PRELIMINARY DRAINAGE STUDY FOR

SUMMIT ESTATES TM

RECORD ID: PDS2019-TM-5635 & PDS2019-ER-19-08-004

ESCONDIDO, CALIFORNIA

June 2020

PREPARED FOR: 2510 SUMMIT, LLC 19782 MacArthur Blvd, Suite 300 Irvine, California 92612

PREPARED BY:

(858) 751-0633

Giovanni Posillico, PE | *RCE 66332*Giovanni Posillico

Print Name
Latitude 33 Planning & Engineering

Company 06/01/2020

Date

THIS PAGE	INTENTION	ALLY LEFT F	BLANK FOR	DOUBLE-SIDE	D PRINTING

Certification Page

Project Name: Summit Estates TM

Project No: 1599.10

Date

Declaration of Responsible Charge

I hereby declare that I am the Engineer of Work for this project, and that I have exercised responsible charge over the design of the project as defined in Section 6703 of the Business and Professions Code, and that the design is consistent with current standards.

I understand that the check of project drawings and specifications by the County of San Diego is confined to a review only and does not relieve me, as engineer of work, of my responsibilities for project design.

Inval
Giovanni Posillico, PE <i>RCE 66332</i>
Giovanni Posillico
Print Name
Latitude 33 Planning & Engineering
Company
06/01/2020

Engineer's Stamp

TABLE OF CONTENTS

••	. raipose i i i i i i i i i i i i i i i i i i i
Ш	Project description
III.	Methodology 6
IV.	Existing condition
V	Proposed condition 9
VI.	Discussion and Conclusion
	LIST OF FIGURES
Figure 1	Vicinity Map
	LIST OF TABLES
Table 1	Existing Drainage
Table 2	Proposed Drainage
Table 3	Peak Flows and Storage
	LIST OF APPENDICES
Appendix A	Existing Conditions Drainage Map and Calculations
Appendix B	Proposed Conditions Drainage Map and Calculations
Appendix C	San Diego County Manual References
Appendix D	Storage Calculations
Appendix E	Summit Drive Pipe Sizing Calculations

I. PURPOSE

The purpose of this drainage study is to evaluate and compare the existing and proposed conditions, analyze the proposed difference in anticipated runoff, and provide a narrative discussion of methods by which storm water quality issues will be addressed with the development of the Summit Estates project.

II. PROJECT DESCRIPTION

The project is located at 2510 Summit Drive in Escondido, California. Figure 1 illustrates the projects location. Currently the project site is mostly comprised a single residential home with accessory buildings and sloping hillside with light ground cover, covering about 21.5 acres. Most of the site is undeveloped. The Summit Estates project proposes to design and construct 20 estate lot residential homes and a residential road for access.

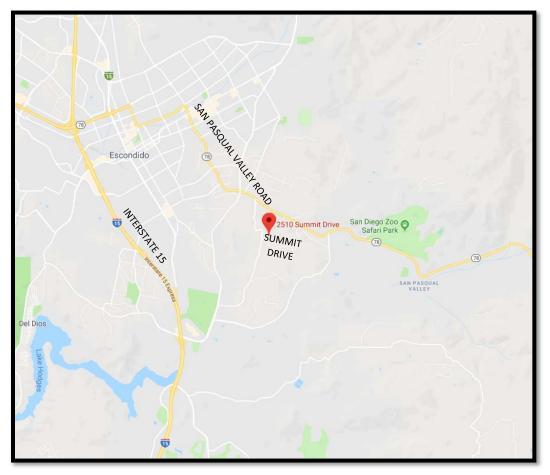


Figure 1. Vicinity Map

III. METHODOLOGY

The estimate of the existing and proposed drainage flows has been performed in general conformance with the County of San Diego Guidelines. Drainage basins are less than one square mile and therefore the Rational Method was utilized to estimate runoff. The 100-year storm event has been used for runoff estimates.

Runoff Coefficient:

For existing and proposed conditions, runoff coefficients were calculated using Section 3.1.2 and Table 3-1 of the San Diego County Hydrology Manual. A C-value of 0.9 was used for impervious areas. The site contains mainly Type D soil and some Type C soil. Per Table 3-1, a pervious C-value of 0.35 was used for areas with Type D soil, and 0.30 for areas with Type C soil. A composite C-value was calculated using these values. Table 3-1 is included in Appendix C for reference.

The percentages of impervious and pervious area used to calculate the composite C-value can be found in the calculations section in Appendices A and B. Please note, building pad areas assume 40% pervious and 60% impervious, therefore 0.57 is utilized for pad areas in Type D soil (0.9x0.4+0.35x0.6 = 0.57) and 0.54 for pad areas in Type C soil (0.9x0.4+0.30x0.6 = 0.54).

Time of Concentration:

Time of concentration was calculated per Section 3.1.4 of the San Diego County Hydrology Manual.

Initial time of concentration values were computed using the Overland Time of Flow Nomograph, as shown on Figure 3-3 in the County of San Diego Drainage Design Manual, included in Appendix C. Overland flow length used for the calculation of initial travel time was restricted to the maximum values per Table 3-2.

Travel time was computed as the sum of the following items:

- For watersheds with flow in natural or pervious areas beyond the initial time of concentration length, the Kirpich Nomograph (Figure 3-4) was utilized.
- For flow paths in the street, the Gutter and Roadway Discharge Velocity Chart (Figure 3-6) was utilized. An initial Q was assumed based on the area and C-value of the subbasin, as well as an intensity calculated from the initial time of concentration. The assumed initial Q and the street grade were used to determine the flow velocity for concentrated flows in curb and gutters. Travel times were then determined by dividing the flow distance by the velocity of flow.
- For flow paths in ditches, Manning's Equation (Figure 3-7) was utilized to determine the velocity. As in the gutter velocity calculation, an initial Q was assumed based on the initial time of concentration. Travel times were then determined by dividing the flow distance by the velocity of flow.

Final times of concentration values for each basin were calculated by adding the initial and final travel times; with a minimum time of 5 minutes. Time of concentration calculations are shown in Appendices A and B for the existing and proposed conditions, respectively.

Rainfall Intensity:

The rainfall intensity was obtained from the "Intensity-Duration Design Chart" as shown in Figure 3-1 of the County of San Diego Guidelines, based on the 100-year P_6 and P_{24} isopluvial maps, all included in Appendix C.

Drainage Areas:

The existing condition drainage basins were delineated from the base topographic map as shown on the Existing Hydrology Exhibit provided in Appendix A. The proposed condition drainage basins were delineated using the proposed grading plan as show on the Proposed Hydrology Exhibit provided in Appendix B. The overall boundaries for the existing and proposed conditions were set equal to allow for a comparison of the results.

Autodesk SSA Computer Analysis

Autodesk SSA was utilized to model the 100-year storm with the Rational Method parameters described above as it flows through the proposed storm drain system. It used the Hydrodynamic model for modeling hydraulic routing. This allows for an accurate peak flow calculation as it models the timing of flows across the sub-basins and through the storm drain system.

The sub-basin areas, runoff coefficients, and times of concentration were input into the program. The program references the County IDF values associated with a 100-year P_6 of 3.5 inches for our site. The program performs hydrology and hydraulic calculations across the sub-basins and through the proposed storm drain system. The analysis input parameters and results are provided in Appendices A and B.

Storage Calculations:

Storage calculations have been provided for each basin with an increase in peak flow from the existing condition to the proposed unmitigated condition. The proposed unmitigated condition conservatively treats biofiltration basins as junctions with no storage. The following method was then utilized to show that enough storage is provided in the basins to mitigate the increase in peak flow.

The 6-hour incremental hydrograph procedure per Section 6.2 of the San Diego County Hydrology manual was utilized to construct the time series for the 100-year 6-hour storm for each POC. This hydrograph for each POC was plotted using Autodesk SSA. Next the peak flow from the existing condition was plotted on descending arm of the 6-hour hydrograph for the proposed condition and a straight line was drawn from the origin to this point, essentially creating a modified hydrograph. The detention volume was

calculated as the area under the proposed hydrograph and above the modified hydrograph, resulting in a peak flow equal to the existing condition.

The storage volume for the biofiltration basins was then calculated. It was determined that the required pollutant control volume can be detained in the subsurface storage of the basins; therefore, the flood control storage volume is considered to be the volume above the basin surface and below the overflow riser. The volume was calculated as riser height multiplied by the basin area. This approach is conservative as it does not include volume above the side slopes. This storage volume was then compared with the storage volume required to mitigate the increase in 100-year peak flow at each POC. The calculations can be found in Appendix D.

Summit Drive Pipe Sizing:

All pipe capacities are analyzed using Autodesk SSA. The program shows which pipes are under pressure during the analysis. Those pipes were then increased in size to eliminate the pressurized condition.

Additional analysis is provided for the two pipes being replaced under Summit Drive. The total unmitigated peak flow for the proposed 100-year condition is used to size the pipes. The depth in the pipes was then calculated using Manning's Equation. The output from Autodesk Hydraflow Express, which performs Manning's Equation calculations for pipes and channels of specified sizes and configurations, is provided in Appendix E.

IV. EXISTING CONDITION

The existing site runoff is divided into six separate drainage basins, which terminate in five separate discharge points (POCs). Refer to Table 1 for a summary of the drainage basin characteristics and peak flows.

<u>POC 1</u>: POC 1 is the discharge point to a natural channel running along the eastern edge of the site. It converges with the POC 5 channel about 500' downstream of the site. This natural channel eventually flows to Santa Ysabel Creek and then to Lake Hodges. The following sub-basins are tributary to POC 1.

Basin E.1

Basin E.1 consists of primarily undeveloped natural slopes. The basin drains easterly and discharges at POC 1.

Basin E.6

Basin E.6 is the offsite upstream area tributary to the project site and POC 1. It consists of primarily undeveloped natural slopes. Topographic information for the offsite drainage area was limited, and 3D Google Earth images were utilized to approximate the extents of this drainage area.

<u>POC 2</u>: POC 2 is the outlet of an existing 14"x22" CMPA pipe running under Summit Drive and discharging northwest of the site. Drainage from this POC eventually flows to Kit Carson Creek and then to Lake Hodges. The following basin is tributary to POC 2.

Basin E.2

Basin E.2 consists of primarily undeveloped natural slopes and half of Summit Drive. The basin drains northwesterly to an existing pipe running under Summit Drive and discharges at POC 2.

<u>POC 3</u>: POC 3 is the discharge point of surface drainage to Summit Drive at the south of the site. Drainage leaving this POC continues south along Summit Drive. It eventually flows to Santa Ysabel Creek and then to Lake Hodges. The following basin is tributary to POC 3.

Basin E.3

Basin E.3 consists of primarily undeveloped natural slopes and half of Summit Drive. The basin drains southerly and discharges at POC 3.

<u>POC 4</u>: POC 4 is the outlet of an existing 14"x22" CMPA pipe running under Summit Drive and discharging southwest of the site. Drainage from this POC eventually flows to Kit Carson Creek and then to Lake Hodges. The following basin is tributary to POC 4.

Basin E.4

Basin E.4 consists of primarily undeveloped natural slopes and half of Summit Drive. The basin drains southwesterly to an existing pipe running under Summit Drive and discharges at POC 4.

<u>POC 5</u>: POC 5 is the discharge point to a natural channel running along the southern edge of the site. It converges with the POC 1 channel about 500' downstream of the site. This natural channel eventually flows to Santa Ysabel Creek and then to Lake Hodges. The following basin is tributary to POC 5.

Basin E.5

Basin E.5 consist of primarily undeveloped natural slopes. The basin drains easterly and discharges at POC 5.

V. PROPOSED CONDITION

The proposed condition for the site consists of 20 residential estate lots and a road connecting to Summit Drive. The proposed improvements will modify the existing drainage basins but will utilize the same discharge points. Refer to Table 2 for a summary of the drainage basin characteristics and peak flows.

<u>POC 1</u>: POC 1 consists of Basins P.19, P.20, P.21, P.23, P.24, P.25, P.28, P.30, P.34, and E.6. Drainage from these basins will either be treated by a biofiltration basin (BMP 1) or flow directly to the discharge point.

Basin P.19

Basin P.19 consists of two estate lots where drainage will sheet flow to the cul-desac. It will enter a storm drain inlet and be routed to a biofiltration basin (BMP 1), which is sized for storm water requirements per the project SWQMP as well as flood routing. It will then be discharged to a natural hillside and flow to POC 1.

Basin P.20

Basin P.20 consists of one estate lot. Drainage will sheet flow to an area drain and will be routed to BMP 1. It will then be discharged to a natural hillside and flow to POC 1.

Basin P.21

Basin P.21 consists of one estate lot. Drainage will sheet flow to an area drain and will be routed to BMP 1. It will then be discharged to a natural hillside and flow to POC 1.

Basin P.23

Basin P.23 consists of a portion of Private Street B. Drainage will flow to the gutter and enter a storm drain inlet. It will be routed to BMP 1, discharged to a natural hillside, and flow to POC 1.

Basin P.24

Basin P.24 consists of one estate lot. Drainage will sheet flow to the private street and enter a storm drain inlet. It will be routed to BMP 1, discharged to a natural hillside, and flow to POC 1.

Basin P.25

Basin P.25 consists of two estate lots. Drainage will sheet flow to the cul-de-sac. It will enter a storm drain inlet and be routed to BMP 1. It will then be discharged to a natural hillside and flow to POC 1.

Basin P.28

Basin P.28 consists of one estate lot. Drainage will sheet flow to an area drain and will be routed to BMP 1. It will then be discharged to a natural hillside and flow to POC 1.

Basin P.30

Basin P.30 consists of graded and natural terrain where drainage will sheet flow until it is collected into natural channels and reaches POC 1.

Basin P.34

Basin P.34 consists of one estate lot. Drainage will sheet flow to an area drain and will be routed to BMP 1. It will then be discharged to a natural hillside and flow to POC 1.

Basin E.6

Basin E.6 is the offsite upstream area tributary to the project site and POC 1. It remains unchanged in the proposed condition.

<u>POC 2</u>: POC 2 consists of Basins P.1, P.2, P.3, P.4, P.5, P.6, P.7, P.8, P.9, P.35 and P.36. Drainage from these basins will either be treated by one of two biofiltration basins (BMPs 2 and 5) or will flow to the POC directly. The existing CMP pipe at POC 2 will be replaced by a 24" storm drain pipe.

Basin P.1

Basin P.1 consists of graded and natural terrain and will sheet flow towards the property line where the runoff will be gathered in a brow ditch. The brow ditch will flow west to a Type F inlet and enter the proposed storm drain running under Summit Drive.

Basin P.2

Basin P.2 consists of a portion of the Private Street D. Drainage will enter a storm drain inlet and be routed to a biofiltration basin (BMP 2), which is sized for storm water requirements per the project SWQMP as well as flood routing. BMP 2 will connect to the proposed storm drain running under Summit Drive.

Basin P.3 & P.4

Basin P.3 and P.4 consist of one estate lot each. Drainage will sheet flow to an area drain and enter a storm drain inlet. It will be routed to BMP 2, which connects to the proposed storm drain running under Summit Drive.

Basin P.5

Basin P.5 consists of graded and natural terrain and will sheet flow downhill to a brow ditch. The brow ditch will flow to a storm drain inlet, and will be outlet at a ditch on the westerly boundary of the property. This brow ditch will flow to a Type F inlet and enter the proposed storm drain running under Summit Drive.

Basin P.6

Basin P.6 consists of one estate lot. Drainage will sheet flow to an area drain and enter a storm drain inlet. It will be routed to BMP 2, which connects to the proposed storm drain running under Summit Drive.

Basin P.7

Basin P.7 consists of one estate lot. Drainage will sheet flow to the private street and enter a storm drain inlet. It will be routed to BMP 2, which connects to the proposed storm drain running under Summit Drive.

Basin P.8

Basin P.8 consists of one estate lot. Drainage will sheet flow to an area drain and enter a storm drain inlet. It will be routed to BMP 2, which connects to the proposed storm drain running under Summit Drive.

Basin P.9

Basin P.9 consists of graded and natural terrain and will sheet flow towards the property line where the runoff will be gathered in a brow-ditch. The brow ditch will

flow to a Type F inlet and enter the proposed storm drain running under Summit Drive.

Basin P.35

Basin P.35 consists of a portion of Summit Drive. Drainage flows along the curb and gutter. It will pass through a curb cut and enter the proposed storm drain running under Summit Drive.

Basin P.36

Basin P.36 consists of a portion of Summit Drive and will surface flow into a biofiltration basin (BMP 5), which is sized for storm water requirements per the project SWQMP. BMP 5 will connect to the proposed storm drain running under Summit Drive.

<u>POC 3</u>: POC 3 consists of Basins P.11, P.12, P.13, P.14, P.15, P.16, P.17, P.18, P.33, and P.38. Drainage from these basins will either be treated by one of two biofiltration basins (BMPs 3A and 3B) or will flow to the POC directly.

Basin P.11

Basin P.11 consists of two estate lots. Drainage will sheet flow to the private street. It will enter a storm drain inlet and be routed to BMP 3B, a biofiltration basin sized for storm water requirements per the project SWQMP as well as flood routing. It will then be discharged to a curb outlet at Summit Drive and will surface flow to the POC.

Basin P.12

Basin P.12 consists of a portion of the private street and immediately adjacent landscaped area. Drainage will flow in the to a storm drain inlet and will be routed to BMP 3B. It will then be discharged to a curb outlet at Summit Drive and will surface flow to the POC.

Basin P.13

Basin P.13 consists of graded and natural terrain and will sheet flow downhill to a brow ditch. The brow ditch will flow to a storm drain inlet. The storm drain will bypass the BMPs and will be routed to a curb outlet at Summit Drive. It will then surface flow along Summit Drive to the POC.

Basin P.14

Basin P.14 consists of a portion of Private Street A. Drainage will flow to the gutter and enter a storm drain inlet. It will be routed to BMP 3A, a biofiltration basin sized for storm water requirements per the project SWQMP as well as flood routing. It will then be discharged to a curb outlet at Summit Drive and will surface flow to the POC.

Basin P.15

Basin P.15 consists of two estate lots. Drainage will sheet flow to the private street.

It will enter a storm drain inlet and be routed to BMP 3A. It will then be discharged to a curb outlet at Summit Drive and will surface flow to the POC.

Basin P.16

Basin P.16 consists of a portion of the private street and immediately adjacent landscaped area. Drainage will flow in the to a storm drain inlet and will be routed to BMP 3A. It will then be discharged to a curb outlet at Summit Drive and will surface flow to the POC.

Basin P.17

Basin P.17 consists of one estate lot. Drainage will sheet flow to the private street. It will enter a storm drain inlet and be routed to BMP 3A. It will then be discharged to a curb outlet at Summit Drive and will surface flow to the POC.

Basin P.18

Basin P.18 consists of graded and natural terrain and a portion of the private street. Drainage will surface flow to the POC. A brow ditch will be used to route the flow around the BMP.

Basin P.33

Basin P.33 consists of graded and natural terrain and will sheet flow towards the property line where the runoff will be collected in a brow ditch. The brow ditch will connect to a curb outlet. Drainage will surface flow from the curb outlet to the POC.

Basin P 38

Basin P.38 consists of a portion of Summit Drive. Drainage will flow along the gutter to POC 3.

<u>POC 4</u>: POC 4 consists of Basins P.10, P.31, P.32, and P.37. Drainage from these basins will either be treated by a biofiltration basin (BMP 4) or will flow to the POC directly. The existing CMP pipe at POC 2 will be replaced by an 18" storm drain pipe.

Basin P.10

Basin P.10 consists of graded and natural terrain and will sheet flow towards the property line where the runoff will be collected in a brow ditch. The brow ditch will flow to a Type F inlet and enter the proposed storm drain running under Summit Drive.

Basin P.31

Basin P.31 consists of graded and natural terrain and will sheet flow to a brow ditch. The brow ditch will flow to an area drain. Drainage will be piped to the proposed storm drain running under Summit Drive.

Basin P.32

Basin P.32 consists of graded slope and will sheet flow to a brow ditch. The brow ditch will flow to an area drain. Drainage will be piped to the proposed storm drain running under Summit Drive.

Basin P.37

Basin P.37 consists of a portion of Summit Drive and will surface flow into a biofiltration basin (BMP 4), which is sized for storm water requirements per the project SWQMP. BMP 4 will connect to the proposed storm drain running under Summit Drive.

<u>POC 5</u>: POC 5 consists of Basins P.22, P.26, P.27, and P.29. Drainage from these basins will either be treated by BMP 5 or flow to the discharge point unmitigated.

Basin P.22

Basin P.22 consists of graded and natural terrain. Runoff will flow to a brow ditch and enter a storm drain inlet. The storm drain will discharge to a natural hillside and will eventually flow to POC 5.

Basin P.26 & P.27

Basin P.26 and P.27 consist of graded and natural terrain. Runoff will flow to a brow ditch and enter a storm drain inlet. The storm drain will discharge to a natural hillside and will eventually flow to POC 5.

Basin P.29

Basin P.29 consists of graded and natural terrain. Drainage will surface flow until it is collected in a natural channel and reaches POC 5.

VI. <u>DISCUSSION AND CONCLUSION</u>

The Rational Method for the 100-year peak storm flow rates was used in the design of the proposed drainage systems. The hydrologic analysis of these systems was evaluated using the Autodesk Storm and Sanitary Analysis (SSA) Software as described in the Methodology Section. The results of the analysis are listed below in Tables 1 through 3.

Table 1. Existing Condition

Basin	Area (AC)	Runoff Coefficient (C)	Time of Concentration (Min)	Intensity (I) (in/hour)	100-year Peak Flow (CFS)
E.1	8.45	0.35	8.10	6.76	19.98
E.2	5.32	0.35	10.60	5.68	10.58
E.3	3.48	0.37	10.50	5.72	7.36
E.4	1.60	0.38	7.00	7.42	4.51
E.5	4.51	0.35	10.50	5.72	9.02
E.6	10.30	0.37	9.70	6.02	22.93

Table 2. Proposed Condition

Basin	Area (AC)	Runoff Coefficient (C)	Time of Concentration (Min)	Intensity (I) (in/hour)	100-year Peak Flow (CFS)
P.1	0.71	0.33	9.40	6.14	1.44
P.2	0.07	0.85	5.00	9.22	0.55
P.3	0.31	0.57	9.60	6.06	1.07
P.4	0.31	0.57	9.30	6.18	1.09
P.5	0.68	0.35	6.30	7.94	1.89
P.6	0.29	0.54	9.60	6.06	0.95
P.7	0.71	0.68	9.60	6.06	2.92
P.8	0.38	0.54	12.40	5.13	1.05
P.9	1.13	0.30	5.00	9.22	3.13
P.10	0.47	0.30	5.90	8.29	1.17
P.11	0.91	0.58	10.50	5.72	3.02
P.12	0.08	0.63	5.00	9.22	0.46
P.13	0.43	0.35	5.00	9.22	1.39
P.14	0.27	0.68	5.00	9.22	1.69
P.15	0.95	0.59	9.40	6.14	3.44
P.16	0.05	0.63	5.00	9.22	0.29
P.17	0.38	0.58	9.30	6.18	1.36
P.18	0.47	0.43	6.00	8.20	1.66
P.19	1.04	0.59	9.80	5.98	3.67
P.20	0.30	0.55	9.20	6.22	1.03
P.21	0.25	0.55	8.90	6.36	0.87
P.22	0.28	0.35	5.40	8.77	0.86
P.23	0.13	0.68	5.00	9.22	0.82

P.24	0.46	0.56	9.70	6.02	1.55
P.25	1.20	0.61	9.40	6.14	4.49
P.26	0.18	0.35	5.00	9.22	0.58
P.27	0.39	0.35	14.20	4.70	0.64
P.28	0.28	0.54	9.60	6.06	0.92
P.29	2.76	0.35	8.60	6.50	6.28
P.30	5.75	0.35	8.10	6.76	13.60
P.31	0.06	0.35	5.00	9.22	0.19
P.32	0.13	0.35	5.00	9.22	0.42
P.33	0.36	0.33	5.00	9.22	1.10
P.34	0.24	0.55	8.90	6.36	0.84
P.35	0.15	0.81	5.00	9.22	1.12
P.36	0.30	0.81	5.00	9.22	2.24
P.37	0.30	0.81	7.80	6.92	1.68
P.38	0.19	0.81	5.00	9.22	1.42
E.6	10.30	0.37	9.70	6.02	22.93

Table 3. Peak Flows and Storage

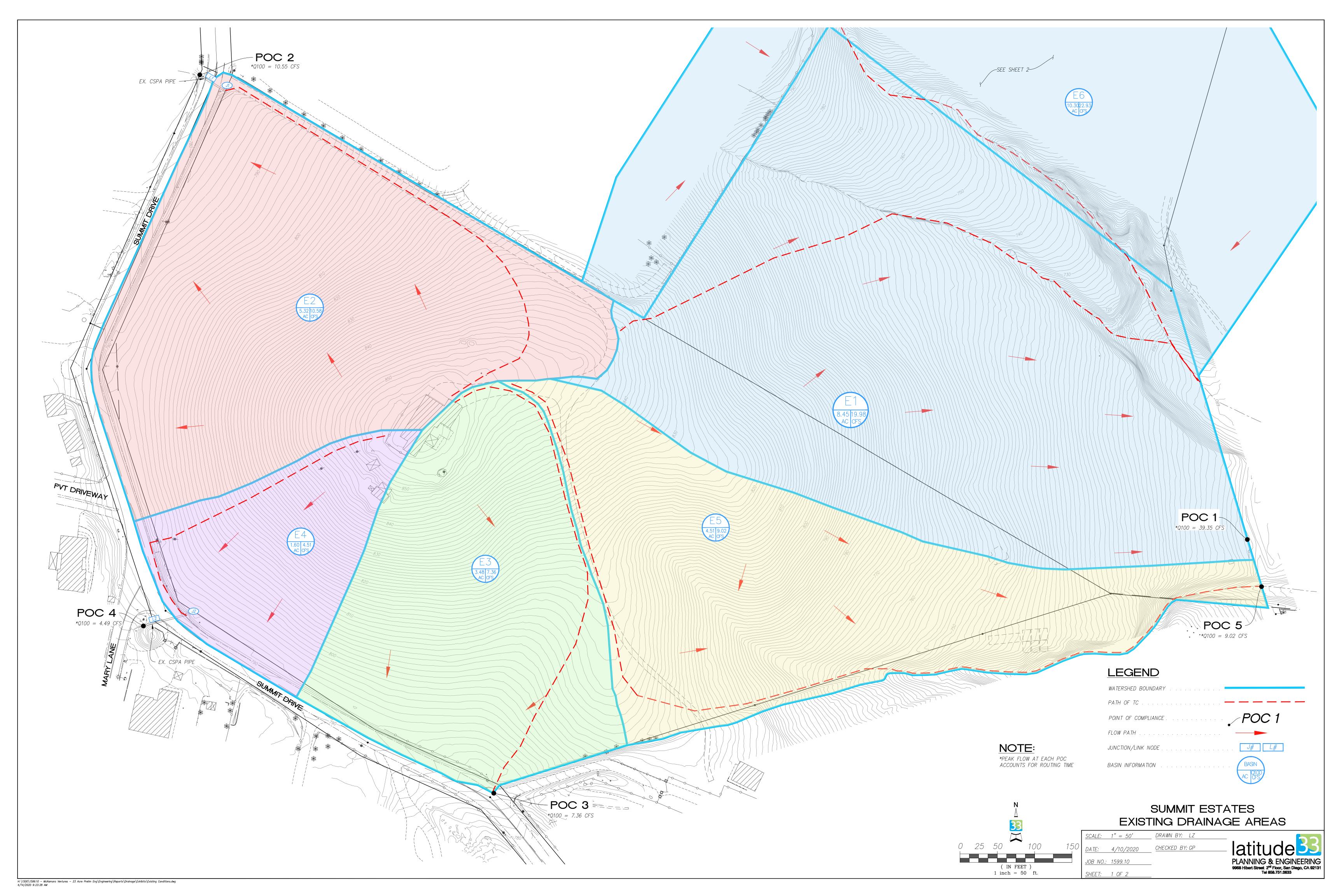
	Table 5: I cak Hows and Storage					
POC	Existing Peak Flow (CFS)	Proposed Peak Flow (CFS) (Unmitigated)*	V100 (Unmitigated) in Upstream Pipe (FPS)	Required Storage (CF)	Provided Storage (CF)	Storage Provided by
1	39.35	46.22	15.0	565	12,810	BMP 1
2	10.55	12.47	5.5	152	2,560	BMP 2
3	7.36	11.36	7.9	1,239	3,000	BMPs 3A and 3B
4	4.49	2.95	4.0	N/A – Flow decreased	N/A	N/A
5	9.02	7.32	8.1	N/A – Flow decreased	N/A	N/A

^{*} Peak flow is not the sum of the tributary sub-basins as the model accounts for routing time.

Per Table 3, the Summit Estates project results in an increase of peak flow in the unmitigated condition, which disregards any storage in the biofiltration basins. However, the provided storage volume in the biofiltration basins far exceeds the volume needed to mitigate the increase in peak flow, meaning the mitigated peak flow will be less than the existing peak flow. Further analysis of the mitigated peak flow will be provided in final engineering. The flood control storage volume is considered to be the volume from the basin surface to the overflow riser as the pollutant control volume requirement is met in the subsurface storage. Per County standards, one foot of freeboard is proposed above the riser.

As a result, the Summit Estates development will not increase peak flow to any of the POCs, and will therefore not alter existing downstream drainage conditions. Existing drainage patterns onsite are maintained to the maximum extent feasible. Therefore, natural channels will not experience any increase in erosion or siltation as a result of the project.

The proposed drainage system is adequately sized for the project as can be seen in the SSA output report, which shows no pipes under pressure. The existing pipes running under Summit Drive will be replaced and have been adequately sized.


There are no onsite areas of mapped 100-year flood hazard area per FEMA. Therefore, no structures will be placed within a mapped 100-year flood hazard area. As the project will not increase 100-year flow, it is anticipated that water levels in the natural channels during the 100-year storm will not increase as a result of the project. The project will not expose people or structures to any significant risk of loss or injury resulting from flooding.

No dams or levees exist or are proposed onsite. As the project will not increase peak flow, it will not pose a risk to any downstream levees or dams. Therefore, the project will not expose people or structures to any significant risk of loss, injury, or death involving from flooding as the result of the failure of a levee or dam.

In conclusion, the Summit Estates development will have no adverse drainage impacts. The grading and storm drain system have been designed to maintain existing drainage patterns and protect structures and life from flooding.

