIN.) =
            9.69
 SUBAREA AREA(ACRES) = 11.32
                              SUBAREA RUNOFF(CFS) = 13.43
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.230
 TOTAL AREA(ACRES) = 14.0
                           PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.52 FLOW VELOCITY(FEET/SEC.) = 6.08
 LONGEST FLOWPATH FROM NODE 160.00 TO NODE 164.00 =
                                                 868.00 FFFT.
********************************
 FLOW PROCESS FROM NODE 164.00 TO NODE 165.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
_____
 ELEVATION DATA: UPSTREAM(FEET) = 3560.00 DOWNSTREAM(FEET) = 3550.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 539.00 CHANNEL SLOPE = 0.0186
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 17.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 2.00
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.393
 *USER SPECIFIED(SUBAREA):
                                                                      Results here used to
 USER-SPECIFIED RUNOFF COEFFICIENT = .2300
                                                                      developed 100yr inflow
 S.C.S. CURVE NUMBER (AMC II) = 0
                                                                      hydrograph for storage
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                                      analysis.
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.28
 AVERAGE FLOW DEPTH(FEET) = 0.69 TRAVEL TIME(MIN.) = 2.74
 Tc(MIN.) = 12.43
 SUBAREA AREA(ACRES) = 19.40
                              SUBAREA RUNOFF(CFS) = 19.60
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.230
                                                                        NODE 165
                   33.4
 TOTAL AREA(ACRES) =
                                PEAK FLOW RATE(CFS) =
                                                       33.79
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.75 FLOW VELOCITY(FEET/SEC.) = 3.51
 LONGEST FLOWPATH FROM NODE 160.00 TO NODE 165.00 = 1407.00 FEET.
********************************
 FLOW PROCESS FROM NODE 165.00 TO NODE 166.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 3550.00 DOWNSTREAM(FEET) = 3524.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 285.00 CHANNEL SLOPE = 0.0912
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 10.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 2.00
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.253
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2300
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 7.42
 AVERAGE FLOW DEPTH(FEET) = 0.69 TRAVEL TIME(MIN.) = 0.64
 Tc(MIN.) = 13.07
 SUBAREA AREA(ACRES) = 3.43
                              SUBAREA RUNOFF(CFS) = 3.35
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.230
 TOTAL AREA(ACRES) = 36.9
                                PEAK FLOW RATE(CFS) = 36.07
```

END OF SUBAREA CHANNEL FLOW HYDRAULICS:

```
DEPTH(FEET) = 0.70 FLOW VELOCITY(FEET/SEC.) = 7.38
 LONGEST FLOWPATH FROM NODE 160.00 TO NODE 166.00 = 1692.00 FEET.
****************************
 FLOW PROCESS FROM NODE 166.00 TO NODE 166.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 13.07
 RAINFALL INTENSITY(INCH/HR) = 4.25
 TOTAL STREAM AREA(ACRES) = 36.88
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
**********************************
 FLOW PROCESS FROM NODE 161.00 TO NODE 161.10 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2300
 S.C.S. CURVE NUMBER (AMC II) = 0
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 UPSTREAM ELEVATION(FEET) = 3654.00
 DOWNSTREAM ELEVATION(FEET) = 3640.00
 ELEVATION DIFFERENCE(FEET) = 14.00
 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 7.269
 WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN To CALCULATION!
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.209
 SUBAREA RUNOFF(CFS) = 0.61
 TOTAL AREA(ACRES) = 0.43 TOTAL RUNOFF(CFS) =
                                             0.61
*****************************
 FLOW PROCESS FROM NODE 161.10 TO NODE 161.20 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 3640.00 DOWNSTREAM(FEET) = 3580.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 475.00 CHANNEL SLOPE = 0.1263
 CHANNEL BASE(FEET) = 10.00 "Z" FACTOR = 10.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 2.00
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.240
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2300
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.62
 AVERAGE FLOW DEPTH(FEET) = 0.10 TRAVEL TIME(MIN.) = 2.19
 Tc(MIN.) =
            9.46
 SUBAREA AREA(ACRES) = 5.82 SUBAREA RUNOFF(CFS) = 7.01
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.230
 TOTAL AREA(ACRES) = 6.2
                            PEAK FLOW RATE(CFS) = 7.53
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.15 FLOW VELOCITY(FEET/SEC.) = 4.44
 LONGEST FLOWPATH FROM NODE 161.00 TO NODE 161.20 = 575.00 FEET.
*********************************
 FLOW PROCESS FROM NODE 161.20 TO NODE 161.30 IS CODE = 51
```

```
>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
_____
 ELEVATION DATA: UPSTREAM(FEET) = 3580.00 DOWNSTREAM(FEET) = 3556.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 481.00 CHANNEL SLOPE = 0.0499
 CHANNEL BASE(FEET) = 15.00 "Z" FACTOR = 3.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 5.00
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.561
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2300
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.53
 AVERAGE FLOW DEPTH(FEET) = 0.19 TRAVEL TIME(MIN.) = 2.27
 Tc(MIN.) = 11.73
 SUBAREA AREA(ACRES) = 5.93 SUBAREA RUNOFF(CFS) = 6.22
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.230
 TOTAL AREA(ACRES) = 12.2
                           PEAK FLOW RATE(CFS) = 12.78
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.21 FLOW VELOCITY(FEET/SEC.) = 3.88
 LONGEST FLOWPATH FROM NODE 161.00 TO NODE 161.30 = 1056.00 FEET.
*********************************
 FLOW PROCESS FROM NODE 161.30 TO NODE 166.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
_____
 ELEVATION DATA: UPSTREAM(FEET) = 3556.00 DOWNSTREAM(FEET) = 3524.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 530.00 CHANNEL SLOPE = 0.0604
 CHANNEL BASE(FEET) = 15.00 "Z" FACTOR = 5.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 5.00
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.120
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2300
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 4.41
 AVERAGE FLOW DEPTH(FEET) = 0.23 TRAVEL TIME(MIN.) = 2.00
 Tc(MIN.) = 13.73
 SUBAREA AREA(ACRES) = 8.20 SUBAREA RUNOFF(CFS) = 7.77
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.230
 TOTAL AREA(ACRES) = 20.4
                               PEAK FLOW RATE(CFS) = 19.31
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.25 FLOW VELOCITY(FEET/SEC.) = 4.66
 LONGEST FLOWPATH FROM NODE 161.00 TO NODE 166.00 = 1586.00 FEET.
*********************************
 FLOW PROCESS FROM NODE 166.00 TO NODE 166.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
_____
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 13.73
 RAINFALL INTENSITY(INCH/HR) = 4.12
 TOTAL STREAM AREA(ACRES) = 20.38
```

PEAK FLOW RATE(CFS) AT CONFLUENCE = 19.31

** CONFLUENCE DATA **

STREAM	RUNOFF	Tc	INTENSITY	AREA
NUMBER	(CFS)	(MIN.)	(INCH/HOUR)	(ACRE)
1	36.07	13.07	4.253	36.88
2	19.31	13.73	4.120	20.38

RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS.

** PEAK FLOW RATE TABLE **

STREAM	RUNOFF	Tc	INTENSITY
NUMBER	(CFS)	(MIN.)	(INCH/HOUR)
1	54.46	13.07	4.253
2	54.26	13.73	4.120

COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:

PEAK FLOW RATE(CFS) = 54.46 Tc(MIN.) = 13.07 TOTAL AREA(ACRES) = 57.3

LONGEST FLOWPATH FROM NODE 160.00 TO NODE 166.00 = 1692.00 FEET. ._____

END OF STUDY SUMMARY:

TOTAL AREA(ACRES) = 57.3 TC(MIN.) = 13.07 PEAK FLOW RATE(CFS) = 54.46

NODE 166 (Unmitigated)

END OF RATIONAL METHOD ANALYSIS

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL

(c) Copyright 1982-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1264

Analysis prepared by:

Mitigated Analysis for Node 166

* *	**************************************	* *						
	FILE NAME: 614PRAM.DAT TIME/DATE OF STUDY: 18:38 02/27/2024							
_	USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:							
-	2003 SAN DIEGO MANUAL CRITERIA							
	USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 3.000 SPECIFIED MINIMUM PIPE SIZE(INCH) = 24.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.85 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (n)							
=	1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*							
+	BEGIN AREA DRAINING TO NODE 166 Use HydraFlow Hydrograph Output for Node 165 Basin Outflow	-+ 						
ľ	ose Tya. a. 15% Tya. og. apri oacpae To. Houe 105 bastil oacitow							

```
*****************************
 FLOW PROCESS FROM NODE 165.00 TO NODE 165.00 IS CODE = 7
-----
 >>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<
______
 USER-SPECIFIED VALUES ARE AS FOLLOWS:
 TC(MIN) = 264.00 RAIN INTENSITY(INCH/HOUR) = 0.61
 TOTAL AREA(ACRES) = 33.40 TOTAL RUNOFF(CFS) =
                                       9.00
*****************************
 FLOW PROCESS FROM NODE 165.00 TO NODE 166.00 IS CODE = 51
-----
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 3550.00 DOWNSTREAM(FEET) = 3524.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 285.00 CHANNEL SLOPE = 0.0912
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 10.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) =
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 0.611
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2300
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 5.32
 AVERAGE FLOW DEPTH(FEET) = 0.42 TRAVEL TIME(MIN.) = 0.89
 Tc(MIN.) = 264.89
 SUBAREA AREA(ACRES) = 3.43
                         SUBAREA RUNOFF(CFS) = 0.48
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.421
 TOTAL AREA(ACRES) = 36.8
                           PEAK FLOW RATE(CFS) =
                                               9.46
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.42 FLOW VELOCITY(FEET/SEC.) = 5.30
 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 166.00 =
******************************
 FLOW PROCESS FROM NODE 166.00 TO NODE 166.00 IS CODE =
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 264.89
 RAINFALL INTENSITY(INCH/HR) = 0.61
 TOTAL STREAM AREA(ACRES) = 36.83
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                             9.46
****************************
 FLOW PROCESS FROM NODE 161.00 TO NODE 161.10 IS CODE = 21
   ......
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
_____
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2300
 S.C.S. CURVE NUMBER (AMC II) = 0
```

```
INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 UPSTREAM ELEVATION(FEET) = 3654.00
 DOWNSTREAM ELEVATION(FEET) = 3640.00
 ELEVATION DIFFERENCE(FEET) = 14.00
 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 7.269
 WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN To CALCULATION!
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.209
 SUBAREA RUNOFF(CFS) = 0.61
 TOTAL AREA(ACRES) = 0.43 TOTAL RUNOFF(CFS) =
****************************
 FLOW PROCESS FROM NODE 161.10 TO NODE 161.20 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 3640.00 DOWNSTREAM(FEET) = 3580.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 475.00 CHANNEL SLOPE = 0.1263
 CHANNEL BASE(FEET) = 10.00 "Z" FACTOR = 10.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 2.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.240
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2300
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.62
 AVERAGE FLOW DEPTH(FEET) = 0.10 TRAVEL TIME(MIN.) = 2.19
 Tc(MIN.) =
            9.46
 SUBAREA AREA(ACRES) = 5.82 SUBAREA RUNOFF(CFS) = 7.01
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.230
 TOTAL AREA(ACRES) = 6.2 PEAK FLOW RATE(CFS) = 7.53
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.15 FLOW VELOCITY(FEET/SEC.) = 4.44
 LONGEST FLOWPATH FROM NODE 161.00 TO NODE 161.20 =
                                                     575.00 FEET.
*************************
 FLOW PROCESS FROM NODE 161.20 TO NODE 161.30 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
_____
 ELEVATION DATA: UPSTREAM(FEET) = 3580.00 DOWNSTREAM(FEET) = 3556.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 481.00 CHANNEL SLOPE = 0.0499
 CHANNEL BASE(FEET) = 15.00 "Z" FACTOR = 3.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 5.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.561
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2300
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 10.66
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.53
 AVERAGE FLOW DEPTH(FEET) = 0.19 TRAVEL TIME(MIN.) = 2.27
 Tc(MIN.) = 11.73
 SUBAREA AREA(ACRES) = 5.93 SUBAREA RUNOFF(CFS) = 6.22
```

```
AREA-AVERAGE RUNOFF COEFFICIENT = 0.230
 TOTAL AREA(ACRES) = 12.2 PEAK FLOW RATE(CFS) = 12.78
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.21 FLOW VELOCITY(FEET/SEC.) = 3.88
 LONGEST FLOWPATH FROM NODE 161.00 TO NODE 161.30 = 1056.00 FEET.
******************************
 FLOW PROCESS FROM NODE 161.30 TO NODE 166.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<
_____
 ELEVATION DATA: UPSTREAM(FEET) = 3556.00 DOWNSTREAM(FEET) = 3524.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 530.00 CHANNEL SLOPE = 0.0604
 CHANNEL BASE(FEET) = 15.00 "Z" FACTOR = 5.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 5.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.120
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2300
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 16.66
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 4.41
 AVERAGE FLOW DEPTH(FEET) = 0.23 TRAVEL TIME(MIN.) = 2.00
 Tc(MIN.) = 13.73
 SUBAREA AREA(ACRES) = 8.20
                               SUBAREA RUNOFF(CFS) = 7.77
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.230
 TOTAL AREA(ACRES) = 20.4 PEAK FLOW RATE(CFS) = 19.31
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.25 FLOW VELOCITY(FEET/SEC.) = 4.66
 LONGEST FLOWPATH FROM NODE 161.00 TO NODE 166.00 = 1586.00 FEET.
*******************************
 FLOW PROCESS FROM NODE 166.00 TO NODE 166.00 IS CODE = 1
-----
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
_____
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 13.73
 RAINFALL INTENSITY(INCH/HR) = 4.12
 TOTAL STREAM AREA(ACRES) = 20.38
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 19.31
 ** CONFLUENCE DATA **
 STREAM RUNOFF TC
NUMBER (CFS) (MIN.)
                          INTENSITY
                                       AREA
                           (INCH/HOUR)
                                       (ACRE)
                                     36.83

      9.46
      264.89
      0.611

      19.31
      13.73
      4.120

    1
    2
                                         20.38
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
```

CONFLUENCE FORMULA USED FOR 2 STREAMS.

** PEAK FLOW RATE TABLE **

STREAM RUNOFF TC INTENSITY

NUMBER (CFS) (MIN.) (INCH/HOUR)

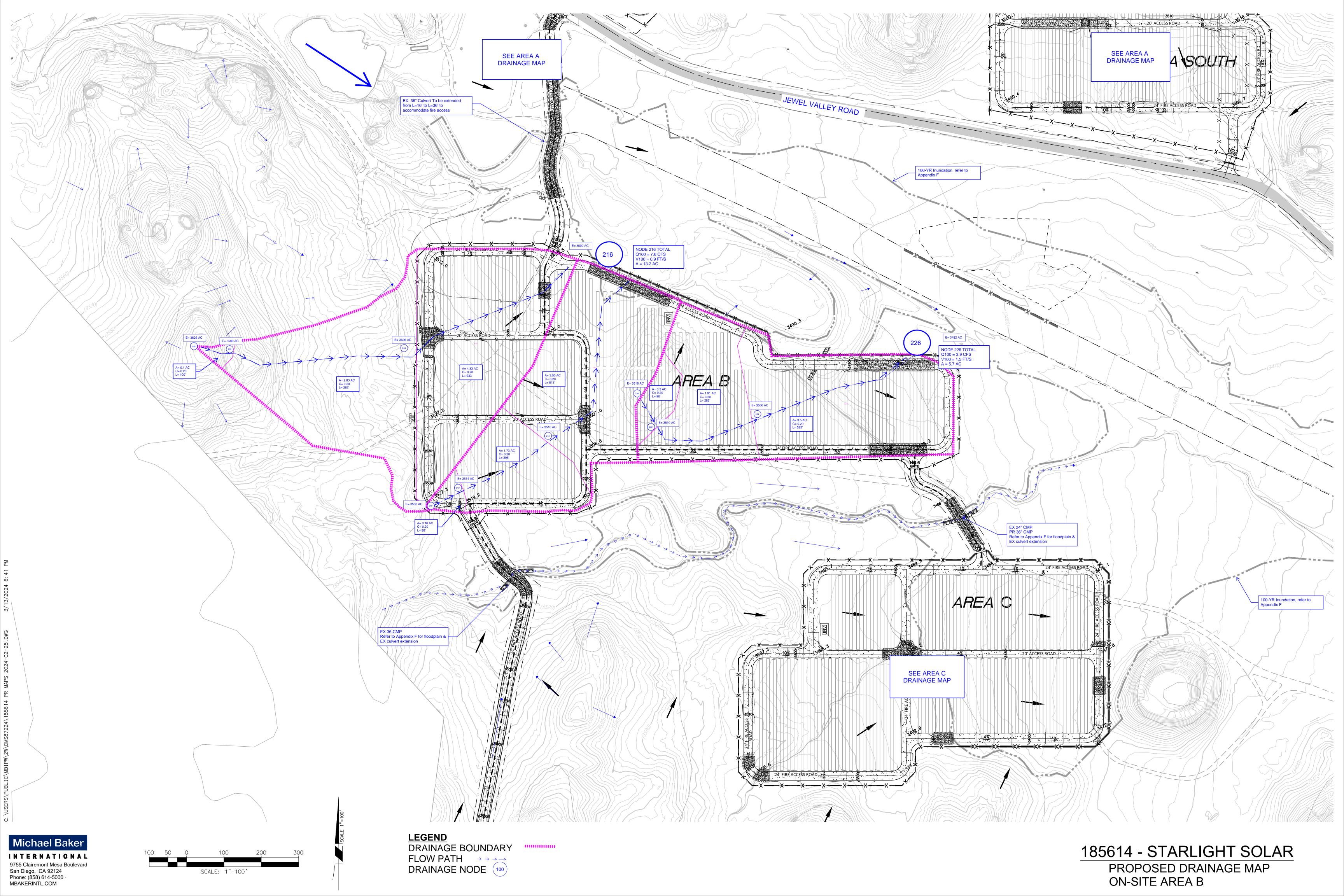
1 19.80 13.73 4.120 2 12.32 264.89 0.611

COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:

PEAK FLOW RATE(CFS) = 19.80 Tc(MIN.) = 13.73

TOTAL AREA(ACRES) = 57.2

LONGEST FLOWPATH FROM NODE 161.00 TO NODE 166.00 = 1586.00 FEET.


END OF STUDY SUMMARY:

TOTAL AREA(ACRES) = 57.2 TC(MIN.) = 13.73 PEAK FLOW RATE(CFS) = 19.80 NODE 166 (Mitigated)

END OF RATIONAL METHOD ANALYSIS

⇑

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL

(c) Copyright 1982-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1264

Analysis prepared by:

```
******************** DESCRIPTION OF STUDY *****************
* 185614 STARLIGHT SOLAR
* PR 0100 ON-SITE AREA B
* 2024-03-01
**************************
 FILE NAME: 614PRB.DAT
 TIME/DATE OF STUDY: 08:31 03/02/2024
 ______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
 2003 SAN DIEGO MANUAL CRITERIA
 USER SPECIFIED STORM EVENT(YEAR) = 100.00
 6-HOUR DURATION PRECIPITATION (INCHES) = 3.000
 SPECIFIED MINIMUM PIPE SIZE(INCH) = 24.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.85
 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
 NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
   WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO.
   (FT)
         (FT) SIDE / SIDE/ WAY (FT) (FT) (FT)
30.0
         20.0
                 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
*******************************
                     200.00 TO NODE
 FLOW PROCESS FROM NODE
                                  202.00 IS CODE = 21
    ......
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
```

```
USER-SPECIFIED RUNOFF COEFFICIENT = .2000
 S.C.S. CURVE NUMBER (AMC II) = 0
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 3626.00
 DOWNSTREAM ELEVATION(FEET) = 3590.00
 ELEVATION DIFFERENCE(FEET) = 36.00
 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 7.520
 WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN To CALCULATION!
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.075
 SUBAREA RUNOFF(CFS) = 0.12
 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.12
*************************
 FLOW PROCESS FROM NODE 202.00 TO NODE 204.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<
_____
 ELEVATION DATA: UPSTREAM(FEET) = 3590.00 DOWNSTREAM(FEET) = 3526.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 262.00 CHANNEL SLOPE = 0.2443
 CHANNEL BASE(FEET) = 20.00 "Z" FACTOR = 8.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 2.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.285
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2000
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.63
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.41
 AVERAGE FLOW DEPTH(FEET) = 0.03 TRAVEL TIME(MIN.) = 1.81
 Tc(MIN.) =
            9.33
 SUBAREA AREA(ACRES) = 2.83 SUBAREA RUNOFF(CFS) = 2.99
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.200
 TOTAL AREA(ACRES) = 2.9 PEAK FLOW RATE(CFS) = 3.10
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.05 FLOW VELOCITY(FEET/SEC.) = 3.12
 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 204.00 =
                                                  362.00 FEET.
***********************************
 FLOW PROCESS FROM NODE 204.00 TO NODE 216.00 IS CODE = 51
-----
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 3526.00 DOWNSTREAM(FEET) = 3500.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 933.00 CHANNEL SLOPE = 0.0279
 CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 15.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.425
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2000
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 4.80
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.74
 AVERAGE FLOW DEPTH(FEET) = 0.10 TRAVEL TIME(MIN.) = 8.95
```

