

Appendix B: 100-Year Pre-Project Condition Hydrologic Output

San Diego County Rational Hydrology Program

```
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1991-2009 Version 7.8
Rational method hydrology program based on
San Diego County Flood Control Division 2003 hydrology manual
    Rational Hydrology Study Date: 01/24/17
______
Shady Oak
Existing Conditions
Major Drainage Basin 100
100-Year Flow Rate
          Hydrology Study Control Information *******
______
Program License Serial Number 6289
______
Rational hydrology study storm event year is 100.0
English (in-lb) input data Units used
Map data precipitation entered:
6 hour, precipitation(inches) = 3.750
24 hour precipitation(inches) = 8.200
P6/P24 = 45.7%
San Diego hydrology manual 'C' values used
Process from Point/Station 100.000 to Point/Station 101.000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 1.000
Decimal fraction soil group D = 0.000
[LOW DENSITY RESIDENTIAL
                                     ]
(1.0 DU/A or Less
Impervious value, Ai = 0.100
Sub-Area C Value = 0.360
Initial subarea total flow distance = 75.000(Ft.)
Highest elevation = 1508.000(Ft.)
Lowest elevation = 1502.000(Ft.)
Elevation difference = 6.000(Ft.) Slope = 8.000 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 100.00 (Ft)
for the top area slope value of 8.00 %, in a development type of
1.0 DU/A or Less
```

```
In Accordance With Figure 3-3
Initial Area Time of Concentration = 6.66 minutes
TC = [1.8*(1.1-C)*distance(Ft.)^.5)/(% slope^(1/3)]
TC = [1.8*(1.1-0.3600)*(100.000^{.5})/(8.000^{(1/3)}] = 6.66
Rainfall intensity (I) =
                         8.212(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.360
Subarea runoff =
                  0.296(CFS)
Total initial stream area =
                              0.100(Ac.)
Process from Point/Station 101.000 to Point/Station 102.000
**** IMPROVED CHANNEL TRAVEL TIME ****
Upstream point elevation = 1502.000(Ft.)
Downstream point elevation = 1330.000(Ft.)
Channel length thru subarea = 845.000(Ft.)
Channel base width
                  = 25.000(Ft.)
Slope or 'Z' of left channel bank = 5.000
Slope or 'Z' of right channel bank = 5.000
Estimated mean flow rate at midpoint of channel = 13.964(CFS)
Manning's 'N' = 0.035
Maximum depth of channel =
                          4.000(Ft.)
Flow(q) thru subarea = 13.964(CFS)
Depth of flow = 0.119(Ft.), Average velocity = 4.570(Ft/s)
Channel flow top width = 26.194(Ft.)
Flow Velocity =
               4.57(Ft/s)
Travel time = 3.08 min.
Time of concentration = 9.74 min.
Critical depth = 0.211(Ft.)
Adding area flow to channel
Rainfall intensity (I) =
                      6.426(In/Hr) for a 100.0 year storm
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.997
Decimal fraction soil group D = 0.003
[LOW DENSITY RESIDENTIAL
(1.0 DU/A or Less )
Impervious value, Ai = 0.100
Sub-Area C Value = 0.360
Rainfall intensity = 6.426(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.360 CA = 4.286
Subarea runoff =
                27.245(CFS) for 11.800(Ac.)
Total runoff =
               27.540(CFS)
                               Total area =
                                               11.900(Ac.)
Depth of flow = 0.179(Ft.), Average velocity = 5.942(Ft/s)
Critical depth =
                  0.328(Ft.)
Process from Point/Station 102.000 to Point/Station
**** IMPROVED CHANNEL TRAVEL TIME ****
Upstream point elevation = 1330.000(Ft.)
Downstream point elevation = 1295.000(Ft.)
Channel length thru subarea = 800.000(Ft.)
```

```
Channel base width = 37.000(Ft.)
Slope or 'Z' of left channel bank = 58.000
Slope or 'Z' of right channel bank = 58.000
Estimated mean flow rate at midpoint of channel = 34.236(CFS)
Manning's 'N' = 0.035
Maximum depth of channel = 1.000(Ft.)
Flow(q) thru subarea = 34.236(CFS)
Depth of flow = 0.235(Ft.), Average velocity = 2.883(Ft/s)
Channel flow top width = 64.222(Ft.)
Flow Velocity = 2.88(Ft/s)
Travel time = 4.63 \text{ min.}
Time of concentration = 14.37 min.
Critical depth = 0.258(Ft.)
Adding area flow to channel
Rainfall intensity (I) = 5.001(In/Hr) for a 100.0 year storm
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.115
Decimal fraction soil group D = 0.885
[LOW DENSITY RESIDENTIAL
                                        ]
(1.0 DU/A or Less )
Impervious value, Ai = 0.100
Sub-Area C Value = 0.404
Rainfall intensity = 5.001(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.380 CA = 8.167
Subarea runoff = 13.305(CFS) for 9.600(Ac.)
Total runoff = 40.845(CFS) Total area = 21.500(Ac.)
Depth of flow = 0.258(Ft.), Average velocity = 3.042(Ft/s)
Critical depth = 0.287(Ft.)
Process from Point/Station 103.000 to Point/Station 103.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 1
Stream flow area = 21.500(Ac.)
Runoff from this stream = 40.845(CFS)
Time of concentration = 14.37 min.
Rainfall intensity = 5.001(In/Hr)
Process from Point/Station 110.000 to Point/Station 111.000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 1.000
Decimal fraction soil group D = 0.000
[UNDISTURBED NATURAL TERRAIN
                                         1
(Permanent Open Space
Impervious value, Ai = 0.000
Sub-Area C Value = 0.300
Initial subarea total flow distance = 162.000(Ft.)
```

```
Highest elevation = 1486.000(Ft.)
Lowest elevation = 1445.000(Ft.)
Elevation difference = 41.000(Ft.) Slope = 25.309 %
Top of Initial Area Slope adjusted by User to 25.000 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 100.00 (Ft)
for the top area slope value of 25.00 %, in a development type of
Permanent Open Space
In Accordance With Figure 3-3
Initial Area Time of Concentration = 4.92 minutes
TC = [1.8*(1.1-C)*distance(Ft.)^.5)/(% slope^(1/3)]
TC = [1.8*(1.1-0.3000)*(100.000^{.5})/(25.000^{(1/3)}] = 4.92
Calculated TC of 4.925 minutes is less than 5 minutes,
resetting TC to 5.0 minutes for rainfall intensity calculations
Rainfall intensity (I) = 9.880(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.300
Subarea runoff = 0.296(CFS)
Total initial stream area =
                               0.100(Ac.)
Process from Point/Station
                            111.000 to Point/Station
                                                        103.000
**** IMPROVED CHANNEL TRAVEL TIME ****
Upstream point elevation = 1445.000(Ft.)
Downstream point elevation = 1295.000(Ft.)
Channel length thru subarea = 1405.000(Ft.)
Channel base width = 19.000(Ft.)
Slope or 'Z' of left channel bank = 30.000
Slope or 'Z' of right channel bank = 30.000
Estimated mean flow rate at midpoint of channel = 8.108(CFS)
             = 0.035
Manning's 'N'
Maximum depth of channel =
                           0.200(Ft.)
Flow(q) thru subarea = 8.108(CFS)
Depth of flow = 0.118(Ft.), Average velocity = 3.035(Ft/s)
Channel flow top width = 26.108(Ft.)
Flow Velocity = 3.03(Ft/s)
Travel time =
               7.72 min.
Time of concentration = 12.64 min.
Critical depth =
                   0.162(Ft.)
Adding area flow to channel
Rainfall intensity (I) =
                            5.432(In/Hr) for a 100.0 year storm
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.300
Decimal fraction soil group D = 0.700
                                         ]
[LOW DENSITY RESIDENTIAL
(1.0 DU/A or Less
Impervious value, Ai = 0.100
Sub-Area C Value = 0.395
Rainfall intensity =
                       5.432(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for total area
(O=KCIA) is C = 0.394 CA =
                          2.913
Subarea runoff = 15.530(CFS) for
                                       7.300(Ac.)
Total runoff = 15.826(CFS) Total area =
                                                   7.400(Ac.)
Depth of flow = 0.173(Ft.), Average velocity = 3.783(Ft/s)
```

```
Process from Point/Station
                            103.000 to Point/Station
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 7.400(Ac.)
Runoff from this stream = 15.826(CFS)
Time of concentration = 12.64 min.
Rainfall intensity = 5.432(In/Hr)
Summary of stream data:
Stream
        Flow rate
                    TC
                                 Rainfall Intensity
No.
         (CFS)
                    (min)
                                        (In/Hr)
       40.845
1
               14.37
                                  5.001
      15.826
                12.64
                                  5.432
Omax(1) =
        1.000 *
                 1.000 *
                           40.845) +
        0.921 *
                           15.826) + =
                 1.000 *
Qmax(2) =
        1.000 *
                0.880 *
                           40.845) +
        1.000 *
                 1.000 *
                          15.826) + =
                                         51.763
Total of 2 streams to confluence:
Flow rates before confluence point:
     40.845 15.826
Maximum flow rates at confluence using above data:
      55.417
             51.763
Area of streams before confluence:
      21.500
                 7.400
Results of confluence:
Total flow rate = 55.417(CFS)
Time of concentration = 14.367 min.
Effective stream area after confluence =
                                       28.900(Ac.)
Process from Point/Station 103.000 to Point/Station
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation = 1295.000(Ft.)
Downstream point/station elevation = 1294.500(Ft.)
Pipe length = 12.00(Ft.) Slope = 0.0417 Manning's N = 0.024
No. of pipes = 1 Required pipe flow = 55.417(CFS)
Nearest computed pipe diameter = 33.00(In.)
Calculated individual pipe flow = 55.417(CFS)
Normal flow depth in pipe = 25.59(In.)
Flow top width inside pipe = 27.54(In.)
Critical Depth = 29.06(In.)
Pipe flow velocity = 11.20(Ft/s)
Travel time through pipe = 0.02 min.
```

Critical depth = 0.238(Ft.)