Appendix A

Existing Conditions Drainage Map and Calculations

Existing Conditions

Autodesk® Storm and Sanitary Analysis 2016 - Version 12.0.42 (Build 0)

Project Description ************************************
File Name Existing.SPF Description H:\1500\1599.10 - McNamara Ventures - 23 Acre Prelim Eng\Engineering\Reports\Drainage\SSA\Existing Parcels.dwg

Analysis Options **********
Flow Units

<pre>Element Count ************************************</pre>
Number of subbasins 6 Number of nodes 7 Number of links 2

Subbasin Summary ************************************	
Subbasin	Total
	Area
ID	acres
{Site 1}.E1	8.45
{Site 1}.E2	5.32
{Site 1}.E3	3.48
{Site 1}.E4	1.60
E5	4.51

Node Summary *******

Node ID	Element Type	Invert Elevation ft	Maximum Elev. ft	Ponded Area ft²	External Inflow
J01	JUNCTION	776.50	778.50	0.00	
Ј02	JUNCTION	786.70	788.70	0.00	
P0C01	OUTFALL	685.00	685.00	0.00	
P0C02	OUTFALL	774.50	775.67	0.00	
P0C03	OUTFALL	785.00	785.00	0.00	
POC04	OUTFALL	783.70	784.87	0.00	
P0C05	OUTFALL	684.00	684.00	0.00	

Link Summary *******

ID			Туре	ft	% R	oughness
	· -	POC02 POC04	CONDUIT CONDUIT		4.9261 4.9917	0.0220

Cross	Section	Summary
*****	******	*****

Link ID	Shape	Depth/ Diameter	Width	No. of Barrels	Cross Sectional Area	Full Flow Hydraulic Radius	Design Flow Capacity
		ft	ft		ft²	ft	cfs
Link-01	ARCH	1.17	1.83	1	1.69	0.35	12.52
Link-02	ARCH	1.17	1.83	1	1.69	0.35	12.61
ale	and a standards at the standards at the standards	., 7	D (1				

*******	Volume	Depth
Runoff Quantity Continuity	acre-ft	inches

Total Precipitation	2.709	0.966
Continuity Error (%)	0.643	

*******	Volume	Volume
Flow Routing Continuity	acre-ft	Mgallons

External Inflow	0.000	0.000
External Outflow	0.966	0.315
Initial Stored Volume	0.000	0.000
Final Stored Volume	0.000	0.000
Continuity Error (%)	0.000	

Subbasin {Site 1}.E1

Area Soil urface Description (acres) Group	
	0.35 0.35
n {Site 1}.E2	
Area Soil urface Description (acres) Group	Runoff Coeff.
0.21 - 2.66 - 2.45 - 5.32	0.90
n {Site 1}.E3	
Area Soil urface Description (acres) Group	Coeff.
0.10 - 3.38 - te Area & Weighted Runoff Coeff. 3.48	0.90 0.35 0.37
n {Site 1}.E4	
Area Soil urface Description (acres) Group	
0.11 - 0.29 - 1.20 -	0.90 0.30 0.35 0.38
	20 -

Subbasin E5

-	-	-	-	-	-	-	-	-	-	-	-	-	-	

Soil/Surface Description	Area	Soll	Runott
	(acres)	Group	Coeff.
-	4.51	-	0.35
Composite Area & Weighted Runoff Coeff.	4.51		0.35

Subbasin E6

Soil/Surface Description	Area (acres)	Soil Group	Runoff Coeff.
-	0.31	-	0.90
-	9.99	-	0.35
Composite Area & Weighted Runoff Coeff.	10.30		0.37

Subbasin ID	Accumulated Precip	Rainfall Intensity	Total Runoff	Peak Runoff	Weighted Runoff	Conc	Time of entration
	in	in/hr	in	cfs	Coeff	days	hh:mm:ss
{Site 1}.E1	0.92	6.76	0.32	19.98	0.350	0	00:08:06
{Site 1}.E2	1.01	5.68	0.35	10.58	0.350	0	00:10:36
{Site 1}.E3	1.00	5.72	0.37	7.36	0.370	0	00:10:30
{Site 1}.E4	0.87	7.42	0.33	4.51	0.380	0	00:07:00
E5	1.00	5.72	0.35	9.02	0.350	0	00:10:30
E6	0.97	6.02	0.36	22.93	0.370	0	00:09:42

Node Depth Summary ********

Node	Average	Maximum	Maximum	Time	of Max	Total	Total	Retention
ID	Depth	Depth	HGL	0ccu	ırrence	Flooded	Time	Time
	Attained	Attained	Attained			Volume	Flooded	
	ft	ft	ft	days	hh:mm	acre-in	minutes	hh:mm:ss
J01	0.05	0.97	777.47	0	00:10	0	0	0:00:00
J02	0.02	0.46	787.16	0	00:07	0	0	0:00:00
POC01	0.00	0.00	685.00	0	00:00	0	0	0:00:00
P0C02	0.04	0.77	775.27	0	00:10	0	0	0:00:00
P0C03	0.00	0.00	785.00	0	00:00	0	0	0:00:00
P0C04	0.02	0.43	784.13	0	00:07	0	0	0:00:00
POC05	0.00	0.00	684.00	0	00:00	0	0	0:00:00

Node ID	Element Type	Maximum Lateral Inflow	Peak Inflow	Peak	Inflow	Flooding	Time of Pea Floodin Occurrenc	ıg
		cfs	cfs	days	hh:mm	cfs	days hh:m	ım
Ј01	JUNCTION	10.57	10.57	0	00:10	0.00		-
J02	JUNCTION	4.51	4.51	0	00:07	0.00		
POC01	OUTFALL	39.35	39.35	0	00:08	0.00		
P0C02	OUTFALL	0.00	10.55	0	00:10	0.00		
POC03	OUTFALL	7.36	7.36	0	00:10	0.00		
P0C04	OUTFALL	0.00	4.49	0	00:07	0.00		
P0C05	OUTFALL	9.02	9.02	0	00:10	0.00		

Outfall Loading S	•		
Outfall Node ID	Flow	Average	Peak
	Frequency	Flow	Inflow
	(%)	cfs	cfs
POC01	8.05	19.90	39.35
POC02	9.78	4.81	10.55
POC03	8.75	3.68	7.36
POC04	6.89	1.91	4.49
POC05	8.75	4.51	9.02
System	8.44	34.82	66.68

Link Flow Summary ********

Link ID Total	Reported	Element	Time of	Maximum	Length	Peak Flow	Design	Ratio of	Ratio of
Time	Condition	Туре	Peak Flow	Velocity	Factor	during	Flow	Maximum	Maximum
Surcharged			Occurrence	Attained		Analysis	Capacity	/Design	Flow
J			days hh:mm	ft/sec		cfs	cfs	Flow	Depth
minutes									
Link-01		CONDUIT	0 00:10	7.43	1.00	10.55	12.52	0.84	0.74
0 Link-02	Calculated	CONDUIT	0 00:07	6.40	1.00	4.49	12.61	0.36	0.38

0 Calculated

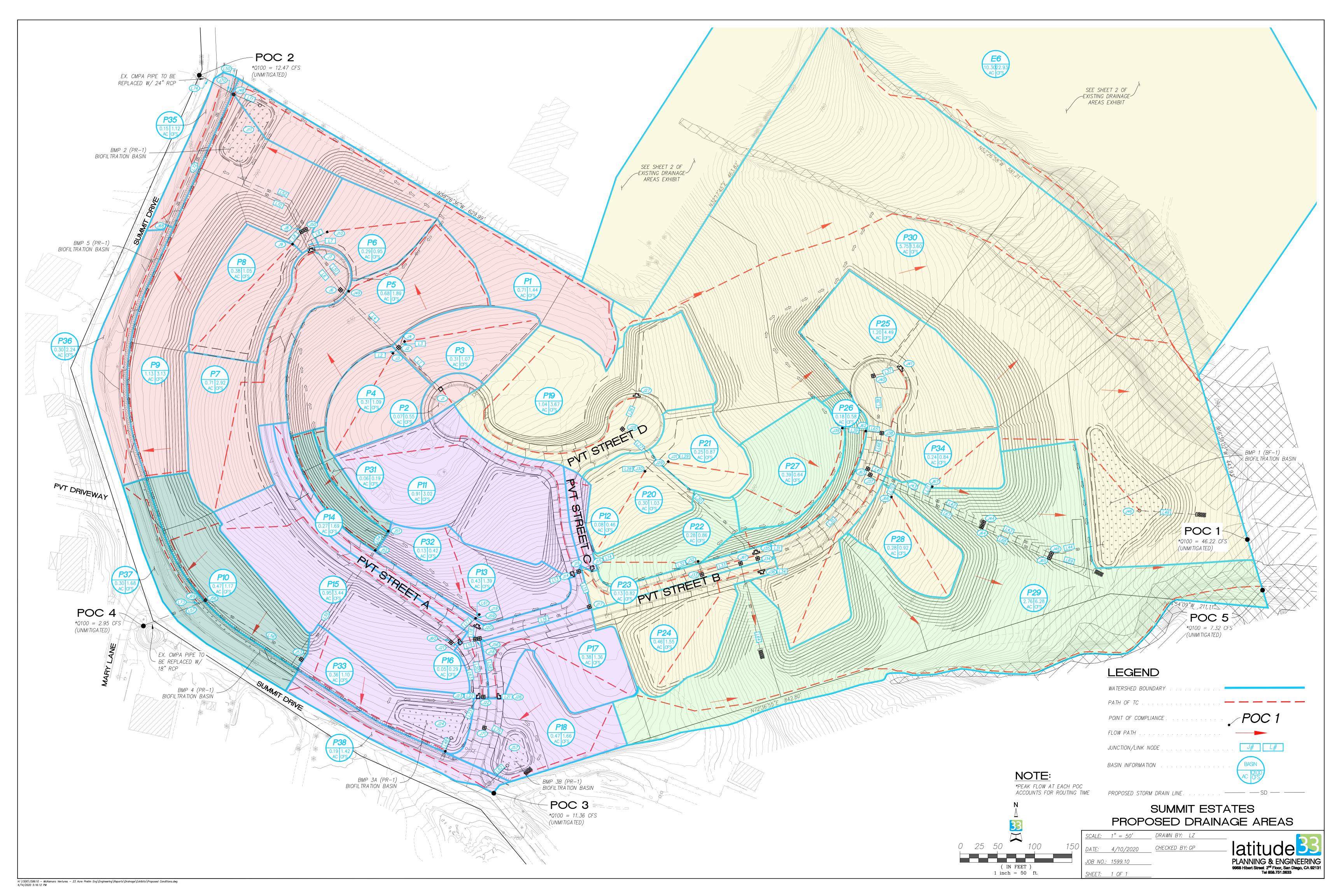
Analysis began on: Fri Apr 10 12:08:07 2020 Analysis ended on: Fri Apr 10 12:08:07 2020

Total elapsed time: < 1 sec

Project Information				
Project Summit Estates		County San Diego	Date 4/10/2020	Project No. 1599.10
Location		Condtion	Ву	Checked
E1		Existing	LZ	GP
Initial Time (T _i)		FAA (Figure 3-3)		
Flow Length, D	ft	100		
Change in Elevation, ∆E	ft	17		
Land Slope, S	ft/ft	0.170		
Runoff Coefficient, C		0.35		
Travel Time, Ti	min	5.3	Ti (min)	= 5.3
A for Ti, to calculate Tt	Ac		,	0.0
I calculated from Ti	in/hr			
Q for Ti, to calculate Tt	CFS			
Travel Time				
Natural Watersheds	KI	RPICH (Figure 3-4)		
Flow Length, D	ft	800		
Change in Elevation, ∆E	ft	110		
Travel Time, Ti	hr	0.048	Tt (min)	= 2.9
Brow Ditch	MANN	IING'S (Figure 3-7)		
Flow Length, D	ft			
Change in Elevation, ∆E	ft			
Land Slope, S	ft/ft			
Manning's n				
Q from Ti	CFS			
R	ft			
Velocity	ft/sec			
Travel Time, Ti	min		Tt (min)	=
Gutter Flow	GUTTE	R FLOW (Figure 3-6)		
Flow Length, D	ft			
Change in Elevation, ΔE	ft			
Street Grade	%			
Q from Ti	CFS			
Velocity	ft/sec			
Travel Time, Ti	min		Tt (min)	=
		0	Francis I Time a Tour ()	
		Combined	Travel Time, T _t (min)	= 2.9
		Time of 0	Concetration, T _c (min)	= 8.1
I				

Project Information				
Project Summit Estates		County San Diego	Date 4/10/2020	Project No. 1599.10
Location		Condtion	Ву	Checked
E2		Existing	LZ	GP
Initial Time (T _i)		FAA (Figure 3-3)		
Flow Length, D	ft	100		
Change in Elevation, ∆E	ft	4.5		
Land Slope, S	ft/ft	0.045		
Runoff Coefficient, C	1010	0.35		
Travel Time, Ti	min	8.2	Ti (min)	= 8.2
A for Ti, to calculate Tt	Ac	0.2	11 (111111)	- 0.2
I calculated from Ti	in/hr			
Q for Ti, to calculate Tt	CFS			
Travel Time	<u> </u>			
Natural Watersheds	KII	RPICH (Figure 3-4)		
Flow Length, D	ft	590		
Change in Elevation, ∆E	ft	71		
Travel Time, Ti	hr	0.040	Tt (min)	= 2.4
Brow Ditch	MANN	IING'S (Figure 3-7)		
Flow Length, D	ft			
Change in Elevation, ∆E	ft			
Land Slope, S	ft/ft			
Manning's n				
Q from Ti	CFS			
R	ft			
Velocity	ft/sec			
Travel Time, Ti	min		Tt (min)	=
Gutter Flow	GUTTE	R FLOW (Figure 3-6)		
Flow Length, D	ft			
Change in Elevation, ∆E	ft			
Street Grade	%			
Q from Ti	CFS			
Velocity	ft/sec			
Travel Time, Ti	min		Tt (min)	=
		On and the set To	evel Time T	0.400
		Combined Tra	avel Time, T _t (min)	= 2.400
		Time of Co	oncetration, T _c (min)	= 10.6
_				

Project Information				_
Project Summit Estates		County San Diego	Date 4/10/2020	Project No. 1599.10
Location E3		Condtion	By LZ	Checked GP
Initial Time (T _i)		Existing	LZ	GP
		FAA (Figure 3-3)		
Flow Length, D	ft	100		
Change in Elevation, ΔE	ft	4.5		
Land Slope, S	ft/ft	0.045		
Runoff Coefficient, C		0.37		
Travel Time, Ti	min	8.0	Ti (min)	= 8.0
A for Ti, to calculate Tt	Ac			
I calculated from Ti	in/hr			
Q for Ti, to calculate Tt	CFS			
Travel Time				
Natural Watersheds		RPICH (Figure 3-4)		
Flow Length, D	ft	580		
Change in Elevation, ∆E	ft	61		
Travel Time, Ti	hr	0.042	Tt (min)	= 2.5
Brow Ditch	MANI	NING'S (Figure 3-7)		
Flow Length, D	ft			
Change in Elevation, ∆E	ft			
Land Slope, S	ft/ft			
Manning's n				
Q from Ti	CFS			
R	ft			
Velocity	ft/sec			
Travel Time, Ti	min		Tt (min)	=
Gutter Flow	GUTTE	R FLOW (Figure 3-6)		
Flow Length, D	ft			
Change in Elevation, ∆E	ft			
Street Grade	%			
Q from Ti	CFS			
Velocity	ft/sec			
Travel Time, Ti	min		Tt (min)	=
		0	our al Time a Tour ()	0.405
		Combined Tra	avel Time, T _t (min)	= 2.495
		Time of Co	ncetration, T _c (min)	= 10.5


Project Information				
Project Summit Estates		County San Diego	Date 4/10/2020	Project No. 1599.10
Location		Condtion	Ву	Checked
E4		Existing	LZ	GP
Initial Time (T _i)		FAA (Figure 3-3)		
Flow Length, D	ft	100		
Change in Elevation, ∆E	ft	16		
Land Slope, S	ft/ft	0.160		
Runoff Coefficient, C		0.38		
Travel Time, Ti	min	5.1	Ti (min)	= 5.1
A for Ti, to calculate Tt	Ac	1.600	,	• • • • • • • • • • • • • • • • • • • •
I calculated from Ti	in/hr	9.1		
Q for Ti, to calculate Tt	CFS	5.51		
Travel Time				
Natural Watersheds	K	RPICH (Figure 3-4)		
Flow Length, D	ft	250		
Change in Elevation, ∆E	ft	48		
Travel Time, Ti	hr	0.017	Tt (min)	= 1.0
Brow Ditch	MANI	NING'S (Figure 3-7)		
Flow Length, D	ft			
Change in Elevation, ∆E	ft			
Land Slope, S	ft/ft			
Manning's n				
Q from Ti	CFS			
R	ft			
Velocity	ft/sec			
Travel Time, Ti	min		Tt (min)	=
Gutter Flow	GUTTE	R FLOW (Figure 3-6)		<u> </u>
Flow Length, D	ft	100		
Change in Elevation, ΔE	ft	0.5		
Street Grade	%	0.005		
Q from Ti	CFS	5.51		
Velocity	ft/sec	2.000		
Travel Time, Ti	min	0.8	Tt (min)	= 0.833
		O la la la Ta	evel Time T	4.000
		Combined Tra	avel Time, T _t (min)	= 1.868
Time of Concetration, T _c (min) = 7.0				

Project Information				_
Project Summit Estates		County San Diego	Date 4/10/2020	Project No. 1599.10
Location E5		Condtion Existing	By LZ	Checked GP
Initial Time (T _i)		LXISTING	LZ	Gr
		FAA (Figure 3-3)		
Flow Length, D	ft	100		
Change in Elevation, ∆E	ft	10		
Land Slope, S	ft/ft	0.100		
Runoff Coefficient, C		0.35		
Travel Time, Ti	min	6.3	Ti (min)	= 6.3
A for Ti, to calculate Tt	Ac			
I calculated from Ti	in/hr			
Q for Ti, to calculate Tt	CFS			
Travel Time				
Natural Watersheds		RPICH (Figure 3-4)		
Flow Length, D	ft	1250		
Change in Elevation, ∆E	ft	157		
Travel Time, Ti	hr	0.070	Tt (min)	= 4.2
Brow Ditch	MANI	NING'S (Figure 3-7)		
Flow Length, D	ft			
Change in Elevation, ∆E	ft			
Land Slope, S	ft/ft			
Manning's n				
Q from Ti	CFS			
R	ft			
Velocity	ft/sec			
Travel Time, Ti	min		Tt (min)	=
Gutter Flow	GUTTE	R FLOW (Figure 3-6)		
Flow Length, D	ft			
Change in Elevation, ∆E	ft			
Street Grade	%			
Q from Ti	CFS			
Velocity	ft/sec			
Travel Time, Ti	min		Tt (min)	=
		Combined Tra	avel Time, T _t (min)	= 4.2
		Time of Co	encetration, T _c (min)	= 10.5

Project Information		_		_
Project Summit Estates		County San Diego	Date 4/10/2020	Project No. 1599.10
Location E6		Condtion Existing	By LZ	Checked GP
Initial Time (T _i)		LXISTING	LZ	Gr
		FAA (Figure 3-3)		
Flow Length, D	ft	100		
Change in Elevation, ∆E	ft	15		
Land Slope, S	ft/ft	0.150		
Runoff Coefficient, C		0.37		
Travel Time, Ti	min	5.3	Ti (min)	= 5.3
A for Ti, to calculate Tt	Ac			
I calculated from Ti	in/hr			
Q for Ti, to calculate Tt	CFS			
Travel Time				
Natural Watersheds		RPICH (Figure 3-4)		
Flow Length, D	ft	1160		
Change in Elevation, ∆E	ft	116		
Travel Time, Ti	hr	0.072	Tt (min)	= 4.3
Brow Ditch	MANI	NING'S (Figure 3-7)		
Flow Length, D	ft			
Change in Elevation, ΔE	ft			
Land Slope, S	ft/ft			
Manning's n				
Q from Ti	CFS			
R	ft			
Velocity	ft/sec			
Travel Time, Ti	min		Tt (min)	=
Gutter Flow	GUTTE	R FLOW (Figure 3-6)		
Flow Length, D	ft			
Change in Elevation, ∆E	ft			
Street Grade	%			
Q from Ti	CFS			
Velocity	ft/sec			
Travel Time, Ti	min		Tt (min)	=
		Combined Tre	avol Timo T (main)	4.2
		Combined Tra	avel Time, T _t (min)	= 4.3
		Time of Co	oncetration, T _c (min)	= 9.7

Appendix B

Proposed Conditions Drainage Map and Calculations

Proposed Conditions

```
Autodesk® Storm and Sanitary Analysis 2016 - Version 13.2.147 (Build 0)
 *******
 Project Description
 *******
 File Name ..... Proposed Rd2.SPF
 Description ..... H:\1500\1599.10 - McNamara Ventures - 23 Acre Prelim
Eng\Engineering\Reports\Drainage\SSA\Proposed Parcels.dwg
 ******
 Analysis Options
 ******
 Flow Units ..... cfs
 Subbasin Hydrograph Method. Rational
 Time of Concentration..... User-Defined
 Return Period...... 100 year, P6=3.5
 Link Routing Method ..... Hydrodynamic
 Storage Node Exfiltration.. Constant flow
 Starting Date ..... JUN-17-2019 00:00:00
 Ending Date ...... JUN-17-2019 06:00:00
 Report Time Step ..... 00:00:10
 ******
 Element Count
 ******
 Number of subbasins ..... 39
 Number of nodes ..... 71
 Number of links ..... 65
 ******
 Subbasin Summary
```

Subbasin	Total Area
ID	acres
{Site 1}.P01	0.71
{Site 1}.P02	0.07
{Site 1}.P03	0.31
{Site 1}.P04	0.31
{Site 1}.P05	0.68
{Site 1}.P06	0.29
{Site 1}.P07	0.71
{Site 1}.P08	0.38
{Site 1}.P09	1.13
{Site 1}.P10 {Site 1}.P11	0.47 0.91
{Site 1}.P12	0.91
{Site 1}.P13	0.43
{Site 1}P14	0.27
{Site 1}.P15	0.95
Site 1 .P16	0.05
{Site 1}.P17	0.38
{Site 1}.P18	0.47
{Site 1}.P19	1.04
{Site 1}.P20	0.30
{Site 1}.P21	0.25
{Site 1}.P22	0.28
{Site 1}.P23	0.13
{Site 1}.P24 {Site 1}.P25	0.46 1.20
{Site 1}.P26	0.18
{Site 1}.P27	0.39
{Site 1}.P28	0.28
E6	10.30
P29	2.76
P30	5.75
P31	0.06
P32	0.13

P33	0.36
P34	0.24
P35	0.15
P36	0.30
P37	0.30
P38	0.19

Node Summary *******

Node ID	Element Type	Invert Elevation	Maximum		
10	Туре	ft		ft²	IIII IOW
Ј01	JUNCTION	835.00	840.00	0.00	
Ј02	JUNCTION	833.00	842.00	0.00	
J03	JUNCTION	833.50	843.00	0.00	
Ј04	JUNCTION	833.50	841.00	0.00	
J06	JUNCTION	815.00	820.00	0.00	
J 0 7	JUNCTION	814.00	820.00	0.00	
Ј08	JUNCTION	806.00	812.00	0.00	
J09	JUNCTION	807.00	812.00	0.00	
J10	JUNCTION	812.00	818.00	0.00	
J11	JUNCTION	780.25	787.00	0.00	
J 1 4	JUNCTION	812.00	816.00	0.00	
J15	JUNCTION	812.00	816.00	0.00	
J 1 6	JUNCTION	811.00	816.00	0.00	
J 1 7	JUNCTION	808.00	812.50	0.00	
J18	JUNCTION	801.00	808.00	0.00	
J19	JUNCTION	806.00	812.00	0.00	
J20	JUNCTION	802.00	808.00	0.00	
J21	JUNCTION	802.00	808.00	0.00	
J22	JUNCTION	793.00	798.00	0.00	
J23	JUNCTION	792.50	798.00	0.00	
J24	JUNCTION	788.25	794.00	0.00	
J26	JUNCTION	794.00	798.00	0.00	
J27	JUNCTION	821.00	826.00	0.00	

J28	JUNCTION	820.00	825.00	0.00
J29	JUNCTION	818.00	824.00	0.00
J30	JUNCTION	818.50	822.00	0.00
J31	JUNCTION	819.00	824.00	0.00
J32	JUNCTION	792.50	798.00	0.00
J33	JUNCTION	792.00	798.00	0.00
J34	JUNCTION	790.00	796.00	0.00
J35	JUNCTION	791.00	796.00	0.00
J36	JUNCTION	791.00	796.00	0.00
J37	JUNCTION	761.00	777.00	0.00
J38	JUNCTION	767.00	771.00	0.00
J39	JUNCTION	784.00	791.00	0.00
J40	JUNCTION	762.50	768.00	0.00
J 41	JUNCTION	763.00	767.00	0.00
J43	JUNCTION	759.00	765.00	0.00
J44	JUNCTION	744.00	750.00	0.00
J45	JUNCTION	724.00	730.00	0.00
Ј46	JUNCTION	711.50	720.00	0.00
Ј48	JUNCTION	777.00	789.00	0.00
J49	JUNCTION	814.00	820.00	0.00
J50	JUNCTION	808.00	814.00	0.00
J51	JUNCTION	830.00	838.00	0.00
J52	JUNCTION	814.00	818.00	0.00
J53	JUNCTION	790.00	796.00	0.00
J54	JUNCTION	784.40	790.00	0.00
J55	JUNCTION	0.00	6.00	0.00
J56	JUNCTION	800.00	806.00	0.00
J57	JUNCTION	785.50	793.00	0.00
J59	JUNCTION	805.00	810.00	0.00
J60	JUNCTION	802.00	808.00	0.00
J61	JUNCTION	789.70	795.70	0.00
J62	JUNCTION	768.00	772.00	0.00
J63	JUNCTION	766.00	778.00	0.00
Ј64	JUNCTION	744.00	750.00	0.00
J65	JUNCTION	724.00	730.00	0.00
J66	JUNCTION	765.00	773.00	0.00
J67	JUNCTION	760.00	768.00	0.00
J68	JUNCTION	776.75	781.00	0.00

J69	JUNCTION	784.50	789.00	0.00
J70	JUNCTION	774.90	778.80	0.00
J 71	JUNCTION	791.40	794.00	0.00
J73	JUNCTION	686.00	776.00	0.00
J76	JUNCTION	784.50	790.00	0.00
P0C01	OUTFALL	684.00	704.50	0.00
P0C02	OUTFALL	774.50	776.50	0.00
P0C03	OUTFALL	784.00	788.00	0.00
P0C04	OUTFALL	783.70	785.20	0.00
P0C05	OUTFALL	685.00	689.00	0.00

Link Summary

Link ID	From Node	To Node	Element Type	Length ft	Slope %	Manning's Roughness
Link-01	J01	Ј02	CONDUIT	75.1	2.6631	0.0150
Link-02	J03	Ј02	CONDUIT	8.1	6.1728	0.0150
Link-03	Ј04	J02	CONDUIT	8.1	6.1728	0.0150
Link-04	Ј02	J06	CONDUIT	105.7	17.0293	0.0150
Link-06	Ј06	J07	CONDUIT	62.3	1.6051	0.0150
Link-07	Ј07	Ј08	CONDUIT	22.8	35.0877	0.0150
Link-08	J 0 9	Ј08	CONDUIT	19.9	5.0251	0.0150
Link-09	J10	Ј08	CONDUIT	29.3	20.4778	0.0150
Link-10	Ј08	J11	CONDUIT	140.5	14.9466	0.0150
Link-11	J 11	J48	CONDUIT	35.0	9.2857	0.0150
Link-13	J 1 4	J16	CONDUIT	5.2	19.2308	0.0150
Link-14	J 1 5	J 1 6	CONDUIT	14.8	6.7568	0.0150
Link-15	J 1 6	J 1 7	CONDUIT	42.7	7.0208	0.0150
Link-16	J 1 7	J56	CONDUIT	150.9	5.3015	0.0150
Link-17	J59	J60	CONDUIT	42.5	7.0588	0.0150
Link-18	J20	J18	CONDUIT	14.0	7.1429	0.0150
Link-19	J21	J18	CONDUIT	17.1	5.8480	0.0150
Link-20	J18	J22	CONDUIT	74.6	10.7239	0.0150
Link-21	J26	J22	CONDUIT	17.0	5.8824	0.0150
Link-22	J22	J23	CONDUIT	3.0	16.6667	0.0150

Link-23	J23	Ј24	CONDUIT	41.5	1.2048	0.0150
Link-26	J27	J28	CONDUIT	45.3	2.2075	0.0150
Link-27	J28	J29	CONDUIT	71.6	2.7933	0.0150
Link-28	J30	J29	CONDUIT	20.6	2.4272	0.0150
Link-29	J31	J29	CONDUIT	8.0	12.5000	0.0150
Link-30	J29	J35	CONDUIT	165.2	16.3438	0.0150
Link-31	J35	Ј34	CONDUIT	7.0	14.2857	0.0150
Link-32	J32	J33	CONDUIT	16.9	2.9586	0.0150
Link-33	J33	J 61	CONDUIT	52.0	4.4231	0.0150
Link-34	J36	J34	CONDUIT	17.0	5.8824	0.0150
Link-35	J34	J37	CONDUIT	195.3	14.8490	0.0150
Link-37	J 41	Ј40	CONDUIT	35.0	1.4286	0.0150
Link-38	J40	Ј37	CONDUIT	123.0	1.2195	0.0150
Link-39	J39	J62	CONDUIT	30.7	52.1173	0.0150
Link-41	J37	J43	CONDUIT	86.1	2.3229	0.0150
Link-42	J43	Ј44	CONDUIT	82.8	18.1159	0.0150
Link-43	J44	J45	CONDUIT	99.8	20.0401	0.0150
Link-44	J45	J46	CONDUIT	68.3	8.7848	0.0150
Link-48	J24	J76	CONDUIT	23.0	1.0870	0.0150
Link-49	J46	P0C01	CONDUIT	73.4	11.5804	0.0150
Link-50	J48	J70	CONDUIT	7.3	28.7671	0.0150
Link-51	J49	J50	CONDUIT	100.5	5.9719	0.0150
Link-52	J50	Ј48	CONDUIT	122.0	16.3934	0.0150
Link-54	J51	J52	CONDUIT	30.6	52.2876	0.0150
Link-55	J52	J53	CONDUIT	199.0	12.0597	0.0150
Link-56	J53	J54	CONDUIT	147.6	3.7940	0.0150
Link-57	J54	POC04	CONDUIT	88.6	0.7901	0.0150
Link-58	J56	J71	CONDUIT	119.2	7.2148	0.0150
Link-61	J 1 9	J59	CONDUIT	6.2	16.1290	0.0150
Link-62	J57	J76	CONDUIT	31.7	3.1546	0.0150
Link-63	J60	J76	CONDUIT	175.0	8.0000	0.0150
Link-64	J6 1	J73	CONDUIT	117.2	12.5427	0.0150
Link-65	J62	Ј38	CONDUIT	19.5	5.1282	0.0150
Link-66	J38	Ј63	CONDUIT	56.3	1.7762	0.0150
Link-67	J63	Ј64	CONDUIT	168.9	13.0255	0.0150
Link-68	Ј64	J65	CONDUIT	99.8	20.0401	0.0150
Link-69	J65	J73	CONDUIT	59.2	3.3784	0.0150
Link-70	J66	J43	CONDUIT	21.0	14.2857	0.0150