```
Tc(MIN.) = 18.28
 SUBAREA AREA(ACRES) = 4.83 SUBAREA RUNOFF(CFS) = 3.31
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.200
 TOTAL AREA(ACRES) = 7.8
                          PEAK FLOW RATE(CFS) = 5.32
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.11 FLOW VELOCITY(FEET/SEC.) = 1.82
 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 216.00 =
                                             1295.00 FEET.
***********************************
 FLOW PROCESS FROM NODE 204.00 TO NODE 216.00 IS CODE = 1
-----
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 18.28
 RAINFALL INTENSITY(INCH/HR) = 3.43
 TOTAL STREAM AREA(ACRES) = 7.76
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.32
*******************************
 FLOW PROCESS FROM NODE 210.00 TO NODE 212.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2000
 S.C.S. CURVE NUMBER (AMC II) = 0
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 3530.00
 DOWNSTREAM ELEVATION(FEET) = 3514.00
 ELEVATION DIFFERENCE(FEET) = 16.00
 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 7.444
 WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN To CALCULATION!
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.115
 SUBAREA RUNOFF(CFS) = 0.20
 TOTAL AREA(ACRES) = 0.16 TOTAL RUNOFF(CFS) =
                                          0.20
******************************
 FLOW PROCESS FROM NODE 212.00 TO NODE 214.00 IS CODE = 51
-----
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 3514.00 DOWNSTREAM(FEET) = 3510.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 306.00 CHANNEL SLOPE = 0.0131
 CHANNEL BASE(FEET) = 30.00 "Z" FACTOR = 45.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 2.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.852
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2000
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 0.90
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 0.65
```

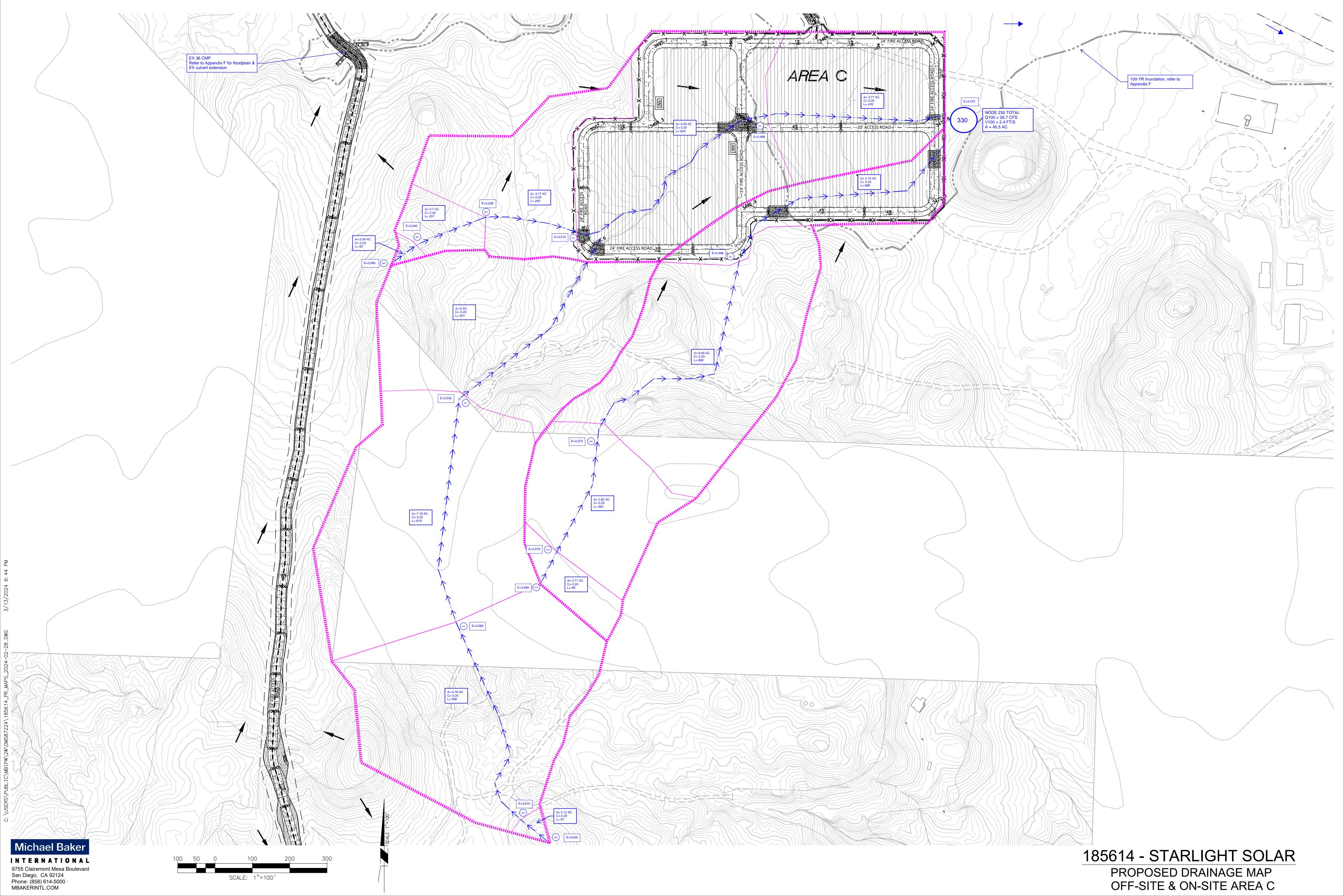
```
AVERAGE FLOW DEPTH(FEET) = 0.04 TRAVEL TIME(MIN.) = 7.79
 Tc(MIN.) = 15.24
 SUBAREA AREA(ACRES) = 1.73 SUBAREA RUNOFF(CFS) = 1.33
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.200
 TOTAL AREA(ACRES) =
                               PEAK FLOW RATE(CFS) = 1.46
                   1.9
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.06 FLOW VELOCITY(FEET/SEC.) = 0.80
 LONGEST FLOWPATH FROM NODE 210.00 TO NODE 214.00 = 404.00 FEET.
******************************
 FLOW PROCESS FROM NODE 214.00 TO NODE 216.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 3510.00 DOWNSTREAM(FEET) = 3500.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 513.00 CHANNEL SLOPE = 0.0195
 CHANNEL BASE(FEET) = 55.00 "Z" FACTOR = 35.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 2.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.817
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2000
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 0.90
 AVERAGE FLOW DEPTH(FEET) = 0.05 TRAVEL TIME(MIN.) = 9.51
 Tc(MIN.) = 24.75
 SUBAREA AREA(ACRES) = 3.55 SUBAREA RUNOFF(CFS) = 2.00
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.200
 TOTAL AREA(ACRES) = 5.4
                            PEAK FLOW RATE(CFS) = 3.07
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.06 FLOW VELOCITY(FEET/SEC.) =
                                         0.96
 LONGEST FLOWPATH FROM NODE 210.00 TO NODE 216.00 =
                                                 917.00 FEET.
*****************************
 FLOW PROCESS FROM NODE 214.00 TO NODE 216.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 24.75
 RAINFALL INTENSITY(INCH/HR) = 2.82
 TOTAL STREAM AREA(ACRES) = 5.44
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
 ** CONFLUENCE DATA **
 STREAM RUNOFF
                  Tc INTENSITY
                                     AREA
                (MIN.)
 NUMBER
         (CFS)
                         (INCH/HOUR)
                                     (ACRE)
          5.32 18.28 3.425 7.76
    1
          3.07 24.75
                          2.817
                                      5.44
    2
```

```
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS.
```

INTENSITY

** PEAK FLOW RATE TABLE **

STREAM


RUNOFF Tc

```
NUMBER
          (CFS)
                  (MIN.) (INCH/HOUR)
           (CFS) (MIN.)
7.58 18.28
    1
                           3.425
    2
           7.44 24.75
                           2.817
                                                            NODE 216
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 7.58
TOTAL AREA(ACRES) = 13.2
                            Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 216.00 = 1295.00 FEET.
| END NODE 216
 BEGIN NODE 220
 FLOW PROCESS FROM NODE 220.00 TO NODE 222.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2000
 S.C.S. CURVE NUMBER (AMC II) = 0
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 3516.00
 DOWNSTREAM ELEVATION(FEET) = 3510.00
 ELEVATION DIFFERENCE(FEET) =
                            6.00
 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 8.166
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.760
 SUBAREA RUNOFF(CFS) = 0.35
                    0.30 TOTAL RUNOFF(CFS) =
 TOTAL AREA(ACRES) =
*******************************
 FLOW PROCESS FROM NODE 222.00 TO NODE
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 3510.00 DOWNSTREAM(FEET) = 3500.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 282.00 CHANNEL SLOPE = 0.0355
 CHANNEL BASE(FEET) = 30.00 "Z" FACTOR = 30.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.370
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2000
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.18
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) =
 AVERAGE FLOW DEPTH(FEET) = 0.04 TRAVEL TIME(MIN.) = 4.36
 Tc(MIN.) = 12.53
```

```
SUBAREA AREA(ACRES) = 1.91 SUBAREA RUNOFF(CFS) = 1.67
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.200
 TOTAL AREA(ACRES) =
                     2.2
                              PEAK FLOW RATE(CFS) =
                                                   1.93
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.05 FLOW VELOCITY(FEET/SEC.) = 1.21
                       220.00 TO NODE 224.00 =
 LONGEST FLOWPATH FROM NODE
*******************************
 FLOW PROCESS FROM NODE 224.00 TO NODE 226.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 3500.00 DOWNSTREAM(FEET) = 3482.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 525.00 CHANNEL SLOPE = 0.0343
 CHANNEL BASE(FEET) = 30.00 "Z" FACTOR = 30.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.409
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2000
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.49
 AVERAGE FLOW DEPTH(FEET) = 0.07 TRAVEL TIME(MIN.) = 5.89
 Tc(MIN.) = 18.42
 SUBAREA AREA(ACRES) = 3.50 SUBAREA RUNOFF(CFS) = 2.39
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.200
                          PEAK FLOW RATE(CFS) = 3.89
 TOTAL AREA(ACRES) = 5.7
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.08 FLOW VELOCITY(FEET/SEC.) = 1.52
 LONGEST FLOWPATH FROM NODE 220.00 TO NODE 226.00 = 897.00 FEET.
______
 END OF STUDY SUMMARY:
                                                  NODE 226
 TOTAL AREA(ACRES) = 5.7 TC(MIN.) = 18.42
 PEAK FLOW RATE(CFS) =
                       3.89
_____
```

END OF RATIONAL METHOD ANALYSIS

^

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL

(c) Copyright 1982-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1264

Analysis prepared by:

```
******************** DESCRIPTION OF STUDY *****************
* 185614 STARLIGHT SOLAR
* PR 0100 ONSITE & OFFSITE AREA C
* 2024-03-01
**************************
 FILE NAME: 614PRC.DAT
 TIME/DATE OF STUDY: 08:42 03/02/2024
 ______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
 2003 SAN DIEGO MANUAL CRITERIA
 USER SPECIFIED STORM EVENT(YEAR) = 100.00
 6-HOUR DURATION PRECIPITATION (INCHES) = 3.000
 SPECIFIED MINIMUM PIPE SIZE(INCH) = 24.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.85
 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
 NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
   WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO.
   (FT)
         (FT) SIDE / SIDE/ WAY (FT) (FT) (FT)
30.0
         20.0
                 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
*******************************
                     300.00 TO NODE
 FLOW PROCESS FROM NODE
                                   302.00 \text{ IS CODE} = 21
    ......
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
```

```
USER-SPECIFIED RUNOFF COEFFICIENT = .2000
 S.C.S. CURVE NUMBER (AMC II) = 0
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 3560.00
 DOWNSTREAM ELEVATION(FEET) = 3540.00
 ELEVATION DIFFERENCE(FEET) = 20.00
 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 6.851
 WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN To CALCULATION!
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.451
 SUBAREA RUNOFF(CFS) = 0.12
 TOTAL AREA(ACRES) = 0.09 TOTAL RUNOFF(CFS) = 0.12
**************************
 FLOW PROCESS FROM NODE 302.00 TO NODE 304.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<
_____
 ELEVATION DATA: UPSTREAM(FEET) = 3540.00 DOWNSTREAM(FEET) = 3528.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 201.00 CHANNEL SLOPE = 0.0597
 CHANNEL BASE(FEET) = 18.00 "Z" FACTOR = 6.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 2.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.005
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2000
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 0.47
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.01
 AVERAGE FLOW DEPTH(FEET) = 0.03 TRAVEL TIME(MIN.) = 3.30
 Tc(MIN.) = 10.15
 SUBAREA AREA(ACRES) = 0.70 SUBAREA RUNOFF(CFS) = 0.70
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.200
 TOTAL AREA(ACRES) = 0.8 PEAK FLOW RATE(CFS) = 0.79
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.03 FLOW VELOCITY(FEET/SEC.) = 1.30
 LONGEST FLOWPATH FROM NODE 300.00 TO NODE 304.00 =
                                                  284.00 FEET.
**********************************
 FLOW PROCESS FROM NODE 304.00 TO NODE 312.00 IS CODE = 51
-----
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 3528.00 DOWNSTREAM(FEET) = 3510.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 250.00 CHANNEL SLOPE = 0.0720
 CHANNEL BASE(FEET) = 17.00 "Z" FACTOR = 24.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.451
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2000
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.20
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.05
 AVERAGE FLOW DEPTH(FEET) = 0.06 TRAVEL TIME(MIN.) = 2.03
```

```
Tc(MIN.) = 12.18
 SUBAREA AREA(ACRES) = 3.17 SUBAREA RUNOFF(CFS) = 2.82
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.200
 TOTAL AREA(ACRES) = 4.0
                           PEAK FLOW RATE(CFS) = 3.52
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.08 FLOW VELOCITY(FEET/SEC.) = 2.30
 LONGEST FLOWPATH FROM NODE 300.00 TO NODE 312.00 =
                                               534.00 FEET.
**********************************
 FLOW PROCESS FROM NODE 304.00 TO NODE 312.00 IS CODE = 1
-----
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 12.18
 RAINFALL INTENSITY(INCH/HR) = 4.45
 TOTAL STREAM AREA(ACRES) = 3.96
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
*******************************
 FLOW PROCESS FROM NODE 306.00 TO NODE 308.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2000
 S.C.S. CURVE NUMBER (AMC II) = 0
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 3630.00
 DOWNSTREAM ELEVATION(FEET) = 3610.00
 ELEVATION DIFFERENCE(FEET) = 20.00
 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 7.406
 WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN To CALCULATION!
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.135
 SUBAREA RUNOFF(CFS) = 0.15
 TOTAL AREA(ACRES) = 0.12 TOTAL RUNOFF(CFS) =
                                           0.15
******************************
 FLOW PROCESS FROM NODE 308.00 TO NODE 310.00 IS CODE = 51
-----
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 3610.00 DOWNSTREAM(FEET) = 3584.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 595.00 CHANNEL SLOPE = 0.0437
 CHANNEL BASE(FEET) = 9.00 "Z" FACTOR = 5.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 2.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.691
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2000
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.38
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.60
```

```
AVERAGE FLOW DEPTH(FEET) = 0.13 TRAVEL TIME(MIN.) = 3.82
 Tc(MIN.) = 11.23
 SUBAREA AREA(ACRES) = 6.76 SUBAREA RUNOFF(CFS) = 6.34
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.200
 TOTAL AREA(ACRES) = 6.9
                               PEAK FLOW RATE(CFS) = 6.46
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.20 FLOW VELOCITY(FEET/SEC.) = 3.31
 LONGEST FLOWPATH FROM NODE 306.00 TO NODE 310.00 = 692.00 FEET.
******************************
 FLOW PROCESS FROM NODE 310.00 TO NODE 311.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 3584.00 DOWNSTREAM(FEET) = 3530.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 619.00 CHANNEL SLOPE = 0.0872
 CHANNEL BASE(FEET) = 35.00 "Z" FACTOR = 4.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 2.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.941
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2000
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.96
 AVERAGE FLOW DEPTH(FEET) = 0.09 TRAVEL TIME(MIN.) = 3.48
 Tc(MIN.) = 14.71
 SUBAREA AREA(ACRES) = 7.19 SUBAREA RUNOFF(CFS) = 5.67
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.200
 TOTAL AREA(ACRES) = 14.1 PEAK FLOW RATE(CFS) = 11.09
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.10 FLOW VELOCITY(FEET/SEC.) = 3.07
 LONGEST FLOWPATH FROM NODE 306.00 TO NODE 311.00 = 1311.00 FEET.
******************************
 FLOW PROCESS FROM NODE 311.00 TO NODE 312.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<
_____
 ELEVATION DATA: UPSTREAM(FEET) = 3530.00 DOWNSTREAM(FEET) = 3510.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 501.00 CHANNEL SLOPE = 0.0399
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 4.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 2.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.688
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2000
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 13.30
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 5.24
 AVERAGE FLOW DEPTH(FEET) = 0.80 TRAVEL TIME(MIN.) = 1.59
 Tc(MIN.) = 16.30
 SUBAREA AREA(ACRES) = 6.00 SUBAREA RUNOFF(CFS) = 4.43
```

```
AREA-AVERAGE RUNOFF COEFFICIENT = 0.200
 TOTAL AREA(ACRES) = 20.1 PEAK FLOW RATE(CFS) = 14.80
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.83 FLOW VELOCITY(FEET/SEC.) = 5.39
 LONGEST FLOWPATH FROM NODE 306.00 TO NODE 312.00 = 1812.00 FEET.
****************************
 FLOW PROCESS FROM NODE 311.00 TO NODE 312.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 16.30
 RAINFALL INTENSITY(INCH/HR) = 3.69
 TOTAL STREAM AREA(ACRES) = 20.07
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 14.80
 ** CONFLUENCE DATA **
 STREAM RUNOFF
                  Tc INTENSITY
                                      AREA
                (MIN.)
 NUMBER
         (CFS)
                          (INCH/HOUR)
                                      (ACRE)
         3.52 12.18 4.451
14.80 16.30 3.688
    1
                                       3.96
    2
                                       20.07
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC INTENSITY
 NUMBER
        (CFS) (MIN.) (INCH/HOUR)
14.59 12.18 4.451
    1
          17.72 16.30
                          3.688
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 17.72 Tc(MIN.) = 16.30
 TOTAL AREA(ACRES) = 24.0
 LONGEST FLOWPATH FROM NODE 306.00 TO NODE 312.00 = 1812.00 FEET.
******************************
 FLOW PROCESS FROM NODE 312.00 TO NODE 314.00 IS CODE = 51
......
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 3510.00 DOWNSTREAM(FEET) = 3488.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 645.00 CHANNEL SLOPE = 0.0341
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 25.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 2.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.297
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2000
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 19.68
```

```
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) =
 AVERAGE FLOW DEPTH(FEET) = 0.48 TRAVEL TIME(MIN.) =
 Tc(MIN.) =
          19.39
 SUBAREA AREA(ACRES) = 5.93 SUBAREA RUNOFF(CFS) = 3.91
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.200
 TOTAL AREA(ACRES) = 30.0
                           PEAK FLOW RATE(CFS) = 19.76
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.48 FLOW VELOCITY(FEET/SEC.) = 3.49
 LONGEST FLOWPATH FROM NODE
                      306.00 TO NODE 314.00 =
                                             2457.00 FEET.
******************************
 FLOW PROCESS FROM NODE 314.00 TO NODE 330.00 IS CODE = 51
-----
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 3488.00 DOWNSTREAM(FEET) = 3472.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 476.00 CHANNEL SLOPE = 0.0336
 CHANNEL BASE(FEET) = 30.00 "Z" FACTOR = 36.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.019
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2000
 S.C.S. CURVE NUMBER (AMC II) =
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.79
 AVERAGE FLOW DEPTH(FEET) = 0.20 TRAVEL TIME(MIN.) = 2.85
 Tc(MIN.) = 22.24
 SUBAREA AREA(ACRES) = 3.77 SUBAREA RUNOFF(CFS) = 2.28
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.200
 TOTAL AREA(ACRES) =
                33.7
                             PEAK FLOW RATE(CFS) = 20.36
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.20 FLOW VELOCITY(FEET/SEC.) = 2.72
 LONGEST FLOWPATH FROM NODE 306.00 TO NODE 330.00 = 2933.00 FEET.
******************************
 FLOW PROCESS FROM NODE 314.00 TO NODE 330.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 22.24
 RAINFALL INTENSITY(INCH/HR) = 3.02
 TOTAL STREAM AREA(ACRES) = 33.73
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                              20.36
*******************************
 FLOW PROCESS FROM NODE 316.00 TO NODE 318.00 IS CODE = 21
 _____
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
```

```
USER-SPECIFIED RUNOFF COEFFICIENT = .2000
 S.C.S. CURVE NUMBER (AMC II) = 0
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 3580.00
 DOWNSTREAM ELEVATION(FEET) = 3578.00
 ELEVATION DIFFERENCE(FEET) =
                             2.00
 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 11.836
 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN
         THE MAXIMUM OVERLAND FLOW LENGTH = 85.30
         (Reference: Table 3-1B of Hydrology Manual)
         THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN To CALCULATION!
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.534
 SUBAREA RUNOFF(CFS) = 0.64
 TOTAL AREA(ACRES) = 0.71 TOTAL RUNOFF(CFS) =
*****************************
 FLOW PROCESS FROM NODE 318.00 TO NODE 320.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 3578.00 DOWNSTREAM(FEET) = 3540.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 363.00 CHANNEL SLOPE = 0.1047
 CHANNEL BASE(FEET) = 30.00 "Z" FACTOR = 99.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.770
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2000
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.54
 AVERAGE FLOW DEPTH(FEET) = 0.03 TRAVEL TIME(MIN.) = 3.92
 Tc(MIN.) =
            15.76
 SUBAREA AREA(ACRES) = 2.82 SUBAREA RUNOFF(CFS) = 2.13
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.200
 TOTAL AREA(ACRES) = 3.5 PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.04 FLOW VELOCITY(FEET/SEC.) = 1.81
 LONGEST FLOWPATH FROM NODE 316.00 TO NODE 320.00 = 462.00 FEET.
*******************************
 FLOW PROCESS FROM NODE 320.00 TO NODE 322.00 IS CODE = 51
-----
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 3540.00 DOWNSTREAM(FEET) = 3496.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 699.00 CHANNEL SLOPE = 0.0629
 CHANNEL BASE(FEET) = 7.00 "Z" FACTOR = 5.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 2.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.332
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2000
 S.C.S. CURVE NUMBER (AMC II) =
```