Time of concentration (TC) = 14.39 min.

```
Process from Point/Station 104.000 to Point/Station
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 1
Stream flow area = 28.900(Ac.)
Runoff from this stream = 55.417(CFS)
Time of concentration = 14.39 \text{ min.}
Rainfall intensity = 4.997(\text{In/Hr})
Process from Point/Station 120.000 to Point/Station 121.000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 1.000
Decimal fraction soil group D = 0.000
                                        ]
[UNDISTURBED NATURAL TERRAIN
(Permanent Open Space )
Impervious value, Ai = 0.000
Sub-Area C Value = 0.300
Initial subarea total flow distance = 100.000(Ft.)
Highest elevation = 1340.000(Ft.)
Lowest elevation = 1325.000(Ft.)
Elevation difference = 15.000(Ft.) Slope = 15.000 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 100.00 (Ft)
for the top area slope value of 15.00 %, in a development type of
Permanent Open Space
In Accordance With Figure 3-3
Initial Area Time of Concentration = 5.84 minutes
TC = [1.8*(1.1-C)*distance(Ft.)^.5)/(% slope^(1/3)]
TC = [1.8*(1.1-0.3000)*(100.000^{.5})/(15.000^{(1/3)}] =
Rainfall intensity (I) = 8.940(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.300
Subarea runoff = 0.268(CFS)
Total initial stream area =
                              0.100(Ac.)
Process from Point/Station 121.000 to Point/Station
                                                      122.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation = 1325.000(Ft.)
End of street segment elevation = 1298.000(Ft.)
Length of street segment = 1117.000(Ft.)
Height of curb above gutter flowline =
                                    6.0(In.)
Width of half street (curb to crown) = 32.000(Ft.)
Distance from crown to crossfall grade break = 31.999(Ft.)
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) =
Street flow is on [2] side(s) of the street
```

```
Distance from curb to property line = 10.000(Ft.)
Slope from curb to property line (v/hz) = 0.000
Gutter width = 0.000(Ft.)
Gutter hike from flowline = 6.000(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0130
Estimated mean flow rate at midpoint of street =
                                                  4.397(CFS)
Depth of flow = 0.575(Ft.), Average velocity = 2.456(Ft/s)
Warning: depth of flow exceeds top of curb
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 3.766(Ft.)
Flow velocity = 2.46(Ft/s)
Travel time = 7.58 min.
                             TC = 13.42 \text{ min.}
Adding area flow to street
Rainfall intensity (I) = 5.227(In/Hr) for a 100.0 year storm
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.610
Decimal fraction soil group D = 0.390
                                          ]
[MEDIUM DENSITY RESIDENTIAL
(10.9 DU/A or Less
Impervious value, Ai = 0.450
Sub-Area C Value = 0.582
Rainfall intensity =
                       5.227(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.572 CA =
                          1.659
                  8.402(CFS) for
Subarea runoff =
                                       2.800(Ac.)
                             Total area = 8.670(CFS)
Total runoff = 8.670(CFS)
                                                   2.900(Ac.)
Street flow at end of street =
Half street flow at end of street =
                                      4.335(CFS)
Depth of flow = 0.610(Ft.), Average velocity = 3.103(Ft/s)
Warning: depth of flow exceeds top of curb
Flow width (from curb towards crown) = 5.482(Ft.)
Process from Point/Station
                          122.000 to Point/Station
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 1295.200(Ft.)
Downstream point/station elevation = 1294.500(Ft.)
Pipe length = 160.00(Ft.) Slope = 0.0044 Manning's N = 0.024
No. of pipes = 1 Required pipe flow = 8.670(CFS)
Given pipe size =
                    18.00(In.)
NOTE: Normal flow is pressure flow in user selected pipe size.
The approximate hydraulic grade line above the pipe invert is
    3.574(Ft.) at the headworks or inlet of the pipe(s)
Pipe friction loss =
                       3.714(Ft.)
Minor friction loss =
                         0.561(Ft.)
                                      K-factor =
                                                   1.50
Pipe flow velocity = 4.91(Ft/s)
Travel time through pipe = 0.54 min.
Time of concentration (TC) = 13.96 \text{ min.}
```

Process from Point/Station 104.000 to Point/Station 104.000 **** CONFLUENCE OF MINOR STREAMS ****

```
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 2.900(Ac.)
Runoff from this stream = 8.670(CFS)
Time of concentration = 13.96 min.
Rainfall intensity = 5.095(In/Hr)
Summary of stream data:
Stream Flow rate
                     TC
                                 Rainfall Intensity
No.
         (CFS)
                     (min)
                                         (In/Hr)
       55.417
                14.39
                                    4.997
        8.670
                 13.96
                                    5.095
Qmax(1) =
        1.000 *
                1.000 * 55.417) +
        0.981 *
                 1.000 *
                            8.670) + =
                                            63.922
Qmax(2) =
        1.000 *
                 0.971 *
                           55.417) +
        1.000 *
                 1.000 *
                            8.670) + =
                                           62.459
Total of 2 streams to confluence:
Flow rates before confluence point:
     55.417 8.670
Maximum flow rates at confluence using above data:
      63.922 62.459
Area of streams before confluence:
      28.900 2.900
Results of confluence:
Total flow rate = 63.922(CFS)
Time of concentration = 14.385 min.
Effective stream area after confluence = 31.800(Ac.)
Process from Point/Station 104.000 to Point/Station 105.000
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation = 1294.500(Ft.)
Downstream point/station elevation = 1288.700(Ft.)
Pipe length = 96.00(Ft.) Slope = 0.0604 Manning's N = 0.024
No. of pipes = 1 Required pipe flow = 63.922(CFS)
Nearest computed pipe diameter = 33.00(In.)
Calculated individual pipe flow = 63.922(CFS)
Normal flow depth in pipe = 24.66(In.)
Flow top width inside pipe = 28.69(In.)
Critical Depth = 30.40(In.)
Pipe flow velocity = 13.43(Ft/s)
Travel time through pipe = 0.12 min.

Time of concentration (TC) = 14.50 min.
End of computations, total study area =
                                            31.800 (Ac.)
```