**************************************	Link-71 Link-72 Link-73 Link-74 Link-75 Link-77	J67 J68 J69 J70 J71 J73 J76	J43 J70 J54 POC02 J57 POC05 POC03	CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT	13.0 198.8 2.0 43.0 39.0 10.0	0.9306 5.0000 0.9302 1.1538 10.0000	0.0150 0.0150 0.0150 0.0150 0.0150 0.0150	
Link	******	*****						
Diameter Barrels Sectional Hydraulic Flow Capacity Ft Ft Ft Ft Sectional Hydraulic Flow Capacity Capacity Ft Ft Ft Ft Ft Ft Ft								
Link-01 CIRCULAR 1.50 1.50 1 1.77 0.38 14.86 Link-02 CIRCULAR 1.00 1.00 1 0.79 0.25 7.67 Link-03 CIRCULAR 1.00 1.00 1 0.79 0.25 7.67 Link-04 CIRCULAR 1.50 1.50 1 1.77 0.38 37.57 Link-06 CIRCULAR 1.50 1.50 1 1.77 0.38 37.57 Link-07 CIRCULAR 1.50 1.50 1 1.77 0.38 31.53 Link-08 CIRCULAR 1.50 1.50 1 1.77 0.38 53.93 Link-09 CIRCULAR 1.00 1.00 1 0.79 0.25 6.92 Link-10 CIRCULAR 1.50 1.50 1 1.77 0.38 35.20 Link-11 CIRCULAR 1.50 1.50 1 1.77 0.38 27.74 Link-13 C		Shape	-	Width		Sectional	Hydraulic	Flow
Link-02 CIRCULAR 1.00 1.00 1 0.79 0.25 7.67 Link-03 CIRCULAR 1.00 1.00 1 0.79 0.25 7.67 Link-04 CIRCULAR 1.50 1.50 1 1.77 0.38 37.57 Link-06 CIRCULAR 1.50 1.50 1 1.77 0.38 11.53 Link-07 CIRCULAR 1.50 1.50 1 1.77 0.38 53.93 Link-08 CIRCULAR 1.00 1.00 1 0.79 0.25 6.92 Link-09 CIRCULAR 1.00 1.00 1 0.79 0.25 6.92 Link-09 CIRCULAR 1.50 1.50 1 1.77 0.38 35.20 Link-10 CIRCULAR 1.50 1.50 1 1.77 0.38 35.20 Link-11 CIRCULAR 1.50 1.50 1 1.77 0.38 27.74 Link-12 CI			ft	ft				
Link-03 CIRCULAR 1.00 1.00 1 0.79 0.25 7.67 Link-04 CIRCULAR 1.50 1.50 1 1.77 0.38 37.57 Link-06 CIRCULAR 1.50 1.50 1 1.77 0.38 11.53 Link-07 CIRCULAR 1.50 1.50 1 1.77 0.38 53.93 Link-08 CIRCULAR 1.00 1.00 1 0.79 0.25 6.92 Link-09 CIRCULAR 1.00 1.00 1 0.79 0.25 13.97 Link-10 CIRCULAR 1.50 1.50 1 1.77 0.38 35.20 Link-11 CIRCULAR 1.50 1.50 1 1.77 0.38 22.74 Link-13 CIRCULAR 1.50 1.50 1 1.77 0.38 39.92 Link-14 CIRCULAR 1.50 1.50 1 1.77 0.38 23.66 Link-15								
Link-04 CIRCULAR 1.50 1.50 1 1.77 0.38 37.57 Link-06 CIRCULAR 1.50 1.50 1 1.77 0.38 11.53 Link-07 CIRCULAR 1.50 1.50 1 1.77 0.38 53.93 Link-08 CIRCULAR 1.00 1.00 1 0.79 0.25 6.92 Link-09 CIRCULAR 1.00 1.00 1 0.79 0.25 6.92 Link-10 CIRCULAR 1.50 1.50 1 1.77 0.38 35.20 Link-11 CIRCULAR 1.50 1.50 1 1.77 0.38 27.74 Link-13 CIRCULAR 1.50 1.50 1 1.77 0.38 29.92 Link-14 CIRCULAR 1.50 1.50 1 1.77 0.38 24.12 Link-15 CIRCULAR 1.50 1.50 1 1.77 0.38 24.12 Link-16								
Link-06 CIRCULAR 1.50 1.50 1 1.77 0.38 11.53 Link-07 CIRCULAR 1.50 1.50 1 1.77 0.38 53.93 Link-08 CIRCULAR 1.00 1.00 1 0.79 0.25 6.92 Link-09 CIRCULAR 1.00 1.00 1 0.79 0.25 13.97 Link-10 CIRCULAR 1.50 1.50 1 1.77 0.38 35.20 Link-11 CIRCULAR 1.50 1.50 1 1.77 0.38 27.74 Link-13 CIRCULAR 1.50 1.50 1 1.77 0.38 39.92 Link-14 CIRCULAR 1.50 1.50 1 1.77 0.38 23.66 Link-15 CIRCULAR 1.50 1.50 1 1.77 0.38 24.12 Link-16 CIRCULAR 1.50 1.50 1 1.77 0.38 20.96 Link-18 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
Link-07 CIRCULAR 1.50 1.50 1 1.77 0.38 53.93 Link-08 CIRCULAR 1.00 1.00 1 0.79 0.25 6.92 Link-09 CIRCULAR 1.00 1.00 1 0.79 0.25 13.97 Link-10 CIRCULAR 1.50 1.50 1 1.77 0.38 35.20 Link-11 CIRCULAR 1.50 1.50 1 1.77 0.38 27.74 Link-13 CIRCULAR 1.50 1.50 1 1.77 0.38 27.74 Link-13 CIRCULAR 1.50 1.50 1 1.77 0.38 39.92 Link-14 CIRCULAR 1.50 1.50 1 1.77 0.38 23.66 Link-15 CIRCULAR 1.50 1.50 1 1.77 0.38 24.12 Link-16 CIRCULAR 1.50 1.50 1 1.77 0.38 20.96 Link-17 CIRCULAR 1.50 1.50 1 1.77 0.38 24.33								
Link-08 CIRCULAR 1.00 1.00 1 0.79 0.25 6.92 Link-09 CIRCULAR 1.00 1.00 1 0.79 0.25 13.97 Link-10 CIRCULAR 1.50 1.50 1 1.77 0.38 35.20 Link-11 CIRCULAR 1.50 1.50 1 1.77 0.38 27.74 Link-13 CIRCULAR 1.50 1.50 1 1.77 0.38 27.74 Link-14 CIRCULAR 1.50 1.50 1 1.77 0.38 23.66 Link-14 CIRCULAR 1.50 1.50 1 1.77 0.38 24.12 Link-15 CIRCULAR 1.50 1.50 1 1.77 0.38 24.12 Link-16 CIRCULAR 1.50 1.50 1 1.77 0.38 20.96 Link-17 CIRCULAR 1.50 1.50 1 1.77 0.38 24.33 Link-19 CIRCULAR 1.50 1.50 1 1.77 0.38 22.02								
Link-09 CIRCULAR 1.00 1.00 1 0.79 0.25 13.97 Link-10 CIRCULAR 1.50 1.50 1 1.77 0.38 35.20 Link-11 CIRCULAR 1.50 1.50 1 1.77 0.38 27.74 Link-13 CIRCULAR 1.50 1.50 1 1.77 0.38 39.92 Link-14 CIRCULAR 1.50 1.50 1 1.77 0.38 23.66 Link-15 CIRCULAR 1.50 1.50 1 1.77 0.38 24.12 Link-16 CIRCULAR 1.50 1.50 1 1.77 0.38 20.96 Link-17 CIRCULAR 1.00 1.00 1 0.79 0.25 8.20 Link-18 CIRCULAR 1.50 1.50 1 1.77 0.38 24.33 Link-19 CIRCULAR 1.50 1.50 1 1.77 0.38 22.02 Link-20 CIRCULAR 1.50 1.50 1 1.77 0.38 22.08								
Link-10 CIRCULAR 1.50 1.50 1 1.77 0.38 35.20 Link-11 CIRCULAR 1.50 1.50 1 1.77 0.38 27.74 Link-13 CIRCULAR 1.50 1.50 1 1.77 0.38 39.92 Link-14 CIRCULAR 1.50 1.50 1 1.77 0.38 23.66 Link-15 CIRCULAR 1.50 1.50 1 1.77 0.38 24.12 Link-16 CIRCULAR 1.50 1.50 1 1.77 0.38 20.96 Link-17 CIRCULAR 1.00 1.00 1 0.79 0.25 8.20 Link-18 CIRCULAR 1.50 1.50 1 1.77 0.38 24.33 Link-19 CIRCULAR 1.50 1.50 1 1.77 0.38 22.02 Link-20 CIRCULAR 1.50 1.50 1 1.77 0.38 22.08 Link-22 CIRCULAR 1.50 1.50 1 1.77 0.38 37.17								
Link-11 CIRCULAR 1.50 1.50 1 1.77 0.38 27.74 Link-13 CIRCULAR 1.50 1.50 1 1.77 0.38 39.92 Link-14 CIRCULAR 1.50 1.50 1 1.77 0.38 23.66 Link-15 CIRCULAR 1.50 1.50 1 1.77 0.38 24.12 Link-16 CIRCULAR 1.50 1.50 1 1.77 0.38 20.96 Link-17 CIRCULAR 1.00 1.00 1 0.79 0.25 8.20 Link-18 CIRCULAR 1.50 1.50 1 1.77 0.38 24.33 Link-19 CIRCULAR 1.50 1.50 1 1.77 0.38 22.02 Link-20 CIRCULAR 1.50 1.50 1 1.77 0.38 29.81 Link-21 CIRCULAR 1.50 1.50 1 1.77 0.38 22.08 Link-22 CIRCULAR 1.50 1.50 1 1.77 0.38 37.17								
Link-13 CIRCULAR 1.50 1.50 1 1.77 0.38 39.92 Link-14 CIRCULAR 1.50 1.50 1 1.77 0.38 23.66 Link-15 CIRCULAR 1.50 1.50 1 1.77 0.38 24.12 Link-16 CIRCULAR 1.50 1.50 1 1.77 0.38 20.96 Link-17 CIRCULAR 1.00 1.00 1 0.79 0.25 8.20 Link-18 CIRCULAR 1.50 1.50 1 1.77 0.38 24.33 Link-19 CIRCULAR 1.50 1.50 1 1.77 0.38 22.02 Link-20 CIRCULAR 1.50 1.50 1 1.77 0.38 29.81 Link-21 CIRCULAR 1.50 1.50 1 1.77 0.38 22.08 Link-22 CIRCULAR 1.50 1.50 1 1.77 0.38 37.17								
Link-14 CIRCULAR 1.50 1.50 1 1.77 0.38 23.66 Link-15 CIRCULAR 1.50 1.50 1 1.77 0.38 24.12 Link-16 CIRCULAR 1.50 1.50 1 1.77 0.38 20.96 Link-17 CIRCULAR 1.00 1.00 1 0.79 0.25 8.20 Link-18 CIRCULAR 1.50 1.50 1 1.77 0.38 24.33 Link-19 CIRCULAR 1.50 1.50 1 1.77 0.38 22.02 Link-20 CIRCULAR 1.50 1.50 1 1.77 0.38 29.81 Link-21 CIRCULAR 1.50 1.50 1 1.77 0.38 22.08 Link-22 CIRCULAR 1.50 1.50 1 1.77 0.38 37.17								
Link-15 CIRCULAR 1.50 1.50 1 1.77 0.38 24.12 Link-16 CIRCULAR 1.50 1.50 1 1.77 0.38 20.96 Link-17 CIRCULAR 1.00 1.00 1 0.79 0.25 8.20 Link-18 CIRCULAR 1.50 1.50 1 1.77 0.38 24.33 Link-19 CIRCULAR 1.50 1.50 1 1.77 0.38 22.02 Link-20 CIRCULAR 1.50 1.50 1 1.77 0.38 29.81 Link-21 CIRCULAR 1.50 1.50 1 1.77 0.38 22.08 Link-22 CIRCULAR 1.50 1.50 1 1.77 0.38 37.17								
Link-16 CIRCULAR 1.50 1.50 1 1.77 0.38 20.96 Link-17 CIRCULAR 1.00 1.00 1 0.79 0.25 8.20 Link-18 CIRCULAR 1.50 1.50 1 1.77 0.38 24.33 Link-19 CIRCULAR 1.50 1.50 1 1.77 0.38 22.02 Link-20 CIRCULAR 1.50 1.50 1 1.77 0.38 29.81 Link-21 CIRCULAR 1.50 1.50 1 1.77 0.38 22.08 Link-22 CIRCULAR 1.50 1.50 1 1.77 0.38 37.17								
Link-17 CIRCULAR 1.00 1.00 1 0.79 0.25 8.20 Link-18 CIRCULAR 1.50 1.50 1 1.77 0.38 24.33 Link-19 CIRCULAR 1.50 1.50 1 1.77 0.38 22.02 Link-20 CIRCULAR 1.50 1.50 1 1.77 0.38 29.81 Link-21 CIRCULAR 1.50 1.50 1 1.77 0.38 22.08 Link-22 CIRCULAR 1.50 1.50 1 1.77 0.38 37.17								
Link-18 CIRCULAR 1.50 1.50 1 1.77 0.38 24.33 Link-19 CIRCULAR 1.50 1.50 1 1.77 0.38 22.02 Link-20 CIRCULAR 1.50 1.50 1 1.77 0.38 29.81 Link-21 CIRCULAR 1.50 1.50 1 1.77 0.38 22.08 Link-22 CIRCULAR 1.50 1.50 1 1.77 0.38 37.17								
Link-19 CIRCULAR 1.50 1.50 1 1.77 0.38 22.02 Link-20 CIRCULAR 1.50 1.50 1 1.77 0.38 29.81 Link-21 CIRCULAR 1.50 1.50 1 1.77 0.38 22.08 Link-22 CIRCULAR 1.50 1.50 1 1.77 0.38 37.17								
Link-20 CIRCULAR 1.50 1.50 1 1.77 0.38 29.81 Link-21 CIRCULAR 1.50 1.50 1 1.77 0.38 22.08 Link-22 CIRCULAR 1.50 1.50 1 1.77 0.38 37.17								
Link-21 CIRCULAR 1.50 1.50 1 1.77 0.38 22.08 Link-22 CIRCULAR 1.50 1.50 1 1.77 0.38 37.17								
Link-22 CIRCULAR 1.50 1.50 1 1.77 0.38 37.17								

Link-26	CIRCULAR	1.50	1.50	1	1.77	0.38	13.53
Link-27	CIRCULAR	1.50	1.50	1	1.77	0.38	15.22
Link-28	CIRCULAR	1.00	1.00	1	0.79	0.25	4.81
Link-29	CIRCULAR	1.00	1.00	1	0.79	0.25	10.92
Link-30	CIRCULAR	1.50	1.50	1	1.77	0.38	36.80
Link-31	CIRCULAR	1.50	1.50	1	1.77	0.38	34.41
Link-32	CIRCULAR	1.00	1.00	1	0.79	0.25	5.31
Link-33	CIRCULAR	1.00	1.00	1	0.79	0.25	6.49
Link-34	CIRCULAR	1.50	1.50	1	1.77	0.38	22.08
Link-35	CIRCULAR	1.50	1.50	1	1.77	0.38	35.08
Link-37	CIRCULAR	1.50	1.50	1	1.77	0.38	10.88
Link-38	CIRCULAR	1.50	1.50	1	1.77	0.38	10.05
Link-39	CIRCULAR	1.00	1.00	1	0.79	0.25	22.29
Link-41	CIRCULAR	1.50	1.50	1	1.77	0.38	13.88
Link-42	CIRCULAR	1.50	1.50	1	1.77	0.38	38.75
Link-43	CIRCULAR	1.50	1.50	1	1.77	0.38	40.75
Link-44	CIRCULAR	1.50	1.50	1	1.77	0.38	26.98
Link-48	CIRCULAR	1.50	1.50	1	1.77	0.38	9.49
Link-49	CIRCULAR	1.50	1.50	1	1.77	0.38	30.98
Link-50	CIRCULAR	1.50	1.50	1	1.77	0.38	48.83
Link-51	CIRCULAR	1.00	1.00	1	0.79	0.25	7.55
Link-52	CIRCULAR	1.00	1.00	1	0.79	0.25	12.50
Link-54	CIRCULAR	1.00	1.00	1	0.79	0.25	22.33
Link-55	CIRCULAR	1.00	1.00	1	0.79	0.25	10.72
Link-56	CIRCULAR	1.00	1.00	1	0.79	0.25	6.01
Link-57	CIRCULAR	1.50	1.50	1	1.77	0.38	8.09
Link-58	CIRCULAR	1.50	1.50	1	1.77	0.38	24.45
Link-61	CIRCULAR	1.00	1.00	1	0.79	0.25	12.40
Link-62	CIRCULAR	1.50	1.50	1	1.77	0.38	16.17
Link-63	CIRCULAR	1.00	1.00	1	0.79	0.25	8.73
Link-64	CIRCULAR	1.00	1.00	1	0.79	0.25	10.94
Link-65	CIRCULAR	1.00	1.00	1	0.79	0.25	6.99
Link-66	CIRCULAR	1.00	1.00	1	0.79	0.25	4.12
Link-67	CIRCULAR	1.00	1.00	1	0.79	0.25	11.14
Link-68	CIRCULAR	1.00	1.00	1	0.79	0.25	13.82
Link-69	CIRCULAR	1.00	1.00	1	0.79	0.25	5.68
Link-70	CIRCULAR	1.00	1.00	1	0.79	0.25	11.67
Link-71	CIRCULAR	1.00	1.00	1	0.79	0.25	8.56

*******	,						
Runoff Quanti	ty Continuity	acre-ft	inches				
********	*****	Volume	Depth				
Link-79	CIRCULAR	4.00	4.00	1	12.57	1.00	278.37
Link-77	CIRCULAR	4.00	4.00	1	12.57	1.00	393.67
Link-75	CIRCULAR	1.50	1.50	1	1.77	0.38	9.78
Link-74	CIRCULAR	2.00	2.00	1	3.14	0.50	18.91
Link-73	CIRCULAR	1.00	1.00	1	0.79	0.25	6.90
Link-72	CIRCULAR	1.00	1.00	1	0.79	0.25	2.98

0.930

.ume
ons
000
362
000
000

2.608

Subbasin {Site 1}.P01

Total Precipitation

Soil/Surface Description	Area (acres)	Soil Group	Runoff Coeff.
-	0.35	-	0.35
-	0.35	-	0.30
Composite Area & Weighted Runoff Coeff.	0.71		0.33

Subbasin {Site 1}.P02

Subbasin {Site 1}.P02			
Soil/Surface Description	Area (acres)	Soil Group	Runoff Coeff.
- - Composite Area & Weighted Runoff Coeff.	0.06 0.01 0.07	-	0.90 0.35 0.85
Subbasin {Site 1}.P03			
Soil/Surface Description	Area (acres)	Soil Group	
- Composite Area & Weighted Runoff Coeff.	0.31 0.31	-	0.57 0.57
Subbasin {Site 1}.P04			
Soil/Surface Description	Area (acres)	Soil Group	
- Composite Area & Weighted Runoff Coeff.	0.31 0.31	-	0.57 0.57
Subbasin {Site 1}.P05			
Soil/Surface Description	Area (acres)	Soil Group	
	0.68 0.68	-	0.35 0.35

Subbasin {Site 1}.P06 Area Soil Runoff Soil/Surface Description (acres) Coeff. Group 0.29 0.54 Composite Area & Weighted Runoff Coeff. 0.29 0.54 Subbasin {Site 1}.P07 ______ Area Soil Runoff Soil/Surface Description (acres) Group Coeff. 0.35 0.57 0.28 0.90 0.07 0.35 Composite Area & Weighted Runoff Coeff. 0.68 0.71 Subbasin {Site 1}.P08 Runoff Area Soil (acres) Group Soil/Surface Description Coeff. 0.38 0.54 Composite Area & Weighted Runoff Coeff. 0.38 0.54 Subbasin {Site 1}.P09 Soil Runoff Area Soil/Surface Description (acres) Coeff. Group 1.13 0.30 Composite Area & Weighted Runoff Coeff. 1.13 0.30

Subbasin {Site 1}.P10 Area Soil Runoff Soil/Surface Description (acres) Coeff. Group 0.47 0.30 Composite Area & Weighted Runoff Coeff. 0.47 0.30 Subbasin {Site 1}.P11 ______ Area Soil Runoff Soil/Surface Description (acres) Group Coeff. 0.73 0.57 0.09 0.90 0.09 0.35 Composite Area & Weighted Runoff Coeff. 0.91 0.58 Subbasin {Site 1}.P12 Runoff Area Soil (acres) Group Soil/Surface Description Coeff. 0.04 0.90 0.04 0.35 Composite Area & Weighted Runoff Coeff. 0.08 0.63 Subbasin {Site 1}.P13 Soil Runoff Area Soil/Surface Description (acres) Coeff. Group

Composite Area & Weighted Runoff Coeff.

0.43

0.43

0.35

0.35

Cubbasia (Cita 1) D11

	_		
Soil/Surface Description	•	Soil Group	
	0.16	-	0.90
-	0.11	-	0.35
Composite Area & Weighted Runoff Coeff.	0.27		0.68
	Area	Soil	Runoff
Soil/Surface Description	(acres)	Group	
-	0.14	-	0.90
-	0.14	-	0.35
-	0.67	-	0.57
Composite Area & Weighted Runoff Coeff.	0.95		0.59
 Subbasin {Site 1}.P16 			
	Area	Soil	Runoff
Soil/Surface Description		Group	Coeff.
-	0.03	-	0.55
-	0.03	-	0.90
Composite Area & Weighted Runoff Coeff.	0.05		0.63
Subbasin {Site 1}.P17			
	Area	Soil	Runoff
Soil/Surface Description	(acres)		

-	0.25	-	0.57
-	0.08 0.06	-	0.35 0.90
Composite Area & Weighted Runoff Coeff.	0.38	-	0.58
C. bharin (City 1) D10			
Subbasin {Site 1}.P18			
	Area	Soil	Runoff
Soil/Surface Description	(acres)	Group	Coeff.
-	0.40	-	0.35
-	0.07	-	0.90
Composite Area & Weighted Runoff Coeff.	0.47		0.43
Subbasin {Site 1}.P19			
	Area	Soil	Runoff
Soil/Surface Description		Group	
-	0.62	-	0.57
-	0.21	-	0.35
- Composite Area & Weighted Runoff Coeff.	0.21 1.04	-	0.90 0.59
	1.04		0.39
Subbasin {Site 1}.P20			
	Area	Soil	Runoff
Soil/Surface Description	(acres)	Group	Coeff.
-	0.27	-	0.57
	0.03	-	0.35
Composite Area & Weighted Runoff Coeff.	0.30		0.55
Subbasin {Site 1}.P21			

|--|

Soil/Surface Description	Area (acres)	Soil Group	Runoff Coeff.
- - - Composite Area & Weighted Runoff Coeff.	0.23 0.03 0.25	- - -	0.57 0.35 0.55
Subbasin {Site 1}.P22			
Soil/Surface Description	Area (acres)	Soil Group	Runoff Coeff.
- Composite Area & Weighted Runoff Coeff.	0.28 0.28	-	0.35 0.35
Subbasin {Site 1}.P23			
Soil/Surface Description	Area (acres)	Soil Group	Runoff Coeff.
- - - Composite Area & Weighted Runoff Coeff.	0.08 0.05 0.13	-	0.90 0.35 0.68
Subbasin {Site 1}.P24			
Soil/Surface Description	Area (acres)	Soil Group	Runoff Coeff.
- - - - Composite Area & Weighted Runoff Coeff.	0.07 0.12 0.28 0.46	- - -	0.90 0.35 0.57 0.56

Subbasin {Site 1}.P25			
Soil/Surface Description	Area (acres)	Soil Group	Runoff Coeff.
-	0.12	-	0.35
-	0.84	-	0.57
- Composite Area & Weighted Runoff Coeff.	0.24 1.20	-	0.90 0.61
Subbasin {Site 1}.P26			
	Area	Soil	Runoff
Soil/Surface Description		Group	
-	0.18	-	0.35
Composite Area & Weighted Runoff Coeff.	0.18		0.35
Subbasin {Site 1}.P27			
	Area	Soil	
Soil/Surface Description	(acres)	Group	Coeff.
-	0.39	-	0.35
Composite Area & Weighted Runoff Coeff.	0.39		0.35
Subbasin {Site 1}.P28			
	Area	Soil	Runoff
Soil/Surface Description	(acres)	Group	Coeff.
-	0.24	-	0.57
- Composite Area & Weighted Runoff Coeff.	0.04 0.28	-	0.35 0.54
composite Area & weighted Runori Coeff.	0.20		0.54

Subbasin E6

Subbasin E6			
Soil/Surface Description	Area (acres)	Soil Group	
- Composite Area & Weighted Runoff Coeff.	10.30 10.30	-	0.37 0.37
Subbasin P29			
Soil/Surface Description	(acres)	Soil Group	
	2.76 2.76	-	0.35 0.35
Subbasin P30			
Soil/Surface Description		Soil Group	
- Composite Area & Weighted Runoff Coeff.	5.75 5.75	-	0.35 0.35
Subbasin P31			
Soil/Surface Description		Soil Group	
- Composite Area & Weighted Runoff Coeff.	0.06 0.06	-	0.35 0.35

Subbasin P3	32
-------------	----

Soil/Sunface Decemention	Area		
Soil/Surface Description	(acres)	Group	соетт.
-	0.13	-	0.35
Composite Area & Weighted Runoff Coeff.	0.13		0.35
Subbasin P33			
6 :1/6 . 6 . 5	Area	Soil	
Soil/Surface Description	(acres)	Group	Coeff.
-	0.18	-	0.30
-	0.18	-	0.35
Composite Area & Weighted Runoff Coeff.	0.36		0.33
Subbasin P34			
	A	C-:1	D CC
Soil/Surface Description		Soil Group	
-	0.22	-	0.57
- Composite Anna & Waighted Bunoff Coeff	0.02 0.24	-	0.35 0.55
Composite Area & Weighted Runoff Coeff.	0.24		0.55
Subbasin P35			
	Area	Soil	Runoff
Soil/Surface Description		Group	
_	0.13 0.02	-	0.90 0.30
- Composite Area & Weighted Runoff Coeff.	0.15	-	0.81
1			

Subbasin P36 Soil Runoff Area Soil/Surface Description (acres) Group Coeff. 0.26 0.90 0.04 0.30 Composite Area & Weighted Runoff Coeff. 0.30 0.81 Subbasin P37 Area Soil Runoff Soil/Surface Description (acres) Group Coeff. 0.26 0.90 0.04 0.30 Composite Area & Weighted Runoff Coeff. 0.81 0.30 Subbasin P38 Runoff Soil Area Soil/Surface Description Coeff. (acres) Group 0.16 0.90 0.03 0.30 Composite Area & Weighted Runoff Coeff. 0.19 0.81 ******** Subbasin Runoff Summary *********

Subbasin	Accumulated	Rainfall	Total	Peak	Weighted	Time	of
ID	Precip	Intensity	Runoff	Runoff	Runoff	Concentrat	ion
	in	in/hr	in	cfs	Coeff	days hh:mm	:ss

{Site 1}.P01	0.96	6.14	0.32	1.44	0.330	0	00:09:24
{Site 1}.P02	0.77	9.22	0.65	0.55	0.850	0	00:05:00
{Site 1}.P03	0.98	6.06	0.56	1.07	0.570	0	00:09:36
{Site 1}.P04	0.96	6.18	0.55	1.09	0.570	0	00:09:18
{Site 1}.P05	0.84	7.94	0.29	1.89	0.350	0	00:06:18
{Site 1}.P06	0.98	6.06	0.53	0.95	0.540	0	00:09:36
{Site 1}.P07	0.98	6.06	0.66	2.92	0.680	0	00:09:36
{Site 1}.P08	1.06	5.13	0.57	1.05	0.540	0	00:12:24
{Site 1}.P09	0.77	9.22	0.23	3.13	0.300	0	00:05:00
{Site 1}.P10	0.81	8.29	0.24	1.17	0.300	0	00:05:54
{Site 1}.P11	1.00	5.72	0.58	3.02	0.580	0	00:10:30
{Site 1}.P12	0.77	9.22	0.48	0.46	0.630	0	00:05:00
{Site 1}.P13	0.77	9.22	0.27	1.39	0.350	0	00:05:00
{Site 1}.P14	0.77	9.22	0.52	1.69	0.680	0	00:05:00
{Site 1}.P15	0.96	6.14	0.56	3.44	0.590	0	00:09:24
{Site 1}.P16	0.77	9.22	0.48	0.29	0.630	0	00:05:00
{Site 1}.P17	0.96	6.18	0.56	1.36	0.580	0	00:09:18
{Site 1}.P18	0.82	8.20	0.35	1.66	0.430	0	00:06:00
{Site 1}.P19	0.98	5.98	0.58	3.67	0.590	0	00:09:48
{Site 1}.P20	0.95	6.22	0.52	1.03	0.550	0	00:09:12
{Site 1}.P21	0.94	6.36	0.51	0.87	0.550	0	00:08:54
{Site 1}.P22	0.78	8.77	0.27	0.86	0.350	0	00:05:24
{Site 1}.P23	0.77	9.22	0.52	0.82	0.680	0	00:05:00
{Site 1}.P24	0.97	6.02	0.54	1.55	0.560	0	00:09:42
{Site 1}.P25	0.96	6.14	0.58	4.49	0.610	0	00:09:24
{Site 1}.P26	0.77	9.22	0.27	0.58	0.350	0	00:05:00
{Site 1}.P27	1.11	4.70	0.39	0.64	0.350	0	00:14:12
{Site 1}.P28	0.98	6.06	0.53	0.92	0.540	0	00:09:36
E6	0.97	6.02	0.36	22.93	0.370	0	00:09:42
P29	0.94	6.50	0.33	6.28	0.350	0	00:08:36
P30	0.92	6.76	0.32	13.60	0.350	0	00:08:06
P31	0.77	9.22	0.27	0.19	0.350	0	00:05:00
P32	0.77	9.22	0.27	0.42	0.350	0	00:05:00
P33	0.77	9.22	0.25	1.10	0.330	0	00:05:00
P34	0.94	6.36	0.51	0.84	0.550	0	00:08:54
P35	0.77	9.22	0.62	1.12	0.810	0	00:05:00
P36	0.77	9.22	0.62	2.24	0.810	0	00:05:00