```
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 4.70
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.51
 AVERAGE FLOW DEPTH(FEET) = 0.17 TRAVEL TIME(MIN.) = 3.32
 Tc(MIN.) = 19.08
 SUBAREA AREA(ACRES) = 6.09 SUBAREA RUNOFF(CFS) = 4.06
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.200
 TOTAL AREA(ACRES) = 9.6
                            PEAK FLOW RATE(CFS) = 6.41
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.20 FLOW VELOCITY(FEET/SEC.) = 3.94
 LONGEST FLOWPATH FROM NODE 316.00 TO NODE 322.00 = 1161.00 FEET.
**************************
 FLOW PROCESS FROM NODE 322.00 TO NODE 330.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<
_____
 ELEVATION DATA: UPSTREAM(FEET) = 3496.00 DOWNSTREAM(FEET) = 3472.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 686.00 CHANNEL SLOPE = 0.0350
 CHANNEL BASE(FEET) = 15.00 "Z" FACTOR = 22.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 2.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.890
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2000
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 7.05
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.43
 AVERAGE FLOW DEPTH(FEET) = 0.16 TRAVEL TIME(MIN.) = 4.71
 Tc(MIN.) =
          23.79
 SUBAREA AREA(ACRES) = 2.19 SUBAREA RUNOFF(CFS) = 1.27
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.200
 TOTAL AREA(ACRES) = 11.8 PEAK FLOW RATE(CFS) = 6.83
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.16 FLOW VELOCITY(FEET/SEC.) = 2.38
 LONGEST FLOWPATH FROM NODE 316.00 TO NODE 330.00 =
                                                1847.00 FEET.
***********************************
 FLOW PROCESS FROM NODE 322.00 TO NODE 330.00 IS CODE = 1
-----
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 23.79
 RAINFALL INTENSITY(INCH/HR) = 2.89
 TOTAL STREAM AREA(ACRES) = 11.81
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.83
 ** CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR)
                                     AREA
                                     (ACRE)
         20.36 22.24
                          3.019
                                      33.73
    1
```

2 6.83 23.79 2.890 11.81

RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS.

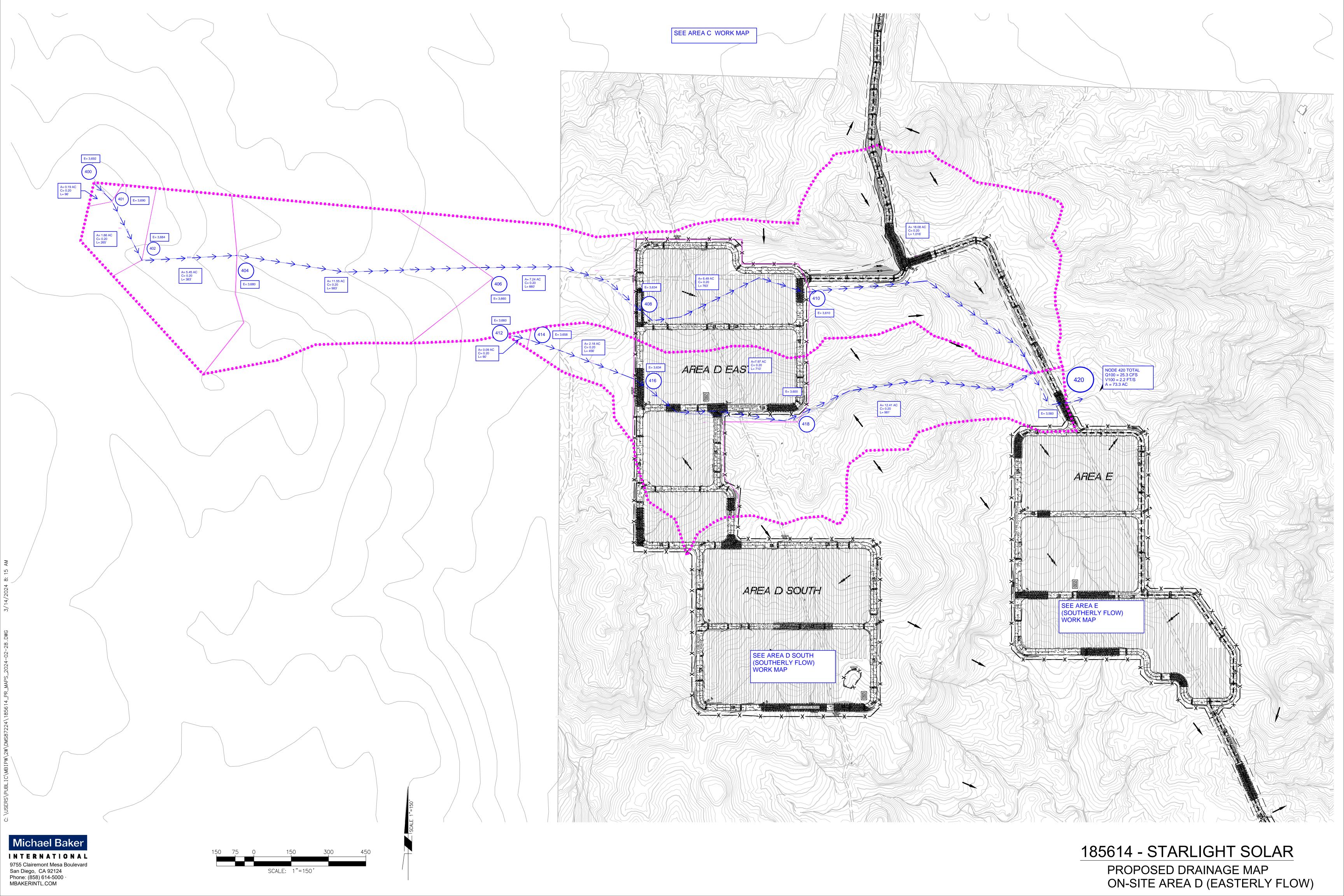
** PEAK FLOW RATE TABLE **

STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR)
1 26.74 22.24 3.019
2 26.32 23.79 2.890

COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:

PEAK FLOW RATE(CFS) = 26.74 Tc(MIN.) = 22.24 TOTAL AREA(ACRES) = 45.5

LONGEST FLOWPATH FROM NODE 306.00 TO NODE 330.00 = 2933.00 FEET.



END OF STUDY SUMMARY:

TOTAL AREA(ACRES) = 45.5 PEAK FLOW RATE(CFS) = 26.74 45.5 TC(MIN.) = 22.24

______ ______

END OF RATIONAL METHOD ANALYSIS

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL

(c) Copyright 1982-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1264

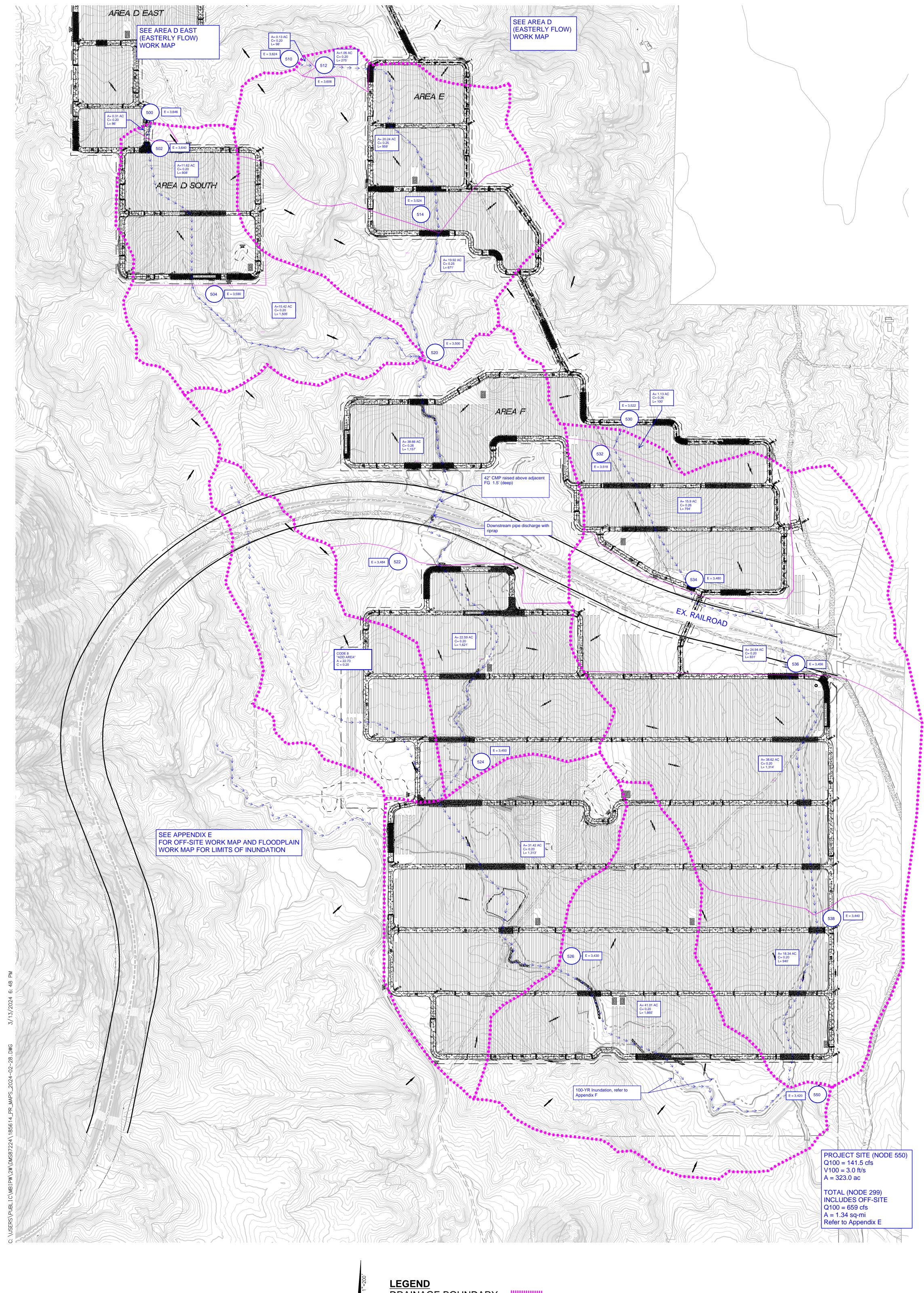
Analysis prepared by:

```
******************** DESCRIPTION OF STUDY *****************
* 185614 STARLIGHT SOLAR
* PR 0100 AREA D (EASTERLY FLOW)
* 2024-03-01
*****************************
 FILE NAME: 614PRD.DAT
 TIME/DATE OF STUDY: 08:47 03/02/2024
 ______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
 2003 SAN DIEGO MANUAL CRITERIA
 USER SPECIFIED STORM EVENT(YEAR) = 100.00
 6-HOUR DURATION PRECIPITATION (INCHES) = 3.000
 SPECIFIED MINIMUM PIPE SIZE(INCH) = 24.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.85
 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
 NOTE: CONSIDER ALL CONFLUENCE STREAM COMBINATIONS
     FOR ALL DOWNSTREAM ANALYSES
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
   WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT)
                                                    (n)
=== ====
        30.0
          20.0
                GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
  2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
*****************************
                    400.00 TO NODE
 FLOW PROCESS FROM NODE
                                 401.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
```

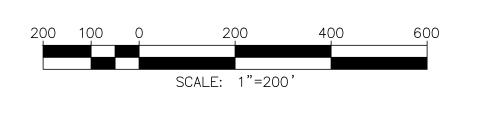
```
*USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2000
 S.C.S. CURVE NUMBER (AMC II) = 0
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
                               96.00
 UPSTREAM ELEVATION(FEET) = 3692.00
 DOWNSTREAM ELEVATION(FEET) = 3690.00
 ELEVATION DIFFERENCE(FEET) = 2.00
 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 11.780
 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN
        THE MAXIMUM OVERLAND FLOW LENGTH = 86.25
        (Reference: Table 3-1B of Hydrology Manual)
        THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN To CALCULATION!
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.548
 SUBAREA RUNOFF(CFS) = 0.17
 TOTAL AREA(ACRES) = 0.19 TOTAL RUNOFF(CFS) =
                                              0.17
******************************
 FLOW PROCESS FROM NODE 401.00 TO NODE 402.00 IS CODE = 51
-----
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 3690.00 DOWNSTREAM(FEET) = 3684.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 265.00 CHANNEL SLOPE = 0.0226
 CHANNEL BASE(FEET) = 30.00 "Z" FACTOR = 99.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.430
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2000
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 0.76
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 0.68
 AVERAGE FLOW DEPTH(FEET) = 0.03 TRAVEL TIME(MIN.) = 6.46
 Tc(MIN.) = 18.24
 SUBAREA AREA(ACRES) = 1.66
                             SUBAREA RUNOFF(CFS) = 1.14
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.200
                               PEAK FLOW RATE(CFS) = 1.27
 TOTAL AREA(ACRES) = 1.8
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.04 FLOW VELOCITY(FEET/SEC.) = 0.86
 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 402.00 =
*****************************
 FLOW PROCESS FROM NODE 402.00 TO NODE 404.00 IS CODE = 51
_____
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 3684.00 DOWNSTREAM(FEET) = 3680.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 383.00 CHANNEL SLOPE = 0.0104
 CHANNEL BASE(FEET) = 30.00 "Z" FACTOR = 99.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 2.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.735
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2000
```

```
S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.79
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 0.83
 AVERAGE FLOW DEPTH(FEET) = 0.09 TRAVEL TIME(MIN.) = 7.68
           25.92
 Tc(MIN.) =
 SUBAREA AREA(ACRES) = 5.45
                              SUBAREA RUNOFF(CFS) = 2.98
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.200
 TOTAL AREA(ACRES) = 7.3 PEAK FLOW RATE(CFS) = 3.99
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.10 FLOW VELOCITY(FEET/SEC.) = 0.95
 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 404.00 = 744.00 FEET.
******************************
 FLOW PROCESS FROM NODE 404.00 TO NODE 406.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 3680.00 DOWNSTREAM(FEET) = 3660.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 983.00 CHANNEL SLOPE = 0.0203
 CHANNEL BASE(FEET) = 43.00 "Z" FACTOR = 99.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 2.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.119
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2000
 S.C.S. CURVE NUMBER (AMC II) =
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.30
 AVERAGE FLOW DEPTH(FEET) = 0.09 TRAVEL TIME(MIN.) = 12.56
 Tc(MIN.) = 38.48
 SUBAREA AREA(ACRES) = 11.55 SUBAREA RUNOFF(CFS) = 4.90
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.200
 TOTAL AREA(ACRES) = 18.9 PEAK FLOW RATE(CFS) = 7.99
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.10 FLOW VELOCITY(FEET/SEC.) = 1.44
 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 406.00 = 1727.00 FEET.
*******************************
 FLOW PROCESS FROM NODE 406.00 TO NODE 408.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 3660.00 DOWNSTREAM(FEET) = 3634.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 660.00 CHANNEL SLOPE = 0.0394
 CHANNEL BASE(FEET) = 17.00 "Z" FACTOR = 16.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 2.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.991
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2000
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 9.43
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.80
```

```
AVERAGE FLOW DEPTH(FEET) = 0.17 TRAVEL TIME(MIN.) = 3.93
 Tc(MIN.) = 42.41
 SUBAREA AREA(ACRES) = 7.24 SUBAREA RUNOFF(CFS) = 2.88
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.200
 TOTAL AREA(ACRES) = 26.1
                               PEAK FLOW RATE(CFS) = 10.39
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.18 FLOW VELOCITY(FEET/SEC.) = 2.90
 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 408.00 = 2387.00 FEET.
******************************
 FLOW PROCESS FROM NODE 408.00 TO NODE 410.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 3634.00 DOWNSTREAM(FEET) = 3610.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 763.00 CHANNEL SLOPE = 0.0315
 CHANNEL BASE(FEET) = 15.00 "Z" FACTOR = 30.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 2.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.856
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2000
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.61
 AVERAGE FLOW DEPTH(FEET) = 0.21 TRAVEL TIME(MIN.) = 4.87
 Tc(MIN.) = 47.28
 SUBAREA AREA(ACRES) = 6.49 SUBAREA RUNOFF(CFS) = 2.41
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.200
 TOTAL AREA(ACRES) = 32.6
                             PEAK FLOW RATE(CFS) = 12.09
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.22 FLOW VELOCITY(FEET/SEC.) = 2.60
 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 410.00 = 3150.00 FEET.
******************************
 FLOW PROCESS FROM NODE 410.00 TO NODE 420.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 3610.00 DOWNSTREAM(FEET) = 3580.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 1016.00 CHANNEL SLOPE = 0.0295
 CHANNEL BASE(FEET) = 10.00 "Z" FACTOR = 25.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 2.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.724
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2000
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 15.21
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.97
 AVERAGE FLOW DEPTH(FEET) = 0.29 TRAVEL TIME(MIN.) = 5.70
 Tc(MIN.) = 52.98
 SUBAREA AREA(ACRES) = 18.08 SUBAREA RUNOFF(CFS) = 6.24
```


```
AREA-AVERAGE RUNOFF COEFFICIENT = 0.200
 TOTAL AREA(ACRES) =
                50.7 PEAK FLOW RATE(CFS) = 17.47
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.32 FLOW VELOCITY(FEET/SEC.) = 3.09
 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 420.00 =
                                              4166.00 FEET.
*****************************
 FLOW PROCESS FROM NODE 410.00 TO NODE 420.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
._____
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 52.98
 RAINFALL INTENSITY(INCH/HR) = 1.72
 TOTAL STREAM AREA(ACRES) = 50.66
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 17.47
*****************************
 FLOW PROCESS FROM NODE 412.00 TO NODE
                                  414.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2000
 S.C.S. CURVE NUMBER (AMC II) = 0
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 3660.00
 DOWNSTREAM ELEVATION(FEET) = 3658.00
 ELEVATION DIFFERENCE(FEET) = 2.00
 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 11.668
 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN
        THE MAXIMUM OVERLAND FLOW LENGTH = 88.33
        (Reference: Table 3-1B of Hydrology Manual)
        THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN To CALCULATION!
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.576
 SUBAREA RUNOFF(CFS) = 0.18
 TOTAL AREA(ACRES) = 0.20 TOTAL RUNOFF(CFS) =
*****************************
 FLOW PROCESS FROM NODE 414.00 TO NODE 416.00 IS CODE = 51
.....
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 3658.00 DOWNSTREAM(FEET) = 3634.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 456.00 CHANNEL SLOPE = 0.0526
 CHANNEL BASE(FEET) = 30.00 "Z" FACTOR = 20.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 2.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.350
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2000
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                         0.89
```

```
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.05
 AVERAGE FLOW DEPTH(FEET) = 0.03 TRAVEL TIME(MIN.) = 7.25
 Tc(MIN.) = 18.92
 SUBAREA AREA(ACRES) = 2.07 SUBAREA RUNOFF(CFS) = 1.39
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.200
 TOTAL AREA(ACRES) = 2.3
                               PEAK FLOW RATE(CFS) =
                                                     1.52
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.04 FLOW VELOCITY(FEET/SEC.) = 1.20
 LONGEST FLOWPATH FROM NODE 412.00 TO NODE 416.00 = 546.00 FEET.
******************************
 FLOW PROCESS FROM NODE 416.00 TO NODE 418.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 3634.00 DOWNSTREAM(FEET) = 3600.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 710.00 CHANNEL SLOPE = 0.0479
 CHANNEL BASE(FEET) = 20.00 "Z" FACTOR = 20.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 2.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.810
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2000
 S.C.S. CURVE NUMBER (AMC II) =
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.00
 AVERAGE FLOW DEPTH(FEET) = 0.09 TRAVEL TIME(MIN.) = 5.93
 Tc(MIN.) = 24.85
 SUBAREA AREA(ACRES) = 7.97 SUBAREA RUNOFF(CFS) = 4.48
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.200
 TOTAL AREA(ACRES) = 10.2 PEAK FLOW RATE(CFS) = 5.76
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.11 FLOW VELOCITY(FEET/SEC.) = 2.36
 LONGEST FLOWPATH FROM NODE 412.00 TO NODE 418.00 = 1256.00 FEET.
******************************
 FLOW PROCESS FROM NODE 418.00 TO NODE 420.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 3600.00 DOWNSTREAM(FEET) = 3580.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 981.00 CHANNEL SLOPE = 0.0204
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 30.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 2.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.377
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2000
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 8.71
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.22
 AVERAGE FLOW DEPTH(FEET) = 0.36 TRAVEL TIME(MIN.) = 7.35
 Tc(MIN.) = 32.20
```