Appendix C: 100-Year Post-Project Condition Hydrologic Output

San Diego County Rational Hydrology Program

```
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1991-2009 Version 7.8
Rational method hydrology program based on
San Diego County Flood Control Division 2003 hydrology manual
    Rational Hydrology Study Date: 01/24/17
______
Shady Oak
Proposed Conditions
Major Drainage Basin 100
100-Year Flow Rate
          Hydrology Study Control Information *******
______
Program License Serial Number 6289
______
Rational hydrology study storm event year is 100.0
English (in-lb) input data Units used
Map data precipitation entered:
6 hour, precipitation(inches) = 3.750
24 hour precipitation(inches) = 8.200
P6/P24 = 45.7%
San Diego hydrology manual 'C' values used
Process from Point/Station 100.000 to Point/Station 101.000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 1.000
Decimal fraction soil group D = 0.000
[LOW DENSITY RESIDENTIAL
                                     ]
(1.0 DU/A or Less
Impervious value, Ai = 0.100
Sub-Area C Value = 0.360
Initial subarea total flow distance = 75.000(Ft.)
Highest elevation = 1508.000(Ft.)
Lowest elevation = 1502.000(Ft.)
Elevation difference = 6.000(Ft.) Slope = 8.000 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 100.00 (Ft)
for the top area slope value of 8.00 %, in a development type of
1.0 DU/A or Less
```

```
In Accordance With Figure 3-3
Initial Area Time of Concentration = 6.66 minutes
TC = [1.8*(1.1-C)*distance(Ft.)^.5)/(% slope^(1/3)]
TC = [1.8*(1.1-0.3600)*(100.000^{.5})/(8.000^{(1/3)}] = 6.66
Rainfall intensity (I) =
                         8.212(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.360
Subarea runoff =
                  0.296(CFS)
Total initial stream area =
                              0.100(Ac.)
Process from Point/Station 101.000 to Point/Station 102.000
**** IMPROVED CHANNEL TRAVEL TIME ****
Upstream point elevation = 1502.000(Ft.)
Downstream point elevation = 1330.000(Ft.)
Channel length thru subarea = 845.000(Ft.)
Channel base width
                  = 25.000(Ft.)
Slope or 'Z' of left channel bank = 5.000
Slope or 'Z' of right channel bank = 5.000
Estimated mean flow rate at midpoint of channel = 13.964(CFS)
Manning's 'N' = 0.035
Maximum depth of channel =
                          4.000(Ft.)
Flow(q) thru subarea = 13.964(CFS)
Depth of flow = 0.119(Ft.), Average velocity = 4.570(Ft/s)
Channel flow top width = 26.194(Ft.)
Flow Velocity =
               4.57(Ft/s)
Travel time = 3.08 min.
Time of concentration = 9.74 min.
Critical depth = 0.211(Ft.)
Adding area flow to channel
Rainfall intensity (I) =
                      6.426(In/Hr) for a 100.0 year storm
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.997
Decimal fraction soil group D = 0.003
[LOW DENSITY RESIDENTIAL
(1.0 DU/A or Less )
Impervious value, Ai = 0.100
Sub-Area C Value = 0.360
Rainfall intensity = 6.426(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.360 CA = 4.286
Subarea runoff =
                27.245(CFS) for 11.800(Ac.)
Total runoff =
               27.540(CFS)
                               Total area =
                                               11.900(Ac.)
Depth of flow = 0.179(Ft.), Average velocity = 5.942(Ft/s)
Critical depth =
                  0.328(Ft.)
Process from Point/Station 102.000 to Point/Station
**** IMPROVED CHANNEL TRAVEL TIME ****
Upstream point elevation = 1330.000(Ft.)
Downstream point elevation = 1295.000(Ft.)
Channel length thru subarea = 800.000(Ft.)
```

```
Channel base width = 37.000(Ft.)
Slope or 'Z' of left channel bank = 58.000
Slope or 'Z' of right channel bank = 58.000
Estimated mean flow rate at midpoint of channel = 34.236(CFS)
Manning's 'N' = 0.035
Maximum depth of channel = 1.000(Ft.)
Flow(q) thru subarea = 34.236(CFS)
Depth of flow = 0.235(Ft.), Average velocity = 2.883(Ft/s)
Channel flow top width = 64.222(Ft.)
Flow Velocity = 2.88(Ft/s)
Travel time = 4.63 \text{ min.}
Time of concentration = 14.37 min.
Critical depth = 0.258(Ft.)
Adding area flow to channel
Rainfall intensity (I) = 5.001(In/Hr) for a 100.0 year storm
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.115
Decimal fraction soil group D = 0.885
[LOW DENSITY RESIDENTIAL
                                        ]
(1.0 DU/A or Less )
Impervious value, Ai = 0.100
Sub-Area C Value = 0.404
Rainfall intensity = 5.001(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.380 CA = 8.167
Subarea runoff = 13.305(CFS) for 9.600(Ac.)
Total runoff = 40.845(CFS) Total area = 21.500(Ac.)
Depth of flow = 0.258(Ft.), Average velocity = 3.042(Ft/s)
Critical depth = 0.287(Ft.)
Process from Point/Station 103.000 to Point/Station 103.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 1
Stream flow area = 21.500(Ac.)
Runoff from this stream = 40.845(CFS)
Time of concentration = 14.37 min.
Rainfall intensity = 5.001(In/Hr)
Process from Point/Station 110.000 to Point/Station 111.000
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 1.000
Decimal fraction soil group D = 0.000
[UNDISTURBED NATURAL TERRAIN
                                         1
(Permanent Open Space
Impervious value, Ai = 0.000
Sub-Area C Value = 0.300
Initial subarea total flow distance = 162.000(Ft.)
```

```
Highest elevation = 1486.000(Ft.)
Lowest elevation = 1445.000(Ft.)
Elevation difference = 41.000(Ft.) Slope = 25.309 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 100.00 (Ft)
for the top area slope value of 25.30 %, in a development type of
Permanent Open Space
In Accordance With Figure 3-3
Initial Area Time of Concentration = 4.91 minutes
TC = [1.8*(1.1-C)*distance(Ft.)^.5)/(% slope^(1/3)]
TC = [1.8*(1.1-0.3000)*(100.000^{.5})/(25.300^{(1/3)}] =
Calculated TC of 4.905 minutes is less than 5 minutes,
resetting TC to 5.0 minutes for rainfall intensity calculations
Rainfall intensity (I) =
                           9.880(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.300
Subarea runoff = 0.296(CFS)
Total initial stream area =
                            0.100(Ac.)
Process from Point/Station 111.000 to Point/Station 103.000
**** IMPROVED CHANNEL TRAVEL TIME ****
Upstream point elevation = 1445.000(Ft.)
Downstream point elevation = 1295.000(Ft.)
Channel length thru subarea = 1537.000(Ft.)
Channel base width = 19.000(Ft.)
Slope or 'Z' of left channel bank = 30.000
Slope or 'Z' of right channel bank = 30.000
Estimated mean flow rate at midpoint of channel = 2.456(CFS)
              = 0.035
Manning's 'N'
Maximum depth of channel = 0.200(Ft.)
Flow(q) thru subarea = 2.456(CFS)
Depth of flow = 0.061(Ft.), Average velocity = 1.939(Ft/s)
Channel flow top width = 22.649(Ft.)
Flow Velocity = 1.94(Ft/s)
Travel time = 13.21 min.
Time of concentration = 18.11 min.
Critical depth = 0.077(Ft.)
Adding area flow to channel
Rainfall intensity (I) = 4.307(In/Hr) for a 100.0 year storm
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.593
Decimal fraction soil group D = 0.407
                                          ]
[LOW DENSITY RESIDENTIAL
(1.0 DU/A or Less
Impervious value, Ai = 0.100
Sub-Area C Value = 0.380
Rainfall intensity =
                       4.307(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.377 CA = 1.057
Subarea runoff =
                   4.256(CFS) for
                                     2.700(Ac.)
Total runoff = 4.552(CFS) Total area =
                                                   2.800(Ac.)
Depth of flow = 0.087(Ft.), Average velocity = 2.416(Ft/s)
Critical depth = 0.113(Ft.)
```

```
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 2.800(Ac.)
Runoff from this stream = 4.552(CFS)
Time of concentration = 18.11 \text{ min.}
Rainfall intensity = 4.307(\text{In/Hr})
Summary of stream data:
Stream Flow rate
                     TC
                                   Rainfall Intensity
                    (min)
No.
         (CFS)
                                           (In/Hr)
1
      40.845 14.37
                                     5.001
        4.552
                                     4.307
2
                 18.11
Qmax(1) =
        1.000 * 1.000 *
                            40.845) +
        1.000 * 0.793 *
                              4.552) + =
                                             44.456
Qmax(2) =
                            40.845) +
        0.861 *
                 1.000 *
        1.000 * 1.000 *
                              4.552) + =
                                            39.727
Total of 2 streams to confluence:
Flow rates before confluence point:
      40.845
              4.552
Maximum flow rates at confluence using above data:
      44.456 39.727
Area of streams before confluence:
      21.500
              2.800
Results of confluence:
Total flow rate = 44.456(CFS)
Time of concentration = 14.367 min.
Effective stream area after confluence =
                                         24.300(Ac.)
Process from Point/Station 103.000 to Point/Station 104.000
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation = 1295.000(Ft.)
Downstream point/station elevation = 1294.500(Ft.)
Pipe length = 12.00(Ft.) Slope = 0.0417 Manning's N = 0.024
No. of pipes = 1 Required pipe flow = 44.456(CFS)
Nearest computed pipe diameter = 30.00(In.)
Calculated individual pipe flow = 44.456(CFS)
Normal flow depth in pipe = 24.09(In.)
Flow top width inside pipe = 23.86(In.)
Critical Depth = 26.60(In.)
Pipe flow velocity = 10.53(Ft/s)
Travel time through pipe = 0.02 min.
Time of concentration (TC) = 14.39 \text{ min.}
```

```
Process from Point/Station 104.000 to Point/Station
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 1
Stream flow area = 24.300(Ac.)
Runoff from this stream = 44.456(CFS)
                     14.39 min.
Time of concentration =
                    4.997(In/Hr)
Rainfall intensity =
Process from Point/Station
                         150.000 to Point/Station
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[MEDIUM DENSITY RESIDENTIAL
                                       ]
(10.9 DU/A or Less
Impervious value, Ai = 0.450
Sub-Area C Value = 0.600
Initial subarea total flow distance = 72.000(Ft.)
Highest elevation = 1299.000(Ft.)
Lowest elevation = 1298.000(Ft.)
Elevation difference =
                      1.000(Ft.) Slope = 1.389 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 65.00 (Ft)
for the top area slope value of 1.38 %, in a development type of
10.9 DU/A or Less
In Accordance With Figure 3-3
Initial Area Time of Concentration = 6.52 minutes
TC = [1.8*(1.1-C)*distance(Ft.)^.5)/(% slope^(1/3)]
TC = [1.8*(1.1-0.6000)*(65.000^{.5})/(1.380^{(1/3)}] = 6.52
Rainfall intensity (I) =
                      8.328(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.600
Subarea runoff = 0.500(CFS)
Total initial stream area =
                              0.100(Ac.)
Process from Point/Station
                           151.000 to Point/Station
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation = 1298.000(Ft.)
End of street segment elevation = 1297.700(Ft.)
Length of street segment = 36.500(Ft.)
Height of curb above gutter flowline =
Width of half street (curb to crown) = 41.000(Ft.)
Distance from crown to crossfall grade break = 40.990(Ft.)
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) =
Street flow is on [1] side(s) of the street
Distance from curb to property line = 10.000(Ft.)
```

```
Slope from curb to property line (v/hz) = 0.020
Gutter width = 0.000(Ft.)
Gutter hike from flowline = 6.000(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0130
Estimated mean flow rate at midpoint of street =
                                                  2.215(CFS)
Depth of flow = 0.661(Ft.), Average velocity = 1.711(Ft/s)
Warning: depth of flow exceeds top of curb
Distance that curb overflow reaches into property =
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 8.045(Ft.)
Flow velocity = 1.71(Ft/s)
Travel time = 0.36 min.
                            TC =
                                   6.87 min.
Adding area flow to street
Rainfall intensity (I) = 8.047(In/Hr) for a 100.0 year storm
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
                                         ]
[MEDIUM DENSITY RESIDENTIAL
(10.9 DU/A or Less
Impervious value, Ai = 0.450
Sub-Area C Value = 0.600
Rainfall intensity =
                    8.047(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.600 CA = 0.480
                  3.363(CFS) for
                                       0.700(Ac.)
Subarea runoff =
Total runoff =
                             Total area = 3.863(CFS)
                  3.863(CFS)
                                                   0.800(Ac.)
Street flow at end of street =
Half street flow at end of street =
                                      3.863(CFS)
Depth of flow = 0.698(Ft.), Average velocity = 1.978(Ft/s)
Warning: depth of flow exceeds top of curb
Distance that curb overflow reaches into property = 9.88(Ft.)
Flow width (from curb towards crown) = 9.881(Ft.)
Process from Point/Station 152.000 to Point/Station 104.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 1295.200(Ft.)
Downstream point/station elevation = 1294.500(Ft.)
Pipe length = 160.00(Ft.) Slope = 0.0044 Manning's N = 0.024
No. of pipes = 1 Required pipe flow = 3.863(CFS)
Given pipe size =
                   18.00(In.)
NOTE: Normal flow is pressure flow in user selected pipe size.
The approximate hydraulic grade line above the pipe invert is
    0.148(Ft.) at the headworks or inlet of the pipe(s)
Pipe friction loss = 0.737(Ft.)
Minor friction loss =
                        0.111(Ft.)
                                      K-factor = 1.50
Pipe flow velocity = 2.19(Ft/s)
Travel time through pipe = 1.22 min.
Time of concentration (TC) = 8.09 min.
```

```
Process from Point/Station 104.000 to Point/Station 104.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 0.800(Ac.)
Runoff from this stream = 3.863(CFS)
Time of concentration = 8.09 min.
                     7.242(In/Hr)
Rainfall intensity =
Summary of stream data:
Stream Flow rate
                   TC
                                 Rainfall Intensity
No.
         (CFS)
                   (min)
                                        (In/Hr)
      44.456 14.39
                                   4.997
2
       3.863
                 8.09
                                   7.242
Qmax(1) =
       1.000 * 1.000 * 44.456) +
        0.690 *
                 1.000 *
                            3.863) + =
Omax(2) =
        1.000 *
                 0.563 *
                          44.456) +
        1.000 *
                 1.000 *
                            3.863) + =
                                          28.871
Total of 2 streams to confluence:
Flow rates before confluence point:
     44.456 3.863
Maximum flow rates at confluence using above data:
      47.121 28.871
Area of streams before confluence:
      24.300
             0.800
Results of confluence:
Total flow rate = 47.121(CFS)
Time of concentration = 14.386 min.
Effective stream area after confluence =
                                       25.100(Ac.)
Process from Point/Station 104.000 to Point/Station 105.000
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation = 1294.500(Ft.)
Downstream point/station elevation = 1288.700(Ft.)
Pipe length = 96.00(Ft.) Slope = 0.0604 Manning's N = 0.024
No. of pipes = 1 Required pipe flow = 47.121(CFS)
Nearest computed pipe diameter = 30.00(In.)
Calculated individual pipe flow = 47.121(CFS)
Normal flow depth in pipe = 21.49(In.)
Flow top width inside pipe = 27.04(In.)
Critical Depth = 27.12(In.)
Pipe flow velocity = 12.52(Ft/s)
Travel time through pipe = 0.13 min.
Time of concentration (TC) = 14.51 \text{ min.}
```