	••••					_	
P38	0.77	9.22	0.62	1.42	0.810	9	00:05:00
P37	0.90	6.92	0.73	1.68	0.810	0	00:07:48

Node	Average	Maximum	Maximum	Time	of Max	Total	Total	Retention
ID	Depth	Depth	HGL	0ccı	ırrence	Flooded	Time	Time
	Attained	Attained	Attained			Volume	Flooded	
	ft	ft	ft	days	hh:mm	acre-in	minutes	hh:mm:ss
J01	0.01	0.20	835.20	0	00:05	0	0	0:00:00
J02	0.02	0.25	833.25	0	00:09	0	0	0:00:00
J03	0.02	0.35	833.85	0	00:09	0	0	0:00:00
J04	0.02	0.34	833.84	0	00:09	0	0	0:00:00
Ј06	0.04	0.50	815.50	0	00:09	0	0	0:00:00
J07	0.02	0.34	814.34	0	00:09	0	0	0:00:00
J08	0.03	0.47	806.47	0	00:10	0	0	0:00:00
J 0 9	0.02	0.29	807.29	0	00:12	0	0	0:00:00
J10	0.01	0.18	812.18	0	00:09	0	0	0:00:00
J 11	0.04	0.59	780.84	0	00:10	0	0	0:00:00
J 14	0.03	0.43	812.43	0	00:10	0	0	0:00:00
J 1 5	0.01	0.15	812.15	0	00:05	0	0	0:00:00
J 1 6	0.03	0.40	811.40	0	00:10	0	0	0:00:00
J 1 7	0.03	0.41	808.41	0	00:10	0	0	0:00:00
J18	0.03	0.36	801.36	0	00:09	0	0	0:00:00
J 1 9	0.01	0.31	806.31	0	00:05	0	0	0:00:00
J20	0.01	0.32	802.32	0	00:05	0	0	0:00:00
J21	0.03	0.54	802.54	0	00:09	0	0	0:00:00
J22	0.05	0.82	793.82	0	00:09	0	0	0:00:00
J23	0.06	0.91	793.41	0	00:09	0	0	0:00:00
J24	0.07	0.98	789.23	0	00:09	0	0	0:00:00
J26	0.02	0.25	794.25	0	00:09	0	0	0:00:00
J27	0.04	0.62	821.62	0	00:10	0	0	0:00:00

J28	0.04	0.58	820.58	0	00:10	0	0	0:00:00
J29	0.03	0.39	818.39	0	00:10	0	0	0:00:00
J30	0.02	0.37	818.87	0	00:09	0	0	0:00:00
J31	0.01	0.23	819.23	0	00:09	0	0	0:00:00
J32	0.01	0.32	792.82	0	00:05	0	0	0:00:00
J33	0.01	0.27	792.27	0	00:05	0	0	0:00:00
J34	0.03	0.45	790.45	0	00:09	0	0	0:00:00
J35	0.04	0.67	791.67	0	00:10	0	0	0:00:00
J36	0.02	0.31	791.31	0	00:09	0	0	0:00:00
J37	0.08	1.31	762.31	0	00:10	0	0	0:00:00
J38	0.03	0.34	767.34	0	00:05	0	0	0:00:00
J39	0.01	0.12	784.12	0	00:14	0	0	0:00:00
J40	0.05	0.70	763.20	0	00:09	0	0	0:00:00
J 41	0.05	0.83	763.83	0	00:09	0	0	0:00:00
J43	0.05	0.67	759.67	0	00:10	0	0	0:00:00
J44	0.04	0.58	744.58	0	00:10	0	0	0:00:00
J45	0.06	0.87	724.87	0	00:10	0	0	0:00:00
J46	0.05	0.78	712.28	0	00:10	0	0	0:00:00
J48	0.05	0.81	777.81	0	00:06	0	0	0:00:00
J49	0.02	0.38	814.38	0	00:06	0	0	0:00:00
J50	0.01	0.27	808.27	0	00:06	0	0	0:00:00
J51	0.00	0.07	830.07	0	00:05	0	0	0:00:00
J52	0.01	0.16	814.16	0	00:05	0	0	0:00:00
J53	0.01	0.21	790.21	0	00:05	0	0	0:00:00
J54	0.04	0.69	785.09	0	00:06	0	0	0:00:00
J55	0.00	0.00	0.00	0	00:00	0	0	0:00:00
J56	0.03	0.35	800.35	0	00:11	0	0	0:00:00
J57	0.04	0.51	786.01	0	00:11	0	0	0:00:00
J59	0.01	0.31	805.31	0	00:05	0	0	0:00:00
J60	0.01	0.27	802.27	0	00:05	0	0	0:00:00
J61	0.01	0.19	789.89	0	00:05	0	0	0:00:00
J62	0.02	0.25	768.25	0	00:05	0	0	0:00:00
J63	0.02	0.19	766.19	0	00:05	0	0	0:00:00
J64	0.01	0.16	744.16	0	00:05	0	0	0:00:00
J65	0.02	0.26	724.26	0	00:06	0	0	0:00:00
J66	0.01	0.21	765.21	0	00:09	0	0	0:00:00
J67	0.01	0.21	760.21	0	00:09	0	0	0:00:00
J68	0.02	0.64	777.39	0	00:05	0	0	0:00:00

J69	0.04	0.72	785.22	0	00:08	0	0	0:00:00
J70	0.10	1.52	776.42	0	00:06	0	0	0:00:00
J 71	0.05	0.66	792.06	0	00:11	0	0	0:00:00
J73	0.02	0.23	686.23	0	00:06	0	0	0:00:00
J76	0.05	0.70	785.20	0	00:09	0	0	0:00:00
POC01	0.00	0.00	684.00	0	00:00	0	0	0:00:00
P0C02	0.08	1.19	775.69	0	00:06	0	0	0:00:00
P0C03	0.04	0.46	784.46	0	00:11	0	0	0:00:00
P0C04	0.04	0.63	784.33	0	00:06	0	0	0:00:00
P0C05	0.01	0.18	685.18	0	00:06	0	0	0:00:00

Node Flow Summary ********

Node	Element	Maximum	Peak	Т	ime of	Maximum	Time o	f Peak
ID	Type	Lateral	Inflow	Peak	Inflow	Flooding	Fl	ooding
		Inflow		0ccu	rrence	Overflow	0ccu	rrence
		cfs	cfs	•		cfs	days	hh:mm
J01	JUNCTION	0.55	0.55	0	00:05	0.00		
J02	JUNCTION	0.00	2.22	0	00:09	0.00		
J03	JUNCTION	1.09	1.09	0	00:09	0.00		
Ј04	JUNCTION	1.07	1.07	0	00:09	0.00		
Ј06	JUNCTION	0.00	2.21	0	00:09	0.00		
Ј07	JUNCTION	2.92	5.13	0	00:09	0.00		
Ј08	JUNCTION	0.00	6.89	0	00:09	0.00		
J 0 9	JUNCTION	1.05	1.05	0	00:12	0.00		
J 1 0	JUNCTION	0.95	0.95	0	00:09	0.00		
J 11	JUNCTION	0.00	6.86	0	00:10	0.00		
J14	JUNCTION	3.02	3.02	0	00:10	0.00		
J 1 5	JUNCTION	0.46	0.46	0	00:05	0.00		
J 1 6	JUNCTION	0.00	3.02	0	00:10	0.00		
J17	JUNCTION	0.00	3.02	0	00:10	0.00		
J18	JUNCTION	0.00	3.67	0	00:09	0.00		
J19	JUNCTION	1.39	1.39	0	00:05	0.00		

Ј20	JUNCTION	1.69	1.69	0	00:05	0.00
J21	JUNCTION	3.44	3.44	0	00:09	0.00
J22	JUNCTION	0.00	5.03	0	00:09	0.00
Ј23	JUNCTION	0.29	5.04	0	00:09	0.00
Ј24	JUNCTION	0.00	5.04	0	00:09	0.00
Ј26	JUNCTION	1.36	1.36	0	00:09	0.00
Ј27	JUNCTION	3.67	3.67	0	00:10	0.00
Ј28	JUNCTION	0.00	3.66	0	00:10	0.00
Ј29	JUNCTION	0.00	5.34	0	00:10	0.00
J30	JUNCTION	1.03	1.03	0	00:09	0.00
J31	JUNCTION	0.87	0.87	0	00:09	0.00
J32	JUNCTION	0.86	0.86	0	00:05	0.00
J33	JUNCTION	0.00	0.85	0	00:05	0.00
J34	JUNCTION	0.00	6.87	0	00:09	0.00
J35	JUNCTION	0.82	5.33	0	00:10	0.00
J36	JUNCTION	1.55	1.55	0	00:09	0.00
J37	JUNCTION	0.00	11.25	0	00:09	0.00
J38	JUNCTION	0.00	0.80	0	00:05	0.00
J39	JUNCTION	0.64	0.64	0	00:14	0.00
J40	JUNCTION	0.00	4.48	0	00:09	0.00
J 41	JUNCTION	4.49	4.49	0	00:09	0.00
J43	JUNCTION	0.00	12.67	0	00:10	0.00
J44	JUNCTION	0.00	12.67	0	00:10	0.00
J45	JUNCTION	0.00	12.67	0	00:10	0.00
Ј46	JUNCTION	0.00	12.66	0	00:10	0.00
Ј48	JUNCTION	3.90	9.89	0	00:06	0.00
J49	JUNCTION	1.89	1.89	0	00:06	0.00
J50	JUNCTION	0.00	1.88	0	00:06	0.00
J51	JUNCTION	0.19	0.19	0	00:05	0.00
J52	JUNCTION	0.42	0.61	0	00:05	0.00
J53	JUNCTION	0.00	0.59	0	00:05	0.00
J54	JUNCTION	1.17	2.96	0	00:06	0.00
J55	JUNCTION	0.00	0.00	0	00:00	0.00
J56	JUNCTION	0.00	3.00	0	00:10	0.00
J57	JUNCTION	0.00	2.95	0	00:11	0.00
J59	JUNCTION	0.00	1.38	0	00:05	0.00
J60	JUNCTION	0.00	1.38	0	00:05	0.00
J61	JUNCTION	0.00	0.85	0	00:05	0.00

J62	JUNCTION	0.58	0.81	0	00:05	0.00
J63	JUNCTION	0.00	0.79	0	00:05	0.00
J64	JUNCTION	0.00	0.79	0	00:05	0.00
J65	JUNCTION	0.00	0.78	0	00:05	0.00
J66	JUNCTION	0.92	0.92	0	00:09	0.00
J67	JUNCTION	0.84	0.84	0	00:09	0.00
J68	JUNCTION	2.24	2.24	0	00:05	0.00
J69	JUNCTION	1.68	1.68	0	00:08	0.00
J70	JUNCTION	1.12	12.48	0	00:06	0.00
J71	JUNCTION	0.00	2.98	0	00:11	0.00
J73	JUNCTION	0.00	1.59	0	00:06	0.00
J76	JUNCTION	0.00	7.95	0	00:09	0.00
P0C01	OUTFALL	34.03	46.22	0	00:09	0.00
P0C02	OUTFALL	0.00	12.47	0	00:06	0.00
POC03	OUTFALL	3.89	11.36	0	00:06	0.00
P0C04	OUTFALL	0.00	2.95	0	00:06	0.00
P0C05	OUTFALL	6.28	7.32	0	00:08	0.00

Outfall Loading Summary ************************************										
Outfall Node ID		Average								
	Frequency	Flow	_							
	(%)	cfs	cfs							
POC01	15.78	15.26	46.22							
POC02	14.45	4.70	12.47							
P0C03	14.19	4.30	11.36							
P0C04	11.58	1.05	2.95							
P0C05	15.26	2.39	7.32							
System	14.25	27.70	74.59							

Link ID		Element	Т	ime of	Maximum	Length	Peak Flow	Design	Ratio of	Ratio of
Total	Reported	_	_							
T: ma	Condition	Type	Pea	k Flow	Velocity	Factor	during	Flow	Maximum	Maximum
Time	Condition		000	rrence	Attained		Analysis	Capacity	/Design	Flow
Surcharged			0004	сс	7100021100		7	cupacity	, 505-6	. 1011
			days	hh:mm	ft/sec		cfs	cfs	Flow	Depth
minutes										
Link-01		CONDUIT	0	00:05	3.67	1.00	0.54	14.86	0.04	0.14
0	Calculated				2107	_,,,				
Link-02		CONDUIT	0	00:09	5.59	1.00	1.09	7.67	0.14	0.30
0	Calculated	CONDUIT	0	00.00		1 00	4 07	7.67	0.11	0.20
Link-03 0	Calculated	CONDUIT	0	00:09	5.55	1.00	1.07	7.67	0.14	0.29
Link-04	Calculaceu	CONDUIT	0	00:09	6.83	1.00	2.21	37.57	0.06	0.25
0	Calculated		_							
Link-06		CONDUIT	0	00:09	5.40	1.00	2.21	11.53	0.19	0.28
0	Calculated	CONDUITT	0	00.00	12 17	1 00	г 12	F2 02	0.10	0.27
Link-07 0	Calculated	CONDUIT	0	00:09	13.17	1.00	5.12	53.93	0.10	0.27
Link-08	carcaracca	CONDUIT	0	00:12	5.02	1.00	1.05	6.92	0.15	0.36
0	Calculated									
Link-09		CONDUIT	0	00:09	4.29	1.00	0.95	13.97	0.07	0.32
0 Link-10	Calculated	CONDUIT	0	00.10	14.86	1 00	6.86	25 20	0.10	0.31
0 LINK-10	Calculated	CONDUTT	О	00:10	14.00	1.00	0.80	35.20	0.19	0.31
Link-11	Carcaracca	CONDUIT	0	00:10	9.51	1.00	6.86	27.74	0.25	0.45
0	Calculated									
Link-13		CONDUIT	0	00:10	7.61	1.00	3.01	39.92	0.08	0.28

0	Calculated									
Link-14		CONDUIT	0	00:05	2.77	1.00	0.46	23.66	0.02	0.15
0 Link-15	Calculated	CONDUIT	0	00:10	7.96	1.00	3.02	24.12	0.13	0.27
0 LINK-15	Calculated	CONDOLI	О	00:10	7.90	1.00	3.02	24.12	0.13	0.27
Link-16	carcaracca	CONDUIT	0	00:10	8.54	1.00	3.00	20.96	0.14	0.25
0	Calculated									
Link-17		CONDUIT	0	00:05	7.43	1.00	1.38	8.20	0.17	0.29
0 مامند 10	Calculated	CONDUIT	0	00.05	F 73	1 00	1 60	24 22	0.07	0 22
Link-18 0	Calculated	CONDUIT	0	00:05	5.73	1.00	1.69	24.33	0.07	0.22
Link-19	Caiculaceu	CONDUIT	0	00:09	7.76	1.00	3.43	22.02	0.16	0.30
0	Calculated									
Link-20		CONDUIT	0	00:09	6.34	1.00	3.67	29.81	0.12	0.39
0	Calculated		_		2.40	4 00				
Link-21 0	Calculated	CONDUIT	0	00:09	3.12	1.00	1.36	22.08	0.06	0.36
Link-22	Calculaceu	CONDUIT	0	00:09	4.90	1.00	5.01	37.17	0.13	0.58
0	Calculated			00.02	.,,,	_,,,	J. 10 =	J. V.	0.1_0	
Link-23		CONDUIT	0	00:09	5.01	1.00	5.04	9.99	0.50	0.55
0	Calculated		_							
Link-26	Calaulatad	CONDUIT	0	00:10	5.54	1.00	3.66	13.53	0.27	0.40
0 Link-27	Calculated	CONDUIT	0	00:10	7.43	1.00	3.64	15.22	0.24	0.32
0	Calculated	CONDOIT	Ü	00.10	7.43	1.00	3.04	13.22	0.24	0.32
Link-28		CONDUIT	0	00:09	3.80	1.00	1.02	4.81	0.21	0.38
0	Calculated									
Link-29	Calaulatad	CONDUIT	0	00:09	4.63	1.00	0.87	10.92	0.08	0.30
0 Link-30	Calculated	CONDUIT	0	00:10	9.64	1.00	5.33	36.80	0.14	0.35
0	Calculated	CONDOIT	U	00.10	J.0 4	1.00	J. JJ	30.00	0.14	0.55
Link-31		CONDUIT	0	00:10	8.90	1.00	5.32	34.41	0.15	0.37
0	Calculated									
Link-32		CONDUIT	0	00:05	4.36	1.00	0.85	5.31	0.16	0.30
0 Link-33	Calculated	CONDUIT	0	00:05	6.19	1.00	0.85	6.49	0.13	0.23
0 LIIK-33	Calculated	COMPOTI	ð	00.05	0.19	1.00	0.05	0.49	0.13	0.23
Link-34	 	CONDUIT	0	00:09	4.41	1.00	1.55	22.08	0.07	0.25

0	Calculated									
Link-35		CONDUIT	0	00:09	7.24	1.00	6.86	35.08	0.20	0.59
0 Link-37	Calculated	CONDUIT	0	00:09	4.99	1.00	4.48	10.88	0.41	0.51
0	Calculated	CONDOIT	U	00.03	4.99	1.00	4.40	10.00	0.41	0.51
Link-38		CONDUIT	0	00:09	3.60	1.00	4.43	10.05	0.44	0.67
0	Calculated									
Link-39 0	Calculated	CONDUIT	0	00:14	7.39	1.00	0.64	22.29	0.03	0.17
ە Link-41	Calculated	CONDUIT	0	00:10	8.99	1.00	11.07	13.88	0.80	0.66
0	Calculated	CONDOIT	J	00.10	0.55	1.00	11.07	13.00	0.00	0.00
Link-42		CONDUIT	0	00:10	18.20	1.00	12.67	38.75	0.33	0.42
0	Calculated									
Link-43	Calaulatad	CONDUIT	0	00:10	15.07	1.00	12.67	40.75	0.31	0.48
0 Link-44	Calculated	CONDUIT	0	00:10	13.30	1.00	12.66	26.98	0.47	0.53
0	Calculated	CONDOIT	U	00.10	13.30	1.00	12.00	20.50	0.47	0.55
Link-48		CONDUIT	0	00:09	4.67	1.00	5.03	9.49	0.53	0.59
0	Calculated									
Link-49	C-11-+	CONDUIT	0	00:10	14.96	1.00	12.66	30.98	0.41	0.48
0 Link-50	Calculated	CONDUIT	0	00:06	7.58	1.00	9.90	48.83	0.20	0.77
0	Calculated	CONDOIT	U	00.00	7.50	1.00	3.30	40.05	0.20	0.77
Link-51		CONDUIT	0	00:06	8.63	1.00	1.88	7.55	0.25	0.32
0	Calculated									
Link-52	6-11-4-4	CONDUIT	0	00:06	11.16	1.00	1.85	12.50	0.15	0.26
0 Link-54	Calculated	CONDUIT	0	00:05	3.96	1.00	0.19	22.33	0.01	0.11
0	Calculated	CONDOIT	U	00.05	3.30	1.00	0.13	22.33	0.01	0.11
Link-55		CONDUIT	0	00:05	6.15	1.00	0.59	10.72	0.06	0.18
0	Calculated									
Link-56	C-11-+	CONDUIT	0	00:05	1.76	1.00	0.56	6.01	0.09	0.45
0 Link-57	Calculated	CONDUIT	0	00:06	3.96	1.00	2.95	8.09	0.36	0.44
0 0	Calculated	COMPOTI	J	30.00	3.50	1.00	2.75	0.05	0.50	0.77
Link-58		CONDUIT	0	00:11	5.69	1.00	2.98	24.45	0.12	0.34
0	Calculated									
Link-61		CONDUIT	0	00:05	6.77	1.00	1.38	12.40	0.11	0.31

0	Calculated									
Link-62		CONDUIT	0	00:11	4.69	1.00	2.95	16.17	0.18	0.40
0	Calculated		_		- 04	4 00	4 22			
Link-63 0	Calculated	CONDUIT	0	00:05	7.91	1.00	1.33	8.73	0.15	0.27
ا Link-64	Calculated	CONDUIT	0	00:05	8.10	1.00	0.83	10.94	0.08	0.19
0	Calculated	CONDOIT	Ū	00.05	0.10	1.00	0.03	10.54	0.00	0.15
Link-65		CONDUIT	0	00:05	4.16	1.00	0.80	6.99	0.11	0.29
0	Calculated									
Link-66		CONDUIT	0	00:05	4.82	1.00	0.79	4.12	0.19	0.26
	Calculated	CONDUCT	_	00.05	0.63	1 00	0.70	11 14	0.07	0 17
Link-67	Calculated	CONDUIT	0	00:05	8.63	1.00	0.79	11.14	0.07	0.17
Link-68	Caiculaceu	CONDUIT	0	00:05	7.08	1.00	0.78	13.82	0.06	0.21
	Calculated					_,,,				
Link-69		CONDUIT	0	00:06	4.85	1.00	0.77	5.68	0.14	0.26
	Calculated									
Link-70	6-11-4-4	CONDUIT	0	00:09	8.15	1.00	0.91	11.67	0.08	0.20
0 Link-71	Calculated	CONDUIT	0	00:09	3.68	1.00	0.84	8.56	0.10	0.43
	Calculated	CONDOLI	U	00.03	3.00	1.00	0.84	8.30	0.10	0.45
Link-72	0	CONDUIT	0	00:05	3.02	1.00	2.08	2.98	0.70	0.82
0	Calculated									
Link-73		CONDUIT	0	00:08	2.91	1.00	1.68	6.90	0.24	0.70
	Calculated	COMPLITE	•	22.25	F F2	1 00	40.47	40.04	0.66	0.60
Link-74	Calculated	CONDUIT	0	00:06	5.52	1.00	12.47	18.91	0.66	0.68
Link-75	Calculated	CONDUIT	a	00:11	4.34	1.00	2.95	9.78	0.30	0.41
0	Calculated	COMPOIN	Ŭ	00.11	1.51	1.00	2.33	3.70	0.30	0.11
Link-77		CONDUIT	0	00:06	6.43	1.00	1.59	393.67	0.00	0.05
	Calculated									
Link-79		CONDUIT	0	00:09	6.99	1.00	7.95	278.37	0.03	0.15
0	Calculated									

All links are stable.

Analysis began on: Mon Apr 13 11:08:21 2020 Analysis ended on: Mon Apr 13 11:08:23 2020

Total elapsed time: 00:00:02

Project Information		<u> </u>			
Project Summit Estates		County	an Diego	Date 4/10/2020	Project No. 1599.10
Location		Condtion		Ву	Checked
P1		Pi	roposed	LZ	GP
Initial Time (T _i)		EAA /Fissure	2.2)		
Flour Longth D	<u>.</u> .	FAA (Figure	3-3)		
Flow Length, D Change in Elevation, ΔE	ft	7			
· ·	ft	0.070			
Land Slope, S Runoff Coefficient, C	ft/ft	0.070			
· ·		7.2		Ti (min)	7.0
Travel Time, Ti	min			11 (111111)	= 7.2
A for Ti, to calculate Tt	Ac	0.710			
I calculated from Ti Q for Ti, to calculate Tt	in/hr CFS	7.3 1.70			
Travel Time	UFO	1.70			
Natural Watersheds		KIRPICH (Figur	re 3-4)		
Flow Length, D	ft	370			
Change in Elevation, ΔE	ft	36			
Travel Time, Ti	hr	0.030		Tt (min)	= 1.8
Brow Ditch	M	ANNING'S (Figur	e 3-7)		
Flow Length, D	ft	200			
Change in Elevation, ΔE	ft	21			
Land Slope, S	ft/ft	0.105			
Manning's n		0.013			
Q from Ti	CFS	1.70			
R	ft	0.141			
Velocity	ft/sec	10.045			
Travel Time, Ti	min	0.3		Tt (min)	= 0.3
Gutter Flow	GU ⁻	TER FLOW (Fig	ure 3-6)		
Flow Length, D	ft				
Change in Elevation, ∆E	ft				
Street Grade	%				
Q from Ti	CFS				
Velocity	ft/sec				
Travel Time, Ti	min			Tt (min)	=
	•	Co	mbined Travel T	ime, T _t (min)	= 2.150
		Co	mbilled Havel I	inie, i t	= 2.150
		-	Time of Concet	ration, T _c (min)	= 9.4

Project Information				
Project		County	Date 4/40/2020	Project No.
Summit Estates Location		San Diego Condtion	4/10/2020 By	1599.10 Checked
P2		Proposed	LZ	GP
Initial Time (T _i)				
E		FAA (Figure 3-3)		
Flow Length, D	ft	20		
Change in Elevation, ΔE	ft	0.4		
Land Slope, S	ft/ft	0.020		
Runoff Coefficient, C		0.85	- :	
Travel Time, Ti	min	1.6	Ti (min)	= 1.6
A for Ti, to calculate Tt	Ac			
I calculated from Ti	in/hr			
Q for Ti, to calculate Tt	CFS			
Travel Time	1/1	RPICH (Figure 3-4)		
<u>Natural Watersheds</u> Flow Length, D	ft	KPICH (Figure 3-4)		
Change in Elevation, ∆E	ft			
Travel Time, Ti	hr		Tt (min)	_
		UNCIC (Figure 2.7)	11 (111111)	=
Brow Ditch		IING'S (Figure 3-7)		
Flow Length, D	ft			
Change in Elevation, ∆E	ft			
Land Slope, S	ft/ft			
Manning's n				
Q from Ti	CFS			
R	ft			
Velocity	ft/sec			-
Travel Time, Ti	min		Tt (min)	=
Gutter Flow	GUTTE	R FLOW (Figure 3-6)		
Flow Length, D	ft			
Change in Elevation, ∆E	ft			
Street Grade	%			
Q from Ti	CFS			
Velocity	ft/sec			
Travel Time, Ti	min		Tt (min)	=
		Combined Tra	avel Time, T _t (min)	=
		Time of Co	ncetration, T _c (min)	= 1.6 *
			*Ilea minimum	Tc of 5 minutes
			use minimum	า บาง กกกนtes

Project Information				
Project Summit Estates		County San Diego	Date 4/10/2020	Project No. 1599.10
Location P3		Condtion	By LZ	Checked GP
Initial Time (T _i)		FToposed	LZ	Gr
		FAA (Figure 3-3)		
Flow Length, D	ft	70		
Change in Elevation, ∆E	ft	0.7		
Land Slope, S	ft/ft	0.010		
Runoff Coefficient, C		0.57		
Travel Time, Ti	min	8.0	Ti (min)	= 8.0
A for Ti, to calculate Tt	Ac			
I calculated from Ti	in/hr			
Q for Ti, to calculate Tt	CFS			
Travel Time				
Natural Watersheds		RPICH (Figure 3-4)		
Flow Length, D	ft	100		
Change in Elevation, ∆E	ft	1		
Travel Time, Ti	hr	0.027	Tt (min)	= 1.6
Brow Ditch	MANI	NING'S (Figure 3-7)		
Flow Length, D	ft			
Change in Elevation, ∆E	ft			
Land Slope, S	ft/ft			
Manning's n				
Q from Ti	CFS			
R	ft			
Velocity	ft/sec			
Travel Time, Ti	min		Tt (min)	=
Gutter Flow	GUTTE	R FLOW (Figure 3-6)		
Flow Length, D	ft			
Change in Elevation, ∆E	ft			
Street Grade	%			
Q from Ti	CFS			
Velocity	ft/sec			
Travel Time, Ti	min		Tt (min)	=
		0		
		Combined Tra	avel Time, T _t (min)	= 1.6
		Time of Co	oncetration, T _c (min)	= 9.6

Project Information				
Project Summit Estates		County San Diego	Date 4/10/2020	Project No. 1599.10
Location		Condtion	Ву	Checked
P4 Initial Time (T _i)		Proposed	LZ	GP
		FAA (Figure 3-3)		
Flow Length, D	ft	70		
Change in Elevation, ΔE	ft	0.7		
Land Slope, S	ft/ft	0.010		
Runoff Coefficient, C		0.57		
Travel Time, Ti	min	8.0	Ti (min)	= 8.0
A for Ti, to calculate Tt	Ac			
I calculated from Ti	in/hr			
Q for Ti, to calculate Tt	CFS			
Travel Time				
Natural Watersheds		RPICH (Figure 3-4)		
Flow Length, D	ft	80		
Change in Elevation, ∆E	ft	0.8		
Travel Time, Ti	hr	0.022	Tt (min)	= 1.3
Brow Ditch	MANI	NING'S (Figure 3-7)		
Flow Length, D	ft			
Change in Elevation, ∆E	ft			
Land Slope, S	ft/ft			
Manning's n				
Q from Ti	CFS			
R	ft			
Velocity	ft/sec			
Travel Time, Ti	min		Tt (min)	=
Gutter Flow	GUTTE	R FLOW (Figure 3-6)		
Flow Length, D	ft			
Change in Elevation, ∆E	ft			
Street Grade	%			
Q from Ti	CFS			
Velocity	ft/sec			
Travel Time, Ti	min		Tt (min)	=
		Cambinad T	rovol Timo T	4.0
		Combined In	ravel Time, T _t (min)	= 1.3
		Time of Co	oncetration, T _c (min)	= 9.3

Project Information				
Project Summit Estates		County San Dieg	Date 4/10/2020	Project No. 1599.10
Location		Condtion	Ву	Checked
P5 (T)		Proposed	d LZ	GP
Initial Time (T _i)		FAA (Figure 3-3)		
Flow Length, D	ft	100	1	
Change in Elevation, ∆E	ft	16		
Land Slope, S	ft/ft	0.160	_	
Runoff Coefficient, C	1010	0.35	_	
Travel Time, Ti	min	5.4	Ti (min)	= 5.4
A for Ti, to calculate Tt	Ac	0.680	-	- 0.4
I calculated from Ti	in/hr	8.8	-	
Q for Ti, to calculate Tt	CFS	2.10	1	
Travel Time				
Natural Watersheds	!	KIRPICH (Figure 3-4)	_	
Flow Length, D	ft	30		
Change in Elevation, ∆E	ft	4		
Travel Time, Ti	hr	0.004	Tt (min)	= 0.2
Brow Ditch	MAN	NNING'S (Figure 3-7)		
Flow Length, D	ft	150		
Change in Elevation, ∆E	ft	0.75		
Land Slope, S	ft/ft	0.005		
Manning's n		0.013		
Q from Ti	CFS	2.10		
R	ft	0.271		
Velocity	ft/sec	3.393		
Travel Time, Ti	min	0.7	Tt (min)	= 0.7
Gutter Flow	GUTT	ER FLOW (Figure 3-6	6)	
Flow Length, D	ft			
Change in Elevation, ΔE	ft			
Street Grade	%			
Q from Ti	CFS			
Velocity	ft/sec			
Travel Time, Ti	min		Tt (min)	=
		Combined	- d Travel Time, T _t (min	0.969
		Combined	d Travel Time, T _t (min	0.909
		Time o	f Concetration, T _c (mir	n) = 6.3
				., _ 0.0

Project Information				
Project Summit Estates		County San Diego	Date 4/10/2020	Project No. 1599.10
Location P6		Condtion Proposed	By LZ	Checked GP
Initial Time (T _i)		Fioposeu	LZ	GF
		FAA (Figure 3-3)		
Flow Length, D	ft	70		
Change in Elevation, ΔE	ft	0.7		
Land Slope, S	ft/ft	0.010		
Runoff Coefficient, C		0.54		
Travel Time, Ti	min	8.4	Ti (min)	= 8.4
A for Ti, to calculate Tt	Ac			
I calculated from Ti	in/hr			
Q for Ti, to calculate Tt	CFS			
Travel Time				
Natural Watersheds		RPICH (Figure 3-4)		
Flow Length, D	ft	70		
Change in Elevation, ∆E	ft	0.7		
Travel Time, Ti	hr	0.020	Tt (min)	= 1.2
Brow Ditch	MANI	NING'S (Figure 3-7)		
Flow Length, D	ft			
Change in Elevation, ∆E	ft			
Land Slope, S	ft/ft			
Manning's n				
Q from Ti	CFS			
R	ft			
Velocity	ft/sec			
Travel Time, Ti	min		Tt (min)	=
Gutter Flow	GUTTE	R FLOW (Figure 3-6)		
Flow Length, D	ft			
Change in Elevation, ∆E	ft			
Street Grade	%			
Q from Ti	CFS			
Velocity	ft/sec			
Travel Time, Ti	min		Tt (min)	=
		0	aval Time a Too () ()	
		Combined Tra	avel Time, T _t (min)	= 1.2
		Time of Co	oncetration, T _c (min)	= 9.6