```
SUBAREA AREA(ACRES) = 12.41 SUBAREA RUNOFF(CFS) = 5.90
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.200
 TOTAL AREA(ACRES) = 22.6
                            PEAK FLOW RATE(CFS) = 10.77
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.39 FLOW VELOCITY(FEET/SEC.) = 2.41
 LONGEST FLOWPATH FROM NODE 412.00 TO NODE 420.00 = 2237.00 FEET.
******************************
 FLOW PROCESS FROM NODE 418.00 TO NODE 420.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<>
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 32.20
 RAINFALL INTENSITY(INCH/HR) = 2.38
 TOTAL STREAM AREA(ACRES) = 22.65
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 10.77
 ** CONFLUENCE DATA **
      RUNOFF
 STREAM
                Tc
                       INTENSITY
                                  AREA
 NUMBER
        (CFS)
                (MIN.)
                       (INCH/HOUR)
                                  (ACRE)
         17.47
                52.98
                       1.724
                                   50.66
    1
         10.77 32.20
    2
                         2.377
                                   22.65
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                      INTENSITY
 NUMBER
        (CFS) (MIN.) (INCH/HOUR)
         21.39 32.20
    1
                       2.377
         25.28 52.98
    2
                        1.724
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 25.28 Tc(MIN.) = 52.98
 TOTAL AREA(ACRES) = 73.3
 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 420.00 = 4166.00 FEET.
-----
 END OF STUDY SUMMARY:
                     73.3 TC(MIN.) =
                                                 NODE 420
 TOTAL AREA(ACRES) =
                                     52.98
 PEAK FLOW RATE(CFS) = 25.28
 *** PEAK FLOW RATE TABLE ***
      Q(CFS) Tc(MIN.)
 1
       21.39
              32.20
 2
       25.28
               52.98
______
______
```

END OF RATIONAL METHOD ANALYSIS

1

LEGEND

DRAINAGE BOUNDARY
FLOW PATH

DRAINAGE NODE

100

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL

(c) Copyright 1982-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1264

Analysis prepared by:

```
******************** DESCRIPTION OF STUDY *****************
* 185614 STARLIGHT SOLAR
* PR 0100 ONSITE AREAS D (SOUTHERLY FLOW) - H
* 2024-03-01
**************************
 FILE NAME: 614PRDH.DAT
 TIME/DATE OF STUDY: 08:53 03/02/2024
 ______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
 2003 SAN DIEGO MANUAL CRITERIA
 USER SPECIFIED STORM EVENT(YEAR) = 100.00
 6-HOUR DURATION PRECIPITATION (INCHES) = 3.000
 SPECIFIED MINIMUM PIPE SIZE(INCH) = 24.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.85
 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
 NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
   WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO.
   (FT)
         (FT) SIDE / SIDE/ WAY (FT) (FT) (FT)
30.0
         20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
*******************************
                     500.00 TO NODE
 FLOW PROCESS FROM NODE
                                   502.00 IS CODE = 21
    ......
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
```

```
USER-SPECIFIED RUNOFF COEFFICIENT = .2000
 S.C.S. CURVE NUMBER (AMC II) = 0
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 3646.00
 DOWNSTREAM ELEVATION(FEET) = 3640.00
 ELEVATION DIFFERENCE(FEET) = 6.00
 SUBAREA OVERLAND TIME OF FLOW(MIN.) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.903
 SUBAREA RUNOFF(CFS) = 0.37
 TOTAL AREA(ACRES) = 0.31 TOTAL RUNOFF(CFS) =
****************************
 FLOW PROCESS FROM NODE 502.00 TO NODE 504.00 IS CODE = 51
-----
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 3640.00 DOWNSTREAM(FEET) = 3590.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 808.00 CHANNEL SLOPE = 0.0619
 CHANNEL BASE(FEET) = 8.00 "Z" FACTOR = 15.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.505
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2000
 S.C.S. CURVE NUMBER (AMC II) =
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.29
 AVERAGE FLOW DEPTH(FEET) = 0.16 TRAVEL TIME(MIN.) = 4.09
 Tc(MIN.) = 11.95
 SUBAREA AREA(ACRES) = 11.62 SUBAREA RUNOFF(CFS) = 10.47
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.200
 TOTAL AREA(ACRES) =
                      11.9
                                PEAK FLOW RATE(CFS) = 10.75
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.23 FLOW VELOCITY(FEET/SEC.) = 4.00
 LONGEST FLOWPATH FROM NODE 500.00 TO NODE 504.00 =
                                                 894.00 FEET.
******************************
 FLOW PROCESS FROM NODE 504.00 TO NODE 520.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 3590.00 DOWNSTREAM(FEET) = 3500.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 1505.00 CHANNEL SLOPE = 0.0598
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 10.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 2.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.618
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2000
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 16.35
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 5.18
 AVERAGE FLOW DEPTH(FEET) = 0.56 TRAVEL TIME(MIN.) = 4.84
 Tc(MIN.) = 16.79
```

```
SUBAREA AREA(ACRES) = 15.42 SUBAREA RUNOFF(CFS) = 11.16
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.200
                             PEAK FLOW RATE(CFS) = 19.79
 TOTAL AREA(ACRES) =
                 27.4
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.61 FLOW VELOCITY(FEET/SEC.) = 5.40
 LONGEST FLOWPATH FROM NODE 500.00 TO NODE 520.00 = 2399.00 FEET.
******************************
 FLOW PROCESS FROM NODE 504.00 TO NODE 520.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 16.79
 RAINFALL INTENSITY(INCH/HR) = 3.62
 TOTAL STREAM AREA(ACRES) = 27.35
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
******************************
 FLOW PROCESS FROM NODE 510.00 TO NODE 512.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2000
 S.C.S. CURVE NUMBER (AMC II) = 0
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 3624.00
 DOWNSTREAM ELEVATION(FEET) = 3606.00
 ELEVATION DIFFERENCE(FEET) = 18.00
 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 7.444
 WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN TC CALCULATION!
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.115
 SUBAREA RUNOFF(CFS) = 0.16
                  0.13 TOTAL RUNOFF(CFS) =
 TOTAL AREA(ACRES) =
*****************************
 FLOW PROCESS FROM NODE 512.00 TO NODE 514.00 IS CODE = 51
-----
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 3606.00 DOWNSTREAM(FEET) = 3524.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 959.00 CHANNEL SLOPE = 0.0855
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 20.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.784
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2500
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 12.24
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 4.64
 AVERAGE FLOW DEPTH(FEET) = 0.36 TRAVEL TIME(MIN.) =
```

```
Tc(MIN.) = 10.89
 SUBAREA AREA(ACRES) = 20.24 SUBAREA RUNOFF(CFS) = 24.21
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.250
 TOTAL AREA(ACRES) = 20.4
                          PEAK FLOW RATE(CFS) = 24.33
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.47 FLOW VELOCITY(FEET/SEC.) = 5.50
 LONGEST FLOWPATH FROM NODE 510.00 TO NODE 514.00 =
                                               1057.00 FEET.
**********************************
 FLOW PROCESS FROM NODE 514.00 TO NODE 520.00 IS CODE = 51
-----
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<
_____
 ELEVATION DATA: UPSTREAM(FEET) = 3524.00 DOWNSTREAM(FEET) = 3500.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 671.00 CHANNEL SLOPE = 0.0358
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 40.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 2.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.079
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2500
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 34.51
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.66
 AVERAGE FLOW DEPTH(FEET) = 0.49 TRAVEL TIME(MIN.) = 3.05
 Tc(MIN.) = 13.95
 SUBAREA AREA(ACRES) = 19.92 SUBAREA RUNOFF(CFS) = 20.31
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.250
 TOTAL AREA(ACRES) = 40.3
                              PEAK FLOW RATE(CFS) = 41.06
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.52 FLOW VELOCITY(FEET/SEC.) = 3.77
 LONGEST FLOWPATH FROM NODE 510.00 TO NODE 520.00 = 1728.00 FEET.
******************************
 FLOW PROCESS FROM NODE 514.00 TO NODE 520.00 IS CODE =
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 13.95
 RAINFALL INTENSITY(INCH/HR) = 4.08
 TOTAL STREAM AREA(ACRES) = 40.29
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 41.06
 ** CONFLUENCE DATA **
 STREAM RUNOFF
                 Tc INTENSITY
                                    AREA
                (MIN.)
 NUMBER
        (CFS)
                         (INCH/HOUR) (ACRE)
         19.79 16.79 3.618 27.35
    1
         41.06 13.95
                          4.079
                                     40.29
```

RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO

```
CONFLUENCE FORMULA USED FOR 2 STREAMS.
```

```
** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC INTENSITY
 NUMBER
         (CFS) (MIN.) (INCH/HOUR)
         57.49 13.95 4.079
56.21 16.79 3.618
    1
    2
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 57.49 Tc(MIN.) = 13.95
 TOTAL AREA(ACRES) = 67.6
 LONGEST FLOWPATH FROM NODE 500.00 TO NODE 520.00 = 2399.00 FEET.
*****************************
 FLOW PROCESS FROM NODE 520.00 TO NODE 522.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 3500.00 DOWNSTREAM(FEET) = 3484.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 1157.00 CHANNEL SLOPE = 0.0138
 CHANNEL BASE(FEET) = 13.00 "Z" FACTOR = 10.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 2.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.386
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2600
 S.C.S. CURVE NUMBER (AMC II) =
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 74.51
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 4.13
 AVERAGE FLOW DEPTH(FEET) = 0.84 TRAVEL TIME(MIN.) = 4.67
 Tc(MIN.) = 18.61
 SUBAREA AREA(ACRES) = 38.66 SUBAREA RUNOFF(CFS) = 34.03
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.241
 TOTAL AREA(ACRES) =
                   106.3 PEAK FLOW RATE(CFS) = 86.63
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.91 FLOW VELOCITY(FEET/SEC.) = 4.34
 LONGEST FLOWPATH FROM NODE 500.00 TO NODE 522.00 = 3556.00 FEET.
*******************************
 FLOW PROCESS FROM NODE 522.00 TO NODE 524.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 3484.00 DOWNSTREAM(FEET) = 3450.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 1621.00 CHANNEL SLOPE = 0.0210
 CHANNEL BASE(FEET) = 11.00 "Z" FACTOR = 16.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 2.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.846
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2000
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 93.06
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 4.70
```

```
AVERAGE FLOW DEPTH(FEET) = 0.82 TRAVEL TIME(MIN.) = 5.75
 Tc(MIN.) = 24.37
 SUBAREA AREA(ACRES) = 22.59 SUBAREA RUNOFF(CFS) = 12.86
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.234
 TOTAL AREA(ACRES) = 128.9
                              PEAK FLOW RATE(CFS) = 86.63
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.79 FLOW VELOCITY(FEET/SEC.) = 4.63
 LONGEST FLOWPATH FROM NODE 500.00 TO NODE 524.00 = 5177.00 FEET.
******************************
 FLOW PROCESS FROM NODE 524.00 TO NODE 524.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>><>
______
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.846
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2000
 S.C.S. CURVE NUMBER (AMC II) = 0
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.2285
 SUBAREA AREA(ACRES) = 22.73 SUBAREA RUNOFF(CFS) = 12.94
 TOTAL AREA(ACRES) = 151.6 TOTAL RUNOFF(CFS) = 98.61
 TC(MIN.) = 24.37
******************************
 FLOW PROCESS FROM NODE 524.00 TO NODE 526.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 3450.00 DOWNSTREAM(FEET) = 3430.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 1313.00 CHANNEL SLOPE = 0.0152
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 50.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.440
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2000
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.34
 AVERAGE FLOW DEPTH(FEET) = 0.80 TRAVEL TIME(MIN.) = 6.56
 Tc(MIN.) =
           30.93
 SUBAREA AREA(ACRES) = 31.42 SUBAREA RUNOFF(CFS) = 15.33
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.224
 TOTAL AREA(ACRES) = 183.0 PEAK FLOW RATE(CFS) = 99.89
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.78 FLOW VELOCITY(FEET/SEC.) = 3.27
 LONGEST FLOWPATH FROM NODE 500.00 TO NODE 526.00 = 6490.00 FEET.
****************************
 FLOW PROCESS FROM NODE 526.00 TO NODE 550.00 IS CODE = 51
-----
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
```

```
ELEVATION DATA: UPSTREAM(FEET) = 3430.00 DOWNSTREAM(FEET) = 3420.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 1665.00 CHANNEL SLOPE = 0.0060
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 40.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.000
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2000
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.49
 AVERAGE FLOW DEPTH(FEET) = 1.04 TRAVEL TIME(MIN.) = 11.16
 Tc(MIN.) = 42.08
 SUBAREA AREA(ACRES) = 41.01 SUBAREA RUNOFF(CFS) = 16.41
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.219
                            PEAK FLOW RATE(CFS) = 99.89
 TOTAL AREA(ACRES) = 224.0
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 1.01 FLOW VELOCITY(FEET/SEC.) = 2.44
 LONGEST FLOWPATH FROM NODE 500.00 TO NODE 550.00 = 8155.00 FEET.
*******************************
 FLOW PROCESS FROM NODE 526.00 TO NODE 550.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 42.08
 RAINFALL INTENSITY(INCH/HR) = 2.00
 TOTAL STREAM AREA(ACRES) = 224.05
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 99.89
******************************
 FLOW PROCESS FROM NODE 530.00 TO NODE 532.00 IS CODE = 21
......
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2600
 S.C.S. CURVE NUMBER (AMC II) = 0
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 UPSTREAM ELEVATION(FEET) = 3552.00
 DOWNSTREAM ELEVATION(FEET) = 3518.00
 ELEVATION DIFFERENCE(FEET) = 34.00
 SUBAREA OVERLAND TIME OF FLOW(MIN.) =
                                7.019
 WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN To CALCULATION!
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.351
 SUBAREA RUNOFF(CFS) = 1.87
 TOTAL AREA(ACRES) = 1.13 TOTAL RUNOFF(CFS) = 1.87
**************************
 FLOW PROCESS FROM NODE 532.00 TO NODE 534.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
```

```
>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 3518.00 DOWNSTREAM(FEET) = 3480.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 794.00 CHANNEL SLOPE = 0.0479
 CHANNEL BASE(FEET) = 10.00 "Z" FACTOR = 20.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.805
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2600
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 11.94
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) =
 AVERAGE FLOW DEPTH(FEET) = 0.23 TRAVEL TIME(MIN.) = 3.80
 Tc(MIN.) = 10.82
                             SUBAREA RUNOFF(CFS) = 19.86
 SUBAREA AREA(ACRES) = 15.90
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.260
 TOTAL AREA(ACRES) = 17.0
                            PEAK FLOW RATE(CFS) = 21.27
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.32 FLOW VELOCITY(FEET/SEC.) = 4.10
 LONGEST FLOWPATH FROM NODE 530.00 TO NODE 534.00 =
                                                 894.00 FEET.
*******************************
 FLOW PROCESS FROM NODE 534.00 TO NODE 536.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 3480.00 DOWNSTREAM(FEET) = 3456.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 831.00 CHANNEL SLOPE = 0.0289
 CHANNEL BASE(FEET) = 3.00 "Z" FACTOR = 35.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 2.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.909
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2000
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 31.08
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.40
 AVERAGE FLOW DEPTH(FEET) = 0.47 TRAVEL TIME(MIN.) = 4.08
 Tc(MIN.) = 14.89
 SUBAREA AREA(ACRES) = 24.94 SUBAREA RUNOFF(CFS) = 19.50
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.224
 TOTAL AREA(ACRES) = 42.0 PEAK FLOW RATE(CFS) = 36.81
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.51 FLOW VELOCITY(FEET/SEC.) = 3.51
 LONGEST FLOWPATH FROM NODE 530.00 TO NODE 536.00 = 1725.00 FEET.
******************************
 FLOW PROCESS FROM NODE 536.00 TO NODE 538.00 IS CODE = 51
-----
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 3456.00 DOWNSTREAM(FEET) = 3440.00
```