8

```
The following data inside Main Stream is listed:
In Main Stream number: 1
Stream flow area = 25.100(Ac.)
Runoff from this stream =
                          47.121(CFS)
Time of concentration = 14.51 min.
                    4.969(In/Hr)
Rainfall intensity =
Program is now starting with Main Stream No. 2
Process from Point/Station
                          130.000 to Point/Station
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 1.000
Decimal fraction soil group D = 0.000
[MEDIUM DENSITY RESIDENTIAL
                                         ]
(10.9 DU/A or Less
Impervious value, Ai = 0.450
Sub-Area C Value = 0.570
Initial subarea total flow distance = 60.000(Ft.)
Highest elevation = 1317.800(Ft.)
Lowest elevation = 1314.000(Ft.)
                       3.800(Ft.) Slope = 6.333 %
Elevation difference =
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 100.00 (Ft)
for the top area slope value of 6.33 %, in a development type of
10.9 DU/A or Less
In Accordance With Figure 3-3
Initial Area Time of Concentration = 5.16 minutes
TC = [1.8*(1.1-C)*distance(Ft.)^.5)/(% slope^(1/3)]
TC = [1.8*(1.1-0.5700)*(100.000^{.5})/(6.330^{(1/3)}] = 5.16
Rainfall intensity (I) = 9.685(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.570
Subarea runoff = 0.552(CFS)
Total initial stream area =
                               0.100(Ac.)
Process from Point/Station
                            131.000 to Point/Station
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation = 1314.000(Ft.)
End of street segment elevation = 1297.000(Ft.)
Length of street segment = 770.000(Ft.)
Height of curb above gutter flowline =
Width of half street (curb to crown) = 13.000(Ft.)
Distance from crown to crossfall grade break = 11.500(Ft.)
Slope from gutter to grade break (v/hz) = 0.015
Slope from grade break to crown (v/hz) =
Street flow is on [2] side(s) of the street
Distance from curb to property line = 11.500(Ft.)
```