Project Information				
Project Summit Estates		County San Dieg	o 4/10/2020	Project No. 1599.10
Location		Condtion	Ву	Checked
P7		Proposed	d LZ	GP
Initial Time (T _i)		EAA (E'		
Flour Long with D		FAA (Figure 3-3) 70	1	
Flow Length, D	ft	0.7	-	
Change in Elevation, ∆E	ft			
Land Slope, S	ft/ft	0.010		
Runoff Coefficient, C	. -	0.68	T: (i)	
Travel Time, Ti	min	6.3	Ti (min)	= 6.3
A for Ti, to calculate Tt	Ac	0.710		
I calculated from Ti	in/hr	7.9		
Q for Ti, to calculate Tt Travel Time	CFS	3.83		
Natural Watersheds	L	(IRPICH (Figure 3-4)		
Flow Length, D	ft T	130	1	
Change in Elevation, ΔE	ft	1.3	1	
Travel Time, Ti	hr	0.033	Tt (min)	= 2.0
Brow Ditch		INING'S (Figure 3-7)]	
		ining 3 (Figure 3-7)	1	
Flow Length, D	ft		-	
Change in Elevation, ΔE	ft			
Land Slope, S	ft/ft			
Manning's n				
Q from Ti	CFS			
R	ft			
Velocity	ft/sec		_ ,	
Travel Time, Ti	min		Tt (min)	=
<u>Gutter Flow</u>	GUTT	ER FLOW (Figure 3-6	<u>5)</u>	
Flow Length, D	ft	200		
Change in Elevation, ∆E	ft	2		
Street Grade	%	0.010		
Q from Ti	CFS	3.83		
Velocity	ft/sec	2.500		
Travel Time, Ti	min	1.3	Tt (min)	= 1.3
		Cambinas	Traval Tima T	3.2
		Combined	I Travel Time, T _t (mir	n) = 3.3
		Time of	f Concetration, T _c (mir	a) - 0.6
		i iiile Oi	MIT (MIT	n) = <u>9.6</u>
•				

Project Information				
Project Summit Estates		County San Diego	Date 4/10/2020	Project No. 1599.10
Location		Condtion	Ву	Checked
P8		Proposed	LZ	GP
Initial Time (T _i)		FAA (Figure 3-3)		
Flow Length, D	ft	70		
Change in Elevation, ∆E	ft —	0.7		
Land Slope, S	ft/ft	0.010		
Runoff Coefficient, C	1011	0.57		
Travel Time, Ti	min	8.0	Ti (min)	= 8.0
A for Ti, to calculate Tt	Ac		()	- 0.0
I calculated from Ti	in/hr			
Q for Ti, to calculate Tt	CFS			
Travel Time				
Natural Watersheds	KI	RPICH (Figure 3-4)		
Flow Length, D	ft	120		
Change in Elevation, ΔE	ft	0.12		
Travel Time, Ti	hr	0.074	Tt (min)	= 4.5
Brow Ditch	MANN	IING'S (Figure 3-7)		
Flow Length, D	ft			
Change in Elevation, ∆E	ft			
Land Slope, S	ft/ft			
Manning's n				
Q from Ti	CFS			
R	ft			
Velocity	ft/sec			
Travel Time, Ti	min		Tt (min)	=
Gutter Flow	GUTTE	R FLOW (Figure 3-6)		
Flow Length, D	ft			
Change in Elevation, ∆E	ft			
Street Grade	%			
Q from Ti	CFS			
Velocity	ft/sec			
Travel Time, Ti	min		Tt (min)	=
		Combined Tr	aval Timo T (m:-)	4.5
		Combined In	avel Time, T _t (min)	= 4.5
		Time of Co	oncetration, T _c (min)	= 12.4

Project Information						
Project Summit Estates		County San Diego	Date 4/10/2020	Project No. 1599.10		
Location		Condtion	Ву	Checked		
P9		Proposed	LZ	GP		
Initial Time (T _i)		EAA (E' 0.0)				
Flour Longth D	, F	FAA (Figure 3-3)				
Flow Length, D	ft	50				
Change in Elevation, ∆E	ft	18				
Land Slope, S	ft/ft	0.360				
Runoff Coefficient, C	. –	0.30	T' (' .)			
Travel Time, Ti	min	3.1	Ti (min)	= 3.1		
A for Ti, to calculate Tt	Ac	1.130				
I calculated from Ti	in/hr	9.2				
Q for Ti, to calculate Tt Travel Time	CFS	3.12				
Natural Watersheds	L	(IRPICH (Figure 3-4)				
Flow Length, D	ft	titt for (rigure 3-4)				
Change in Elevation, ΔE	ft					
Travel Time, Ti	hr		Tt (min)	=		
Brow Ditch	<u> </u>	INING'S (Figure 3-7)	()			
<u> </u>						
Flow Length, D	ft	540 14				
Change in Elevation, ΔE	ft					
Land Slope, S	ft/ft	0.026				
Manning's n	050	0.013				
Q from Ti	CFS	3.12				
R	ft	0.229				
Velocity	ft/sec	6.914	-			
Travel Time, Ti	min	1.3	Tt (min)	= 1.3		
<u>Gutter Flow</u>	GUTT	ER FLOW (Figure 3-6)				
Flow Length, D	ft					
Change in Elevation, ∆E	ft					
Street Grade	%					
Q from Ti	CFS					
Velocity	ft/sec					
Travel Time, Ti	min		Tt (min)	=		
Combined Travel Time, T_t (min) = 1.302						
20111211103 114101 111110, 11 (11111) = 1.002						
	Time of Concetration, T _c (min) = 4.4 *					
			*Use minimum	Tc of 5 minutes		
ı						

Summit Estates San Diego 4/10/2020 1599.10	Project Information				_	
December Complete	Project Summit Estates		County San Died	Date 4/10/2020	Project No. 1599 10	
FAA (Figure 3-3)	Location		Condtion	Ву	Checked	
FAA (Figure 3-3)			Proposed	d LZ	GP	
Flow Length, D	Initial Time (T _i)		EAA (Eiguro 2-2)			
Change in Elevation, ΔΕ	Flow Length D	ft	· · · · · · · · · · · · · · · · · · ·	1		
Land Slope, S Runoff Coefficient, C Travel Time, Ti A for Ti, to calculate Tt I calculated from Ti I coloulate Tt I coloulate				-		
Runoff Coefficient, C	<u> </u>			-		
Travel Time, Ti min 3.9 Ti (min) = 3.9 A for Ti, to calculate Tt Ac 0.470 I calculated from Ti in/hr 9.2 Q for Ti, to calculate Tt CFS 1.30 Natural Watersheds Flow Length, D ft 0.99 Travel Time, Ti hr 0.025 Tt (min) = 1.5 Natural Time, Ti hr 0.025 Tt (min) = 1.5 Natural Time, Ti hr 0.025 Tt (min) = 0.5 Natural Time, Ti hr 0.025 Tt (min) = 0.5 Natural Time, Ti Natural Time, Ti Tt (min) = 0.5 Natural Time, Ti Natural Time, Ti Tt (min) = 0.5 Natural Time, Ti Natural Time, Ti Tt (min) = 0.5 Natural Time, Ti Natural Time, Ti Tt (min) = 0.5 Natura	·	1011		-		
A for Ti, to calculate Tt		min		Ti (min)	= 39	
I calculated from Ti Q for Ti, to calculate Tt CFS 1.30 Travel Time Natural Watersheds Flow Length, D ft 90 Change in Elevation, ΔΕ ft 0.9 Tt (min) = 1.5 Brow Ditch MANNING'S (Figure 3-7) Flow Length, D ft 90 Change in Elevation, ΔΕ ft 0.5 Land Slope, S ft/ft 0.006 Manning's n 0.013 Q from Ti CFS 1.30 R ft 0.220 Velocity ft/sec 3.117 Travel Time, Ti min 0.5 Tt (min) = 0.5 Gutter Flow GUTTER FLOW (Figure 3-6) Flow Length, D ft 1.5 Gutter Flow GUTTER FLOW (Figure 3-6) Flow Length, D ft 1.5 Cres 1.30 Tt (min) = 0.5 Gutter Flow GUTTER FLOW (Figure 3-6) Flow Length, D ft 1.5 Street Grade %	·			()	_ 0.0	
Q for Ti, to calculate Tt CFS 1.30		_		1		
Natural Watersheds Flow Length, D ft 90				1		
Flow Length, D Change in Elevation, ΔE Travel Time, Ti Brow Ditch MANNING'S (Figure 3-7) Flow Length, D Change in Elevation, ΔE Land Slope, S Manning's n Q from Ti R Travel Time, Ti Min CFS Tit (min)						
Change in Elevation, ΔE Travel Time, Ti Brow Ditch MANNING'S (Figure 3-7) Flow Length, D Change in Elevation, ΔE Land Slope, S Manning's n Q from Ti CFS Tit (min) = 1.5 Tit (min) = 1.951	Natural Watersheds	!	KIRPICH (Figure 3-4)	_		
Brow Ditch MANNING'S (Figure 3-7) Flow Length, D ft 90 Change in Elevation, ΔΕ ft 0.5 Land Slope, S ft/ft 0.006 Manning's n 0.013 0.013 Q from Ti CFS 1.30 R ft 0.220 Velocity ft/sec 3.117 Travel Time, Ti min 0.5 Tt (min) = 0.5 Gutter Flow GUTTER FLOW (Figure 3-6) Flow Length, D ft Change in Elevation, ΔΕ ft Tt (min) = 0.5 Street Grade % CFS CFS Combined Travel Time, Tt Tt (min) = 1.951	Flow Length, D	ft	90			
Brow Ditch MANNING'S (Figure 3-7) Flow Length, D ft 90 Change in Elevation, ΔΕ ft 0.5 Land Slope, S ft/ft 0.006 Manning's n 0.013 0.020 Q from Ti CFS 1.30 1.30 R ft 0.220 1.30	Change in Elevation, ∆E	ft	0.9			
Flow Length, D	Travel Time, Ti	hr	0.025	Tt (min)	= 1.5	
Change in Elevation, ΔE Land Slope, S Manning's n Q from Ti R ft 0.220 Velocity Travel Time, Ti Min Change in Elevation, ΔE Street Grade Q from Ti CFS Travel Time, Ti CFS CHOW CHORDE in Elevation, ΔE Street Grade Q from Ti Velocity Travel Time, Ti Min CFS	Brow Ditch	MAN	NNING'S (Figure 3-7)			
Land Slope, S ft/ft 0.006 Manning's n 0.013 Q from Ti CFS 1.30 R ft 0.220 Velocity ft/sec 3.117 Travel Time, Ti min 0.5 Tt (min) = 0.5 Gutter Flow GUTTER FLOW (Figure 3-6) Flow Length, D ft Change in Elevation, ΔΕ ft Street Grade % Cyform Ti CFS Velocity ft/sec Tt (min) = Travel Time, Ti min Tt (min) = Combined Travel Time, Tt (min) =	Flow Length, D	ft	90			
Manning's n 0.013 Q from Ti CFS R ft Velocity ft/sec Travel Time, Ti min Gutter Flow GUTTER FLOW (Figure 3-6) Flow Length, D ft Change in Elevation, ΔΕ ft Street Grade % Q from Ti CFS Velocity ft/sec Travel Time, Ti min Travel Time, Ti Tt (min) Combined Travel Time, Tt min)	Change in Elevation, ∆E	ft	0.5	1		
Q from Ti R ft 0.220 Velocity ft/sec Travel Time, Ti min 0.5 Gutter Flow Flow Length, D Change in Elevation, ΔE Street Grade Q from Ti Velocity Travel Time, Ti min CFS Tt (min) = 0.5 Tt (min) = 1.951	Land Slope, S	ft/ft	0.006	1		
R ft 0.220 Velocity ft/sec 3.117 Travel Time, Ti min 0.5 Tt (min) = Gutter Flow GUTTER FLOW (Figure 3-6) Flow Length, D ft Change in Elevation, ΔΕ ft Street Grade % CFS Q from Ti CFS CFS Velocity ft/sec Tt (min) = Travel Time, Ti min Tt (min) = 1.951	Manning's n		0.013	1		
Velocity ft/sec 3.117 $ft (min) = 0.5$ $ft (min) = 0$	Q from Ti	CFS	1.30	1		
Travel Time, Ti min 0.5 Tt (min) = 0.5 $\frac{\text{Gutter Flow}}{\text{GUTTER FLOW (Figure 3-6)}}$ Flow Length, D ft Change in Elevation, ΔE ft Street Grade $\%$ CFS Velocity ft/sec Travel Time, Ti $\frac{\text{CFS}}{\text{Combined Travel Time, T}_{t}}$ $\frac{\text{Combined Travel Time, T}_{t}$ $\frac{\text{Combined Travel Time, T}_{t}}{\text{Combined Travel Time, T}_{t}}$	R	ft	0.220			
Gutter Flow GUTTER FLOW (Figure 3-6) Flow Length, D Change in Elevation, ΔΕ Street Grade Q from Ti Velocity Travel Time, Ti Combined Travel Time, Tt (min) = 1.951	Velocity	ft/sec	3.117			
Flow Length, D ft Change in Elevation, ΔE ft Street Grade % Q from Ti CFS Velocity ft/sec Travel Time, Ti min Tt (min) = Combined Travel Time, T_t (min) = 1.951	Travel Time, Ti	min	0.5	Tt (min)	= 0.5	
Change in Elevation, ΔE ft Street Grade % Q from Ti CFS Velocity ft/sec Travel Time, Ti min Tt (min) = 1.951	Gutter Flow	GUTT	ER FLOW (Figure 3-6	5)	·	
Street Grade % Q from Ti CFS Velocity ft/sec Travel Time, Ti min Travel Time, Tt (min) = 1.951	Flow Length, D	ft]		
Q from Ti Velocity Travel Time, Ti CFS It/sec Travel Time, Ti Combined Travel Time, Tt (min) = 1.951	Change in Elevation, ∆E	ft				
Velocity ft/sec Travel Time, Ti min Tt (min) = Combined Travel Time, Tt (min) = 1.951	Street Grade	%		1		
Travel Time, Ti min Tt (min) = Combined Travel Time, Tt (min) =	Q from Ti	CFS		1		
Combined Travel Time, T _t (min) = 1.951	Velocity	ft/sec		1		
Combined Travel Time, T _t (min) = 1.951	Travel Time, Ti	min		Tt (min)	=	
		<u></u>	O	d Traval Times T) 4.054	
Time of Concetration, T _c (min) = 5.9			Combined	ı ıravei ilme, i _t (min) = 1.951	
Time of Concettation, T _c (min) = 5.9	Time of Connectration T. (min) 5.0					
			Time of	i Concenation, i.e. (min) = 5.9	

Project Information					
Project Summit Estates		County San Dieg	o A/10/2020	Project No. 1599.10	
Location		Condtion	Ву	Checked	
P11		Proposed	d LZ	GP	
Initial Time (T _i)		EAA (5'			
Flour Longeth D	<u>,</u>	FAA (Figure 3-3) 70	7		
Flow Length, D	ft	0.7	_		
Change in Elevation, ∆E	ft	0.010			
Land Slope, S	ft/ft	0.58			
Runoff Coefficient, C			Ti (min)	7.0	
Travel Time, Ti	min	7.8	Ti (min)	= 7.8	
A for Ti, to calculate Tt	Ac	0.910	_		
I calculated from Ti	in/hr	6.9	4		
Q for Ti, to calculate Tt Travel Time	CFS	3.64			
Natural Watersheds		KIRPICH (Figure 3-4)			
Flow Length, D	ft	130			
Change in Elevation, ∆E	ft	1.3			
Travel Time, Ti	hr	0.033	Tt (min)	= 2.0	
Brow Ditch		NNING'S (Figure 3-7)	J ' '		
Flow Length, D	ft	,	1		
Change in Elevation, ΔE	ft		1		
Land Slope, S	ft/ft				
Manning's n					
Q from Ti	CFS		1		
R	ft		1		
Velocity	ft/sec		1		
Travel Time, Ti	min		Tt (min)	=	
Gutter Flow		ER FLOW (Figure 3-6	1		
	ft	270	") 1		
Flow Length, D			4		
Change in Elevation, ∆E Street Grade	ft %	24 8.9	1		
Q from Ti	CFS	3.64	1		
Velocity	ft/sec	6.0	1		
Travel Time, Ti	min	0.8	Tt (min)	= 0.8	
Traver filme, fr	min L	0.0] '' (''''')	= 0.8	
		Combined	d Travel Time, T _t (min	n) = 2.7	
Time of Concetration, T _c (min) = 10.5					
I					

Project Information				
Project Summit Estates		County San Diego	Date 4/10/2020	Project No. 1599.10
Location		Condtion	Ву	Checked
P12		Proposed	LZ	GP
Initial Time (T _i)		EAA (Figure 2.2)		
Flow Longth D		FAA (Figure 3-3) 20		
Flow Length, D Change in Elevation, ΔE	ft ft	2.5		
	ft/ft	0.125		
Land Slope, S	11/11	0.63		
Runoff Coefficient, C		1.6	Ti (min)	= 1.6
Travel Time, Ti	min		11 (111111)	= 1.0
A for Ti, to calculate Tt	Ac	0.080		
I calculated from Ti Q for Ti, to calculate Tt	in/hr CFS	9.2 0.46		
Travel Time	UF3	0.40		
Natural Watersheds	KI	RPICH (Figure 3-4)		
Flow Length, D	ft			
Change in Elevation, ΔE	ft			
Travel Time, Ti	hr		Tt (min)	=
Brow Ditch	MANN	NING'S (Figure 3-7)		
Flow Length, D	ft			
Change in Elevation, ΔE	ft			
Land Slope, S	ft/ft			
Manning's n				
Q from Ti	CFS			
R	ft			
Velocity	ft/sec			
Travel Time, Ti	min		Tt (min)	=
Gutter Flow	GUTTE	R FLOW (Figure 3-6))	
Flow Length, D	ft	110		
Change in Elevation, ΔE	ft	14		
Street Grade	%	12.7		
Q from Ti	CFS	0.46		
Velocity	ft/sec	6.0		
Travel Time, Ti	min	0.3	Tt (min)	= 0.3
			, ,	
		Combined	Travel Time, T _t (mi	n) = 0.3
		Time of	Concetration, T _c (mi	n) = 1.9 *
			*Use minimu	m Tc of 5 minutes

Project Summit Estates Location P13 Initial Time (T _i) Flow Length, D	ft		San Diego Condtion Proposed	Date 4/10/2020 By	Project No. 1599.10				
Location P13 Initial Time (T _i) Flow Length, D	а [I	Condtion						
Initial Time (T _i) Flow Length, D	<i>"</i> [Proposed		Checked				
Flow Length, D	<i>4</i> [1 1000000	LZ	GP				
_	ر.	FAA (Figure 3-3)							
_	TT I	1 77	100						
Change in Elevation, ∆E	ft		21						
Land Slope, S	ft/ft		0.210						
Runoff Coefficient, C	1011		0.35						
Travel Time, Ti	min		4.9	Ti (min)	= 4.9				
A for Ti, to calculate Tt	Ac		0.430	(,					
I calculated from Ti	in/hr		9.2						
Q for Ti, to calculate Tt	CFS		1.38						
Travel Time									
Natural Watersheds	-	KIRPI	CH (Figure 3-4)						
Flow Length, D	ft		10						
Change in Elevation, ΔE	ft		2						
Travel Time, Ti	hr		0.001	Tt (min)	= 0.1				
Brow Ditch	MA	ANNING	G'S (Figure 3-7)						
Flow Length, D	ft		15						
Change in Elevation, ∆E	ft		2.5						
Land Slope, S	ft/ft		0.167						
Manning's n			0.013						
Q from Ti	CFS		1.38						
R	ft		0.120						
Velocity	ft/sec		11.384						
Travel Time, Ti	min		0.02	Tt (min)	= 0.02				
Gutter Flow	GU1	TTER F	LOW (Figure 3-6)						
Flow Length, D	ft								
Change in Elevation, ΔE	ft								
Street Grade	%								
Q from Ti	CFS								
Velocity	ft/sec								
Travel Time, Ti	min			Tt (min)	=				
	L		0	T	0.407				
			Combined	Travel Time, T _t (min)	= 0.107				
Time of Concetration, T _c (min) = 5.0									
			i ime of	Concertation, I _c (min)	= 5.0				
1									

Project Information							
Project Summit Estates		County San Diego	Date 4/10/2020	Project No. 1599.10			
Location		Condtion	Ву	Checked			
P14		Proposed	LZ	GP			
Initial Time (T _i)		EAA (Eiguro 2.2)					
Flow Length, D	ft	FAA (Figure 3-3) 15					
Change in Elevation, ΔE	ft	0.3					
Land Slope, S	ft/ft	0.020					
Runoff Coefficient, C	10/11	0.68					
Travel Time, Ti	min	2.3	Ti (min)	= 2.3			
A for Ti, to calculate Tt	Ac	0.270	11 (111111)	- 2.5			
I calculated from Ti	in/hr	9.2					
Q for Ti, to calculate Tt	CFS	1.69					
Travel Time	3, 3						
Natural Watersheds	K	(IRPICH (Figure 3-4)					
Flow Length, D	ft	, ,					
Change in Elevation, ∆E	ft						
Travel Time, Ti	hr		Tt (min)	=			
Brow Ditch	MAN	NING'S (Figure 3-7)					
Flow Length, D	ft						
Change in Elevation, ∆E	ft						
Land Slope, S	ft/ft						
Manning's n							
Q from Ti	CFS						
R	ft						
Velocity	ft/sec						
Travel Time, Ti	min		Tt (min)	=			
Gutter Flow	GUTTI	ER FLOW (Figure 3-6))				
Flow Length, D	ft	370					
Change in Elevation, ∆E	ft	13					
Street Grade	%	3.5					
Q from Ti	CFS	1.69					
Velocity	ft/sec	3.9					
Travel Time, Ti	min	1.6	Tt (min)	= 1.6			
		Combined	Troyal Time T (min)	= 1.6			
	Combined Travel Time, T _t (min) = 1.6						
		Time of	Concetration, T _c (min)	*			
			*Use minimum	Tc of 5 minutes			

Project Information					
Project Summit Estates		County San Dieg	o A/10/2020	Project No. 1599.10	
Location		Condtion	Ву	Checked	
P15		Proposed	d LZ	GP	
Initial Time (T _i)		EAA (E'			
Flow Longth D	, F	FAA (Figure 3-3) 70	1		
Flow Length, D	ft	0.7	-		
Change in Elevation, ∆E	ft				
Land Slope, S	ft/ft	0.010			
Runoff Coefficient, C		0.59	T: (m;n)	7.7	
Travel Time, Ti	min	7.7	Ti (min)	= 7.7	
A for Ti, to calculate Tt	Ac	0.950			
I calculated from Ti	in/hr	7.0			
Q for Ti, to calculate Tt Travel Time	CFS	3.92			
Natural Watersheds	- L	(IRPICH (Figure 3-4)			
Flow Length, D	ft	30]		
Change in Elevation, ΔE	ft	0.3			
Travel Time, Ti	hr	0.011	Tt (min)	= 0.6	
Brow Ditch	<u> </u>	INING'S (Figure 3-7)	. '		
Flow Length, D	ft]		
Change in Elevation, ΔE	ft				
Land Slope, S	ft/ft				
Manning's n					
Q from Ti	CFS				
R	ft				
Velocity	ft/sec				
Travel Time, Ti	min		Tt (min)	=	
Gutter Flow	<u> </u>	ER FLOW (Figure 3-6	1		
Flow Length, D	ft	270	ĺ		
Change in Elevation, ΔE	ft	10			
Street Grade	%	3.7			
Q from Ti	CFS —	3.92			
Velocity	ft/sec	4.2			
Travel Time, Ti	min	1.1	Tt (min)	= 1.1	
Traver rime, 11		1.1]	- 1.1	
		Combined	I Travel Time, T _t (min	1.7	
Time of Concetration, T _c (min) = 9.4					
ı					

Project Information				
Project Summit Estates		County San Diego	Date 4/10/2020	Project No. 1599.10
Location		Condtion	Ву	Checked
P16		Proposed	LZ	GP
Initial Time (T _i)		EAA (Figure 2.2)		
Flow Longth D		FAA (Figure 3-3) 35		
Flow Length, D Change in Elevation, ΔE	ft t	3		
	ft/ft	0.086		
Land Slope, S	1011	0.68		
Runoff Coefficient, C		2.2	Ti (min)	= 2.2
Travel Time, Ti	min		11 (111111)	= 2.2
A for Ti, to calculate Tt	Ac	0.050		
I calculated from Ti Q for Ti, to calculate Tt	in/hr CFS	9.2 0.31		
Travel Time	UFU	0.01		
Natural Watersheds	KI	RPICH (Figure 3-4)		
Flow Length, D	ft			
Change in Elevation, ΔE	ft			
Travel Time, Ti	hr		Tt (min)	=
Brow Ditch	MANN	IING'S (Figure 3-7)		
Flow Length, D	ft			
Change in Elevation, ΔE	ft			
Land Slope, S	ft/ft			
Manning's n				
Q from Ti	CFS			
R	ft			
Velocity	ft/sec			
Travel Time, Ti	min		Tt (min)	=
Gutter Flow	GUTTE	R FLOW (Figure 3-6))	
Flow Length, D	ft	45		
Change in Elevation, ΔE	ft	6		
Street Grade	%	13.3		
Q from Ti	CFS	0.31		
Velocity	ft/sec	7.0		
Travel Time, Ti	min	0.1	Tt (min)	= 0.1
		O - made in the state	Traval Time T / '	
		Combined	Travel Time, T _t (mi	n) = 0.1
		Time of	Concetration, T _c (mi	n) = 2.3 *
			*Use minimu	m Tc of 5 minutes

Project Summit Estates Location P17 Initial Time (T _i) Flow Length, D Change in Elevation, ΔE Land Slope, S Runoff Coefficient, C	ft ft ft/ft min Ac	FAA (Figure 3-3) 70 0.7 0.010 0.58 7.8 0.380	By LZ	Project No. 1599.10 Checked GP
Initial Time (T _i) Flow Length, D Change in Elevation, ΔE Land Slope, S	ft ft/ft min Ac	FAA (Figure 3-3) 70 0.7 0.010 0.58 7.8	By LZ	Checked
Initial Time (T _i) Flow Length, D Change in Elevation, ΔE Land Slope, S	ft ft/ft min Ac	70 0.7 0.010 0.58 7.8		ĞР
Flow Length, D Change in Elevation, ΔE Land Slope, S	ft ft/ft min Ac	70 0.7 0.010 0.58 7.8		
Change in Elevation, ΔE Land Slope, S	ft ft/ft min Ac	70 0.7 0.010 0.58 7.8		
Change in Elevation, ΔE Land Slope, S	ft ft/ft min Ac	0.7 0.010 0.58 7.8		
Land Slope, S	ft/ft min Ac	0.010 0.58 7.8		
· ·	min Ac	0.58 7.8		
	Ac	7.8		
Travel Time, Ti	Ac		Ti (min)	= 7.8
A for Ti, to calculate Tt		0.300	,	
I calculated from Ti	in/hr	6.9		
Q for Ti, to calculate Tt	CFS	1.52		
Travel Time				
Natural Watersheds	K	RPICH (Figure 3-4)	•	
Flow Length, D	ft	70		
Change in Elevation, ΔE	ft	0.7		
Travel Time, Ti	hr	0.020	Tt (min)	= 1.2
Brow Ditch	MAN	NING'S (Figure 3-7)		
Flow Length, D	ft			
Change in Elevation, ∆E	ft			
Land Slope, S	ft/ft			
Manning's n				
Q from Ti	CFS			
R	ft			
Velocity	ft/sec			
Travel Time, Ti	min		Tt (min)	=
Gutter Flow	GUTTE	R FLOW (Figure 3-6))	
Flow Length, D	ft	100		
Change in Elevation, ΔE	ft	10		
Street Grade	%	10.0		
Q from Ti	CFS	1.52		
Velocity	ft/sec	6.0		
Travel Time, Ti	min	0.3	Tt (min)	= 0.3
		Oznakio - J	Troval Time T	
		Combined	Travel Time, T _t (min)	= 1.5
		Time of	Concetration T (
		i ime of	Concetration, T _c (min)	= 9.3

Project Information				
Project Summit Estates		County San Diego	Date 4/10/2020	Project No. 1599.10
Location P18		Condtion Proposed	By LZ	Checked GP
Initial Time (T _i)		FTOposed	LZ	Gr
		FAA (Figure 3-3)		
Flow Length, D	ft	100		
Change in Elevation, ΔE	ft	11		
Land Slope, S	ft/ft	0.110		
Runoff Coefficient, C		0.43		
Travel Time, Ti	min	5.4	Ti (min)	= 5.4
A for Ti, to calculate Tt	Ac	0.470		
I calculated from Ti	in/hr	8.8		
Q for Ti, to calculate Tt	CFS	1.77		
Travel Time				
Natural Watersheds		RPICH (Figure 3-4)		
Flow Length, D	ft	80		
Change in Elevation, ∆E	ft	8		
Travel Time, Ti	hr	0.009	Tt (min)	= 0.6
Brow Ditch	MANI	NING'S (Figure 3-7)		
Flow Length, D	ft			
Change in Elevation, ∆E	ft			
Land Slope, S	ft/ft			
Manning's n				
Q from Ti	CFS			
R	ft			
Velocity	ft/sec			
Travel Time, Ti	min		Tt (min)	=
Gutter Flow	GUTTE	R FLOW (Figure 3-6)		
Flow Length, D	ft			
Change in Elevation, ΔE	ft			
Street Grade	%			
Q from Ti	CFS			
Velocity	ft/sec			
Travel Time, Ti	min		Tt (min)	=
·	<u></u>			
		Combined Tr	ravel Time, T _t (min)	= 0.6
		Time of C	oncetration, T _c (min)	= 6.0