```
CHANNEL LENGTH THRU SUBAREA(FEET) = 1314.00 CHANNEL SLOPE = 0.0122
 CHANNEL BASE(FEET) = 10.00 "Z" FACTOR = 80.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 2.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.814
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2000
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 47.76
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.21
 AVERAGE FLOW DEPTH(FEET) = 0.46 TRAVEL TIME(MIN.) = 9.89
 Tc(MIN.) = 24.79
 SUBAREA AREA(ACRES) = 38.62 SUBAREA RUNOFF(CFS) = 21.74
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.213
 TOTAL AREA(ACRES) = 80.6 PEAK FLOW RATE(CFS) = 48.24
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.46 FLOW VELOCITY(FEET/SEC.) = 2.22
 LONGEST FLOWPATH FROM NODE 530.00 TO NODE 538.00 = 3039.00 FEET.
****************************
 FLOW PROCESS FROM NODE 538.00 TO NODE 550.00 IS CODE = 51
------
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 3440.00 DOWNSTREAM(FEET) = 3420.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 940.00 CHANNEL SLOPE = 0.0213
 CHANNEL BASE(FEET) = 10.00 "Z" FACTOR = 60.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 2.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.490
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .2000
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.02
 AVERAGE FLOW DEPTH(FEET) = 0.46 TRAVEL TIME(MIN.) = 5.18
 Tc(MIN.) =
          29.97
 SUBAREA AREA(ACRES) = 18.34 SUBAREA RUNOFF(CFS) = 9.13
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.210
 TOTAL AREA(ACRES) = 98.9
                            PEAK FLOW RATE(CFS) = 51.82
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.46 FLOW VELOCITY(FEET/SEC.) = 2.99
 LONGEST FLOWPATH FROM NODE 530.00 TO NODE 550.00 = 3979.00 FEET.
******************************
 FLOW PROCESS FROM NODE 538.00 TO NODE 550.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<>
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 29.97
 RAINFALL INTENSITY(INCH/HR) = 2.49
```

TOTAL STREAM AREA(ACRES) = 98.93
PEAK FLOW RATE(CFS) AT CONFLUENCE = 51.82

**	CONF	LUENCE	DATA	**
----	------	--------	------	----

STREAM	RUNOFF	Tc	INTENSITY	AREA
NUMBER	(CFS)	(MIN.)	(INCH/HOUR)	(ACRE)
1	99.89	42.08	2.000	224.05
2	51.82	29.97	2.490	98.93

RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS.

**	PFAK	FLOW	RATF	TABLE	**

STREAM	RUNOFF	Tc	INTENSITY
NUMBER	(CFS)	(MIN.)	(INCH/HOUR)
1	132.06	29.97	2.490
2	141.52	42.08	2.000

COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:

PEAK FLOW RATE(CFS) = 141.52 Tc(MIN.) = 42.08

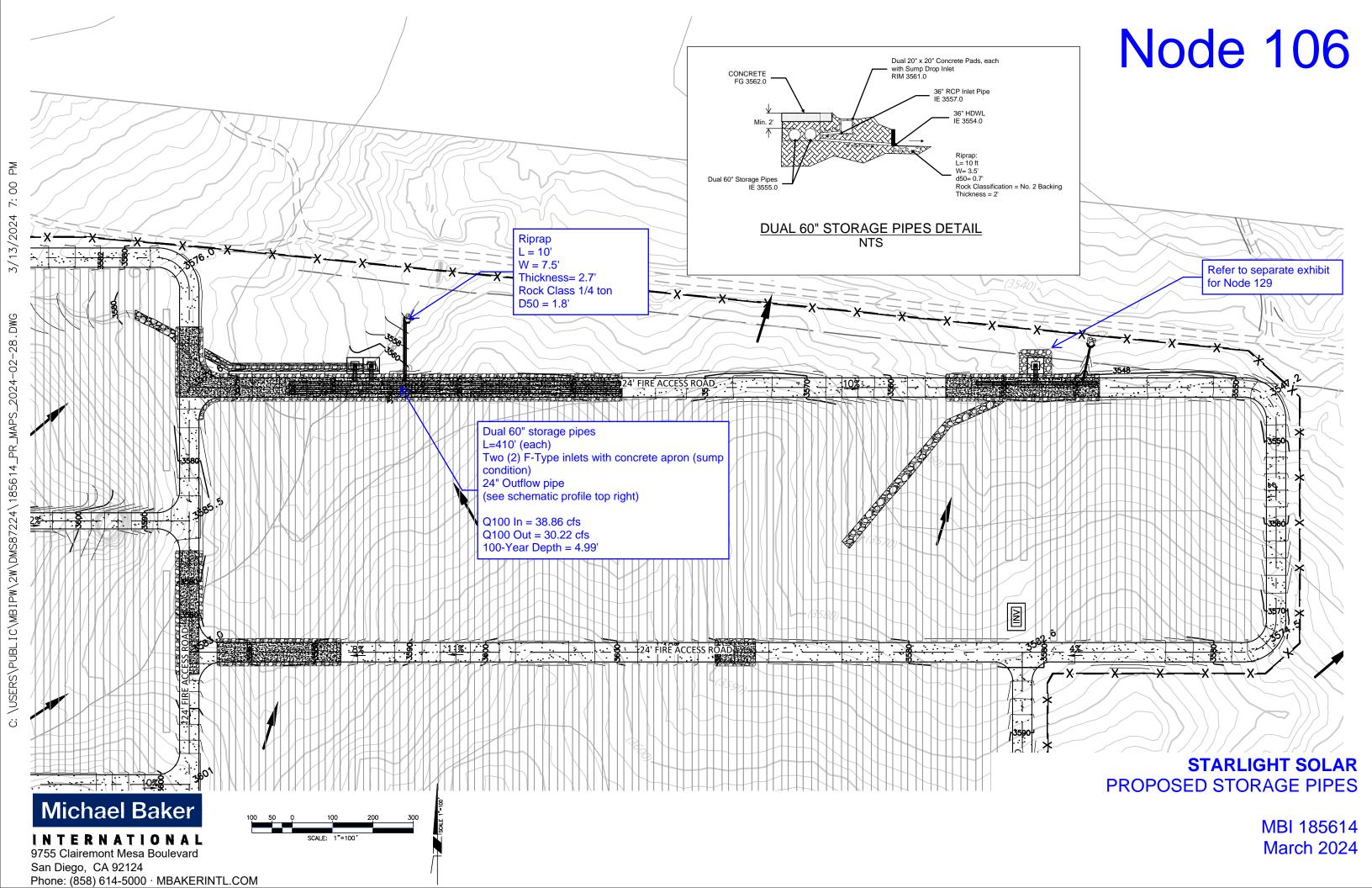
TOTAL AREA(ACRES) = 323.0

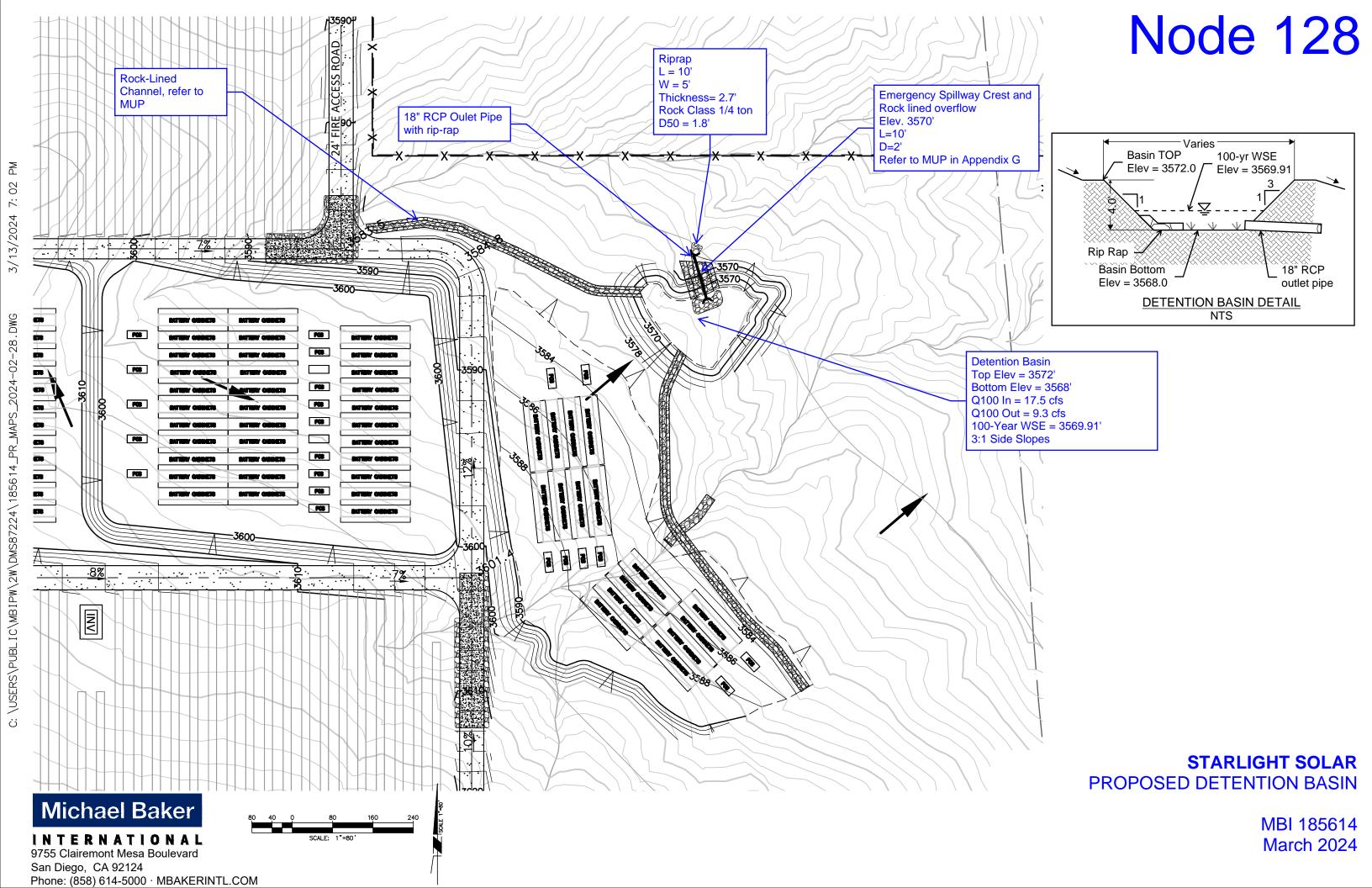
LONGEST FLOWPATH FROM NODE 500.00 TO NODE 550.00 = 8155.00 FEET.

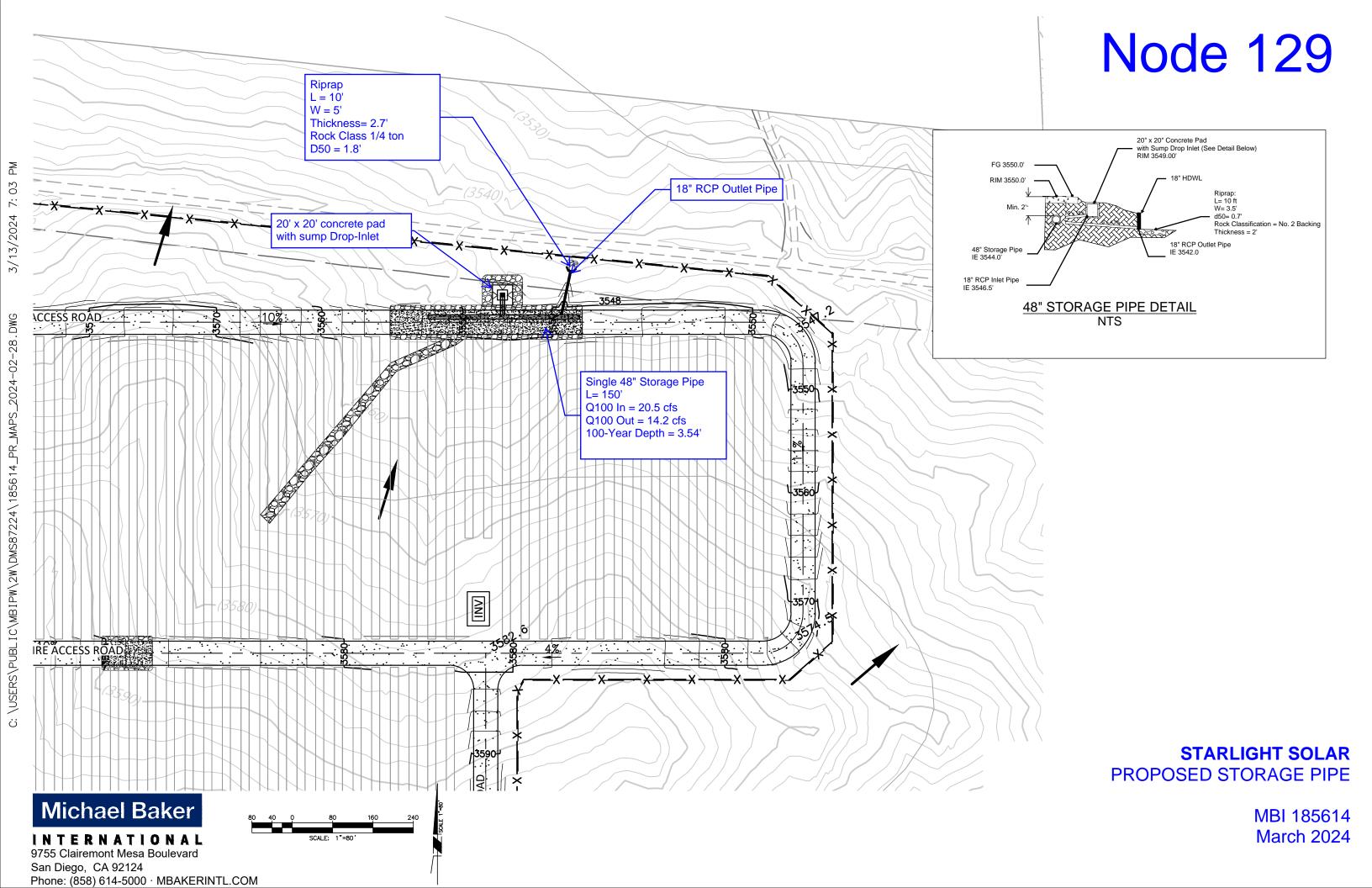
END OF STUDY SUMMARY:

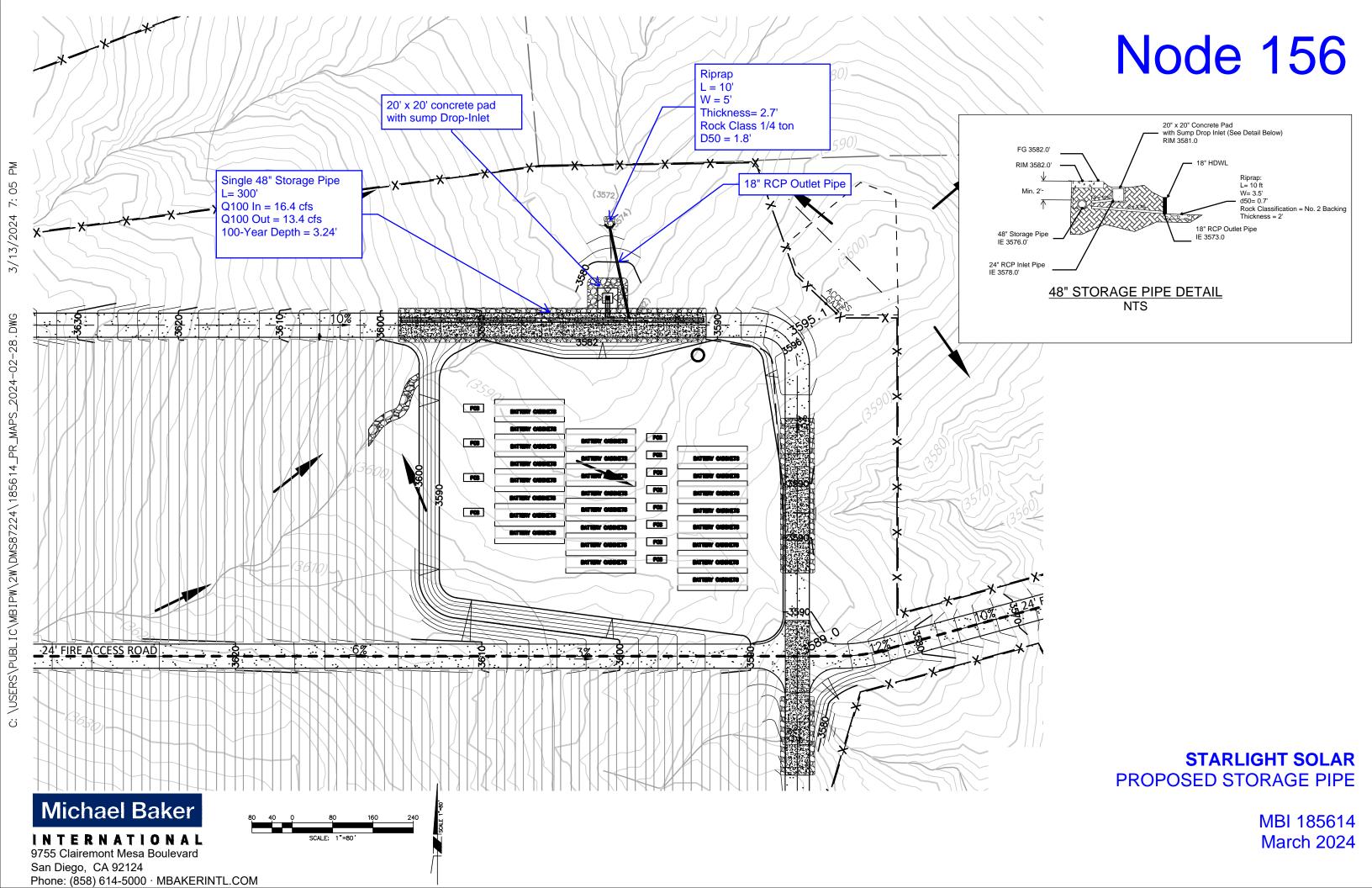
TOTAL AREA(ACRES) = 323.0 TC(MIN.) = 42.08

PEAK FLOW RATE(CFS) = 141.52

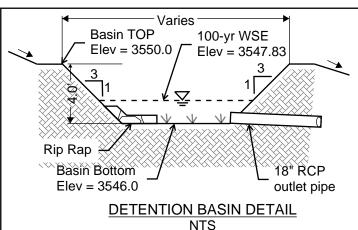

END OF RATIONAL METHOD ANALYSIS


♠




<u>Appendix D –</u> <u>Proposed Detention Basin</u> (<u>Mitigated Peak Flow</u>)

Exhibits Hydraflow Hydrographs Input/Output



8: 17

3/14/2024

C: \USERS\PUBLIC\MBIPW\2W\DMS87224\185614_PR_MAPS_2024-02-28.DWG

Node 165

STARLIGHT SOLARPROPOSED DETENTION BASIN

MBI 185614 March 2024

RUN DATE 2/27/2024
HYDROGRAPH FILE NAME Text1
TIME OF CONCENTRATION 34 MIN.
6 HOUR RAINFALL 3 INCHES
BASIN AREA 73.4 ACRES
RUNOFF COEFFICIENT 0.23
PEAK DISCHARGE 38.86 CFS

TIME (MIN) = 0	DISCHARGE (CFS) = 0
TIME (MIN) = 34	DISCHARGE (CFS) = 3
TIME (MIN) = 68	DISCHARGE (CFS) = 3.5
TIME (MIN) = 102	DISCHARGE (CFS) = 3.8
TIME (MIN) = 136	DISCHARGE (CFS) = 4.6
TIME (MIN) = 170	DISCHARGE (CFS) = 5.2
TIME (MIN) = 204	DISCHARGE (CFS) = 7.7
TIME (MIN) = 238	DISCHARGE (CFS) = 10.7
TIME (MIN) = 272	DISCHARGE (CFS) = 38.86
TIME (MIN) = 306	DISCHARGE (CFS) = 6.2
TIME (MIN) = 340	DISCHARGE (CFS) = 4.1
TIME (MIN) = 374	DISCHARGE (CFS) = 3.2
TIME (MIN) = 408	DISCHARGE (CFS) = 0

RUN DATE 2/27/2024
HYDROGRAPH FILE NAME Text1
TIME OF CONCENTRATION 21 MIN.
6 HOUR RAINFALL 3 INCHES
BASIN AREA 24.2 ACRES
RUNOFF COEFFICIENT 0.23
PEAK DISCHARGE 17.45 CFS

TIME (MIN) = 0

TIME (MIN) = 21

TIME (MIN) = 21

TIME (MIN) = 42

TIME (MIN) = 42

TIME (MIN) = 63

TIME (MIN) = 84

TIME (MIN) = 105

TIME (MIN) = 105

TIME (MIN) = 126

TIME (MIN) = 126

TIME (MIN) = 147

TIME (MIN) = 147

TIME (MIN) = 168

TIME (MIN) = 189

TIME (MIN) = 210

TIME (MIN) = 231

TIME (MIN) = 231

TIME (MIN) = 252

TIME (MIN) = 273

TIME (MIN) = 294

TIME (MIN) = 315

TIME (MIN) = 336

TIME (MIN) = 336

TIME (MIN) = 357

TIME (MIN) = 378

DISCHARGE (CFS) = 1.4

TIME (MIN) = 378

DISCHARGE (CFS) = 1.9

DISCHARGE (CFS) = 1.2

TIME (MIN) = 378

DISCHARGE (CFS) = 1.2

TIME (MIN) = 378

DISCHARGE (CFS) = 1.2

TIME (MIN) = 378

DISCHARGE (CFS) = 1.1

RUN DATE 2/27/2024 HYDROGRAPH FILE NAME Text1 TIME OF CONCENTRATION 5 MIN. 6 HOUR RAINFALL 3 INCHES BASIN AREA 11.32 ACRES RUNOFF COEFFICIENT 0.23

BASIN AREA 11.32 ACRES RUNOFF COEFFICIENT 0.23 PEAK DISCHARGE 20.5 CFS TIME (MIN) = 0DISCHARGE (CFS) = 0 TIME(MIN) = 5DISCHARGE (CFS) = 0.5 TIME(MIN) = 10DISCHARGE (CFS) = 0.5 TIME (MIN) = 15DISCHARGE (CFS) = 0.5DISCHARGE (CFS) = 0.5 DISCHARGE (CFS) = 0.5 TIME (MIN) = 20 TIME (MIN) = 25TIME(MIN) = 30DISCHARGE (CFS) = 0.5 DISCHARGE (CFS) = 0.5 TIME (MIN) = 35TIME (MIN) = 40DISCHARGE (CFS) = 0.5 DISCHARGE (CFS) = 0.5 TIME (MIN) = 45TIME(MIN) = 50DISCHARGE (CFS) = 0.5 TIME (MIN) = 55DISCHARGE (CFS) = 0.5 TIME (MIN) = 60TIME (MIN) = 65DISCHARGE (CFS) = 0.5 DISCHARGE (CFS) = 0.6 TIME(MIN) = 70DISCHARGE (CFS) = 0.6 DISCHARGE (CFS) = 0.6 TIME (MIN) = 75TIME (MIN) = 80TIME (MIN) = 85DISCHARGE (CFS) = 0.6 DISCHARGE (CFS) = 0.6 TIME (MIN) = 90DISCHARGE (CFS) = 0.6 TIME (MIN) = 95DISCHARGE (CFS) = 0.6 DISCHARGE (CFS) = 0.6 DISCHARGE (CFS) = 0.7 TIME(MIN) = 100TIME (MIN) = 105TIME (MIN) = 110DISCHARGE (CFS) = 0.7 DISCHARGE (CFS) = 0.7 TIME (MIN) = 115TIME (MIN) = 120DISCHARGE (CFS) = 0.7DISCHARGE (CFS) = 0.7 TIME (MIN) = 125DISCHARGE (CFS) = 0.7 TIME (MIN) = 130TIME (MIN) = 135DISCHARGE (CFS) = 0.8 TIME (MIN) = 140 TIME (MIN) = 145 DISCHARGE (CFS) = 0.8 DISCHARGE (CFS) = 0.8 TIME(MIN) = 150DISCHARGE (CFS) = 0.8 TIME (MIN) = 155DISCHARGE (CFS) = 0.9 DISCHARGE (CFS) = 0.9 DISCHARGE (CFS) = 1 TIME (MIN) = 160 TIME (MIN) = 165TIME(MIN) = 170DISCHARGE (CFS) = 1 TIME (MIN) = 175DISCHARGE (CFS) = 1 DISCHARGE (CFS) = 1.1 TIME (MIN) = 180TIME (MIN) = 185 TIME (MIN) = 190 DISCHARGE (CFS) = 1.2 DISCHARGE (CFS) = 1.2 TIME (MIN) = 195DISCHARGE (CFS) = 1.3 TIME (MIN) = 200DISCHARGE (CFS) = 1.4 DISCHARGE (CFS) = 1.5 TIME (MIN) = 205TIME(MIN) = 210DISCHARGE (CFS) = 1.6 TIME (MIN) = 215DISCHARGE (CFS) = 1.8DISCHARGE (CFS) = 2 DISCHARGE (CFS) = 2.4 TIME (MIN) = 220TIME (MIN) = 225TIME (MIN) = 230DISCHARGE (CFS) = 2.8 TIME (MIN) = 235DISCHARGE (CFS) = 4.1 TIME (MIN) = 240 TIME (MIN) = 245 DISCHARGE (CFS) = 5.8 DISCHARGE (CFS) = 20.5 DISCHARGE (CFS) = 3.3 TIME (MIN) = 250TIME (MIN) = 255DISCHARGE (CFS) = 2.2 TIME (MIN) = 260DISCHARGE (CFS) = 1.7 TIME (MIN) = 265 TIME (MIN) = 270 DISCHARGE (CFS) = 1.4 DISCHARGE (CFS) = 1.2 TIME (MIN) = 275DISCHARGE (CFS) = 1.1 TIME (MIN) = 280 TIME (MIN) = 285 DISCHARGE (CFS) = 1 DISCHARGE (CFS) = 0.9 TIME(MIN) = 290DISCHARGE (CFS) = 0.9 TIME (MIN) = 295DISCHARGE (CFS) = 0.8 DISCHARGE (CFS) = 0.8 DISCHARGE (CFS) = 0.7 TIME (MIN) = 300 TIME (MIN) = 305TIME(MIN) = 310DISCHARGE (CFS) = 0.7 TIME (MIN) = 315DISCHARGE (CFS) = 0.7 TIME (MIN) = 320TIME (MIN) = 325DISCHARGE (CFS) = 0.6DISCHARGE (CFS) = 0.6TIME (MIN) = 330DISCHARGE (CFS) = 0.6 TIME (MIN) = 335DISCHARGE (CFS) = 0.6 TIME (MIN) = 340DISCHARGE (CFS) = 0.5DISCHARGE (CFS) = 0.5 TIME (MIN) = 345TIME (MIN) = 350DISCHARGE (CFS) = 0.5

DISCHARGE (CFS) = 0.5

DISCHARGE (CFS) = 0.5

DISCHARGE (CFS) = 0

TIME (MIN) = 355 TIME (MIN) = 360

TIME (MIN) = 365

RUN DATE 2/27/2024
HYDROGRAPH FILE NAME Text1
TIME OF CONCENTRATION 18 MIN.
6 HOUR RAINFALL 3 INCHES
BASIN AREA 21 ACRES
RUNOFF COEFFICIENT 0.23
PEAK DISCHARGE 16.44 CFS

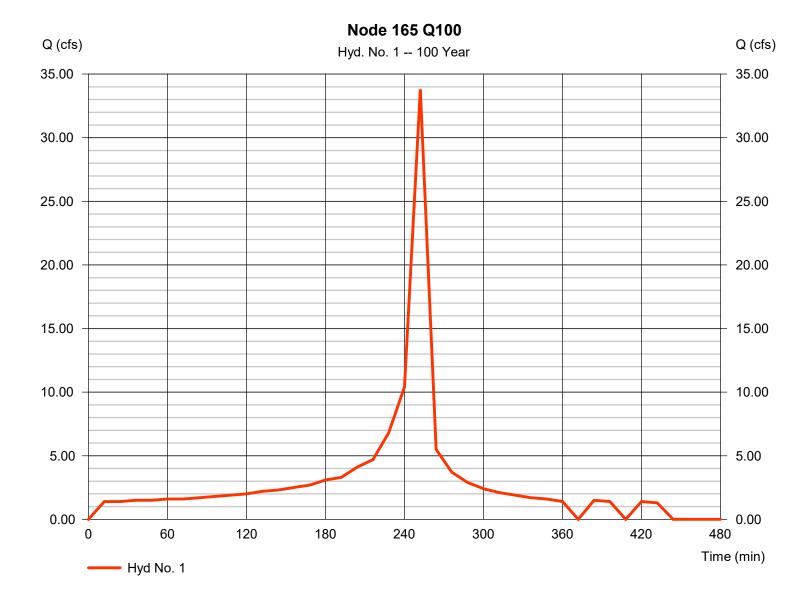
TIME (MIN) = 0 TIME (MIN) = 18 DISCHARGE (CFS) = 0 DISCHARGE (CFS) = 0.9 DISCHARGE (CFS) = 0.9 TIME (MIN) = 36DISCHARGE (CFS) = 1 DISCHARGE (CFS) = 1.1 DISCHARGE (CFS) = 1.1 TIME(MIN) = 54TIME (MIN) = 72 TIME (MIN) = 90 DISCHARGE (CFS) = 1.2 DISCHARGE (CFS) = 1.3 TIME (MIN) = 108TIME (MIN) = 126TIME (MIN) = 144 TIME (MIN) = 162 TIME (MIN) = 180 DISCHARGE (CFS) = 1.5 DISCHARGE (CFS) = 1.6 DISCHARGE (CFS) = 2 TIME (MIN) = 198DISCHARGE (CFS) = 2.3 TIME (MIN) = 216 TIME (MIN) = 234 DISCHARGE (CFS) = 3.3 DISCHARGE (CFS) = 4.9 DISCHARGE (CFS) = 16.44 TIME (MIN) = 252TIME (MIN) = 270DISCHARGE (CFS) = 2.7 TIME (MIN) = 288 TIME (MIN) = 306 TIME (MIN) = 324 DISCHARGE (CFS) = 1.8 DISCHARGE (CFS) = 1.4 DISCHARGE (CFS) = 1.2 TIME (MIN) = 342DISCHARGE (CFS) = 1 TIME (MIN) = 360 TIME (MIN) = 378 DISCHARGE (CFS) = 0.9 DISCHARGE (CFS) = 0

RUN DATE 2/27/2024
HYDROGRAPH FILE NAME Text1
TIME OF CONCENTRATION 12 MIN.
6 HOUR RAINFALL 3 INCHES
BASIN AREA 33.4 ACRES
RUNOFF COEFFICIENT 0.23
PEAK DISCHARGE 33.8 CFS

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	Manual	33.80	12	252	87,192				Node 165 Q100
2	Reservoir	8.985	12	264	87,160	1	101.97	39,117	Mitigated Q100
4	Manual	16.44	18	252	55,663				Node 156 Q100
5	Reservoir	13.44	18	252	55,922	4	103.24	3,271	Mitigated Q100
7	Manual	17.45	21	252	63,063				Node 128 Q100
8	Reservoir	9.346	21	273	63,050	7	101.91	15,236	Mitigated Q100
10	Manual	38.86	34	272	199,226				Node 106 Q100
11	Reservoir	30.22	34	272	200,132	10	104.99	16,093	Mitigated Q100
13	Manual	20.50	5	245	28,200				Node 129 Q100
14	Reservoir	14.21	5	245	28,199	13	103.54	1,762	Mitigated Q100


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

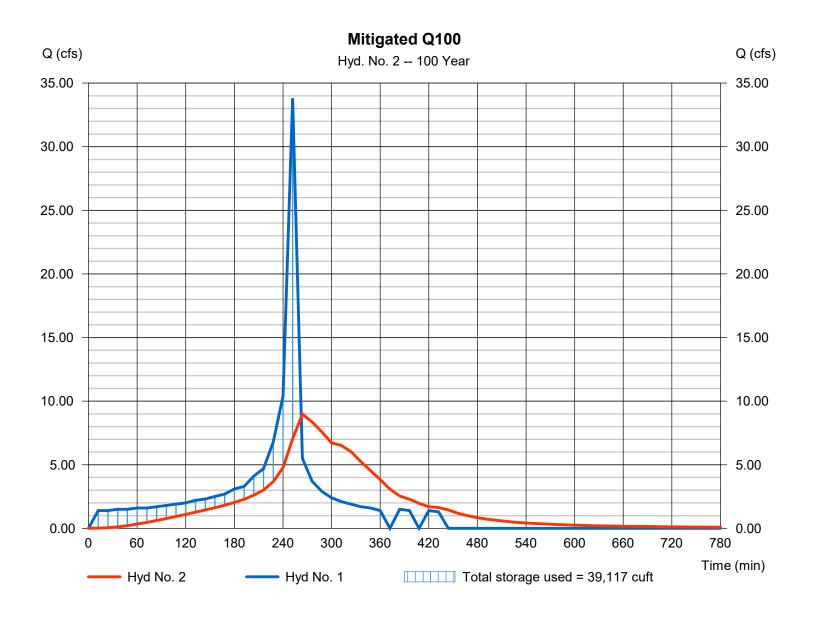
Saturday, 03 / 2 / 2024

Hyd. No. 1

Node 165 Q100

Hydrograph type= ManualPeak discharge= 33.80 cfsStorm frequency= 100 yrsTime to peak= 252 minTime interval= 12 minHyd. volume= 87,192 cuft

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022


Saturday, 03 / 2 / 2024

Hyd. No. 2

Mitigated Q100

Hydrograph type Peak discharge = 8.985 cfs= Reservoir Storm frequency = 100 yrsTime to peak = 264 min Time interval = 12 min Hyd. volume = 87,160 cuftInflow hyd. No. Max. Elevation = 1 - Node 165 Q100 = 101.97 ftReservoir name = Node 165 Det. Basin Max. Storage = 39,117 cuft

Storage Indication method used.

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Saturday, 03 / 2 / 2024

Pond No. 1 - Node 165 Det. Basin

Pond Data

Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 100.00 ft

Stage / Storage Table

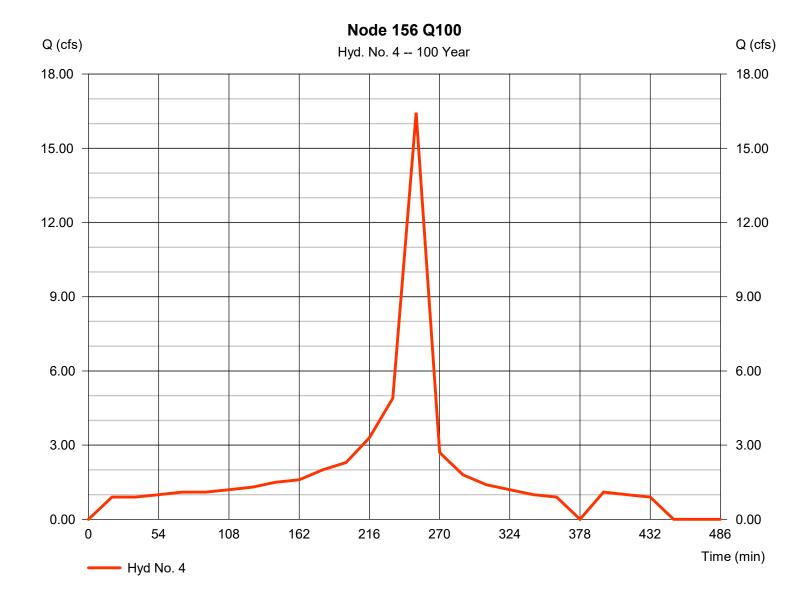
Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	100.00	15,000	0	0
1.00	101.00	20,000	17,438	17,438
2.00	102.00	25,000	22,451	39,890
3.00	103.00	50,000	36,781	76,671