Process from Point/Station 105.000 to Point/Station 105.000

**** CONFLUENCE OF MAIN STREAMS ****

```
Slope from curb to property line (v/hz) = 0.015
Gutter width = 1.500(Ft.)
Gutter hike from flowline = 0.270(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0130
Estimated mean flow rate at midpoint of street =
                                                9.295(CFS)
Depth of flow = 0.198(Ft.), Average velocity = 3.558(Ft/s)
Note: depth of flow exceeds top of street crown.
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 13.000(Ft.)
Flow velocity = 3.56(Ft/s)
Travel time = 3.61 min.
                          TC =
                                 8.76 min.
Adding area flow to street
Rainfall intensity (I) = 6.880(In/Hr) for a 100.0 year storm
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.756
Decimal fraction soil group D = 0.244
[MEDIUM DENSITY RESIDENTIAL
                                        ]
(10.9 DU/A or Less
                  )
Impervious value, Ai = 0.450
Sub-Area C Value = 0.577
Rainfall intensity = 6.880(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.577 CA = 2.597
Subarea runoff = 17.316(CFS) for
                                    4.400(Ac.)
Total runoff = 17.868(CFS)
                              Total area =
                                                4.500(Ac.)
Street flow at end of street = 17.868(CFS)
Half street flow at end of street = 8.934(CFS)
Depth of flow = 0.246(Ft.), Average velocity = 4.613(Ft/s)
Note: depth of flow exceeds top of street crown.
Flow width (from curb towards crown) = 13.000(Ft.)
Process from Point/Station 132.000 to Point/Station 132.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 2 in normal stream number 1
Stream flow area = 4.500(Ac.)
Runoff from this stream = 17.868(CFS)
Time of concentration = 8.76 min.
Rainfall intensity = 6.880(In/Hr)
Process from Point/Station 140.000 to Point/Station
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[MEDIUM DENSITY RESIDENTIAL
                                        ]
(10.9 DU/A or Less
```

```
Impervious value, Ai = 0.450
Sub-Area C Value = 0.600
Initial subarea total flow distance = 127.000(Ft.)
Highest elevation = 1311.300(Ft.)
Lowest elevation = 1307.560(Ft.)
Elevation difference =
                        3.740(Ft.) Slope = 2.945 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 90.00 (Ft)
for the top area slope value of 2.94 %, in a development type of
10.9 DU/A or Less
In Accordance With Figure 3-3
Initial Area Time of Concentration =
                                     5.96 minutes
TC = [1.8*(1.1-C)*distance(Ft.)^.5)/(% slope^(1/3)]
TC = [1.8*(1.1-0.6000)*(90.000^{5})/(2.940^{(1/3)}] = 5.96
Rainfall intensity (I) = 8.822(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.600
Subarea runoff =
                     0.529(CFS)
Total initial stream area =
                                0.100(Ac.)
Process from Point/Station 141.000 to Point/Station
                                                          132,000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation = 1307.560(Ft.)
End of street segment elevation = 1297.000(Ft.)
Length of street segment = 300.000(Ft.)
Height of curb above gutter flowline =
                                        6.0(In.)
Width of half street (curb to crown) = 14.000(Ft.)
Distance from crown to crossfall grade break = 12.500(Ft.)
Slope from gutter to grade break (v/hz) =
                                         0.004
Slope from grade break to crown (v/hz) =
Street flow is on [2] side(s) of the street
Distance from curb to property line = 10.000(Ft.)
Slope from curb to property line (v/hz) = 0.015
Gutter width = 1.500(Ft.)
Gutter hike from flowline = 4.000(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0130
Estimated mean flow rate at midpoint of street =
                                                  1.059(CFS)
Depth of flow = 0.244(Ft.), Average velocity = 3.948(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width =
                       1.500(Ft.)
Flow velocity = 3.95(Ft/s)
Travel time = 1.27 min.
                            TC = 7.23 \text{ min.}
Adding area flow to street
                            7.791(In/Hr) for a 100.0 year storm
Rainfall intensity (I) =
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
[MEDIUM DENSITY RESIDENTIAL
                                           ]
(10.9 DU/A or Less
Impervious value, Ai = 0.450
Sub-Area C Value = 0.600
```

```
Rainfall intensity = 7.791(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.600 CA = 0.180
Subarea runoff = 0.873(CFS) for 0.200(Ac.)

Total runoff = 1.402(CFS) Total area = 0.300(Ac.)

Street flow at end of street = 1.402(CFS)
Half street flow at end of street = 0.701(CFS)
Depth of flow = 0.271(Ft.), Average velocity = 4.236(Ft/s)
Flow width (from curb towards crown) = 1.500(Ft.)
Process from Point/Station 132.000 to Point/Station 132.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 2 in normal stream number 2
Stream flow area = 0.300(Ac.)
Runoff from this stream = 1.402(CFS)
Time of concentration = 7.23 min.
Rainfall intensity = 7.791(In/Hr)
Summary of stream data:
Stream Flow rate TC (CFS) (min)
                                 Rainfall Intensity
                                        (In/Hr)
      17.868 8.76
                                   6.880
2
       1.402
                 7.23
                                   7.791
Qmax(1) =
        1.000 * 1.000 * 17.868) + 0.883 * 1.000 * 1.402) +
                            1.402) + = 19.106
Qmax(2) =
        1.000 * 0.825 * 17.868) +
        1.000 * 1.000 *
                            1.402) + =
                                         16.136
Total of 2 streams to confluence:
Flow rates before confluence point:
     17.868 1.402
Maximum flow rates at confluence using above data:
     19.106 16.136
Area of streams before confluence:
       4.500 0.300
Results of confluence:
Total flow rate = 19.106(CFS)
Time of concentration = 8.764 min.
Effective stream area after confluence =
                                        4.800(Ac.)
Process from Point/Station 132.000 to Point/Station 122.000
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation = 1292.700(Ft.)
Downstream point/station elevation = 1259.600(Ft.)
Pipe length = 12.66(Ft.) Slope = 2.6145 Manning's N = 0.015
No. of pipes = 1 Required pipe flow = 19.106(CFS)
```

```
Nearest computed pipe diameter = 9.00(In.)
Calculated individual pipe flow = 19.106(CFS)
Normal flow depth in pipe = 6.22(In.)
Flow top width inside pipe = 8.31(In.)
Critical depth could not be calculated.
Pipe flow velocity = 58.60(Ft/s)
Travel time through pipe = 0.00 min.
Time of concentration (TC) = 8.77 \text{ min.}
Process from Point/Station 122.000 to Point/Station
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 2 in normal stream number 1
Stream flow area = 4.800(Ac.)
Runoff from this stream = 19.106(CFS)
Time of concentration = 8.77 min.
                     6.878(In/Hr)
Rainfall intensity =
Process from Point/Station 120.000 to Point/Station
**** INITIAL AREA EVALUATION ****
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 1.000
Decimal fraction soil group D = 0.000
[UNDISTURBED NATURAL TERRAIN
                                         ]
(Permanent Open Space )
Impervious value, Ai = 0.000
Sub-Area C Value = 0.300
Initial subarea total flow distance = 100.000(Ft.)
Highest elevation = 1340.000(Ft.)
Lowest elevation = 1325.000(Ft.)
Elevation difference = 15.000(Ft.) Slope = 15.000 %
INITIAL AREA TIME OF CONCENTRATION CALCULATIONS:
The maximum overland flow distance is 100.00 (Ft)
for the top area slope value of 15.00 %, in a development type of
Permanent Open Space
In Accordance With Figure 3-3
Initial Area Time of Concentration = 5.84 minutes
TC = [1.8*(1.1-C)*distance(Ft.)^.5)/(% slope^(1/3)]
TC = [1.8*(1.1-0.3000)*(100.000^{.5})/(15.000^{(1/3)}] =
                                                  5.84
Rainfall intensity (I) =
                          8.940(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.300
Subarea runoff =
                   0.268(CFS)
Total initial stream area =
                               0.100(Ac.)
Process from Point/Station
                            121.000 to Point/Station
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
```

```
End of street segment elevation = 1298.100(Ft.)
Length of street segment = 1008.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
Width of half street (curb to crown) = 30.100(Ft.)
Distance from crown to crossfall grade break = 28.600(Ft.)
Slope from gutter to grade break (v/hz) = 0.055
Slope from grade break to crown (v/hz) =
Street flow is on [2] side(s) of the street
Distance from curb to property line = 10.500(Ft.)
Slope from curb to property line (v/hz) =
Gutter width = 1.500(Ft.)
Gutter hike from flowline = 5.000(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0130
Estimated mean flow rate at midpoint of street =
                                                  3.350(CFS)
Depth of flow = 0.466(Ft.), Average velocity = 3.744(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 3.967(Ft.)
Flow velocity = 3.74(Ft/s)
Travel time = 4.49 min.
                            TC = 10.33 \text{ min.}
Adding area flow to street
Rainfall intensity (I) =
                           6.189(In/Hr) for a 100.0 year storm
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.930
Decimal fraction soil group D = 0.070
[MEDIUM DENSITY RESIDENTIAL
                                          ]
(10.9 DU/A or Less
Impervious value, Ai = 0.450
Sub-Area C Value = 0.572
Rainfall intensity =
                        6.189(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for total area
(Q=KCIA) is C = 0.558 CA =
Subarea runoff =
                    6.290(CFS) for
                                       1.800(Ac.)
                 6.559(CFS) Total area =
Total runoff =
                                                   1.900(Ac.)
                               6.559(CFS)
Street flow at end of street =
Half street flow at end of street =
                                      3.279(CFS)
Depth of flow = 0.533(Ft.), Average velocity = 3.959(Ft/s)
Warning: depth of flow exceeds top of curb
Distance that curb overflow reaches into property =
Flow width (from curb towards crown) = 7.330(Ft.)
Process from Point/Station
                             122.000 to Point/Station
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 2 in normal stream number 2
Stream flow area = 1.900(Ac.)
Runoff from this stream = 6.559(CFS)
                      10.33 min.
Time of concentration =
Rainfall intensity =
                       6.189(In/Hr)
Summary of stream data:
Stream Flow rate TC
                                   Rainfall Intensity
```


```
No. (CFS) (min)
                               (In/Hr)
      19.106
                8.77
                                  6.878
1
       6.559
                10.33
                                  6.189
Qmax(1) =
        1.000 *
                1.000 * 19.106) +
        1.000 *
                0.849 *
                           6.559) + =
                                          24.675
Qmax(2) =
                          19.106) +
        0.900 *
                1.000 *
        1.000 *
                 1.000 *
                           6.559) + =
                                         23.751
Total of 2 streams to confluence:
Flow rates before confluence point:
     19.106 6.559
Maximum flow rates at confluence using above data:
      24.675 23.751
Area of streams before confluence:
       4.800 1.900
Results of confluence:
Total flow rate = 24.675(CFS)
Time of concentration = 8.767 min.
Effective stream area after confluence = 6.700(Ac.)
Process from Point/Station 122.000 to Point/Station
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation = 1292.500(Ft.)
Downstream point/station elevation = 1291.000(Ft.)
Pipe length = 317.66(Ft.) Slope = 0.0047 Manning's N = 0.015
No. of pipes = 1 Required pipe flow =
                                     24.675(CFS)
Nearest computed pipe diameter = 33.00(In.)
Calculated individual pipe flow = 24.675(CFS)
Normal flow depth in pipe = 21.98(In.)
Flow top width inside pipe = 31.12(In.)
Critical Depth = 19.72(In.)
Pipe flow velocity = 5.87(Ft/s)
Travel time through pipe = 0.90 min.
Time of concentration (TC) = 9.67 \text{ min.}
Process from Point/Station 105.000 to Point/Station 105.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 2
Stream flow area = 6.700(Ac.)
Runoff from this stream = 24.675(CFS)
Time of concentration = 9.67 min.
Rainfall intensity = 6.457(In/Hr)
Summary of stream data:
Stream Flow rate TC
                                 Rainfall Intensity
```

```
No. (CFS) (min)
                                 (In/Hr)
   47.121 14.51
1
                                     4.969
      24.675
                                     6.457
                  9.67
Qmax(1) =
       1.000 * 1.000 * 47.121) +
                             24.675) + =
        0.770 * 1.000 *
                                             66.109
Qmax(2) =
        1.000 * 0.666 * 47.121) +
1.000 * 1.000 * 24.675) + =
                                            56.068
Total of 2 main streams to confluence:
Flow rates before confluence point:
     47.121 24.675
Maximum flow rates at confluence using above data:
      66.109 56.068
Area of streams before confluence:
      25.100
              6.700
Results of confluence:
Total flow rate = 66.109(CFS)
Time of concentration = 14.514 min.
Effective stream area after confluence = 31.800(Ac.)
End of computations, total study area = 31.800(Ac.)
```