Project Information				
Project Summit Estates		County San Dieg	Date 4/10/2020	Project No. 1599.10
Location		Condtion	Ву	Checked
P19		Proposed	d LZ	GP
Initial Time (T _i)		EAA (E'		
Fly Land B	, г	FAA (Figure 3-3)	1	
Flow Length, D	ft	70 0.7		
Change in Elevation, ΔE	ft			
Land Slope, S	ft/ft	0.010		
Runoff Coefficient, C	. –	0.59	T ' (' .)	
Travel Time, Ti	min	7.7	Ti (min)	= 7.7
A for Ti, to calculate Tt	Ac	1.040		
I calculated from Ti	in/hr	7.0		
Q for Ti, to calculate Tt Travel Time	CFS	4.29		
Natural Watersheds		KIRPICH (Figure 3-4)		
Flow Length, D	ft	70]	
Change in Elevation, ΔE	ft	0.7		
Travel Time, Ti	hr	0.020	Tt (min)	= 1.2
Brow Ditch	<u> </u>	NNING'S (Figure 3-7)]	
	ft	Titille o (rigure 5-7)]	
Flow Length, D				
Change in Elevation, ΔE	ft			
Land Slope, S	ft/ft			
Manning's n	050			
Q from Ti	CFS _			
R	ft			
Velocity	ft/sec		T ((' .)	
Travel Time, Ti	min		Tt (min)	=
Gutter Flow		TER FLOW (Figure 3-6)	
Flow Length, D	ft	270		
Change in Elevation, ∆E	ft	14		
Street Grade	%	5.2		
Q from Ti	CFS	4.29		
Velocity	ft/sec	5.0		
Travel Time, Ti	min	0.9	Tt (min)	= 0.9
		Combined	l Travel Time, T _t (min) = 2.1
			. ,	
		Time of	Concetration, T _c (min	9.8
-				

Project Information				
Project Summit Estates		County San Diego	Date 4/10/2020	Project No. 1599.10
Location P20		Condtion Proposed	By LZ	Checked GP
Initial Time (T _i)		PToposed	LZ	Gr
		FAA (Figure 3-3)		
Flow Length, D	ft	70		
Change in Elevation, ∆E	ft	0.7		
Land Slope, S	ft/ft	0.010		
Runoff Coefficient, C		0.55		
Travel Time, Ti	min	8.3	Ti (min)	= 8.3
A for Ti, to calculate Tt	Ac			
I calculated from Ti	in/hr			
Q for Ti, to calculate Tt	CFS			
Travel Time				
Natural Watersheds		RPICH (Figure 3-4)		
Flow Length, D	ft	50		
Change in Elevation, ∆E	ft	0.5		
Travel Time, Ti	hr	0.016	Tt (min)	= 0.9
Brow Ditch	MANI	NING'S (Figure 3-7)		
Flow Length, D	ft			
Change in Elevation, ∆E	ft			
Land Slope, S	ft/ft			
Manning's n				
Q from Ti	CFS			
R	ft			
Velocity	ft/sec			
Travel Time, Ti	min		Tt (min)	=
Gutter Flow	GUTTE	R FLOW (Figure 3-6)		
Flow Length, D	ft			
Change in Elevation, ∆E	ft			
Street Grade	%			
Q from Ti	CFS			
Velocity	ft/sec			
Travel Time, Ti	min		Tt (min)	=
		Oznakia z I T	envel Time T	
		Combined In	ravel Time, T _t (min)	= 0.9
		Time of Co	oncetration, T _c (min)	= 9.2

Project Information				
Project Summit Estates		County San Diego	Date 4/10/2020	Project No. 1599.10
Location P21		Condtion Proposed	By LZ	Checked GP
Initial Time (T _i)		Floposed	LZ	Gr
		FAA (Figure 3-3)		
Flow Length, D	ft	70		
Change in Elevation, ∆E	ft	0.7		
Land Slope, S	ft/ft	0.010		
Runoff Coefficient, C		0.55		
Travel Time, Ti	min	8.3	Ti (min)	= 8.3
A for Ti, to calculate Tt	Ac			
I calculated from Ti	in/hr			
Q for Ti, to calculate Tt	CFS			
Travel Time				
Natural Watersheds		RPICH (Figure 3-4)		
Flow Length, D	ft	30		
Change in Elevation, ∆E	ft	0.3		
Travel Time, Ti	hr	0.011	Tt (min)	= 0.6
Brow Ditch	MANI	NING'S (Figure 3-7)		
Flow Length, D	ft			
Change in Elevation, ∆E	ft			
Land Slope, S	ft/ft			
Manning's n				
Q from Ti	CFS			
R	ft			
Velocity	ft/sec			
Travel Time, Ti	min		Tt (min)	=
Gutter Flow	GUTTE	R FLOW (Figure 3-6)		
Flow Length, D	ft			
Change in Elevation, ∆E	ft			
Street Grade	%			
Q from Ti	CFS			
Velocity	ft/sec			
Travel Time, Ti	min		Tt (min)	=
		Combined T	ovel Time T (mim)	0.0
		Combined Tr	avel Time, T _t (min)	= 0.6
		Time of Co	oncetration, T _c (min)	= 8.9

Project Information				
Project Summit Estates		County San Dieg	Date 4/10/2020	Project No. 1599.10
Location		Condtion	Ву	Checked
P22		Proposed	d LZ	GP
Initial Time (T _i)				
Electronii B		FAA (Figure 3-3)	1	
Flow Length, D	ft	100 17	_	
Change in Elevation, ∆E	ft			
Land Slope, S	ft/ft	0.170	_	
Runoff Coefficient, C		0.35	T: (i)	
Travel Time, Ti	min	5.3	Ti (min)	= 5.3
A for Ti, to calculate Tt	Ac	0.280	1	
I calculated from Ti	in/hr	8.9		
Q for Ti, to calculate Tt Travel Time	CFS	0.88		
Natural Watersheds		KIRPICH (Figure 3-4)		
Flow Length, D	ft	10	1	
Change in Elevation, ΔE	ft	2	-	
Travel Time, Ti	hr	0.001	Tt (min)	= 0.1
Brow Ditch	<u> </u>	NNING'S (Figure 3-7)]	- 0.1
	_		1	
Flow Length, D	ft	20	-	
Change in Elevation, ∆E	ft	0.2	1	
Land Slope, S	ft/ft	0.010		
Manning's n		0.013	1	
Q from Ti	CFS	0.88		
R	ft	0.170	_	
Velocity	ft/sec	3.521		
Travel Time, Ti	min	0.09	Tt (min)	= 0.09
Gutter Flow	GUTT	TER FLOW (Figure 3-6	5)	
Flow Length, D	ft			
Change in Elevation, ΔE	ft			
Street Grade	%			
Q from Ti	CFS			
Velocity	ft/sec			
Travel Time, Ti	min		Tt (min)	=
	<u></u>	0	d Tanada I Times To a 1 1 1) 0.400
		Compined	d Travel Time, T _t (min	0.180
		~ .	f Oamaatoothee =	,
		I ime o	f Concetration, T _c (mir	n) = 5.4

Project Information				
Project Summit Estates		County San Diego	Date 4/10/2020	Project No. 1599.10
Location		Condtion	Ву	Checked
P23		Proposed	LZ	GP
Initial Time (T _i)		EAA /Figure 2 2)		
Flow Length, D	ft	FAA (Figure 3-3)		
Change in Elevation, ΔE	ft	2		
Land Slope, S	ft/ft	0.100		
Runoff Coefficient, C	1011	0.68		
Travel Time, Ti	min	1.6	Ti (min)	= 1.6
	Ac	0.130	11 (111111)	= 1.0
A for Ti, to calculate Tt I calculated from Ti	in/hr	9.2		
Q for Ti, to calculate Tt	CFS	0.81		
Travel Time	51 0	0.01		
Natural Watersheds	K	IRPICH (Figure 3-4)		
Flow Length, D	ft			
Change in Elevation, ∆E	ft			
Travel Time, Ti	hr		Tt (min)	=
Brow Ditch	MAN	NING'S (Figure 3-7)		<u></u>
Flow Length, D	ft			
Change in Elevation, ∆E	ft			
Land Slope, S	ft/ft			
Manning's n				
Q from Ti	CFS			
R	ft			
Velocity	ft/sec			
Travel Time, Ti	min		Tt (min)	=
Gutter Flow	GUTTI	ER FLOW (Figure 3-6)		
Flow Length, D	ft	230		
Change in Elevation, ΔE	ft	20		
Street Grade	%	8.7		
Q from Ti	CFS	0.81		
Velocity	ft/sec	6.0		
Travel Time, Ti	min	0.6	Tt (min)	= 0.6
		On malada a di	Troyal Tires T	
		Combined	Travel Time, T _t (min)	0.6
		Time of	Concetration, T _c (min	*
			*Use minimum	Tc of 5 minutes
			-	

Project Information				
Project Summit Estates		County San Dieg	o 4/10/2020	Project No. 1599.10
Location		Condtion	Ву	Checked
P24		Proposed	d LZ	GP
Initial Time (T _i)		EAA (E'		
Flour Long with D		FAA (Figure 3-3) 70	1	
Flow Length, D	ft	0.7	-	
Change in Elevation, ∆E	ft		-	
Land Slope, S	ft/ft	0.010		
Runoff Coefficient, C		0.56	T: (i)	
Travel Time, Ti	min	8.1	Ti (min)	= 8.1
A for Ti, to calculate Tt	Ac	0.460		
I calculated from Ti	in/hr	6.7		
Q for Ti, to calculate Tt Travel Time	CFS	1.74		
Natural Watersheds		(IRPICH (Figure 3-4)		
Flow Length, D	ft	80	1	
Change in Elevation, ΔE	ft	0.8	1	
Travel Time, Ti	hr	0.022	Tt (min)	= 1.3
		INING'S (Figure 3-7)]	- 1.0
Brow Ditch		ining 3 (Figure 3-7)	1	
Flow Length, D	ft			
Change in Elevation, ∆E	ft			
Land Slope, S	ft/ft			
Manning's n				
Q from Ti	CFS			
R	ft			
Velocity	ft/sec			
Travel Time, Ti	min		Tt (min)	=
<u>Gutter Flow</u>	GUTT	ER FLOW (Figure 3-6	<u>5)</u>	
Flow Length, D	ft	60		
Change in Elevation, ∆E	ft	3		
Street Grade	%	0.050		
Q from Ti	CFS	1.74		
Velocity	ft/sec	4.200		
Travel Time, Ti	min	0.2	Tt (min)	= 0.2
		O a made in a a	l Tanada I Tima a Tanada (1915)	.) 4.0
		Combined	I Travel Time, T _t (mir	n) = 1.6
		Time of	f Concetration, T _c (mir	0.7
		Time O	ooncenanon, i _e (mir	n) = <i>9.7</i>

Project Information				
Project Summit Estates		County San Diego	Date 4/10/2020	Project No. 1599.10
Location		Condtion	Ву	Checked
P25		Proposed	LZ	GP
Initial Time (T _i)		EAA (E'		
Flow Longth D	4	FAA (Figure 3-3) 70		
Flow Length, D	ft	0.7		
Change in Elevation, ∆E	ft			
Land Slope, S	ft/ft	0.010		
Runoff Coefficient, C		0.61	T: /maim)	7.4
Travel Time, Ti	min	7.4	Ti (min)	= 7.4
A for Ti, to calculate Tt	Ac	1.200		
I calculated from Ti	in/hr	7.2		
Q for Ti, to calculate Tt Travel Time	CFS	5.25		
Natural Watersheds	K	IRPICH (Figure 3-4)		
Flow Length, D	ft	80		
Change in Elevation, ΔE	ft	0.8		
Travel Time, Ti	hr	0.022	Tt (min)	= 1.3
Brow Ditch		NING'S (Figure 3-7)	()	
Flow Length, D	ft			
Change in Elevation, ΔE	ft			
Land Slope, S	ft/ft			
Manning's n				
Q from Ti	CFS			
R	ft			
Velocity	ft/sec			
Travel Time, Ti	min		Tt (min)	=
	<u> </u>	R FLOW (Figure 3-6)	1 (111111)	-
Gutter Flow				
Flow Length, D	ft	250		
Change in Elevation, ∆E	ft	25		
Street Grade	%	0.100		
Q from Ti	CFS	5.25		
Velocity	ft/sec	6.200	Tt (min)	0.7
Travel Time, Ti	min	0.7	Tt (min)	= 0.7
		Combined T	ravel Time, T _t (min)	= 2.0
		Time of C	Concetration, T _c (min)	= 9.4

Project Information					
Project Summit Estates		County San Diego	Date 4/10/2020	Project No. 1599.10	
Location		Condtion	Ву	Checked	
P26		Proposed	LZ	GP	
Initial Time (T _i)		EAA (Eigure 2.2)			
Flow Length, D	ft Γ	FAA (Figure 3-3) 25			
Change in Elevation, ΔE	ft –	12			
Land Slope, S	ft/ft	0.480			
Runoff Coefficient, C	1010	0.35			
Travel Time, Ti	min	1.9	Ti (min)	= 1.9	
A for Ti, to calculate Tt	Ac	0.180	()	- 1.5	
I calculated from Ti	in/hr	9.2			
Q for Ti, to calculate Tt	CFS	0.58			
Travel Time	3. 0				
Natural Watersheds		KIRPICH (Figure 3-4)			
Flow Length, D	ft				
Change in Elevation, ΔE	ft				
Travel Time, Ti	hr		Tt (min)	=	
Brow Ditch	MA	NNING'S (Figure 3-7)			
Flow Length, D	ft	230			
Change in Elevation, ∆E	ft	25			
Land Slope, S	ft/ft	0.109			
Manning's n		0.013			
Q from Ti	CFS	0.58			
R	ft	0.095			
Velocity	ft/sec	7.877			
Travel Time, Ti	min	0.49	Tt (min)	= 0.49	
Gutter Flow	GUT	TER FLOW (Figure 3-6)			
Flow Length, D	ft				
Change in Elevation, ΔE	ft				
Street Grade	%				
Q from Ti	CFS				
Velocity	ft/sec				
Travel Time, Ti	min		Tt (min)	=	
	<u> </u>	Combined	Troyal Time T /mir	0.407	
Combined Travel Time, T _t (min) = 0.487					
Time of Concetration, T _c (min) = 2.3 *					
			*Use minimun	n Tc of 5 minutes	
ı					

Project Information				
Project Summit Estates		County San Diego	Date 4/10/2020	Project No. 1599.10
Location P27		Condtion	By LZ	Checked GP
Initial Time (T _i)		Proposed	LZ	GP
		FAA (Figure 3-3)		
Flow Length, D	ft	70		
Change in Elevation, ΔE	ft	0.39		
Land Slope, S	ft/ft	0.006		
Runoff Coefficient, C		0.35		
Travel Time, Ti	min	13.7	Ti (min)	= 13.7
A for Ti, to calculate Tt	Ac	0.180		
I calculated from Ti	in/hr	4.8		
Q for Ti, to calculate Tt	CFS	0.30		
Travel Time				
Natural Watersheds	K	IRPICH (Figure 3-4)		
Flow Length, D	ft			
Change in Elevation, ∆E	ft			
Travel Time, Ti	hr		Tt (min)	=
Brow Ditch	MANI	NING'S (Figure 3-7)		
Flow Length, D	ft	230		
Change in Elevation, ∆E	ft	25		
Land Slope, S	ft/ft	0.109		
Manning's n		0.013		
Q from Ti	CFS	0.30		
R	ft	0.095		
Velocity	ft/sec	7.877		
Travel Time, Ti	min	0.49	Tt (min)	= 0.49
Gutter Flow	GUTTE	R FLOW (Figure 3-6)		
Flow Length, D	ft			
Change in Elevation, ∆E	ft			
Street Grade	%			
Q from Ti	CFS			
Velocity	ft/sec			
Travel Time, Ti	min		Tt (min)	=
		Combined 7	Fravel Time, T _t (min)	= 0.487
		Time of 0	Concetration, T _c (min)	= 14.2

Project Information				
Project Summit Estates		County San Diego	Date 4/10/2020	Project No. 1599.10
Location P28		Condtion	By LZ	Checked GP
Initial Time (T _i)		PToposed	LZ	GP
		FAA (Figure 3-3)		
Flow Length, D	ft	70		
Change in Elevation, ∆E	ft	0.7		
Land Slope, S	ft/ft	0.010		
Runoff Coefficient, C		0.54		
Travel Time, Ti	min	8.4	Ti (min)	= 8.4
A for Ti, to calculate Tt	Ac			
I calculated from Ti	in/hr			
Q for Ti, to calculate Tt	CFS			
Travel Time				
Natural Watersheds		RPICH (Figure 3-4)		
Flow Length, D	ft	70		
Change in Elevation, ∆E	ft	0.7		
Travel Time, Ti	hr	0.020	Tt (min)	= 1.2
Brow Ditch	MANI	NING'S (Figure 3-7)		
Flow Length, D	ft			
Change in Elevation, ∆E	ft			
Land Slope, S	ft/ft			
Manning's n				
Q from Ti	CFS			
R	ft			
Velocity	ft/sec			
Travel Time, Ti	min		Tt (min)	=
Gutter Flow	GUTTE	R FLOW (Figure 3-6)		
Flow Length, D	ft			
Change in Elevation, ∆E	ft			
Street Grade	%			
Q from Ti	CFS			
Velocity	ft/sec			
Travel Time, Ti	min		Tt (min)	=
		Combined Tr	avel Time, T _t (min)	= 1.2
		Time of Co	oncetration, T _c (min)	= 9.6

Project Information				
Project Summit Estates		County San Diego	Date 4/10/2020	Project No. 1599.10
Location		Condtion	Ву	Checked
P29		Proposed	LZ	GP
Initial Time (T _i)		FAA (Figure 3-3)		
Flow Length, D	ft	100		
Change in Elevation, ∆E	ft	13		
Land Slope, S	ft/ft	0.130		
Runoff Coefficient, C		0.35		
Travel Time, Ti	min	5.7	Ti (min)	= 5.7
A for Ti, to calculate Tt	Ac	-	,	<u> </u>
I calculated from Ti	in/hr			
Q for Ti, to calculate Tt	CFS			
Travel Time				
Natural Watersheds	KI	RPICH (Figure 3-4)		
Flow Length, D	ft	800		
Change in Elevation, ∆E	ft	110		
Travel Time, Ti	hr	0.048	Tt (min)	= 2.9
Brow Ditch	MANN	IING'S (Figure 3-7)		
Flow Length, D	ft			
Change in Elevation, ∆E	ft			
Land Slope, S	ft/ft			
Manning's n				
Q from Ti	CFS			
R	ft			
Velocity	ft/sec			
Travel Time, Ti	min		Tt (min)	=
Gutter Flow	GUTTE	R FLOW (Figure 3-6)		
Flow Length, D	ft			
Change in Elevation, ∆E	ft			
Street Grade	%			
Q from Ti	CFS			
Velocity	ft/sec			
Travel Time, Ti	min		Tt (min)	=
		0	Francis Times Times	
		Combined	Γravel Time, T _t (min)	= 2.9
		Time of 0	Concetration, T _c (min)	= 8.6

Project Information				
Project Summit Estates		County San Diego	Date 4/10/2020	Project No. 1599.10
Location		Condtion	Ву	Checked
P30		Proposed	LZ	GP
Initial Time (T _i)		FAA (Figure 3-3)		
Flow Length, D	ft	100		
Change in Elevation, ∆E	ft	17		
Land Slope, S	ft/ft	0.170		
Runoff Coefficient, C		0.35		
Travel Time, Ti	min	5.3	Ti (min)	= 5.3
A for Ti, to calculate Tt	Ac		, ,	
I calculated from Ti	in/hr			
Q for Ti, to calculate Tt	CFS			
Travel Time				
Natural Watersheds	KI	RPICH (Figure 3-4)		
Flow Length, D	ft	800		
Change in Elevation, ∆E	ft	110		
Travel Time, Ti	hr	0.048	Tt (min)	= 2.9
Brow Ditch	MAN	NING'S (Figure 3-7)		
Flow Length, D	ft			
Change in Elevation, ∆E	ft			
Land Slope, S	ft/ft			
Manning's n				
Q from Ti	CFS			
R	ft			
Velocity	ft/sec			
Travel Time, Ti	min		Tt (min)	=
Gutter Flow	GUTTE	R FLOW (Figure 3-6)		
Flow Length, D	ft			
Change in Elevation, ∆E	ft			
Street Grade	%			
Q from Ti	CFS			
Velocity	ft/sec			
Travel Time, Ti	min		Tt (min)	=
	_	Combined Tr	ravel Time, T _t (min)	= 2.9
		Combined 11	aver inne, i _t (iiiiii)	= 2.9
		Time of Co	oncetration, T _c (min)	= 8.1

Project Information				
Project Summit Estates		County San Diego	Date 4/10/2020	Project No. 1599.10
Location		Condtion	Ву	Checked
P31		Proposed	LZ	GP
Initial Time (T _i)		EAA (E'		
Electronii B	, –	FAA (Figure 3-3)		
Flow Length, D	ft	15		
Change in Elevation, ∆E	ft	1.5		
Land Slope, S	ft/ft	0.100		
Runoff Coefficient, C		0.35	T: (min)	0.4
Travel Time, Ti	min	2.4	Ti (min)	= 2.4
A for Ti, to calculate Tt	Ac	0.060		
I calculated from Ti	in/hr	9.2		
Q for Ti, to calculate Tt Travel Time	CFS	0.19		
Natural Watersheds	K	RPICH (Figure 3-4)		
Flow Length, D	ft	inti iori (i igaic 3-4)		
Change in Elevation, ΔE	ft			
Travel Time, Ti	hr		Tt (min)	_
Brow Ditch		NING'S (Figure 3-7)	()	
Flow Length, D	ft	160		
Change in Elevation, ΔE	ft	5		
Land Slope, S	ft/ft	0.031		
Manning's n	10/10	0.031		
Q from Ti	CFS	0.19		
R	ft	0.19		
Velocity	ft/sec	3.707		
Travel Time, Ti	min	0.72	Tt (min)	= 0.72
			` ,	= 0.72
Gutter Flow		R FLOW (Figure 3-6)		
Flow Length, D	ft			
Change in Elevation, ∆E	ft			
Street Grade	%			
Q from Ti	CFS			
Velocity	ft/sec		T (/ :)	
Travel Time, Ti	min		Tt (min)	=
		Combined	Travel Time, T _t (min)	= 0.719
		Time of	Concetration, T _c (min)	*
			*Use minimum	Tc of 5 minutes

Project Information				
Project Summit Estates		County San Diego	Date 4/10/2020	Project No. 1599.10
Location		Condtion	Ву	Checked
P32		Proposed	LZ	GP
Initial Time (T _i)				
		FAA (Figure 3-3)		
Flow Length, D	ft	25		
Change in Elevation, ∆E	ft	17		
Land Slope, S	ft/ft	0.680		
Runoff Coefficient, C		0.35	T: (:)	
Travel Time, Ti	min	1.7	Ti (min)	= 1.7
A for Ti, to calculate Tt	Ac	0.130		
I calculated from Ti	in/hr	9.2		
Q for Ti, to calculate Tt Travel Time	CFS	0.42		
Natural Watersheds	K	(IRPICH (Figure 3-4)		
Flow Length, D	ft	and for (Figure 5 4)		
Change in Elevation, ΔE	ft			
Travel Time, Ti	hr		Tt (min)	=
Brow Ditch	<u> </u>	NING'S (Figure 3-7)		
Flow Length, D	ft	190		
Change in Elevation, ΔE	ft	5		
Land Slope, S	ft/ft	0.026		
Manning's n		0.013		
Q from Ti	CFS	0.42		
R	ft	0.107		
Velocity	ft/sec	4.202		
Travel Time, Ti	min	0.75	Tt (min)	= 0.75
Gutter Flow	<u> </u>	ER FLOW (Figure 3-6)	, ,	- 0.70
Flow Length, D	ft			
Change in Elevation, ΔE	ft			
Street Grade	%			
Q from Ti	CFS			
Velocity	ft/sec			
Travel Time, Ti	min		Tt (min)	
			, ,	
		Combined	Travel Time, T _t (min)	= 0.754
		Time of	Concetration, T _c (min)	*
			*Use minimum	Tc of 5 minutes
I			Coo	. 5 0. 0 1111111111111

Project Information				
Project Summit Estates		County San Diego	Date 4/10/2020	Project No. 1599.10
Location		Condtion	Ву	Checked
P33		Proposed	LZ	GP
Initial Time (T _i)		EAA (Figure 2.2)		
Flow Longth D	f4 T	FAA (Figure 3-3) 60		
Flow Length, D Change in Elevation, ΔE	ft t	9		
	ft/ft	0.150		
Land Slope, S	1011	0.150		
Runoff Coefficient, C Travel Time, Ti	min	4.2	Ti (min)	= 4.2
	min Ac	0.360	11 (111111)	= 4.2
A for Ti, to calculate Tt I calculated from Ti	in/hr	9.2		
Q for Ti, to calculate Tt	CFS	9.2 1.16		
Travel Time	010	1.10		
Natural Watersheds	K	IRPICH (Figure 3-4)		
Flow Length, D	ft) J		
Change in Elevation, ∆E	ft			
Travel Time, Ti	hr		Tt (min)	=
Brow Ditch	MAN	NING'S (Figure 3-7)		
Flow Length, D	ft	200		
Change in Elevation, ΔE	ft	3		
Land Slope, S	ft/ft	0.015		
Manning's n		0.013		
Q from Ti	CFS	1.16		
R	ft	0.179		
Velocity	ft/sec	4.454		
Travel Time, Ti	min	0.75	Tt (min)	= 0.75
Gutter Flow	GUTTE	ER FLOW (Figure 3-6)		
Flow Length, D	ft			
Change in Elevation, ΔE	ft			
Street Grade	%			
Q from Ti	CFS			
Velocity	ft/sec			
Travel Time, Ti	min		Tt (min)	=
		O a made in a ad	Translations T. (0.740
		Combined	Travel Time, T _t (min)	0.748
		Time of	Concetration, T _c (min)	*
			*Use minimum	Tc of 5 minutes

Project Information				
Project Summit Estates		County San Diego	Date 4/10/2020	Project No. 1599.10
Location P34		Condtion Proposed	By LZ	Checked GP
Initial Time (T _i)		Proposed	LZ	Gr
		FAA (Figure 3-3)		
Flow Length, D	ft	70		
Change in Elevation, ∆E	ft	0.7		
Land Slope, S	ft/ft	0.010		
Runoff Coefficient, C		0.55		
Travel Time, Ti	min	8.3	Ti (min)	= 8.3
A for Ti, to calculate Tt	Ac			
I calculated from Ti	in/hr			
Q for Ti, to calculate Tt	CFS			
Travel Time				
Natural Watersheds		RPICH (Figure 3-4)		
Flow Length, D	ft	30		
Change in Elevation, ∆E	ft	0.3	_ ,	
Travel Time, Ti	hr	0.011	Tt (min)	= 0.6
Brow Ditch	MANI	NING'S (Figure 3-7)		
Flow Length, D	ft			
Change in Elevation, ∆E	ft			
Land Slope, S	ft/ft			
Manning's n				
Q from Ti	CFS			
R	ft			
Velocity	ft/sec			
Travel Time, Ti	min		Tt (min)	=
Gutter Flow	GUTTE	R FLOW (Figure 3-6)		
Flow Length, D	ft			
Change in Elevation, ∆E	ft			
Street Grade	%			
Q from Ti	CFS			
Velocity	ft/sec			
Travel Time, Ti	min		Tt (min)	=
		Oznakia z I T	evel Time T	
		Combined Tr	avel Time, T _t (min)	= 0.6
		Time of Co	oncetration, T _c (min)	= 8.9

Project Information				
Project Summit Estates		County San Diego	Date 4/10/2020	Project No. 1599.10
Location		Condtion	Ву	Checked
P35		Proposed	LZ	GP
Initial Time (T _i)		EAA (Eiguro 2 2)		
Flow Length, D	ft	FAA (Figure 3-3)		
Change in Elevation, ΔE	ft	1.2		
Land Slope, S	ft/ft	0.040		
Runoff Coefficient, C	1011	0.81		
Travel Time, Ti	min —	1.8	Ti (min)	= 1.8
A for Ti, to calculate Tt	Ac	0.150	11 (111111)	= 1.0
I calculated from Ti	in/hr	9.2		
Q for Ti, to calculate Tt	CFS	1.12		
Travel Time	<u> </u>	1112		
Natural Watersheds	KI	RPICH (Figure 3-4)		
Flow Length, D	ft			
Change in Elevation, ∆E	ft			
Travel Time, Ti	hr		Tt (min)	=
Brow Ditch	MANI	NING'S (Figure 3-7)		
Flow Length, D	ft			
Change in Elevation, ∆E	ft			
Land Slope, S	ft/ft			
Manning's n				
Q from Ti	CFS			
R	ft			
Velocity	ft/sec			
Travel Time, Ti	min		Tt (min)	=
Gutter Flow	GUTTE	R FLOW (Figure 3-6)		
Flow Length, D	ft	180		
Change in Elevation, ∆E	ft	2		
Street Grade	%	0.011		
Q from Ti	CFS	1.12		
Velocity	ft/sec	2.200		
Travel Time, Ti	min	1.4	Tt (min)	= 1.4
		Q : ::1:1: - 1:	Turnel Time at Total (1.1.)	
		Combined	Travel Time, T _t (min)) = 1.4
		Time of	Concetration, T _c (min) = 3.2 *
			*Use minimum	Tc of 5 minutes
			-	

Project Information				
Project Summit Estates		County	Date 4/10/2020	Project No.
Location		San Diego	4/ 10/2020 By	1599.10 Checked
P36		Proposed	LZ	GP
Initial Time (T _i)				
E		FAA (Figure 3-3)		
Flow Length, D	ft	30		
Change in Elevation, ∆E	ft	1.2		
Land Slope, S	ft/ft	0.040		
Runoff Coefficient, C		0.81	- :	
Travel Time, Ti	min	1.8	Ti (min)	= 1.8
A for Ti, to calculate Tt	Ac			
I calculated from Ti	in/hr			
Q for Ti, to calculate Tt	CFS			
Travel Time	1/1	RPICH (Figure 3-4)		
<u>Natural Watersheds</u> Flow Length, D	ft	340		
Change in Elevation, ΔE	ft	6.8		
Travel Time, Ti	hr	0.052	Tt (min)	= 3.1
			1 (111111)	= 3.1
Brow Ditch		IING'S (Figure 3-7)		
Flow Length, D	ft			
Change in Elevation, ΔE	ft			
Land Slope, S	ft/ft			
Manning's n				
Q from Ti	CFS			
R	ft			
Velocity	ft/sec			
Travel Time, Ti	min		Tt (min)	=
Gutter Flow	GUTTE	R FLOW (Figure 3-6)		
Flow Length, D	ft			
Change in Elevation, ∆E	ft			
Street Grade	%			
Q from Ti	CFS			
Velocity	ft/sec			
Travel Time, Ti	min		Tt (min)	=
			, ,	
		Combined Tra	avel Time, T _t (min)	= 3.1
		Time of Co	oncetration, T _c (min)	= 4.9 *
			*Use minimum	Tc of 5 minutes
			oco minimani	. 5 5. 5