Culvert / Orifice Structures Weir Structures [PrfRsr] [A] [B] [C] [D] [A] [B] [C] Rise (in) = 18.00 0.00 0.00 0.00 Crest Len (ft) = 100.00 0.00 0.00 0.00 = 18.00 0.00 0.00 0.00 Crest El. (ft) = 102.00 0.00 0.00 0.00 Span (in) No. Barrels = 1 0 0 Weir Coeff. = 3.33 3.33 3.33 3.33 = 100.00 0.00 0.00 0.00 Weir Type = Rect Invert El. (ft) = 50.00 0.00 0.00 0.00 Multi-Stage Length (ft) = No No No No = 1.00 0.00 0.00 n/a Slope (%) N-Value = .013 .013 .013 n/a 0.60 = 0.000 (by Contour) = 0.600.60 0.60 Exfil.(in/hr) Orifice Coeff. Multi-Stage = n/a No No TW Elev. (ft) = 0.00

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Stage /	Storage I	/ Discharge	Table
---------	-----------	-------------	-------

Stage ft	Storage cuft	Elevation ft	CIv A cfs	CIv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
	•	400.00											
0.00		100.00	0.00				0.00						0.000
0.10	1,744	100.10	0.05 ic				0.00						0.055
0.20	3,488	100.20	0.21 ic				0.00						0.213
0.30	5,232	100.30	0.47 ic				0.00						0.471
0.40	6,975	100.40	0.81 ic				0.00						0.815
0.50	8,719	100.50	1.24 ic				0.00						1.243
0.60	10,463	100.60	1.74 ic				0.00						1.742
0.70	12,207	100.70	2.31 ic				0.00						2.306
0.80	13,951	100.80	2.92 ic				0.00						2.922
0.90	15,695	100.90	3.58 ic				0.00						3.580
1.00	17,438	101.00	4.26 ic				0.00						4.265
1.10	19,684	101.10	4.96 ic				0.00						4.964
1.20	21,929	101.20	5.65 ic				0.00						5.654
1.30	24,174	101.30	6.22 oc				0.00						6.224
1.40	26,419	101.40	6.51 oc				0.00						6.513
1.50	28,664	101.50	6.47 oc				0.00						6.470
1.60	30,909	101.60	7.08 oc				0.00						7.085
1.70	33,154	101.70	7.65 oc				0.00						7.652
1.80	35,399	101.80	8.18 oc				0.00						8.181
1.90	37,645	101.90	8.68 oc				0.00						8.677
2.00	39,890	102.00	9.15 oc				0.00						9.146
2.10	43,568	102.10	9.59 oc				10.53						20.12
2.20	47,246	102.20	10.02 oc				29.78						39.80
2.30	50,924	102.30	10.43 oc				54.72						65.14
2.40	54,602	102.40	10.82 oc				84.24						95.06
2.50	58,280	102.50	11.20 oc				117.73						128.93
2.60	61,959	102.60	11.57 oc				154.76						166.33
2.70	65,637	102.70	11.88 ic				195.02						206.90
2.80	69,315	102.80	12.18 ic				238.27						250.45
2.90	72.993	102.90	12.47 ic				284.31						296.79
3.00	76,671	103.00	12.76 ic				333.00						345.76


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

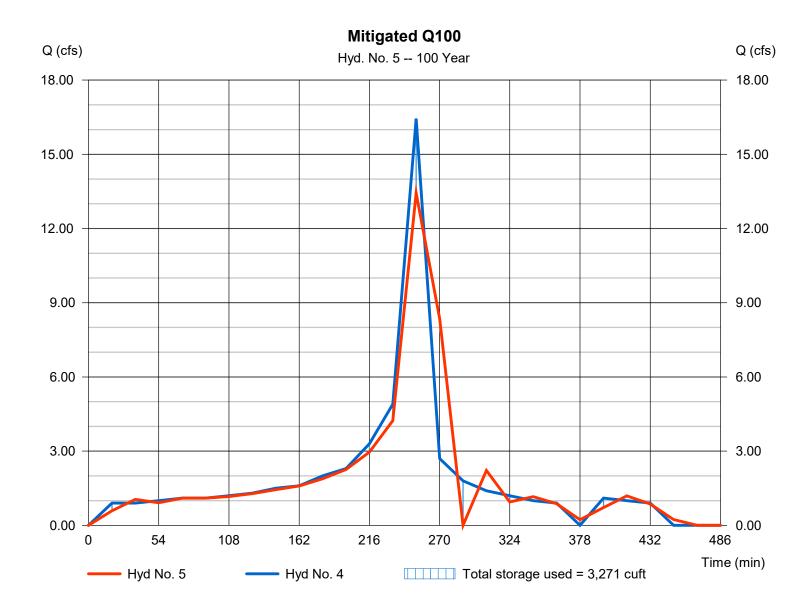
Saturday, 03 / 2 / 2024

Hyd. No. 4

Node 156 Q100

Hydrograph type= ManualPeak discharge= 16.44 cfsStorm frequency= 100 yrsTime to peak= 252 minTime interval= 18 minHyd. volume= 55,663 cuft

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022


Saturday, 03 / 2 / 2024

Hyd. No. 5

Mitigated Q100

Hydrograph type Peak discharge = 13.44 cfs= Reservoir Storm frequency = 100 yrsTime to peak = 252 min Time interval = 18 min Hyd. volume = 55,922 cuft Inflow hyd. No. Max. Elevation = 103.24 ft= 4 - Node 156 Q100 Reservoir name = Node 156 Pipe Storage Max. Storage = 3,271 cuft

Storage Indication method used.

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Saturday, 03 / 2 / 2024

Pond No. 3 - Node 156 Pipe Storage

Pond Data

UG Chambers -Invert elev. = 100.00 ft, Rise x Span = 4.00 x 4.00 ft, Barrel Len = 300.00 ft, No. Barrels = 1, Slope = 0.00%, Headers = No

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	100.00	n/a	0	0
0.40	100.40	n/a	197	197
0.80	100.80	n/a	341	537
1.20	101.20	n/a	415	952
1.60	101.60	n/a	457	1,409
2.00	102.00	n/a	477	1,886
2.40	102.40	n/a	477	2,363
2.80	102.80	n/a	457	2,820
3.20	103.20	n/a	414	3,234
3.60	103.60	n/a	341	3,575
4.00	104.00	n/a	196	3,771

Culvert / Orifice Structures

Weir Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 18.00	0.00	0.00	0.00	Crest Len (ft)	= 0.00	0.00	0.00	0.00
Span (in)	= 18.00	0.00	0.00	0.00	Crest El. (ft)	= 0.00	0.00	0.00	0.00
No. Barrels	= 1	0	0	0	Weir Coeff.	= 3.33	3.33	3.33	3.33
Invert El. (ft)	= 100.00	0.00	0.00	0.00	Weir Type	=			
Length (ft)	= 15.00	0.00	0.00	0.00	Multi-Stage	= No	No	No	No
Slope (%)	= 1.00	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	/ Wet area)		
Multi-Stage	= n/a	No	No	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Stage / Storage / Discharge Table

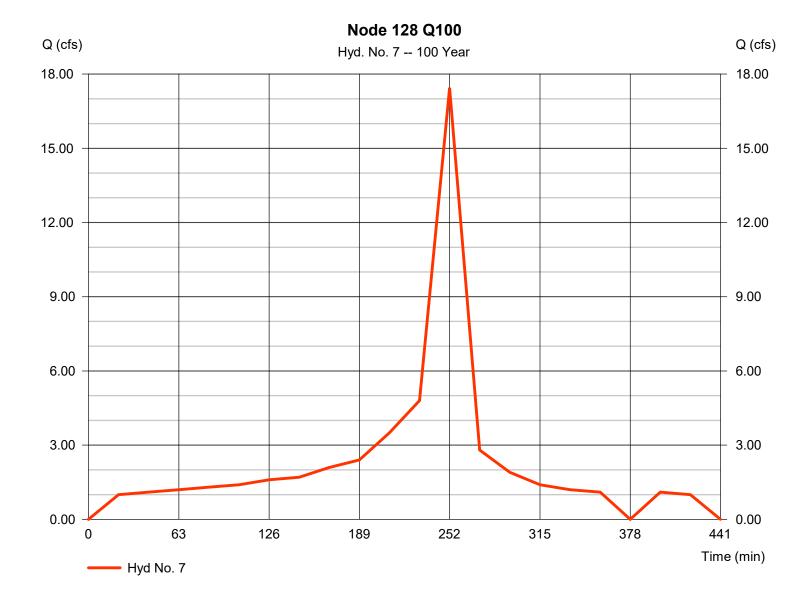
Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.00	0	100.00	0.00										0.000
0.04	20	100.04	0.01 ic										0.009
0.08	39	100.08	0.04 ic										0.035
0.12	59	100.12	0.08 ic										0.079
0.16	79	100.16	0.14 ic										0.138
0.20	98	100.20	0.21 ic										0.213
0.24	118	100.24	0.30 ic										0.304
0.28	138	100.28	0.41 ic										0.411
0.32	157	100.32	0.53 ic										0.533
0.36	177	100.36	0.67 ic										0.667
0.40	197	100.40	0.81 ic										0.815
0.44	231	100.44	0.96 oc										0.960
0.48	265	100.48	1.10 oc										1.095
0.52	299	100.52	1.23 oc										1.233
0.56	333	100.56	1.37 oc										1.373
0.60	367	100.60	1.52 oc										1.516
0.64	401	100.64	1.66 oc										1.663
0.68	435	100.68	1.81 oc										1.808
0.72	469	100.72	1.96 oc										1.955
0.76	503	100.76	2.10 oc										2.103
0.80	537	100.80	2.25 oc										2.250
0.84	579	100.84	2.40 oc										2.396
0.88	620	100.88	2.54 oc										2.540
0.92	662	100.92	2.69 oc										2.685
0.96	703	100.96	2.83 oc										2.827
1.00	745	101.00	2.97 oc										2.967
1.04	786	101.04	3.10 oc										3.102
1.08	827	101.08	3.24 oc										3.237
1.12	869	101.12	3.36 oc										3.364
1.16	910	101.16	3.49 oc										3.488
1.20	952	101.20	3.60 oc										3.604
1.24	998	101.24	3.72 oc										3.716

Continues on next page...

Node 156 Pipe Storage Stage / Storage / Discharge Table

Stage /	Storage / I	Discharge i	able										
Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	CIv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
1.28	1,043	101.28	3.82 oc										3.819
1.32	1,089	101.32	3.91 oc										3.913
1.36	1,135	101.36	4.00 oc										3.997
1.40	1,180	101.40	4.07 oc										4.067
1.44	1,226	101.44	4.12 oc										4.120
1.48	1,272	101.48	4.15 oc										4.146
1.52	1,317	101.52	4.39 oc										4.393
1.56	1,363	101.56	4.88 oc										4.883
1.60	1,409	101.60	5.33 oc										5.327
1.64	1,456	101.64	5.74 oc										5.738
1.68	1,504	101.68	6.12 oc										6.121
1.72	1,552	101.72	6.48 oc										6.481
1.76	1,599	101.76	6.82 oc										6.823
1.80	1,647	101.80	7.15 oc										7.148
1.84	1,695	101.84	7.46 oc										7.458
1.88	1,743	101.88	7.76 oc										7.757
1.92	1,790	101.92	8.04 oc										8.044
1.96	1,838	101.96	8.32 oc										8.322
2.00	1,886	102.00	8.59 oc										8.590
2.04	1,933	102.04	8.85 oc										8.851
2.08	1,981	102.08	9.10 oc										9.104
2.12	2,029	102.12	9.35 oc										9.350
2.16	2,077	102.16	9.59 oc										9.589
2.20	2,124	102.20	9.82 oc 10.05 oc										9.823 10.05
2.24	2,172	102.24											
2.28 2.32	2,220	102.28 102.32	10.28 oc 10.49 oc										10.28 10.49
2.32	2,267	102.32	10.49 oc 10.71 oc										10.49
2.40	2,315 2,363	102.30	10.71 oc										10.71
2.44	2,409	102.44	11.06 ic										11.06
2.48	2,454	102.44	11.19 ic										11.19
2.52	2,500	102.46	11.19 ic 11.32 ic										11.19
2.56	2,546	102.56	11.45 ic										11.45
2.60	2,591	102.60	11.43 ic 11.57 ic										11.57
2.64	2,637	102.64	11.70 ic										11.70
2.68	2,683	102.68	11.82 ic										11.82
2.72	2,728	102.72	11.94 ic										11.94
2.76	2,774	102.76	12.06 ic										12.06
2.80	2,820	102.80	12.18 ic										12.18
2.84	2,861	102.84	12.30 ic										12.30
2.88	2,902	102.88	12.42 ic										12.42
2.92	2,944	102.92	12.53 ic										12.53
2.96	2,985	102.96	12.65 ic										12.65
3.00	3,027	103.00	12.76 ic										12.76
3.04	3,068	103.04	12.87 ic										12.87
3.08	3,110	103.08	12.99 ic										12.99
3.12	3,151	103.12	13.10 ic										13.10
3.16	3,193	103.16	13.21 ic										13.21
3.20	3,234	103.20	13.32 ic										13.32
3.24	3,268	103.24	13.42 ic										13.42
3.28	3,302	103.28	13.53 ic										13.53
3.32	3,336	103.32	13.64 ic										13.64
3.36	3,370	103.36	13.74 ic										13.74
3.40	3,404	103.40	13.85 ic										13.85
3.44	3,438	103.44	13.95 ic										13.95
3.48	3,472	103.48	14.06 ic										14.06
3.52	3,507	103.52	14.16 ic										14.16
3.56	3,541	103.56	14.26 ic										14.26
3.60	3,575	103.60	14.36 ic										14.36
3.64	3,594	103.64	14.46 ic										14.46
3.68	3,614	103.68	14.56 ic										14.56
3.72	3,633	103.72	14.66 ic										14.66
3.76	3,653	103.76	14.76 ic										14.76
3.80	3,673	103.80	14.86 ic										14.86
3.84	3,692	103.84	14.96 ic										14.96
3.88	3,712 3,731	103.88	15.05 ic										15.05 15.15
3.92 3.96	3,731 3,751	103.92 103.96	15.15 ic 15.24 ic										15.15 15.24
4.00	3,751 3,771	103.96	15.24 ic 15.34 ic										15.24
7.00	5,111	104.00	10.04										10.04

...End


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

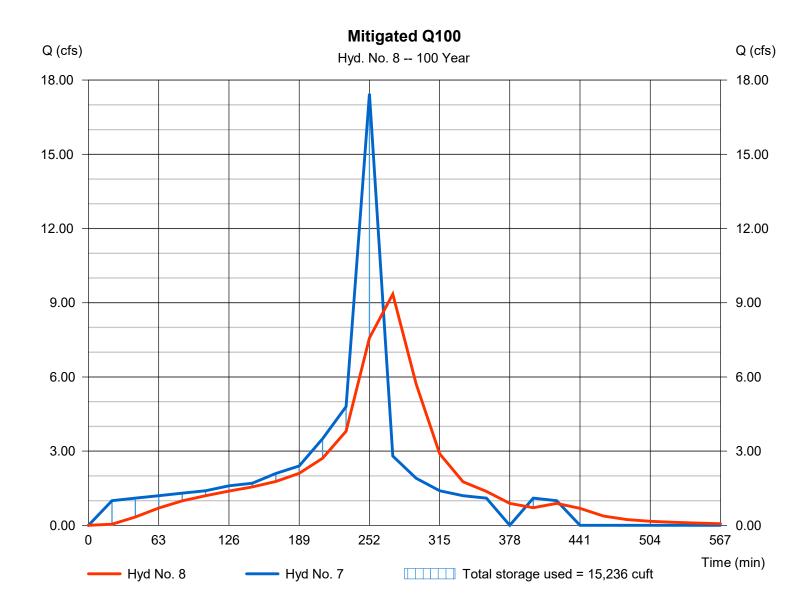
Saturday, 03 / 2 / 2024

Hyd. No. 7

Node 128 Q100

Hydrograph type= ManualPeak discharge= 17.45 cfsStorm frequency= 100 yrsTime to peak= 252 minTime interval= 21 minHyd. volume= 63,063 cuft

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022


Saturday, 03 / 2 / 2024

Hyd. No. 8

Mitigated Q100

Hydrograph type Peak discharge = 9.346 cfs= Reservoir Storm frequency = 100 yrsTime to peak = 273 min Time interval = 21 min Hyd. volume = 63,050 cuftInflow hyd. No. = 7 - Node 128 Q100 Max. Elevation $= 101.91 \, \text{ft}$ Reservoir name = Node 128 Det. Basin Max. Storage = 15,236 cuft

Storage Indication method used.

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Saturday, 03 / 2 / 2024

Pond No. 5 - Node 128 Det. Basin

Pond Data

Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 100.00 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	100.00	5,542	0	0
1.00	101.00	8,028	6,746	6,746
2.00	102.00	10,662	9,313	16,059
3.00	103.00	12,987	11,804	27,863
4.00	104.00	50,000	29,487	57,350

Culvert / Orifice Structures

Weir Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 18.00	0.00	0.00	0.00	Crest Len (ft)	= 50.00	0.00	0.00	0.00
Span (in)	= 18.00	0.00	0.00	0.00	Crest El. (ft)	= 101.90	0.00	0.00	0.00
No. Barrels	= 1	0	0	0	Weir Coeff.	= 3.33	3.33	3.33	3.33
Invert El. (ft)	= 100.00	0.00	0.00	0.00	Weir Type	= Rect			
Length (ft)	= 50.00	0.00	0.00	0.00	Multi-Stage	= No	No	No	No
Slope (%)	= 1.00	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Wet area)		
Multi-Stage	= n/a	No	No	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Stage / Storage / Discharge Table

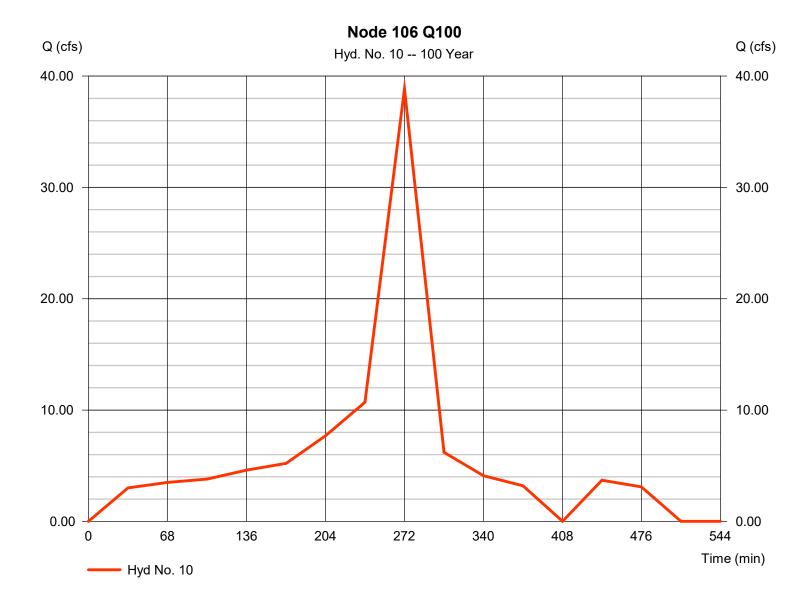
Stage ft	Storage cuft	Elevation ft	CIv A cfs	Clv B cfs	CIv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
		400.00											
0.00	0	100.00	0.00				0.00						0.000
0.10	675	100.10	0.05 ic				0.00						0.055
0.20	1,349	100.20	0.21 ic				0.00						0.213
0.30	2,024	100.30	0.47 ic				0.00						0.471
0.40	2,698	100.40	0.81 ic				0.00						0.815