Appendix D: HEC-1 Detention Calculations

U.S. ARMY CORPS OF ENGINEERS HYDROLOGIC ENGINEERING CENTER 609 SECOND STREET DAVIS, CALIFORNIA 95616 (916) 756-1104

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HEC1GS, HEC1DB, AND HEC1KW.

THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION NEW OPTIONS; DAMBREAK OUTFLOW SUBMERGENCE, SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE: GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM

```
1
                                                                                  HEC-1 INPUT
                                                                                                                                                                     PAGE 1
                LINE
                                      ID......1.....2.....3.....4.....5.....6.....7....8.....9....10
                                      *DIAGRAM
 *** FREE ***
                                             SHADY OAK
PRELIMINARY 100-YEAR DETENTION ANALYSIS
2 01JAN90 1200 200
                                      ID
                    123
                                      ID
                                      IT
                   4
5
6
7
8
9
10
11
12
13
14
15
                                             BASIN
                                             BASIN
RATIONAL METHOD HYDROGRAPH PROGRAM
100-YEAR, 6-HOUR RAINFALL IS 3.75 INCHES
RATIONAL METHOD RUNOFF COEFFICIENT IS 0.418
RATIONAL METHOD TIME OF CONCENTRATION IS 14.514 MINUTES
DRAINAGE AREA IS 31.8 ACRES
                                      KM
KM
KM
                                      KM
                                            0.0497
15 01JAN90
0 3
                                      BA
IN
QI
QI
QI
QI
                                                                      1153
3.1
6.3
3.9
0
                                                                                                                     3.8
16.6
                                                5.4
                                      KK
RS
SV
                   16
17
18
19
20
21
                                            DETATN
                                                           STOR
0.06
63.9
                                                                          -1,
                                                100
                                      SQ
                                                            101
                                      SE
1
                         SCHEMATIC DIAGRAM OF STREAM NETWORK
 INPUT
                  (V) ROUTING
                                                (--->) DIVERSION OR PUMP FLOW
                                               (<---) RETURN OF DIVERTED OR PUMPED FLOW
    NO.
                  (.) CONNECTOR
       4
     16
                  DETAIN
(***) RUNOFF ALSO COMPUTED AT THIS LOCATION
                                                                                                                                          建设在设备的企业的企业的企业的企业的企业的企业的企业的企业的企业企业的企业企业
                                                                                                                                                U.S. ARMY CORPS OF ENGINEERS
HYDROLOGIC ENGINEERING CENTER
609 SECOND STREET
DAVIS, CALIFORNIA 95616
(916) 756-1104
       FLOOD HYDROGRAPH PACKAGE (HEC-1)
JUN 1998
VERSION 4.1
      RUN DATE 18APR17 TIME 17:17:04
  *************************
                                                                                                                                          *****************
```

SHADY OAK PRELIMINARY 100-YEAR DETENTION ANALYSIS

IT HYDROGRAPH TIME DATA
NMIN 2
IDATE 1JAN90
ITITME 1200
ND ND ATE
NDTIME 13AN90
NDTIME 1838
ICENT 19 CENTURY MARK

MINUTES IN COMPUTATION INTERVAL
STARTING DATE
STARTING TIME
NUMBER OF HYDROGRAPH ORDINATES
ENDING TIME
10 CENTURY MARK

COMPUTATION INTERVAL .03 HOURS TOTAL TIME BASE 6.63 HOURS

ENGLISH UNITS

DRAINAGE AREA
PRECIPITATION DEPTH
LENGTH, ELEVATION
FLOW
STORAGE VOLUME
SURFACE AREA

EQUATE MILES
INCHES
FEET
CUBIC FEET PER SECOND
ACRE-FEET
ACRES

TEMPERATURE DEGREES FAHRENHEIT

**** BASIN

RATIONAL METHOD HYDROGRAPH PROGRAM
100-YEAR, 6-HOUR RAINFALL IS 3.75 INCHES
RATIONAL METHOD RUNOFF COEFFICIENT IS 0.418
RATIONAL METHOD TIME OF CONCENTRATION IS 14.514 MINUTES
DRAINAGE AREA IS 31.8 ACRES