Project Information				
Project Summit Estates		County San Diego	Date 4/10/2020	Project No. 1599.10
Location P37		Condtion Proposed	By LZ	Checked GP
Initial Time (T _i)		FToposed	LZ	Gr
		FAA (Figure 3-3)		
Flow Length, D	ft	50		
Change in Elevation, ∆E	ft	1		
Land Slope, S	ft/ft	0.020		
Runoff Coefficient, C		0.81		
Travel Time, Ti	min	2.9	Ti (min)	= 2.9
A for Ti, to calculate Tt	Ac			
I calculated from Ti	in/hr			
Q for Ti, to calculate Tt	CFS			
Travel Time				
Natural Watersheds		RPICH (Figure 3-4)		
Flow Length, D	ft	300		
Change in Elevation, ∆E	ft	1.5	_ ,	
Travel Time, Ti	hr	0.081	Tt (min)	= 4.9
Brow Ditch	MANI	NING'S (Figure 3-7)		
Flow Length, D	ft			
Change in Elevation, ∆E	ft			
Land Slope, S	ft/ft			
Manning's n				
Q from Ti	CFS			
R	ft			
Velocity	ft/sec			
Travel Time, Ti	min		Tt (min)	=
Gutter Flow	GUTTE	R FLOW (Figure 3-6)		
Flow Length, D	ft			
Change in Elevation, ∆E	ft			
Street Grade	%			
Q from Ti	CFS			
Velocity	ft/sec			
Travel Time, Ti	min		Tt (min)	=
		Ossell's sale	envel Time - T	
		Combined I	ravel Time, T _t (min)	= 4.9
		Time of C	oncetration, T _c (min)	= 7.8

Project Information				
Project Summit Estates		County San Diego	Date 4/10/2020	Project No. 1599.10
Location		Condtion	Ву	Checked
P38		Proposed	LZ	GP
Initial Time (T _i)		EAA/Eiguro 2 2\		
Flow Length, D	ft	FAA (Figure 3-3)		
Change in Elevation, ΔE	ft	0.25		
Land Slope, S	ft/ft	0.010		
Runoff Coefficient, C	10/10	0.81		
Travel Time, Ti	min —	2.6	Ti (min)	= 2.6
A for Ti, to calculate Tt	Ac	0.190	11 (111111)	
I calculated from Ti	in/hr	9.2		
Q for Ti, to calculate Tt	CFS	1.42		
Travel Time				
Natural Watersheds	KI	RPICH (Figure 3-4)		
Flow Length, D	ft			
Change in Elevation, ∆E	ft			
Travel Time, Ti	hr		Tt (min)	=
Brow Ditch	MAN	NING'S (Figure 3-7)		
Flow Length, D	ft			
Change in Elevation, ∆E	ft			
Land Slope, S	ft/ft			
Manning's n				
Q from Ti	CFS			
R	ft			
Velocity	ft/sec			
Travel Time, Ti	min		Tt (min)	=
Gutter Flow	GUTTE	R FLOW (Figure 3-6))	
Flow Length, D	ft	270		
Change in Elevation, ∆E	ft	5		
Street Grade	%	0.019		
Q from Ti	CFS	1.42		
Velocity	ft/sec	2.800		
Travel Time, Ti	min	1.6	Tt (min)	= 1.6
	<u> </u>	0	Travel Time T	
		Combined	Travel Time, T _t (mir	n) = 1.6
		Time of	Concetration, T _c (mir	n) = 4.2 *
			*Use minimun	n Tc of 5 minutes
I				

Appendix C

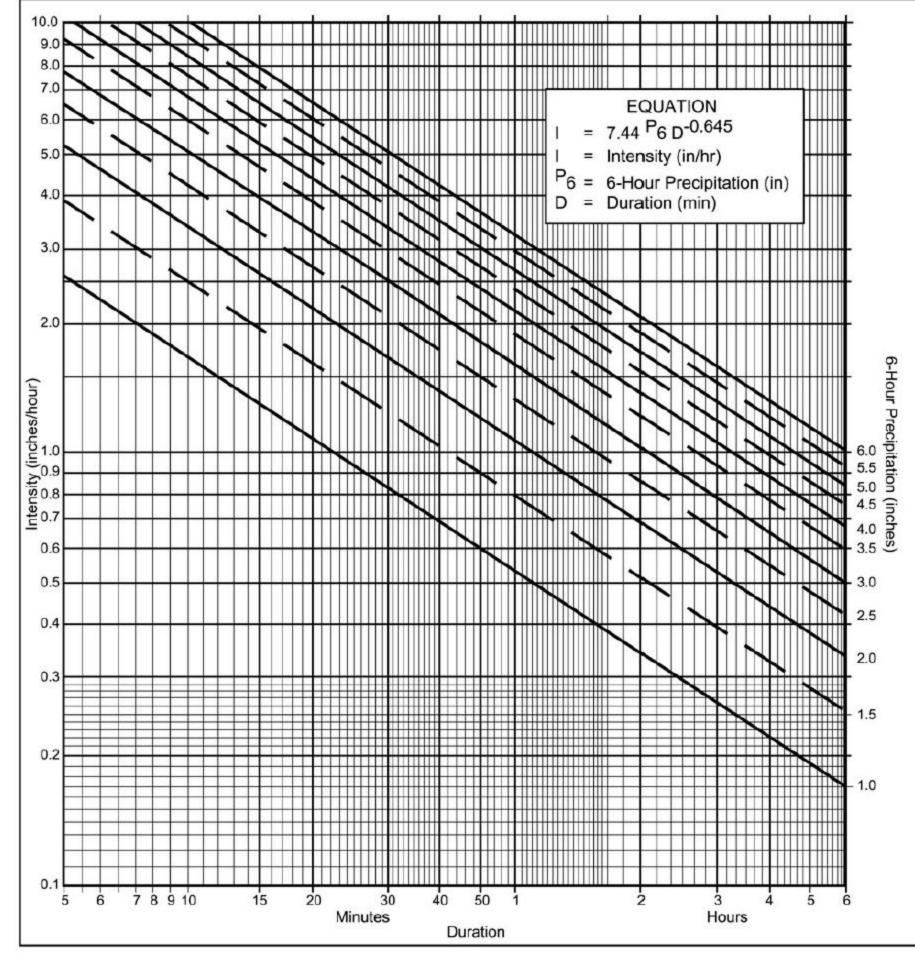
San Diego County Manual References

San Diego County Hydrology Manual

Date: June 2003

Section: Page:

6 of 26


Table 3-1 RUNOFF COEFFICIENTS FOR URBAN AREAS

Land Use			Ru	noff Coefficient '	°C"		
		_	Soil Type				
NRCS Elements	County Elements	% IMPER.	A	В	С	D	
Indisturbed Natural Terrain (Natural)	Permanent Open Space	0*	0.20	0.25	0.30	0.35	
low Density Residential (LDR)	Residential, 1.0 DU/A or less	10	0.27	0.32	0.36	0.41	
ow Density Residential (LDR)	Residential, 2.0 DU/A or less	20	0.34	0.38	0.42	0.46	
Low Density Residential (LDR)	Residential, 2.9 DU/A or less	25	0.38	0.41	0.45	0.49	
Medium Density Residential (MDR)	Residential, 4.3 DU/A or less	30	0.41	0.45	0.48	0.52	
Medium Density Residential (MDR)	Residential, 7.3 DU/A or less	40	0.48	0.51	0.54	0.57	
Medium Density Residential (MDR)	Residential, 10.9 DU/A or less	45	0.52	0.54	0.57	0.60	
Medium Density Residential (MDR)	Residential, 14.5 DU/A or less	50	0.55	0.58	0.60	0.63	
High Density Residential (HDR)	Residential, 24.0 DU/A or less	65	0.66	0.67	0.69	0.71	
High Density Residential (HDR)	Residential, 43.0 DU/A or less	80	0.76	0.77	0.78	0.79	
Commercial/Industrial (N. Com)	Neighborhood Commercial	80	0.76	0.77	0.78	0.79	
Commercial/Industrial (G. Com)	General Commercial	85	0.80	0.80	0.81	0.82	
Commercial/Industrial (O.P. Com)	Office Professional/Commercial	90	0.83	0.84	0.84	0.85	
ommercial/Industrial (Limited I.)	Limited Industrial	90	0.83	0.84	0.84	0.85	
Commercial/Industrial (General I.)	General Industrial	95	0.87	0.87	0.87	0.87	

^{*}The values associated with 0% impervious may be used for direct calculation of the runoff coefficient as described in Section 3.1.2 (representing the pervious runoff coefficient, Cp, for the soil type), or for areas that will remain undisturbed in perpetuity. Justification must be given that the area will remain natural forever (e.g., the area is located in Cleveland National Forest).

DU/A = dwelling units per acre

NRCS = National Resources Conservation Service

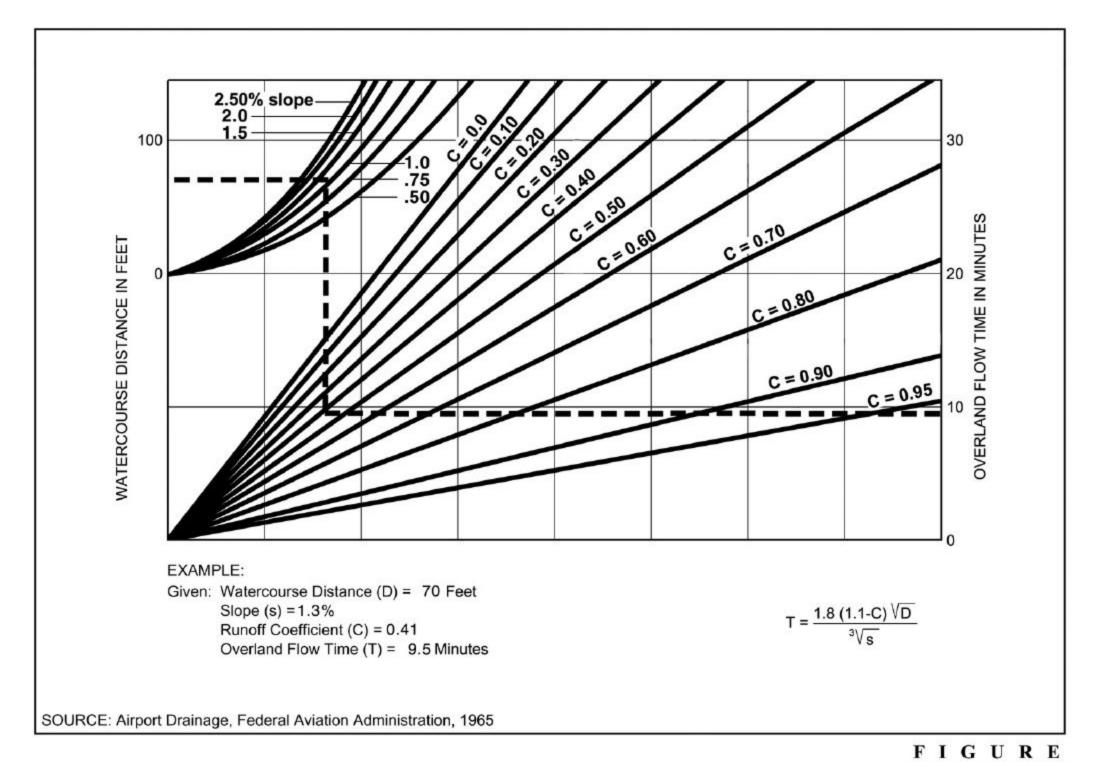
Directions for Application:

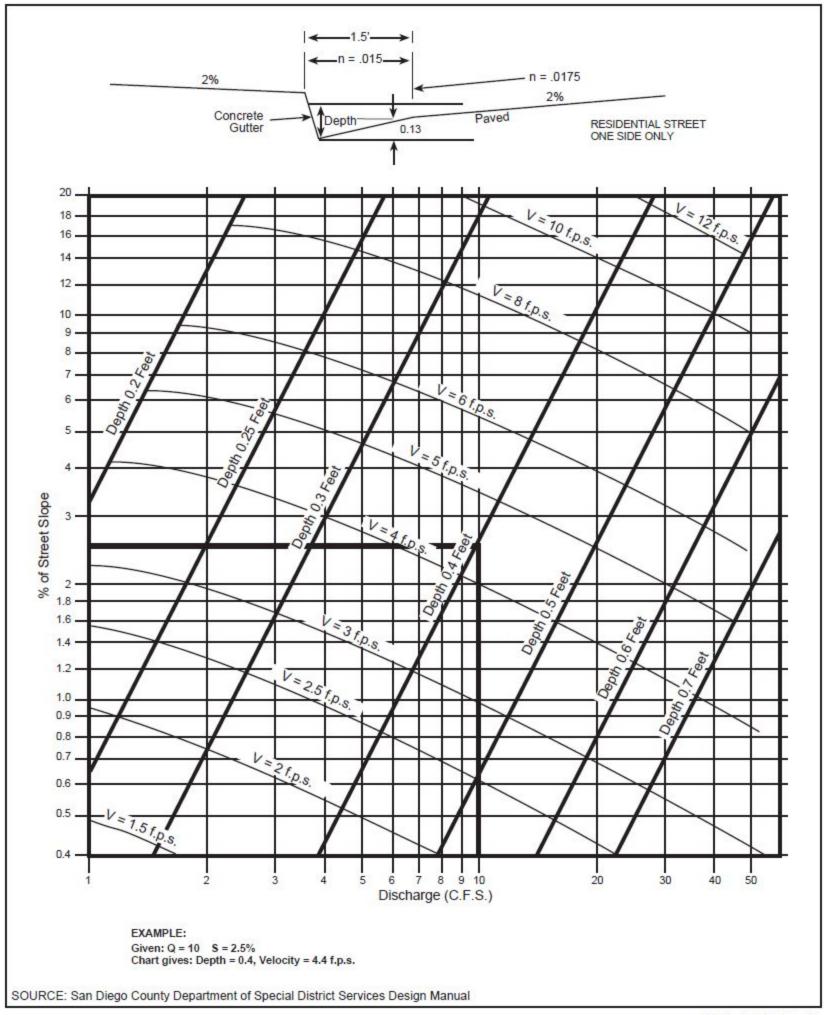
- (1) From precipitation maps determine 6 hr and 24 hr amounts for the selected frequency. These maps are included in the County Hydrology Manual (10, 50, and 100 yr maps included in the Design and Procedure Manual).
- (2) Adjust 6 hr precipitation (if necessary) so that it is within the range of 45% to 65% of the 24 hr precipitation (not applicable to Desert).
- (3) Plot 6 hr precipitation on the right side of the chart.
- (4) Draw a line through the point parallel to the plotted lines.
- (5) This line is the intensity-duration curve for the location being analyzed.

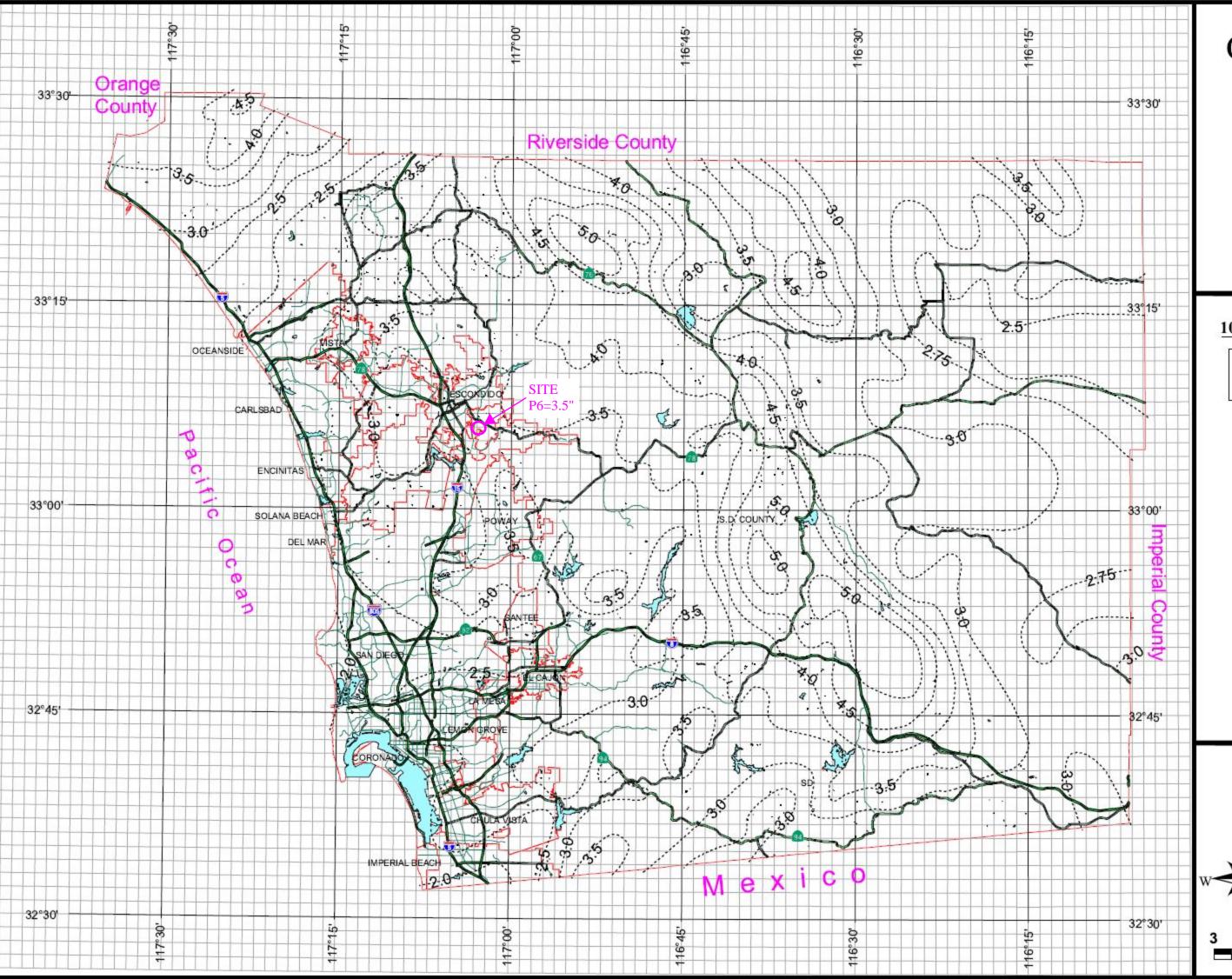
Application Form:

(a) Selected frequency _____ year

(b)
$$P_6 =$$
_____ in., $P_{24} =$ _____ $\frac{P_6}{P_{24}} =$ _____ $\%^{(2)}$


(c) Adjusted P₆⁽²⁾ = _____ in.


(d) t_x = ____ min.


(e) | = _____ in./hr.

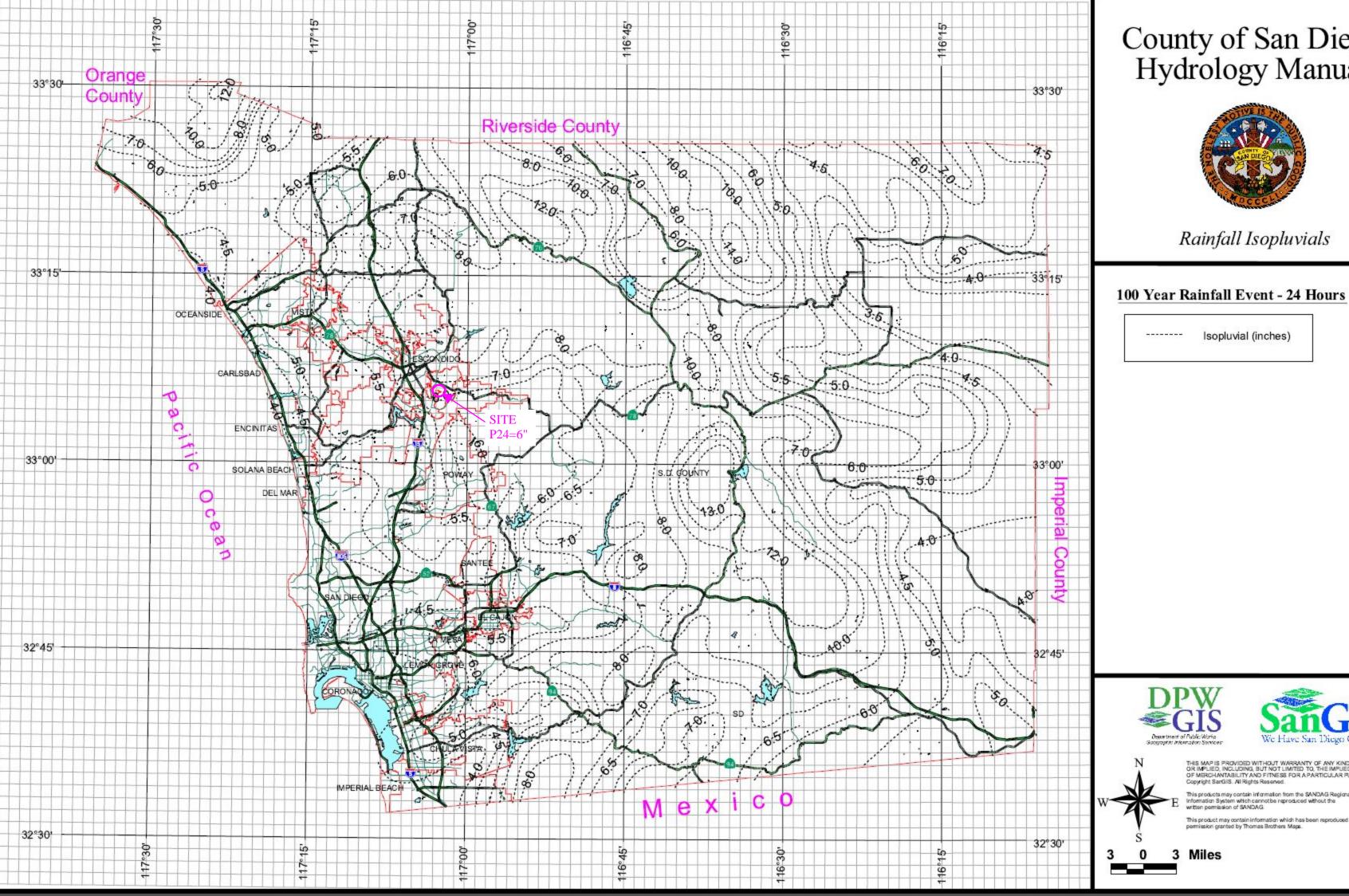
Note: This chart replaces the Intensity-Duration-Frequency curves used since 1965.

P6	1	1.5	2	2.5	3	3.5	4	4.5	5	5.5	6
Duration	- 1	- 1	- 1	- 1	1	1	1	1	1	1	- 1
5	2.63	3.95	5.27	6.59	7.90	9.22	10.54	11.86	13.17	14.49	15.81
7	2.12	3.18	4.24	5.30	6.36	7.42	8.48	9.54	10.60	11.66	12.72
10	1.68	2.53	3.37	4.21	5.05	5.90	6.74	7.58	8.42	9.27	10.11
15	1.30	1.95	2.59	3.24	3.89	4.54	5.19	5.84	6.49	7.13	7.78
20	1.08	1.62	2.15	2.69	3.23	3.77	4.31	4.85	5.39	5.93	6.46
25	0.93	1.40	1.87	2.33	2.80	3.27	3.73	4.20	4.67	5.13	5.60
30	0.83	1.24	1.66	2.07	2.49	2.90	3.32	3.73	4.15	4.56	4.98
40	0.69	1.03	1.38	1.72	2.07	2.41	2.76	3.10	3.45	3.79	4.13
50	0.60	0.90	1.19	1.49	1.79	2.09	2.39	2.69	2.98	3.28	3.58
60	0.53	0.80	1.06	1.33	1.59	1.86	2.12	2.39	2.65	2.92	3.18
90	0.41	0.61	0.82	1.02	1.23	1.43	1.63	1.84	2.04	2.25	2.45
120	0.34	0.51	0.68	0.85	1.02	1.19	1.36	1.53	1.70	1.87	2.04
150	0.29	0.44	0.59	0.73	0.88	1.03	1.18	1.32	1.47	1.62	1.76
180	0.26	0.39	0.52	0.65	0.78	0.91	1.04	1.18	1.31	1.44	1.57
240	0.22	0.33	0.43	0.54	0.65	0.76	0.87	0.98	1.08	1.19	1.30
300	0.19	0.28	0.38	0.47	0.56	0.66	0.75	0.85	0.94	1.03	1.13
360	0.17	0.25	0.33	0.42	0.50	0.58	0.67	0.75	0.84	0.92	1.00

County of San Diego Hydrology Manual

Rainfall Isopluvials

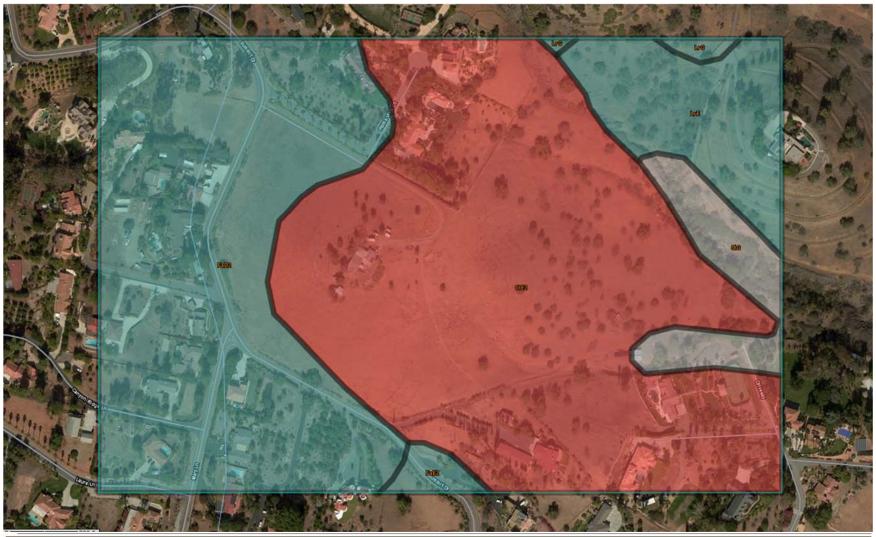
100 Year Rainfall Event - 6 Hours

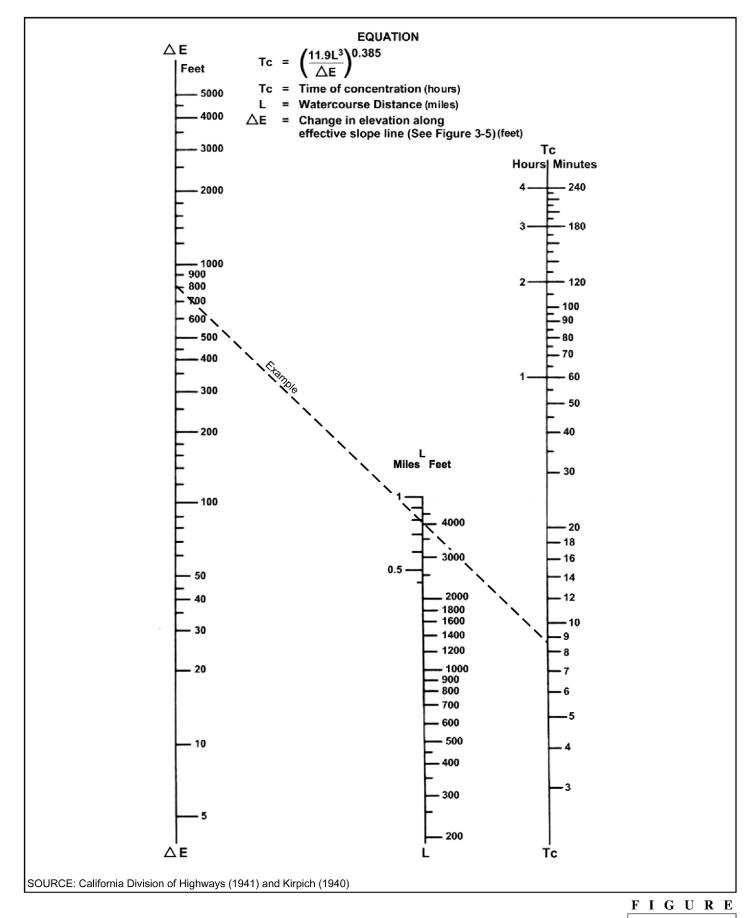

Isopluvial (inches)

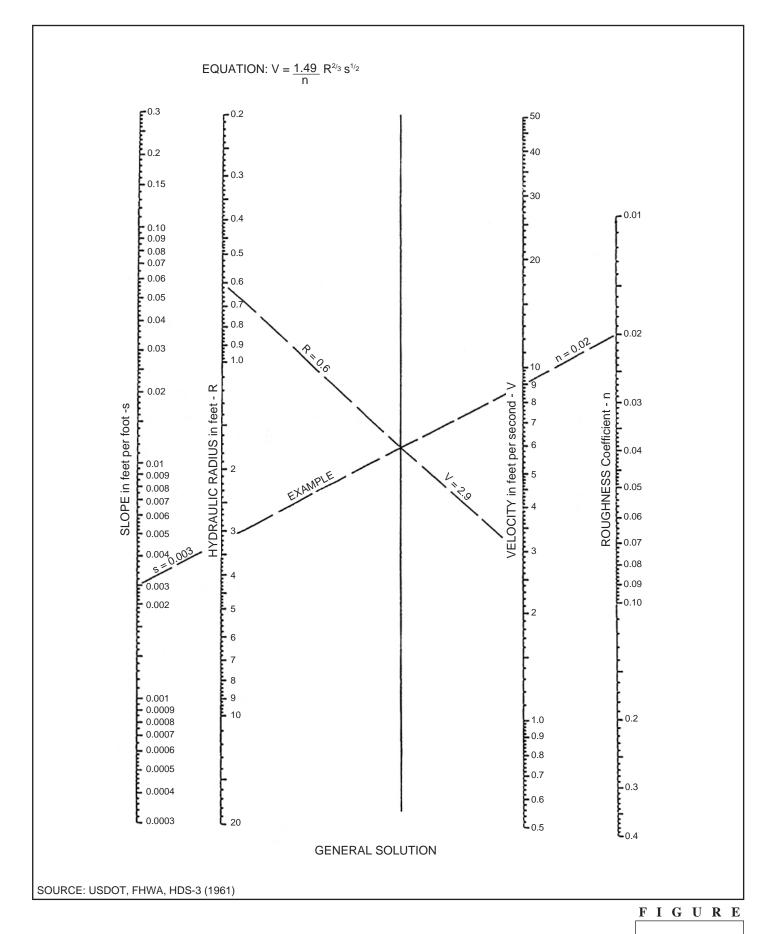
THIS MAP IS PROVIDED WITHOUT WARRANTY OF ANY KIND, STHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Copyright Sargils. All Rights Res

County of San Diego Hydrology Manual

Rainfall Isopluvials


Isopluvial (inches)


THIS MAP IS PROVIDED WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Copyright Sanglis, Ali Rights Reserved.


This products may contain information from the SANDAG Regional Information System which cannot be reproduced without the written permission of SANDAG.

This product may contain information which has been reproduced with permission granted by Thomas Brothers Maps.