0.50	3,373	100.50	1.24 ic				0.00						1.243
0.60	4,048	100.60	1.74 ic				0.00						1.742
0.70	4,722	100.70	2.31 ic				0.00						2.306
0.80	5,397	100.80	2.92 ic				0.00						2.922
0.90	6,071	100.90	3.58 ic				0.00						3.580
1.00	6,746	101.00	4.26 ic				0.00						4.265
1.10	7,677	101.10	4.96 ic				0.00						4.964
1.20	8,609	101.20	5.65 ic				0.00						5.654
1.30	9,540	101.30	6.22 oc				0.00						6.224
1.40	10,471	101.40	6.51 oc				0.00						6.513
1.50	11,403	101.50	6.47 oc				0.00						6.470
1.60	12,334	101.60	7.08 oc				0.00						7.085
1.70	13,265	101.70	7.65 oc				0.00						7.652
1.80	14,196	101.80	8.18 oc				0.00						8.181
1.90	15,128	101.90	8.68 oc				0.00						8.677
2.00	16,059	102.00	9.15 oc				5.27						14.41
2.10	17,239	102.10	9.59 oc				14.89						24.48
2.20	18,420	102.20	10.02 oc				27.36						37.38
2.30	19,600	102.30	10.43 oc				42.12						52.55
2.40	20,781	102.40	10.82 oc				58.87						69.69
2.50	21,961	102.50	11.20 oc				77.38						88.58
2.60	23,142	102.60	11.57 oc				97.51						109.08
2.70	24,322	102.70	11.88 ic				119.14						131.02
2.80	25,502	102.80	12.18 ic				142.16						154.34
2.90	26,683	102.90	12.47 ic				166.50						178.97
3.00	27,863	103.00	12.76 ic				192.09						204.85
3.10	30,812	103.10	13.04 ic				218.87						231.91
3.20	33,761	103.20	13.32 ic				246.79						260.11
3.30	36,709	103.30	13.59 ic				275.81						289.39
3.40	39,658	103.40	13.85 ic				305.88						319.73
3.50	42,607	103.50	14.11 ic				336.97						351.08
3.60	45,555	103.60	14.36 ic				369.05						383.41
3.70	48,504	103.70	14.61 ic				402.09						416.70
	•										Continue	ac on nov	t nage

Continues on next page...

Node 128 Det. Basin Stage / Storage / Discharge Table

Stage ft	Storage cuft	Elevation ft	CIv A cfs	CIv B cfs	CIv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
3.80	51,453	103.80	14.86 ic				436.05						450.91
3.90	54,401	103.90	15.10 ic				470.93						486.03
4.00	57,350	104.00	15.34 ic				506.69						522.03

...End


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

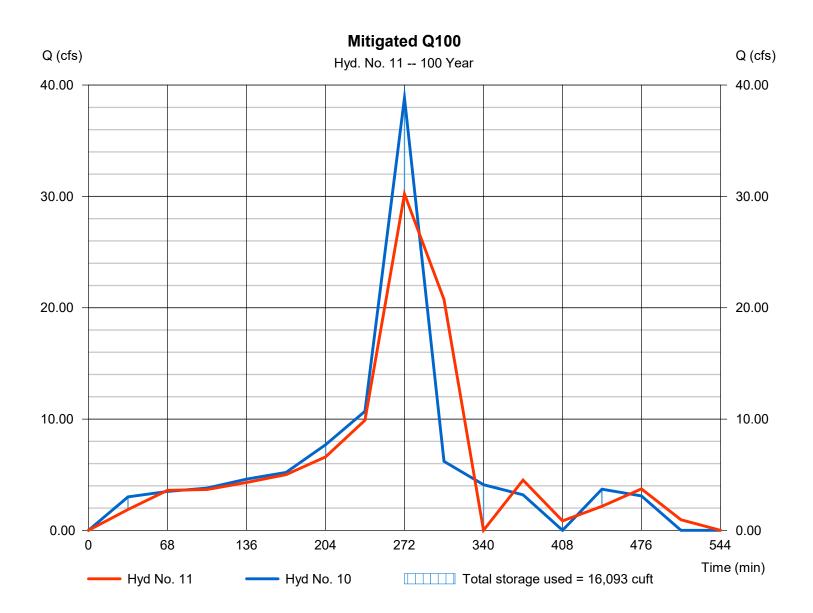
Saturday, 03 / 2 / 2024

Hyd. No. 10

Node 106 Q100

Hydrograph type= ManualPeak discharge= 38.86 cfsStorm frequency= 100 yrsTime to peak= 272 minTime interval= 34 minHyd. volume= 199,226 cuft

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022


Saturday, 03 / 2 / 2024

Hyd. No. 11

Mitigated Q100

Hydrograph type Peak discharge = 30.22 cfs= Reservoir Storm frequency = 100 yrsTime to peak = 272 min Time interval = 34 min Hyd. volume = 200,132 cuft Inflow hyd. No. Max. Elevation = 104.99 ft= 10 - Node 106 Q100 Reservoir name = Node 106 Pipe Storage Max. Storage = 16,093 cuft

Storage Indication method used.

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Saturday, 03 / 2 / 2024

Pond No. 7 - Node 106 Pipe Storage

Pond Data

UG Chambers -Invert elev. = 100.00 ft, Rise x Span = 5.00 x 5.00 ft, Barrel Len = 410.00 ft, No. Barrels = 2, Slope = 0.00%, Headers = No

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	100.00	n/a	0	0
0.50	100.50	n/a	838	838
1.00	101.00	n/a	1,456	2,294
1.50	101.50	n/a	1,771	4,065
2.00	102.00	n/a	1,951	6,016
2.50	102.50	n/a	2,038	8,054
3.00	103.00	n/a	2,038	10,092
3.50	103.50	n/a	1,950	12,042
4.00	104.00	n/a	1,770	13,812
4.50	104.50	n/a	1,455	15,267
5.00	105.00	n/a	837	16,104

Culvert / Orifice Structures

Weir Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 24.00	0.00	0.00	0.00	Crest Len (ft)	= 0.00	0.00	0.00	0.00
Span (in)	= 24.00	0.00	0.00	0.00	Crest El. (ft)	= 0.00	0.00	0.00	0.00
No. Barrels	= 1	0	0	0	Weir Coeff.	= 3.33	3.33	3.33	3.33
Invert El. (ft)	= 100.00	0.00	0.00	0.00	Weir Type	=			
Length (ft)	= 15.00	0.00	0.00	0.00	Multi-Stage	= No	No	No	No
Slope (%)	= 1.00	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	/ Wet area)		
Multi-Stage	= n/a	No	No	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Stage / Storage / Discharge Table

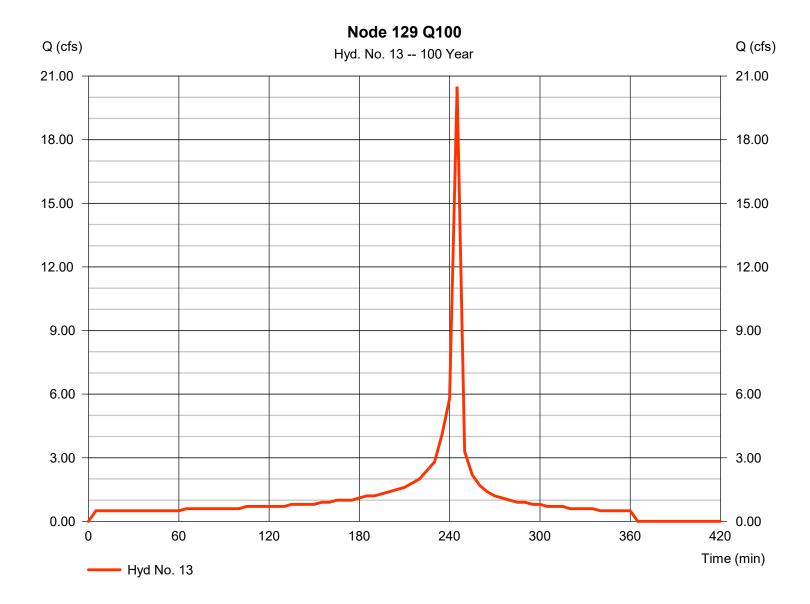
Stage ft	Storage cuft	Elevation ft	CIv A cfs	Clv B cfs	CIv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.00	0	100.00	0.00										0.000
0.05	84	100.05	0.02 ic										0.016
0.10	168	100.10	0.06 ic										0.064
0.15	251	100.15	0.14 ic										0.142
0.20	335	100.20	0.25 ic										0.250
0.25	419	100.25	0.39 ic										0.388
0.30	503	100.30	0.55 ic										0.553
0.35	587	100.35	0.75 ic										0.745
0.40	670	100.40	0.97 ic										0.966
0.45	754	100.45	1.19 oc										1.189
0.50	838	100.50	1.40 oc										1.396
0.55	984	100.55	1.61 oc										1.611
0.60	1,129	100.60	1.84 oc										1.839
0.65	1,275	100.65	2.07 oc										2.066
0.70	1,421	100.70	2.30 oc										2.303
0.75	1,566	100.75	2.54 oc										2.540
0.80	1,712	100.80	2.78 oc										2.777
0.85	1,857	100.85	3.03 oc										3.026
0.90	2,003	100.90	3.27 oc										3.272
0.95	2,149	100.95	3.52 oc										3.520
1.00	2,294	101.00	3.77 oc										3.769
1.05	2,471	101.05	4.01 oc										4.011
1.10	2,648	101.10	4.26 oc										4.258
1.15	2,826	101.15	4.50 oc										4.504
1.20	3,003	101.20	4.75 oc										4.753
1.25	3,180	101.25	4.99 oc										4.989
1.30	3,357	101.30	5.23 oc										5.226
1.35	3,534	101.35	5.46 oc										5.462
1.40	3,711	101.40	5.69 oc										5.688
1.45	3,888	101.45	5.92 oc										5.916
1.50	4,065	101.50	6.13 oc										6.130
1.55	4,260	101.55	6.34 oc										6.336

Continues on next page...

Node 106 Pipe Storage Stage / Storage / Discharge Table

Stage /	Storage /	Discharge i	abie										
Stage	Storage	Elevation	Clv A	Clv B	Clv C	PrfRsr	Wr A	Wr B	Wr C	Wr D	Exfil	User	Total
ft	cuft	ft	cfs	cfs	cfs	cfs	cfs	cfs	cfs	cfs	cfs	cfs	cfs
1.60	4,455	101.60	6.54 oc										6.536
1.65	4,650	101.65	6.73 oc										6.726
1.70	4,845	101.70	6.90 oc										6.903
1.75	5,041	101.75	7.07 oc 7.22 oc										7.066
1.80 1.85	5,236 5,431	101.80 101.85	7.22 oc 7.34 oc										7.216 7.344
1.90	5,626	101.83	7.45 oc										7.450
1.95	5,821	101.95	7.52 oc										7.524
2.00	6,016	102.00	7.52 oc										7.522
2.05	6,220	102.05	8.69 oc										8.685
2.10	6,423	102.10	9.71 oc										9.710
2.15	6,627	102.15	10.64 oc										10.64
2.20	6,831	102.20	11.49 oc										11.49
2.25 2.30	7,035 7,239	102.25 102.30	12.28 oc 13.03 oc										12.28 13.03
2.35	7,239	102.35	13.73 oc										13.03
2.40	7,646	102.40	14.40 oc										14.40
2.45	7,850	102.45	15.04 oc										15.04
2.50	8,054	102.50	15.66 oc										15.66
2.55	8,258	102.55	16.25 oc										16.25
2.60	8,461	102.60	16.82 oc										16.82
2.65	8,665	102.65	17.37 oc										17.37
2.70	8,869	102.70	17.90 oc 18.42 oc										17.90
2.75 2.80	9,073 9,277	102.75 102.80	18.93 oc										18.42 18.93
2.85	9,480	102.85	19.42 oc										19.42
2.90	9,684	102.90	19.90 oc										19.90
2.95	9,888	102.95	20.37 oc										20.37
3.00	10,092	103.00	20.83 oc										20.83
3.05	10,287	103.05	21.27 oc										21.27
3.10	10,482	103.10	21.71 oc										21.71
3.15	10,677	103.15	22.14 oc										22.14
3.20 3.25	10,872 11,067	103.20 103.25	22.43 ic 22.69 ic										22.43 22.69
3.30	11,262	103.23	22.09 ic 22.94 ic										22.09
3.35	11,457	103.35	23.19 ic										23.19
3.40	11,652	103.40	23.43 ic										23.43
3.45	11,847	103.45	23.67 ic										23.67
3.50	12,042	103.50	23.91 ic										23.91
3.55	12,219	103.55	24.15 ic										24.15
3.60	12,396	103.60	24.39 ic										24.39
3.65 3.70	12,573 12,750	103.65 103.70	24.62 ic 24.85 ic										24.62 24.85
3.75	12,730	103.75	25.08 ic										25.08
3.80	13,104	103.80	25.31 ic										25.31
3.85	13,281	103.85	25.53 ic										25.53
3.90	13,458	103.90	25.76 ic										25.76
3.95	13,635	103.95	25.98 ic										25.98
4.00	13,812	104.00	26.20 ic										26.20
4.05 4.10	13,957 14,103	104.05 104.10	26.41 ic 26.63 ic										26.41 26.63
4.10	14,103	104.15	26.84 ic										26.84
4.20	14,394	104.20	27.06 ic										27.06
4.25	14,539	104.25	27.27 ic										27.27
4.30	14,685	104.30	27.48 ic										27.48
4.35	14,830	104.35	27.68 ic										27.68
4.40	14,976	104.40	27.89 ic										27.89
4.45	15,121	104.45	28.09 ic										28.09
4.50	15,267	104.50	28.30 ic										28.30
4.55 4.60	15,351 15,434	104.55 104.60	28.50 ic 28.70 ic										28.50 28.70
4.65	15,434	104.65	28.90 ic										28.90
4.70	15,602	104.70	29.09 ic										29.09
4.75	15,685	104.75	29.29 ic										29.29
4.80	15,769	104.80	29.48 ic										29.48
4.85	15,853	104.85	29.68 ic										29.68
4.90	15,936	104.90	29.87 ic										29.87
4.95	16,020	104.95	30.06 ic										30.06
5.00	16,104	105.00	30.25 ic										30.25

...End


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

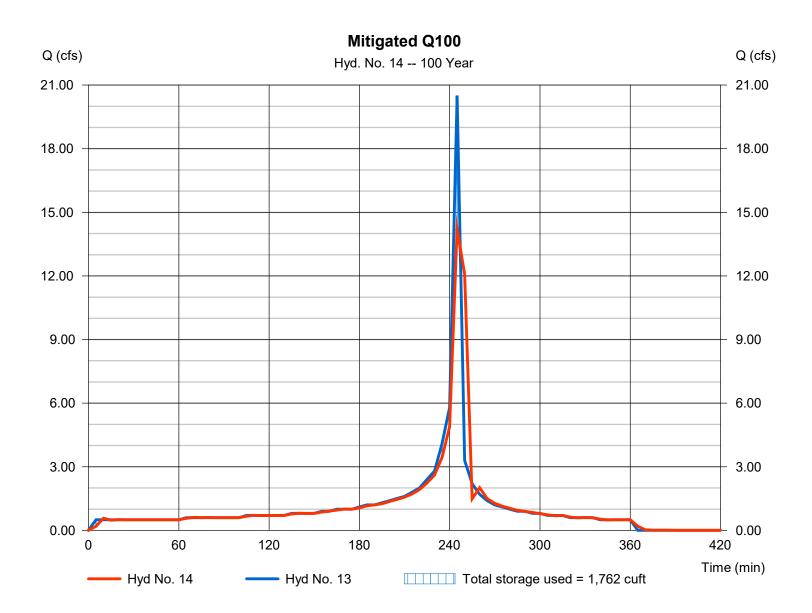
Saturday, 03 / 2 / 2024

Hyd. No. 13

Node 129 Q100

Hydrograph type= ManualPeak discharge= 20.50 cfsStorm frequency= 100 yrsTime to peak= 245 minTime interval= 5 minHyd. volume= 28,200 cuft

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022


Saturday, 03 / 2 / 2024

Hyd. No. 14

Mitigated Q100

Hydrograph type Peak discharge = 14.21 cfs= Reservoir Storm frequency = 100 yrsTime to peak = 245 min Time interval = 5 min Hyd. volume = 28,199 cuft Inflow hyd. No. Max. Elevation = 13 - Node 129 Q100 = 103.54 ftReservoir name = Node 129 Pipe Storage Max. Storage = 1,762 cuft

Storage Indication method used.

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Saturday, 03 / 2 / 2024

Pond No. 9 - Node 129 Pipe Storage

Pond Data

Orifice Coeff.

Multi-Stage

UG Chambers -Invert elev. = 100.00 ft, Rise x Span = 4.00 x 4.00 ft, Barrel Len = 150.00 ft, No. Barrels = 1, Slope = 0.00%, Headers = No

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	100.00	n/a	0	0
0.40	100.40	n/a	98	98
0.80	100.80	n/a	170	269
1.20	101.20	n/a	207	476
1.60	101.60	n/a	228	704
2.00	102.00	n/a	239	943
2.40	102.40	n/a	239	1,181
2.80	102.80	n/a	228	1,410
3.20	103.20	n/a	207	1,617
3.60	103.60	n/a	170	1,787
4.00	104.00	n/a	98	1,885

Culvert / Orifice Structures Weir Structures [PrfRsr] [C] [D] [A] [B] [C] [A] [B] = 18.00 0.00 0.00 0.00 0.00 0.00 0.00 = 0.00Rise (in) Crest Len (ft) Span (in) = 18.000.00 0.00 0.00 Crest El. (ft) = 0.000.00 0.00 0.00 No. Barrels = 1 0 0 0 Weir Coeff. = 3.333.33 3.33 3.33 Weir Type Invert El. (ft) = 100.000.00 0.00 0.00 = ---= 15.00 0.00 0.00 0.00 Multi-Stage = No No No No Length (ft) 0.00 Slope (%) = 1.00 0.00 n/a N-Value = .013 .013 .013 n/a

Exfil.(in/hr)

TW Elev. (ft)

0.60

No

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

= 0.00

= 0.000 (by Wet area)

Stage / Storage / Discharge Table

= 0.60

= n/a

0.60

No

0.60

No

Stage ft	Storage cuft	Elevation ft	CIv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.00	0	100.00	0.00										0.000
0.04	10	100.04	0.00 0.01 ic										0.009
0.04	20	100.04	0.01 ic										0.035
0.12	30	100.00	0.04 ic										0.079
0.12	39	100.12	0.14 ic										0.138
0.20	49	100.20	0.21 ic										0.213