11 IN

TIME DATA FOR INPUT TIME SERIES

JXMIN 15 TIME INTERVAL IN MINUTES

JXDATE 1JAN90 STARTING DATE

JXTIME 1153 STARTING TIME

SUBBASIN RUNOFF DATA

10 BA

SUBBASIN CHARACTERISTICS TAREA .05 SUBBASIN AREA

****	***	****	***	****	***	*****	*****	******	****	***	***	****	****	****	****	*****	***	自由企会企业	*******
A MON HRMM	ORD	FLOW	*	DA	MON	HRMN	ORD	FLOW	*	DA	MON	HRMN	ORD	FLOW	**	DA MON	HRMN	ORD	FLO
1 JAN 1200	1	1.	*	1	JAN	1340	51	4.	*	1	JAN	1520	101	9.		1 JAN	1700	151	5
1 JAN 1202		2.	*			1342	52	4.	4			1522	102	9.	*	1 JAN		152	5
1 JAN 1204		2.	**			1344	53	4.	*	1	JAN	1524	103	9.	2)	1 JAN		153	5
1 JAN 1206		3.	*			1346	54	4.	10			1526	104	10.	*	I JAN		154	5
1 JAN 1208 1 JAN 1210		3.	at:			1348	55 56	4.	*			1528 1530	105	10.	vir.	1 JAN		155	5
I JAN 1212		3.	*			1352	57	4.	*			1532	107	11.	*	1 JAN 1 JAN		157	4
1 JAN 1214		3.	*			1354	58	4.	15			1534	108	12.	*	1 JAN		158	4
1 JAN 1216		3.	**			1356	59	4.	18			1536	109	12.	#	1 JAN		159	4
1 JAN 1218	10	3.	*			1358	60	4.	H			1538	110	13.	de	1 JAN	1718	160	4
1 JAN 1220		3.	*			1400	61	5.	*			1540	111	13.	*	1 JAN		161	4
1 JAN 1222		3.	*			1402	62	5.	*			1542	112	14.	**	1 JAN		162	4
1 JAN 1224	13	3.	15			1404	63	5.	*	1	JAN	1544	113	14.	10	1 JAN		163	4
1 JAN 1226 1 JAN 1228	14 15	3.	W			1406	64 65	5. 5.	w			1546	114	15.	4	1 JAN		164	4
1 JAN 1230	16	3.	W.			1410	66	5.	*	1	MAL	1548 1550	116	15. 16.	*	1 JAN 1 JAN	1720	165 166	4
1 JAN 1232	17	3.	2			1412	67	5.	*			1552	117	16.	*	1 JAN		167	4
1 JAN 1234	18	3.	*			1414	68	5.	W			1554	118	20.	de	1 JAN		168	4
1 JAN 1236	19	3.	str			1416	69	5.	*			1556	119	27.	10	1 JAN		169	4
1 JAN 1238	20	3.	*			1418	70	5.	37	1	JAN	1558	120	33.	#	1 JAN	1738	170	4
1 JAN 1240		3.	*			1420	71	5.	*			1600	121	40.	**	1 JAN		171	3
I JAN 1242		3.	*			1422	72	5.	2			1602	122	46.	*	1 JAN	1742	172	3
1 JAN 1244 1 JAN 1246		3.	1/2			1424	73	5.	**			1604	123	53.	w.	1 JAN		173	3
1 JAN 1248		3.	1/2			1428	74 75	5. 5.	w.			1606 1608	124	60. 66.	20	1 JAN 1 JAN		174 175	3
1 JAN 1250		3.	*			1430	76	5.	*			1610	126	59.	de	1 JAN	1750	176	3
1 JAN 1252		3.	18			1432	77	5.	4			1612	127	51.	100	1 JAN		177	3
1 JAN 1254	28	3.	*			1434	78	6.	*			1614	128	44.	*	1 JAN		178	3
1 JAN 1256		3.	15			1436	79	6.	4			1616	129	36.	52	1 JAN		179	3
1 JAN 1258	30	3.	*			1438	80	6.	240			1618	130	29.	15	1 JAN		180	2
1 JAN 1300		3.	str str			1440	81	6.	*			1620	131	21.	*	1 JAN		181	
1 JAN 1302 1 JAN 1304		4.	*			1442	82 83	6.	*			1622	132	14.	W-	1 JAN		182	1
1 JAN 1306		4.	*			1446	84	6.	2			1624 1626	134	10.	3/1	1 JAN 1 JAN		183 184	1
1 JAN 1308		4.	*			1448	85	6.	4			1628	135	9.	W.	1 JAN		185	ŏ
1 JAN 1310		4.	W.			1450	86	6.	de			1630	136	9.	*	1 JAN		186	ŏ
1 JAN 1312		4.	*			1452	87	6.	*	1	JAN	1632	137	8.	120	1 JAN		187	Ö
1 JAN 1314	38	4.	#			1454	88	6.	¥			1634	138	8.	1/1	1 JAN		188	0
1 JAN 1316	39	4.	*			1456	89	7.	*			1636	139	7.	35	1 JAN		189	0
1 JAN 1318		4.	**	1	JAN	1458	90	7.	str str			1638	140	7.	**	1 JAN		190	0
1 JAN 1320 1 JAN 1322		4.	*			1500 1502	91	7.	30			1640	141	7.	业	1 JAN		191	0
1 JAN 1324		4.	16			1504	92	7.	*			1642	142 143	7. 6.	70	1 JAN 1 JAN	1824	192 193	0
I JAN 1326		4.	*			1506	94	8.	*			1646	144	6.	*	1 JAN		194	Ö
1 JAN 1328			W			1508	95	8.	*			1648	145	6.	*	1 JAN		195	ŏ
1 JAN 1330	46	4.	str	1	JAN	1510	96	8.	*	1	JAN	1650	146	6.	*	1 JAN		196	ŏ
1 JAN 1332		4.	*			1512	97	8.	*	1	JAN	1652	147	6.	de	1 JAN	1832	197	Ö
1 JAN 1334		4.	*			1514	98	8.	2			1654	148	5.	*	1 JAN		198	0
1 JAN 1336		4.	*			1516	99	8.	11			1656	149	5.	- 17	1 JAN		199	0
1 JAN 1338	50	4.		1	JAN	1518	100	8.	34	1	MAL	1658	150	5.	18	1 JAN	1838	200	0

24-HR 72-HR 6-HR 6.63-HR (CFS) (HR) (CFS) 66. 4.13 (INCHES) (AC-FT) CUMULATIVE AREA = .05 SQ MI

HYDROGRAPH ROUTING DATA

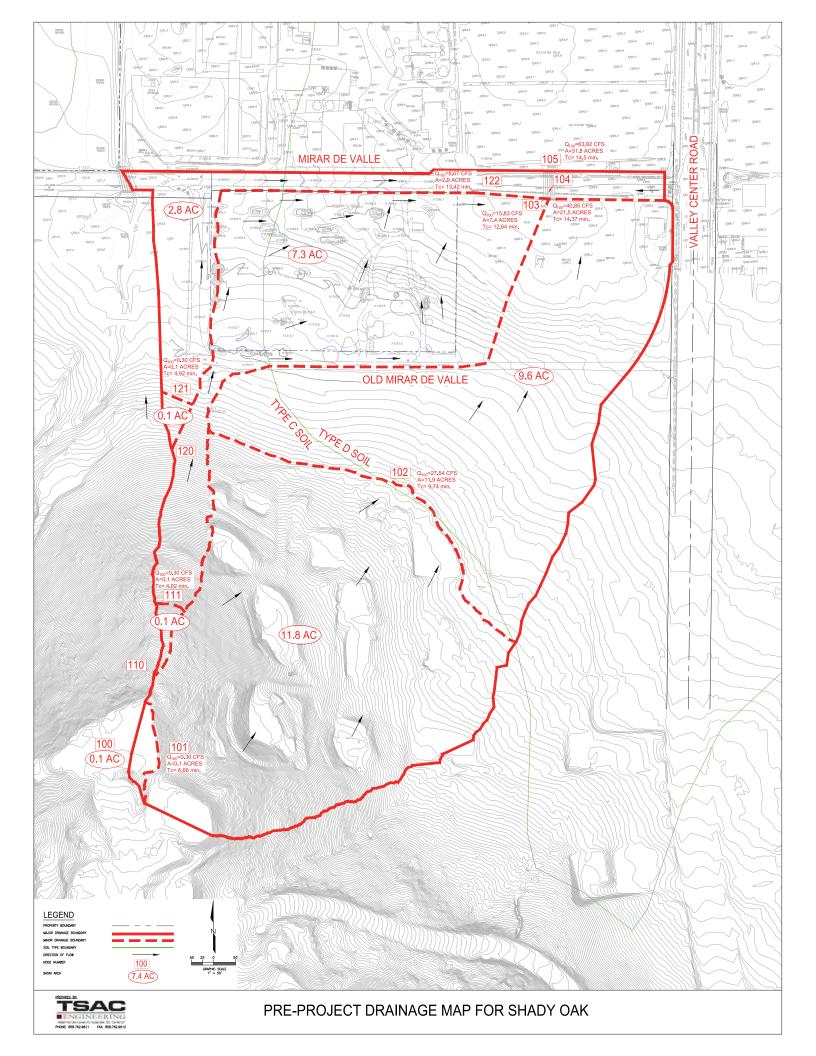
*** WARNING *** MODIFIED PULS ROUTING MAY BE NUMERICALLY UNSTABLE FOR OUTFLOWS BETWEEN 0. TO 64.
THE ROUTED HYDROGRAPH SHOULD BE EXAMINED FOR OSCILLATIONS OR OUTFLOWS GREATER THAN PEAK INFLOWS.
THIS CAN BE CORRECTED BY DECREASING THE TIME INTERVAL OR INCREASING STORAGE (USE A LONGER REACH.)

HYDROGRAPH	AT	STATTON	DETAIN

MON	HRMN	ORD	OUTFLOW	STORAGE	STAGE	* [DA MON	HRMN	ORD	OUTFLOW	STORAGE	STAGE *		NOM AC	HRMN	ORD	OUTFLOW	STORAGE	STA
	1200	1 2	1.	.0	100.0		1 JAN	1414	68	5.	.0	100.1		1 JAN			9.	.0	100
	1202	3	2.	.0	100.0	*	1 JAN 1 JAN	1416	69 70	5.	.0	100.1	9	1 JAN 1 JAN	1630	136	9.	.0	100
	1206	4	2.	.0	100.0	12	1 JAN	1420	71	5.	.0	100.1 *		1 JAN	1634	138	8.	.0	100
JAN	1208	5	3.	.0	100.0	rt.	1 JAN	1422	72	5.	.0	100.1 *		1 JAN	1636	139	8.	.0	100
	1210	6	3.	.0	100.0	*	1 JAN		73	5.	.0	100.1		1 JAN			7.	.0	100
	1212	7 8	3.	.0	100.0	*	1 JAN		74	5.	.0	100.1 *		1 JAN			7.	.0	100
	1214	9	3.	.0	100.0	*	1 JAN 1 JAN	1428	75 76	5.	.0	100.1 *	,	1 JAN 1 JAN	1644	142	7.	.0	100
	1218	10	3.	.0	100.0	sie	1 JAN	1432	77	5.	.0	100.1 *		1 JAN	1646	144	6.	.0	100
	1220	11	3.	. 0	100.0	*	1 JAN	1434	78	6.	.0	100.1 *	8	1 JAN	1648	145	6.	.0	100
	1222	12	3.	.0	100.0	di.	1 JAN	1436	79	6.	-0	100.1 *	4	1 JAN	1650	146	6.	.0	100
	1224	13	3.	.0	100.0	H W	1 JAN 1 JAN	1438	80	6.	-0	100.1 *		1 JAN			6.	.0	100
	1228	15	3.	.0	100.0	*	1 JAN	1440	82	6.	.0	100 1 1	1	1 JAN 1 JAN	1656	140	5.	.0	100
JAN	1230	16	3.	.0	100.0	*	1 JAN	1444	83	6.	.0	100.1		1 JAN	1658	150	5.	0	100
	1232	17	3.	.0	100.1	n	1 JAN	1446	84	6.	.0	100.1 *	٠.	1 JAN	1700	151	5.	.0	100
	1234	18 19	3.	.0	100.1	2	1 JAN 1 JAN	1448	85	6.	.0	100.1 *		1 JAN			5.	. 0	100
	1236	20	3.	.0	100.1	4	1 JAN	1450	86	6.	.0	100.1 *		1 JAN 1 JAN	1704	153	5.	.0	100
	1240	21	3.	.0	100.1	alt.	1 JAN		88	6.	.0	100.1		1 JAN			Š.	.0	100
JAN	1242	22	3.	.0	100.1	क्र	1 JAN	1456	89	7.	-0	100.1	К	1 JAN	1710	156	4.	.0	100
	1244	23	3.	.0	100.1	*	1 JAN		90	7.	.0	100.1					4.	.0	100
	1246	24	3.	.0	100.1	34	1 JAN		91	7.	.0	100.1 *		1 JAN			4.	.0	100
	1248	25	3.	.0	100.1	*	1 JAN 1 JAN		92	7.	.0	100.1 *		1 JAN	1710	159	4.	.0	100
	1252	27	3.	.0	100.1	*	1 JAN		94	7.	.0	100.1	4	1 JAN			4.	.0	100
JAN	1254	28	3.	.0	100.1	ri .	1 JAN		95	8.	.0	100.1 *		1 JAN	1722	162	4.	.0	100
JAN	1256	29	3.	.0	100.1	12	1 JAN		96	8.	.0	100.1 *	к –	TAAL T	1774	162	4.	.0	100
	1258	30	3.	.0	100.1	*	1 JAN		97 98	8.	.0	100.1 *		1 JAN 1 JAN 1 JAN	1726	164	4.	.0	100
	1302	32	4.	.0	100.1	*	1 JAN 1 JAN	1516	99	8.	.0	100.1		1 JAN	1720	166	4.	.0	100
	1304	33	4.	.0	100.1	rie	1 JAN	1518		8.	.0	100.1	ř	1 JAN	1732	167	4.	.0	100
JAN	1306	34	4.	.0	100.1	#	1 JAN	1520	101	8.	.0	100.1 3		1 JAN	1734	168	4.	. 0	100
	1308	35	4.	.0	100.1	*	1 JAN	1522	102	9.	.0	100.1		1 JAN			4.	.0	100
	1312	36	4.	.0	100.1	*	1 JAN 1 JAN			9.	.0	100.1 *		1 JAN 1 JAN			4.	. 0	100
	1314	38	4.	.0	100.1	sk.	1 JAN	1528	105	10.	:0	100 2 ×	4	1 JAN	1742	172	3.	.0	100
	1316	39	4.	.0	100.1	ric	1 JAN			10.	.0	100.2 *		1 JAN	1744	173	3.	.0	100
	1318	40	4.	.0	100.1	4	1 JAN			11.	.0	100 2 2	2	1 JAN	1746	174	3.	.0	100
	1320	41	4.	-0	100.1	ar.	1 JAN			12.	.0	100.2		1 JAN			3.	.0	100
	1324	43	4.	.0	100.1	#	1 JAN	1538	110	12. 13.	.0	100 2 4		1 JAN 1 JAN	1752	177	3.	.0	100
	1326	44	4.	.0	100.1	*	1 JAN			13.	.0	100.2 *	è.	1 JAN	1754	178	3.	.0	100
	1328	45	4.	.0	100.1	*	1 JAN			14.	.0	100.2 * 100.2 * 100.2 * 100.2 *	ř	1 JAN	1756	179	3.	.0	100
	1330	46	4.	.0	100.1	AT .	1 JAN	1544	113	14.	.0	100.2 *	9	1 JAN	1758	180	2.	.0	100
	1332	47	4.	.0	100.1	12	1 JAN 1 JAN	1540	114	15. 15.	.0	100.2		1 JAN 1 JAN	1800	181	2.	.0	100
	1336	49	4.	.0	100.1	*	1 JAN	1550	116	16.	.0	100.2 *	4	1 JAN	1804	183	1.	.0	100
JAN	1338	50	4.	.0	100.1	25	1 JAN	1552	117	16.	.0	100.3	b	1 JAN	1806	184	1.	.0	100
	1340	51	4.	.0	100.1	*	1 JAN			18.	. ()	100.3 *	ž.	1 JAN			0.	.0	100
	1342	52 53	4.	.0	100.1	*	1 JAN	1556	119	24.	- 0	100.4		1 JAN			0.	.0	100
	1346	54	4.	:0	100.1	*	1 JAN 1 JAN			31. 37.	.0	100.5 *		1 JAN 1 JAN			0.	.0	100
	1348	55	4.	.0	100.1	rt.	I JAN			44.	.0	100.7	,	1 JAN			0.	.0	100
	1350	56	4.	.0	100.1	*	1 JAN	1604	123	51.	.0	100.8 *	2	1 JAN	1818	190	o.	.0	100
	1352	57	4.	.0	100.1	*	1 JAN			57.	.1	100.9		1 JAN			0.	.0	100
	1354	58	4.	.0	100.1	17 15	1 JAN			64.	.1	101.0		1 JAN	1822	192	0.	.0	100
	1358	59 60	4.	.0	100.1	*	1 JAN 1 JAN			62. 54.	.1	101.0 *		1 JAN 1 JAN	1826	193	0.	.0	100
	1400	61	5.	.0	100.1	*	1 JAN	1614	128	46.	.0	100.7	4	1 JAN	1828	195	0.	.0	100
JAN	1402	62	5.	.0	100.1	27	1 JAN	1616	129	39.	.0	100.6	4	1 JAN	1830	196	0.	.0	100
	1404	63	5.	.0	100.1		1 JAN			31.	.0	100.5 *	*	1 JAN	1832	197	0-	.0	100
	1406	64 65	5.	.0	100.1	*	1 JAN 1 JAN	1620	131	24.	.0	100.4		1 JAN			0.	.0	100
	1410	66	5.	.0	100.1	*	1 JAN	1624	133	17.	.0	100.3 *		1 JAN 1 JAN			0.	.0	100
	1412	67	5.	.0	100.1	100	1 JAN	1070	124	10.	.0	100.2 *		TAM	7070	£00	U.	.0	TOU

PEAK FLOW	TIME		0.47	MAXIMUM AVE		Se com
+ (CFS)	(HR)	2000	6-HR	24-HR	72-HR	6.63-HR
+ 64.	4.13	(CFS) (INCHES) (AC-FT)	1.555 4.	1.559 4.	1.559	1.559 4.
PEAK STORAG	E TIME		6-HR	MAXIMUM AVER	AGE STORAGE 72-HR	6.63-HR
+ (AC-FT) 0.	(HR) 4.13		0.	0.	0.	0.03-нк

					DET	.OUT
P	EAK STAGE	TIME		MAXIMUM AVE	RAGE STAGE	
			E 110	74 110	77 110	E E >


+ (FEET) (HR) 6-HR 24-HR 72-HR 6.63-HR 101.00 4.13 100.13 100.12 100.12 100.12

CUMULATIVE AREA = .05 SQ MI

1
RUNOFF SUMMARY
FLOW IN CUBIC FEET PER SECOND
TIME IN HOURS, AREA IN SQUARE MILES

	OPERATION	STATION	PEAK	TIME OF	AVERAGE F	LOW FOR MAXIN	MUM PERIOD	BASIN	MAXIMUM STAGE	TIME OF MAX STAGE
+	OPERATION	STATION	PLOW	PEAK	6-HOUR	24-HOUR	72-HOUR	AKEA	STAGE	MAX STAGE
+	HYDROGRAPH AT	BASIN	66.	4,13	8.	8.	8.	,05		
÷ +	ROUTED TO	DETAIN	64.	4.13	8.	8.	8.	.05	101.00	4.13

^{***} NORMAL END OF HEC-1 ***