0.24	59	100.24	0.30 ic										0.304
0.28	69	100.28	0.41 ic										0.411
0.32	79	100.32	0.53 ic										0.533
0.36	89	100.36	0.67 ic										0.667
0.40	98	100.40	0.81 ic										0.815
0.44	115	100.44	0.96 oc										0.960
0.48	132	100.48	1.10 oc										1.095
0.52	149	100.52	1.23 oc										1.233
0.56	166	100.56	1.37 oc										1.373
0.60	183	100.60	1.52 oc										1.516
0.64	200	100.64	1.66 oc										1.663
0.68	218	100.68	1.81 oc										1.808
0.72	235	100.72	1.96 oc										1.955
0.76	252	100.76	2.10 oc										2.103
0.80	269	100.80	2.25 oc										2.250
0.84	289	100.84	2.40 oc										2.396
0.88	310	100.88	2.54 oc										2.540
0.92	331	100.92	2.69 oc										2.685
0.96	352	100.96	2.83 oc										2.827
1.00	372	101.00	2.97 oc										2.967
1.04	393	101.04	3.10 oc										3.102
1.08	414	101.08	3.24 oc										3.237
1.12	434	101.12	3.36 oc										3.364
1.16	455	101.16	3.49 oc										3.488
1.20	476	101.20	3.60 oc										3.604
1.24	499	101.24	3.72 oc										3.716

Continues on next page...

Node 129 Pipe Storage Stage / Storage / Discharge Table

Stage /	Storage / I	Discharge i	able										
Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
1.28	522	101.28	3.82 oc										3.819
1.32	544	101.32	3.91 oc										3.913
1.36	567	101.36	4.00 oc										3.997
1.40	590	101.40	4.07 oc										4.067
1.44	613	101.44	4.12 oc										4.120
1.48	636	101.48	4.15 oc										4.146
1.52	659	101.52	4.39 oc										4.393
1.56	681	101.56	4.88 oc										4.883
1.60	704	101.60	5.33 oc										5.327
1.64	728	101.64	5.74 oc										5.738
1.68	752	101.68	6.12 oc										6.121
1.72	776	101.72	6.48 oc										6.481
1.76	800	101.76	6.82 oc										6.823
1.80	824	101.80	7.15 oc										7.148
1.84	847	101.84	7.46 oc 7.76 oc										7.458
1.88	871 895	101.88	8.04 oc										7.757 8.044
1.92 1.96	919	101.92 101.96	8.32 oc										8.322
2.00	943	101.90	8.59 oc										8.590
2.04	967	102.00	8.85 oc										8.851
2.04	991	102.04	9.10 oc										9.104
2.12	1,014	102.00	9.35 oc										9.350
2.12	1,014	102.12	9.59 oc										9.589
2.10	1,062	102.10	9.82 oc										9.823
2.24	1,086	102.24	10.05 oc										10.05
2.28	1,110	102.24	10.28 oc										10.03
2.32	1,134	102.32	10.49 oc										10.20
2.36	1,158	102.36	10.49 oc										10.43
2.40	1,181	102.40	10.71 oc										10.71
2.44	1,204	102.44	11.06 ic										11.06
2.48	1,227	102.48	11.19 ic										11.19
2.52	1,250	102.52	11.32 ic										11.32
2.56	1,273	102.56	11.45 ic										11.45
2.60	1,296	102.60	11.57 ic										11.57
2.64	1,318	102.64	11.70 ic										11.70
2.68	1,341	102.68	11.82 ic										11.82
2.72	1,364	102.72	11.94 ic										11.94
2.76	1,387	102.76	12.06 ic										12.06
2.80	1,410	102.80	12.18 ic										12.18
2.84	1,430	102.84	12.30 ic										12.30
2.88	1,451	102.88	12.42 ic										12.42
2.92	1,472	102.92	12.53 ic										12.53
2.96	1,493	102.96	12.65 ic										12.65
3.00	1,513	103.00	12.76 ic										12.76
3.04	1,534	103.04	12.87 ic										12.87
3.08	1,555	103.08	12.99 ic										12.99
3.12	1,576	103.12	13.10 ic										13.10
3.16	1,596	103.16	13.21 ic										13.21
3.20	1,617	103.20	13.32 ic										13.32
3.24	1,634	103.24	13.42 ic										13.42
3.28	1,651	103.28	13.53 ic										13.53
3.32	1,668	103.32	13.64 ic										13.64
3.36	1,685	103.36	13.74 ic										13.74
3.40	1,702	103.40	13.85 ic										13.85
3.44	1,719	103.44	13.95 ic										13.95
3.48	1,736	103.48	14.06 ic										14.06
3.52	1,753	103.52	14.16 ic										14.16
3.56	1,770	103.56	14.26 ic										14.26
3.60	1,787	103.60	14.36 ic										14.36
3.64	1,797	103.64	14.46 ic										14.46
3.68	1,807	103.68	14.56 ic										14.56
3.72	1,817	103.72	14.66 ic										14.66
3.76	1,827	103.76	14.76 ic										14.76
3.80	1,836	103.80	14.86 ic										14.86
3.84	1,846	103.84	14.96 ic										14.96
3.88	1,856	103.88	15.05 ic										15.05
3.92	1,866	103.92	15.15 ic										15.15
3.96	1,876	103.96	15.24 ic										15.24
4.00	1,885	104.00	15.34 ic										15.34

...End

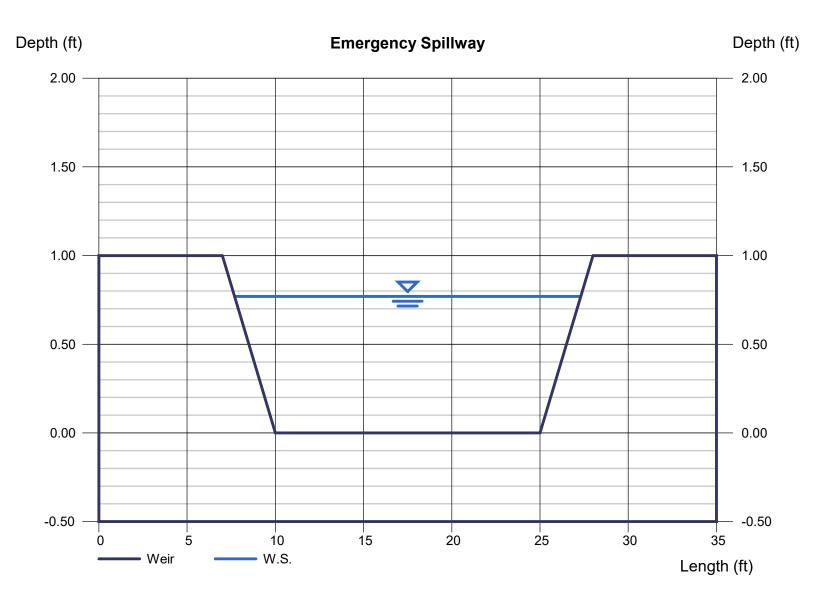
Weir Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Jun 30 2022

Emergency Spillway

			Veir	


Crest = Sharp Bottom Length (ft) = 15.00 Total Depth (ft) = 1.00 Side Slope (z:1) = 3.00

Calculations

Weir Coeff. Cw = 3.10 Compute by: Known Q Known Q (cfs) = 35.00

Highlighted

Depth (ft) = 0.77 Q (cfs) = 35.00 Area (sqft) = 13.33 Velocity (ft/s) = 2.63 Top Width (ft) = 19.62

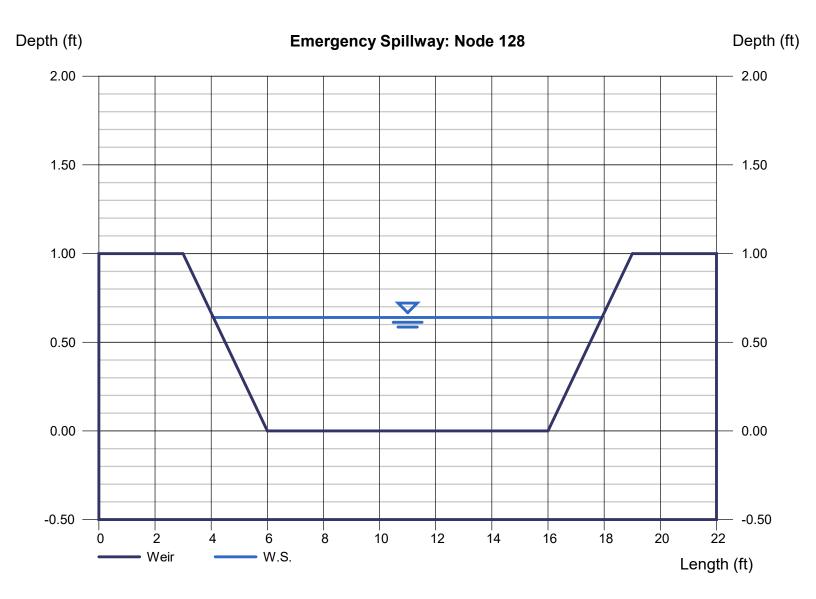
Weir Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Monday, Jul 31 2023

Emergency Spillway: Node 128

Tr	ap	ezo	idal	W	eir


Crest = Sharp
Bottom Length (ft) = 10.00
Total Depth (ft) = 1.00
Side Slope (z:1) = 3.00

Calculations

Weir Coeff. Cw = 3.10 Compute by: Known Q Known Q (cfs) = 18.30

Highlighted

Depth (ft) = 0.64 Q (cfs) = 18.30 Area (sqft) = 7.63 Velocity (ft/s) = 2.40 Top Width (ft) = 13.84

Stage, Storage, and Discharge derived from Hydroflow Hydrographs routing analysis

	Q100 Drawdown (max 96 hours)										
Stage (ft)	Storage (ft3)	Discharge (cfs)	Incremental Vol. (ft3)	Avg. Discharge (cfs)	Incremental Time (sec)	Incremental Time (hr)					
5.00	11,783	30.25	-	-	=	-					
4.50	11,171	28.30	612	29.2750	21	0.01					
4.00	10,106	26.20	1,065	27.2500	39	0.01					
3.50	8,811	23.91	1,295	25.0550	52	0.01					
3.00	7,384	20.83	1,427	22.3700	64	0.02					
2.50	5,893	15.66	1,491	18.2450	82	0.02					
2.00	4,402	7.52	1,491	11.5900	129	0.04					
1.50	2,975	6.13	1,427	6.8250	209	0.06					
1.00	1,679	3.77	1,296	4.9500	262	0.07					
0.50	614	1.40	1,065	2.5850	412	0.11					
0.00	0	0.00	614	0.7000	877	0.24					
					Total Time (hours) =	0.59					

Notes

Dual 410' LF (820 total) of 60" storage pipe with 24" discharge pipe

Stage, Storage, and Discharge derived from Hydroflow Hydrographs routing analysis

	Q100 Drawdown (max 96 hours)									
Stage (ft)	Storage (ft3)	Discharge (cfs)	Incremental Vol. (ft3)	Avg. Discharge (cfs)	Incremental Time (sec)	Incremental Time (hr)				
4.00	57,350	15.34	<u>-</u>	-	-	-				
3.50	42,607	14.11	14,743	14.7250	1,001	0.28				
3.00	27,863	12.76	14,744	13.4350	1,097	0.30				
2.50	21,961	11.20	5,902	11.9800	493	0.14				
2.00	16,059	9.15	5,902	10.1750	580	0.16				
1.50	11,403	6.47	4,656	7.8100	596	0.17				
1.00	6,746	4.26	4,657	5.3650	868	0.24				
0.50	3,373	1.24	3,373	2.7500	1,227	0.34				
0.00	0	0.00	3,373	0.6200	5,440	1.51				
					Total Time (hours) =	3.14				

Notes

Detention Basin with 18" discharge pipe and overflow weir

Stage, Storage, and Discharge derived from Hydroflow Hydrographs routing analysis

	Q100 Drawdown (max 96 hours)										
Stage (ft)	Storage (ft3)	Discharge (cfs)	Incremental Vol. (ft3)	Avg. Discharge (cfs)	Incremental Time (sec)	Incremental Time (hr)					
4.00	1,257	15.34	-	-	-	-					
3.60	1,192	14.36	65	14.8500	4	0.00					
3.20	1,078	13.32	114	13.8400	8	0.00					
2.80	940	12.18	138	12.7500	11	0.00					
2.40	788	10.92	152	11.5500	13	0.00					
2.00	629	8.59	159	9.7550	16	0.00					
1.60	470	5.33	159	6.9600	23	0.01					
1.20	317	3.60	153	4.4650	34	0.01					
0.80	179	2.25	138	2.9250	47	0.01					
0.40	66	0.81	113	1.5300	74	0.02					
0.00	0	0.00	66	0.4050	163	0.05					
					Total Time (hours) =	0.11					

Notes

100' LF of 48" storage pipe with 18" discharge pipe

Stage, Storage, and Discharge derived from Hydroflow Hydrographs routing analysis

Q100 Drawdown (max 96 hours)						
Stage (ft)	Storage (ft3)	Discharge (cfs)	Incremental Vol. (ft3)	Avg. Discharge (cfs)	Incremental Time (sec)	Incremental Time (hr)
4.00	3,771	15.34	-	-	=	-
3.60	3,575	14.36	196	14.8500	13	0.00
3.20	3,234	13.32	341	13.8400	25	0.01
2.80	2,820	12.18	414	12.7500	32	0.01
2.40	2,363	10.92	457	11.5500	40	0.01
2.00	1,886	8.59	477	9.7550	49	0.01
1.60	1,409	5.33	477	6.9600	69	0.02
1.20	952	3.60	457	4.4650	102	0.03
0.80	537	2.25	415	2.9250	142	0.04
0.40	197	0.81	340	1.5300	222	0.06
0.00	0	0.00	197	0.4050	486	0.14
					Total Time (hours) =	0.32

Notes

300' LF of 48" storage pipe with 18" discharge pipe

Stage, Storage, and Discharge derived from Hydroflow Hydrographs routing analysis

Q100 Drawdown (max 96 hours)						
Stage (ft)	Storage (ft3)	Discharge (cfs)	Incremental Vol. (ft3)	Avg. Discharge (cfs)	Incremental Time (sec)	Incremental Time (hr)
3.00	76,671	12.76	-	-	-	-
2.50	58,280	11.20	18,391	11.9800	1,535	0.43
2.00	39,890	9.15	18,390	10.1750	1,807	0.50
1.50	28,664	6.47	11,226	7.8100	1,437	0.40
1.00	17,438	4.26	11,226	5.3650	2,092	0.58
0.50	8,719	1.24	8,719	2.7500	3,171	0.88
0.00	0	0.00	8,719	0.6200	14,063	3.91
					Total Time (hours) =	6.70

Notes

Detention Basin with 18" discharge pipe and overflow weir

Inlet Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

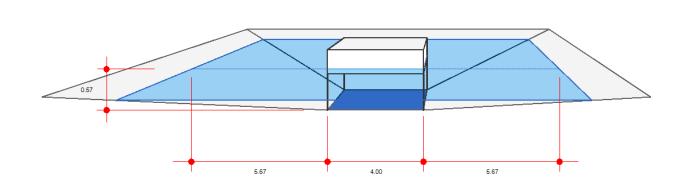
Wednesday, Mar 13 2024

Node 129

= Sag
= 16.00
= 6.00
= -0-
= -0-
= -0-

Gutter	
<u> </u>	

Slope, Sw (ft/ft)	= 0.100
Slope, Sx (ft/ft)	= 0.100
Local Depr (in)	= -0-
Gutter Width (ft)	= -0-
Gutter Slope (%)	= -0-
Gutter n-value	= -0-


Calculations

Compute by:	Known Q
Q (cfs)	= 20.50

Highlighted

Q Total (cfs)	= 20.50
Q Capt (cfs)	= 20.50
Q Bypass (cfs)	= -0-
Depth at Inlet (in)	= 6.80
Efficiency (%)	= 100
Gutter Spread (ft)	= 5.67
Gutter Vel (ft/s)	= -0-
Bypass Spread (ft)	= -0-
Bypass Depth (in)	= -0-

All dimensions in fee

Inlet Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

= -0-

Wednesday, Mar 13 2024

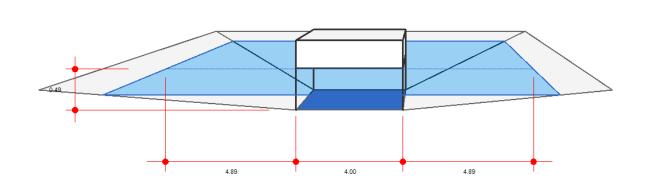
Node 156

Drop Curb Inlet	
Location	= Sag
Curb Length (ft)	= 16.00
Throat Height (in)	= 6.00
Grate Area (sqft)	= -0-
Grate Width (ft)	= -0-

Gutter

Grate Length (ft)

<u> </u>	
Slope, Sw (ft/ft)	= 0.100
Slope, Sx (ft/ft)	= 0.100
Local Depr (in)	= -0-
Gutter Width (ft)	= -0-
Gutter Slope (%)	= -0-
Gutter n-value	= -0-


Calculations

Compute by:	Known Q
Q (cfs)	= 16.40

Highlighted

inginiginoa		
Q Total (cfs)	=	16.40
Q Capt (cfs)	=	16.40
Q Bypass (cfs)	=	-0-
Depth at Inlet (in)	=	5.86
Efficiency (%)	=	100
Gutter Spread (ft)	=	4.89
Gutter Vel (ft/s)	=	-0-
Bypass Spread (ft)	=	-0-
Bypass Depth (in)	=	-0-

All dimensions in feet

Inlet Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Mar 13 2024

Node 106		Two (2) inlets are proposed	50% of Q100	
Drop Curb Inlet		C	Calculations	
Location	= Sag	C	Compute by:	Known Q
Curb Length (ft)	= 16.00		Q (cfs)	= 19.50
Throat Height (in)	= 6.00		,	
Grate Area (sqft)	= -0-	H	lighlighted	
Grate Width (ft)	= -0-	C	Q Total (cfs)	= 19.50
Grate Length (ft)	= -0-	C	Q Capt (cfs)	= 19.50
J ,		C	Q Bypass (cfs)	= -0-
Gutter			Depth at Inlet (in)	= 6.58
Slope, Sw (ft/ft)	= 0.100	E	Efficiency (%)	= 100
Slope, Sx (ft/ft)	= 0.100		Sutter Spread (ft)	= 5.48
Local Depr (in)	= -0-		Sutter Vel (ft/s)	= -0-
Gutter Width (ft)	= -0-	E	Sypass Spread (ft)	= -0-
Gutter Slope (%)	= -0-	E	Bypass Depth (in)	= -0-
Gutter n-value	= -0-			

All dimensions in feet