	Summary by Map Unit — San Diego County Area, Ca	lifornia (CA638)		
Summary by Map Unit	— San Diego County Area, California (CA638)			@
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
CIE2	Cieneba coarse sandy loam, 15 to 30 percent slopes, eroded	D	31.1	49.8%
FaD2	Fallbrook sandy loam, 9 to 15 percent slopes, eroded	С	22.0	35.2%
FaE2	Fallbrook sandy loam, 15 to 30 percent slopes, eroded	С	0.7	1.0%
LrE	Las Posas stony fine sandy loam, 9 to 30 percent slopes	С	5.4	8.6%
LrG	Las Posas stony fine sandy loam, 30 to 65 percent slopes	С	0.3	0.5%
StG	Steep gullied land		3.0	4.8%
Totals for Area of Interest				100.0%

Can Diago County Hydrology Manual	Castian	2
San Diego County Hydrology Manual	Section:	3
	Th.	10 000
Date: June 2003	Page:	12 of 26

Note that the Initial Time of Concentration should be reflective of the general land-use at the upstream end of a drainage basin. A single lot with an area of two or less acres does not have a significant effect where the drainage basin area is 20 to 600 acres.

Table 3-2 provides limits of the length (Maximum Length (L_M)) of sheet flow to be used in hydrology studies. Initial T_i values based on average C values for the Land Use Element are also included. These values can be used in planning and design applications as described below. Exceptions may be approved by the "Regulating Agency" when submitted with a detailed study.

Table 3-2 $\begin{aligned} \text{MAXIMUM OVERLAND FLOW LENGTH } (L_{M}) \\ \text{\& INITIAL TIME OF CONCENTRATION } (T_{i}) \end{aligned}$

					a Initial line of Concentration (1)								
Element*	DU/	.5	5%	1	<u>%</u>	2	%	3	%	59	<u>%</u>	10	%
	Acre	Lм	T_{i}	Lм	T_{i}	Lм	T_{i}	Lм	T_{i}	Lм	T_{i}	Lм	T_{i}
Natural		50	13.2	70	12.5	85	10.9	100	10.3	100	8.7	100	6.9
LDR	1	50	12.2	70	11.5	85	10.0	100	9.5	100	8.0	100	6.4
LDR	2	50	11.3	70	10.5	85	9.2	100	8.8	100	7.4	100	5.8
LDR	2.9	50	10.7	70	10.0	85	8.8	95	8.1	100	7.0	100	5.6
MDR	4.3	50	10.2	70	9.6	80	8.1	95	7.8	100	6.7	100	5.3
MDR	7.3	50	9.2	65	8.4	80	7.4	95	7.0	100	6.0	100	4.8
MDR	10.9	50	8.7	65	7.9	80	6.9	90	6.4	100	5.7	100	4.5
MDR	14.5	50	8.2	65	7.4	80	6.5	90	6.0	100	5.4	100	4.3
HDR	24	50	6.7	65	6.1	75	5.1	90	4.9	95	4.3	100	3.5
HDR	43	50	5.3	65	4.7	75	4.0	85	3.8	95	3.4	100	2.7
N. Com		50	5.3	60	4.5	75	4.0	85	3.8	95	3.4	100	2.7
G. Com		50	4.7	60	4.1	75	3.6	85	3.4	90	2.9	100	2.4
O.P./Com		50	4.2	60	3.7	70	3.1	80	2.9	90	2.6	100	2.2
Limited I.		50	4.2	60	3.7	70	3.1	80	2.9	90	2.6	100	2.2
General I.		50	3.7	60	3.2	70	2.7	80	2.6	90	2.3	100	1.9

^{*}See Table 3-1 for more detailed description

Appendix D

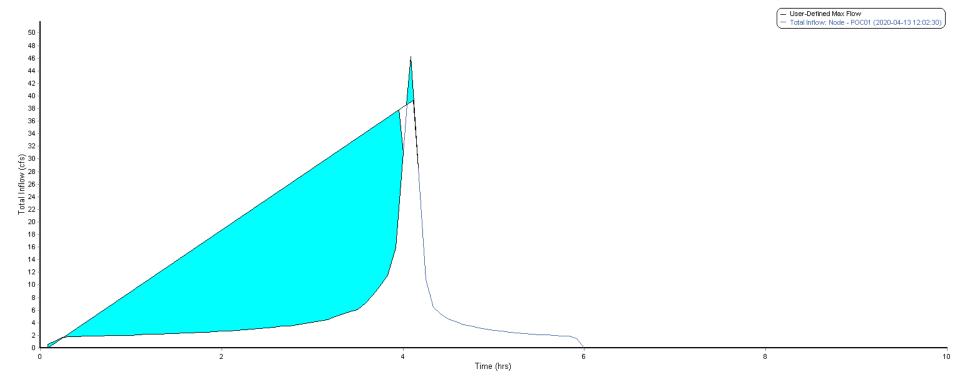
Storage Calculations

С	0.4
Α	20.51 AC
Tc	10.734 min
P6	3.5 in

N 33 Tc used 10.909 min

Follow steps to build 6-hour incremental hydrograph per San Diego County Hydrology Manual Section 6.

N	PT(N) (in)	PN (in)	QN (cfs)	TCs from Center	Time block from 1	Time (min)	QN (cfs)	PN (in)
1	1.008	1.008	46.220	0	22	245.455	46.220	1.008
2	1.289	0.281	12.895	-1	21	234.545	12.895	0.281
3	1.489	0.200	9.152	-2	20	223.636	9.152	0.200
4	1.649	0.160	7.340	1	23	256.364	7.340	0.160
5	1.785	0.136	6.233	-3	19	212.727	6.233	0.136
6	1.904	0.119	5.472	-4	18	201.818	5.472	0.119
7	2.011	0.107	4.911	2	24	267.273	4.911	0.107
8	2.109	0.098	4.477	-5	17	190.909	4.477	0.098
9	2.199	0.090	4.129	-6	16	180.000	4.129	0.090
10	2.282	0.084	3.843	3	25	278.182	3.843	0.084
11	2.361	0.079	3.602	-7	15	169.091	3.602	0.079
12	2.435	0.074	3.397	-8	14	158.182	3.397	0.074
13	2.505	0.070	3.219	4	26	289.091	3.219	0.070
14	2.572	0.067	3.063	-9	13	147.273	3.063	0.067
15	2.636	0.064	2.925	-10	12	136.364	2.925	0.064
16	2.697	0.061	2.801	5	27	300.000	2.801	0.061
17	2.756	0.059	2.691	-11	11	125.455	2.691	0.059
18	2.812	0.056	2.590	-12	10	114.545	2.590	0.056
19	2.867	0.054	2.499	6	28	310.909	2.499	0.054
20	2.919	0.053	2.416	-13	9	103.636	2.416	0.053
21	2.970	0.051	2.339	-14	8	92.727	2.339	0.051
22	3.020	0.049	2.268	7	29	321.818	2.268	0.049
23	3.068	0.048	2.203	-15	7	81.818	2.203	0.048
24	3.114	0.047	2.142	-16	6	70.909	2.142	0.047
25	3.160	0.045	2.085	8	30	332.727	2.085	0.045
26	3.204	0.044	2.032	-17	5	60.000	2.032	0.044
27	3.247	0.043	1.982	-18	4	49.091	1.982	0.043
28	3.290	0.042	1.935	9	31	343.636	1.935	0.042
29	3.331	0.041	1.891	-19	3	38.182	1.891	0.041
30	3.371	0.040	1.849	-20	2	27.273	1.849	0.040
31	3.411	0.039	1.810	10	32	354.545	1.810	0.039
32	3.449	0.039	1.773	-21	1	16.364	1.773	0.039


Sort by Time Block.

Time Block	PN (in)	Time (min)	Time (HH:MM)	QN (cfs)	VOL IN	CUM VOL IN
0	0.038	0.000	0:00	0.000	0.00	0.00
1	0.039	16.364	0:16	1.773	870.30	870.30
2	0.040	27.273	0:27	1.849	1185.47	2055.77
3	0.041	38.182	0:38	1.891	1224.17	3279.94
4	0.043	49.091	0:49	1.982	1267.53	4547.47
5	0.044	60.000	1:00	2.032	1313.57	5861.03
6	0.047	70.909	1:10	2.142	1365.84	7226.88
7	0.048	81.818	1:21	2.203	1421.76	8648.64
8	0.051	92.727	1:32	2.339	1486.33	10134.97
9	0.053	103.636	1:43	2.416	1556.05	11691.02
10	0.056	114.545	1:54	2.590	1638.33	13329.36
11	0.059	125.455	2:05	2.691	1728.32	15057.67
12	0.064	136.364	2:16	2.925	1837.70	16895.37
13	0.067	147.273	2:27	3.063	1959.46	18854.84
14	0.074	158.182	2:38	3.397	2113.95	20968.79
15	0.079	169.091	2:49	3.602	2290.53	23259.32
16	0.090	180.000	3:00	4.129	2530.21	25789.53
17	0.098	190.909	3:10	4.477	2816.51	28606.03
18	0.119	201.818	3:21	5.472	3256.08	31862.12
19	0.136	212.727	3:32	6.233	3830.74	35692.86
20	0.200	223.636	3:43	9.152	5034.98	40727.84
21	0.281	234.545	3:54	12.895	7215.21	47943.05
22	1.008	245.455	4:05	46.220	19346.57	67289.62
23	0.160	256.364	4:16	7.340	17528.77	84818.39
24	0.107	267.273	4:27	4.911	4009.56	88827.95
25	0.084	278.182	4:38	3.843	2864.90	91692.85
26	0.070	289.091	4:49	3.219	2310.99	94003.84
27	0.061	300.000	5:00	2.801	1970.19	95974.04
28	0.054	310.909	5:10	2.499	1734.71	97708.75
29	0.049	321.818	5:21	2.268	1560.20	99268.95
30	0.045	332.727	5:32	2.085	1424.63	100693.58
31	0.042	343.636	5:43	1.935	1315.64	102009.22
32	0.039	354.545	5:54	1.810	1225.72	103234.93

Time (HH:MM)	QN (cfs)
0:00	0.000
0:16	1.773
0:27	1.849
0:38	1.891
0:49	1.982
1:00	2.032
1:10	2.142
1:21	2.203
1:32	2.339
1:43	2.416
1:54	2.590
2:05	2.691
2:16	2.925
2:27	3.063
2:38	3.397
2:49	3.602
3:00	4.129
3:10	4.477
3:21	5.472
3:32	6.233
3:43	9.152
3:54	12.895
4:05	46.220
4:16	7.340
4:27	4.911
4:38	3.843
4:49	3.219
5:00	2.801
5:10	2.499
5:21	2.268
5:32	2.085
5:43	1.935
5:54	1.810
6:00	0.000
l	

Result is a time series for the 6-hour hydrograph.

POC 1

Time period		Element ID	POC01
From:	04/13/2020, 12:00:00 AM	Maximum Total Inflow (cfs)	46.22
To:	04/13/2020, 10:00:00 AM	Minimum Total Inflow (cfs)	0.00
	0 11 101 2020, 10.00.001 11.1	Event Mean Total Inflow (cfs)	2.93
Thresholds		Duration of Exceedances (hrs)	N/A
Exceedance:	0	Duration of Deficits (hrs)	N/A
Deficit	0	Number of Exceedances	N/A
		Number of Deficits	N/A
Detention sto	rage	Volume of Exceedance (f [®])	N/A
Max flow:	39.35	Volume of Deficit (ft³)	N/A
Max HOW.	33.33	Total Inflow Volume (ft³)	104526.9
		Detention Storage (ft³)	564.82

Plot time series developed from the procedure in Section 6 of the San Diego County Hydrology Manual using SSA.

Input the existing condition peak flow for the POC to be plotted on the proposed hydrograph.

Draw straight line to the existing condition peak flow on the descending arm of the proposed 6-hour hydrograph.

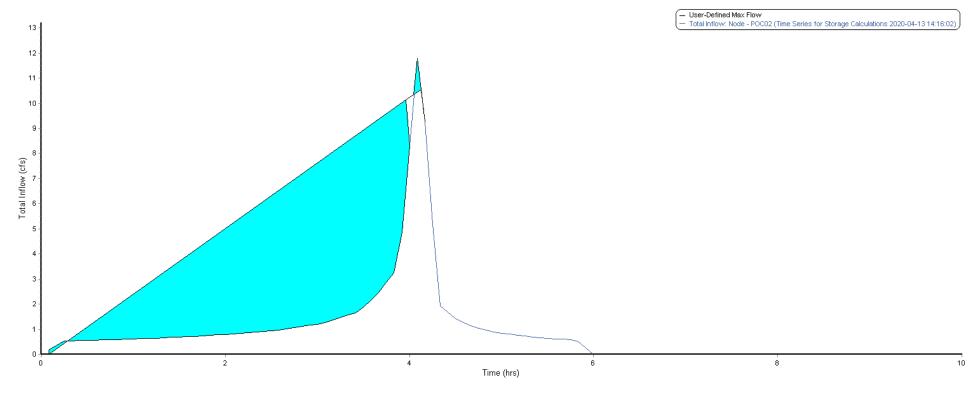
Calculate area between the hydrograph and straight line as the detention volume needed to reduce the proposed peak flow.

0.49
5.04 AC
12.72 min
3.5 in

N 28 Tc used 12.857 min

Follow steps to build 6-hour incremental hydrograph per San Diego County Hydrology Manual Section 6.

N	PT(N) (in)	PN (in)	QN (cfs)	TCs from Center	Time block from 1	Time (min)	QN (cfs)	PN (in)
1	1.070	1.070	12.470	0	19	246.429	12.470	1.070
2	1.369	0.299	3.479	-1	18	233.571	3.479	0.299
3	1.581	0.212	2.469	-2	17	220.714	2.469	0.212
4	1.751	0.170	1.980	1	20	259.286	1.980	0.170
5	1.895	0.144	1.682	-3	16	207.857	1.682	0.144
6	2.022	0.127	1.476	-4	15	195.000	1.476	0.127
7	2.136	0.114	1.325	2	21	272.143	1.325	0.114
8	2.240	0.104	1.208	-5	14	182.143	1.208	0.104
9	2.335	0.096	1.114	-6	13	169.286	1.114	0.096
10	2.424	0.089	1.037	3	22	285.000	1.037	0.089
11	2.508	0.083	0.972	-7	12	156.429	0.972	0.083
12	2.586	0.079	0.916	-8	11	143.571	0.916	0.079
13	2.661	0.075	0.868	4	23	297.857	0.868	0.075
14	2.732	0.071	0.826	-9	10	130.714	0.826	0.071
15	2.800	0.068	0.789	-10	9	117.857	0.789	0.068
16	2.864	0.065	0.756	5	24	310.714	0.756	0.065
17	2.927	0.062	0.726	-11	8	105.000	0.726	0.062
18	2.987	0.060	0.699	-12	7	92.143	0.699	0.060
19	3.045	0.058	0.674	6	25	323.571	0.674	0.058
20	3.101	0.056	0.652	-13	6	79.286	0.652	0.056
21	3.155	0.054	0.631	-14	5	66.429	0.631	0.054
22	3.207	0.053	0.612	7	26	336.429	0.612	0.053
23	3.258	0.051	0.594	-15	4	53.571	0.594	0.051
24	3.308	0.050	0.578	-16	3	40.714	0.578	0.050
25	3.356	0.048	0.562	8	27	349.286	0.562	0.048
26	3.403	0.047	0.548	-17	2	27.857	0.548	0.047
27	3.449	0.046	0.535	-18	1	15.000	0.535	0.046


6-Hour Hydrograph per San Diego County Hydrology Manual Section 6
POC 2 Sort by Time Block.

002					/	
Time Block	PN (in)	Time (min)	Time (HH:MM)	QN (cfs)	VOL IN	CUM VOL IN
0	0.000	0.000	0:00	0.000	0.00	0.00
1	0.046	15.000	0:15	0.535	240.63	240.63
2	0.047	27.857	0:27	0.548	417.68	658.31
3	0.050	40.714	0:40	0.578	434.31	1092.61
4	0.051	53.571	0:53	0.594	452.09	1544.70
5	0.054	66.429	1:06	0.631	472.62	2017.32
6	0.056	79.286	1:19	0.652	494.79	2512.11
7	0.060	92.143	1:32	0.699	520.95	3033.06
8	0.062	105.000	1:45	0.726	549.56	3582.62
9	0.068	117.857	1:57	0.789	584.35	4166.97
10	0.071	130.714	2:10	0.826	623.06	4790.03
11	0.079	143.571	2:23	0.916	672.19	5462.22
12	0.083	156.429	2:36	0.972	728.33	6190.55
13	0.096	169.286	2:49	1.114	804.55	6995.09
14	0.104	182.143	3:02	1.208	895.58	7890.68
15	0.127	195.000	3:15	1.476	1035.36	8926.03
16	0.144	207.857	3:27	1.682	1218.08	10144.12
17	0.212	220.714	3:40	2.469	1601.01	11745.12
18	0.299	233.571	3:53	3.479	2294.27	14039.39
19	1.070	246.429	4:06	12.470	6151.75	20191.14
20	0.170	259.286	4:19	1.980	5573.73	25764.87
21	0.114	272.143	4:32	1.325	1274.95	27039.81
22	0.089	285.000	4:45	1.037	910.97	27950.78
23	0.075	297.857	4:57	0.868	734.84	28685.62
24	0.065	310.714	5:10	0.756	626.47	29312.10
25	0.058	323.571	5:23	0.674	551.60	29863.69
26	0.053	336.429	5:36	0.612	496.11	30359.80
27	0.048	349.286	5:49	0.562	453.00	30812.80

Time (HH:MM)	QN (cfs)
0:00	0.000
0:15	0.535
0:27	0.548
0:40	0.578
0:53	0.594
1:06	0.631
1:19	0.652
1:32	0.699
1:45	0.726
1:57	0.789
2:10	0.826
2:23	0.916
2:36	0.972
2:49	1.114
3:02	1.208
3:15	1.476
3:27	1.682
3:40	2.469
3:53	3.479
4:06	12.470
4:19	1.980
4:32	1.325
4:45	1.037
4:57	0.868
5:10	0.756
5:23	0.674
5:36	0.612
5:49	0.562
6:00	0.000
•	

Result is a time series for the 6-hour hydrograph.

POC 2

d		Element ID	POC0
04	4/13/2020, 12:00:00 AM	Maximum Total Inflow (cfs)	11.78
ſ	04/13/2020, 10:00:00 AM	Minimum Total Inflow (cfs)	0.00
047.10	72020, 10.00.00 AM	Event Mean Total Inflow (cfs)	0.87
		Duration of Exceedances (hrs)	N/A
0		Duration of Deficits (hrs)	N/A
(1	Number of Exceedances	N/A
		Number of Deficits	N/A
1	rage	Volume of Exceedance (f [®])	N/A
	10.55	Volume of Deficit (ft³)	N/A
	10.55	Total Inflow Volume (ft³)	31112
		Detention Storage (ft³)	151.2

Plot time series developed from the procedure in Section 6 of the San Diego County Hydrology Manual using SSA.

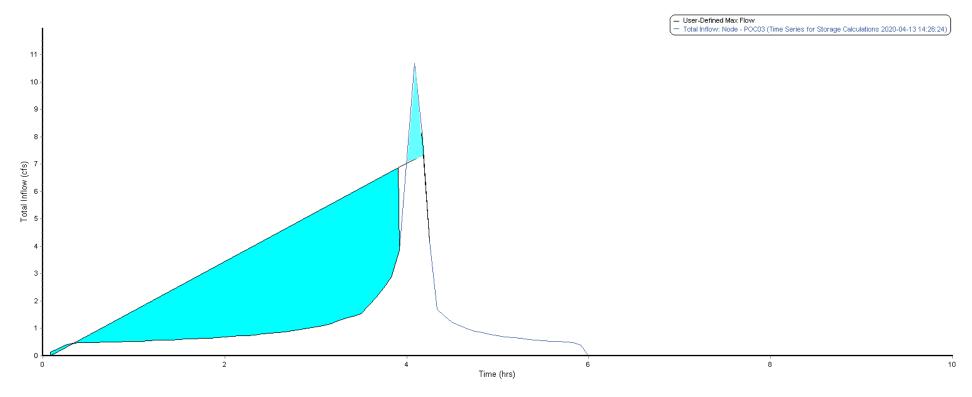
Input the existing condition peak flow for the POC to be plotted on the proposed hydrograph.

Draw straight line to the existing condition peak flow on the descending arm of the proposed 6-hour hydrograph.

Calculate area between the hydrograph and straight line as the detention volume needed to reduce the proposed peak flow.

С	0.54
Α	4.1 AC
Tc	12.408 min
P6	3.5 in
N	30
Tc used	12 min

Follow steps to build 6-hour incremental hydrograph per San Diego County Hydrology Manual Section 6.


N	PT(N) (in)	PN (in)	QN (cfs)	TCs from Center	Time block from 1	Time (min)	QN (cfs)	PN (in)
1	1.061	1.061	11.360	0	20	246.000	11.360	1.061
2	1.357	0.296	3.169	-1	19	234.000	3.169	0.296
3	1.567	0.210	2.249	-2	18	222.000	2.249	0.210
4	1.736	0.169	1.804	1	21	258.000	1.804	0.169
5	1.879	0.143	1.532	-3	17	210.000	1.532	0.143
6	2.004	0.126	1.345	-4	16	198.000	1.345	0.126
7	2.117	0.113	1.207	2	22	270.000	1.207	0.113
8	2.220	0.103	1.100	-5	15	186.000	1.100	0.103
9	2.315	0.095	1.015	-6	14	174.000	1.015	0.095
10	2.403	0.088	0.944	3	23	282.000	0.944	0.088
11	2.486	0.083	0.885	-7	13	162.000	0.885	0.083
12	2.564	0.078	0.835	-8	12	150.000	0.835	0.078
13	2.638	0.074	0.791	4	24	294.000	0.791	0.074
14	2.708	0.070	0.753	-9	11	138.000	0.753	0.070
15	2.775	0.067	0.719	-10	10	126.000	0.719	0.067
16	2.839	0.064	0.689	5	25	306.000	0.689	0.064
17	2.901	0.062	0.661	-11	9	114.000	0.661	0.062
18	2.961	0.059	0.637	-12	8	102.000	0.637	0.059
19	3.018	0.057	0.614	6	26	318.000	0.614	0.057
20	3.073	0.055	0.594	-13	7	90.000	0.594	0.055
21	3.127	0.054	0.575	-14	6	78.000	0.575	0.054
22	3.179	0.052	0.557	7	27	330.000	0.557	0.052
23	3.230	0.051	0.541	-15	5	66.000	0.541	0.051
24	3.279	0.049	0.526	-16	4	54.000	0.526	0.049
25	3.327	0.048	0.512	8	28	342.000	0.512	0.048
26	3.373	0.047	0.499	-17	3	42.000	0.499	0.047
27	3.419	0.046	0.487	-18	2	30.000	0.487	0.046
28	3.463	0.044	0.476	9	29	354.000	0.476	0.044
29	3.507	0.043	0.465	-19	1	18.000	0.465	0.043

Time Block	PN (in)	Time (min)	Time (HH:MM)	QN (cfs)	VOL IN	CUM VOL IN
0	0.042	0.000	0:00	0.000	0.00	0.00
1	0.043	18.000	0:18	0.465	250.99	250.99
2	0.046	30.000	0:30	0.487	342.69	593.67
3	0.047	42.000	0:42	0.499	355.14	948.81
4	0.049	54.000	0:54	0.526	369.27	1318.08
5	0.051	66.000	1:06	0.541	384.39	1702.46
6	0.054	78.000	1:18	0.575	401.84	2104.31
7	0.055	90.000	1:30	0.594	420.69	2525.00
8	0.059	102.000	1:42	0.637	442.94	2967.94
9	0.062	114.000	1:54	0.661	467.27	3435.21
10	0.067	126.000	2:06	0.719	496.84	3932.05
11	0.070	138.000	2:18	0.753	529.76	4461.81
12	0.078	150.000	2:30	0.835	571.53	5033.33
13	0.083	162.000	2:42	0.885	619.27	5652.60
14	0.095	174.000	2:54	1.015	684.07	6336.66
15	0.103	186.000	3:06	1.100	761.47	7098.13
16	0.126	198.000	3:18	1.345	880.31	7978.45
17	0.143	210.000	3:30	1.532	1035.68	9014.12
18	0.210	222.000	3:42	2.249	1361.26	10375.38
19	0.296	234.000	3:54	3.169	1950.70	12326.08
20	1.061	246.000	4:06	11.360	5230.53	17556.60
21	0.169	258.000	4:18	1.804	4739.07	22295.67
22	0.113	270.000	4:30	1.207	1084.02	23379.69
23	0.088	282.000	4:42	0.944	774.55	24154.25
24	0.074	294.000	4:54	0.791	624.80	24779.05
25	0.064	306.000	5:06	0.689	532.66	25311.71
26	0.057	318.000	5:18	0.614	469.00	25780.70
27	0.052	330.000	5:30	0.557	421.82	26202.52
28	0.048	342.000	5:42	0.512	385.16	26587.68
29	0.044	354.000	5:54	0.476	355.69	26943.37

Time (HH:MM)	QN (cfs)
0:00	0.000
0:18	0.465
0:30	0.487
0:42	0.499
0:54	0.526
1:06	0.541
1:18	0.575
1:30	0.594
1:42	0.637
1:54	0.661
2:06	0.719
2:18	0.753
2:30	0.835
2:42	0.885
2:54	1.015
3:06	1.100
3:18	1.345
3:30	1.532
3:42	2.249
3:54	3.169
4:06	11.360
4:18	1.804
4:30	1.207
4:42	0.944
4:54	0.791
5:06	0.689
5:18	0.614
5:30	0.557
5:42	0.512
5:54	0.476
6:00	0.000

Result is a time series for the 6-hour hydrograph.

POC 3

04/13/2020, 12:00:00 AM 04/13/2020, 10:00:00 AM
0
0
0
age
7.36

Element ID	POC03
Maximum Total Inflow (cfs)	10.68
Minimum Total Inflow (cfs)	0.00
Event Mean Total Inflow (cfs)	0.76
Duration of Exceedances (hrs)	N/A
Duration of Deficits (hrs)	N/A
Number of Exceedances	N/A
Number of Deficits	N/A
Volume of Exceedance (ft ³)	N/A
Volume of Deficit (ft³)	N/A
Total Inflow Volume (ft³)	27032.27
Detention Storage (ft³)	1238.97

Plot time series developed from the procedure in Section 6 of the San Diego County Hydrology Manual using SSA.

Input the existing condition peak flow for the POC to be plotted on the proposed hydrograph.

Draw straight line to the existing condition peak flow on the descending arm of the proposed 6-hour hydrograph.

Calculate area between the hydrograph and straight line as the detention volume needed to reduce the proposed peak flow.

ВМР	POC	Area (SF)	DCV from SWQMP (CF)	Soil Depth (ft)	Gravel Depth (ft)	Subsurface storage available for DCV (CF)	Can DCV be detained in subsurface storage?	Height of Overflow Riser (ft)	Storage Volume provided from Basin Surface to Riser (CF)
1	1	8540	3895	1.5	3.25	13664	Yes	1.5	12810
2	2	2560	2005	1.5	1.5	2304	Yes	1	2560
3A	3	2000	1848	1.5	2	2200	Yes	1	2000
3B	3	1000	1038	1.5	2	1100	Yes	1	1000

Notes:

- 1. See SWQMP for reference.
- 2. Subsurface storage available for DCV considers a void ratio of 0.2 for soil layer and 0.4 for gravel layer. An effective depth is calculated using the void ratios, and the volume is calculated as effective depth multiplied by basin area.
- 3. If DCV can be fully detained in the subsurface storage, flood control volume can begin at the basin surface.

Total Storage Tributary to Each POC				
POC	Volume (CF)			
1	12810			
2	2560			
3	3000			
4	N/A			
5	N/A			

Appendix E

Summit Drive Pipe Sizing Calculations

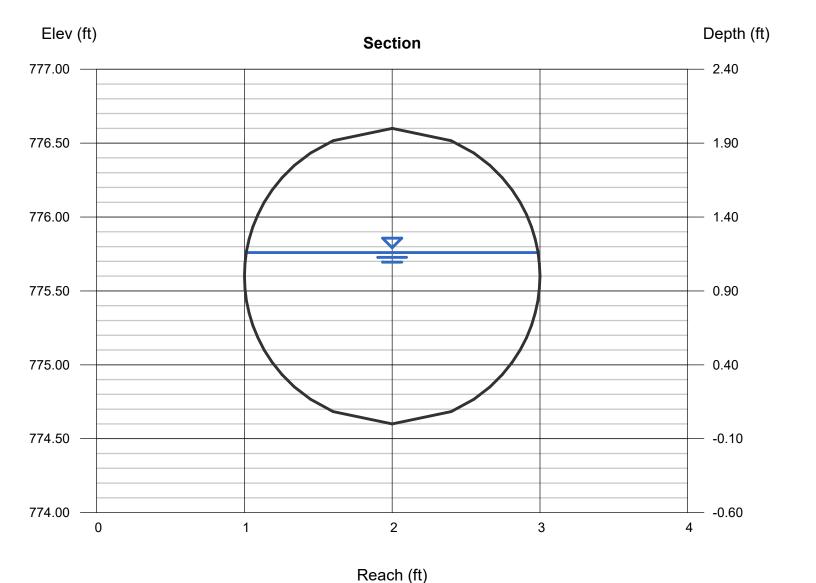
Channel Report

Compute by: Known Q (cfs)

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Known Q

= 12.47


Tuesday, Apr 14 2020

= 1.16 = 12.47 = 1.90 = 6.58 = 3.47 = 1.27 = 1.97

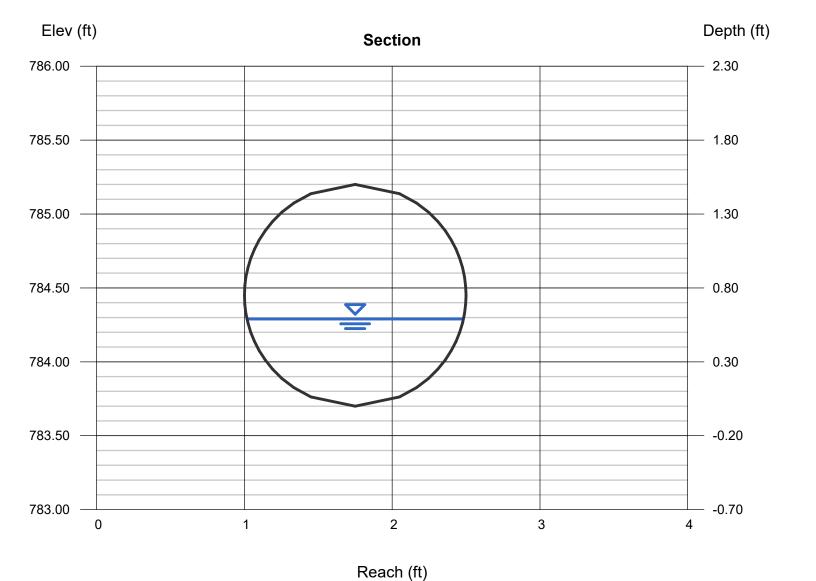
= 1.83

<Summit Estates Pipe at POC 2>

Circular		Highlighted
Diameter (ft)	= 2.00	Depth (ft)
		Q (cfs)
		Area (sqft)
Invert Elev (ft)	= 774.60	Velocity (ft/s)
Slope (%)	= 1.00	Wetted Perim (ft)
N-Value	= 0.015	Crit Depth, Yc (ft)
		Top Width (ft)
Calculations		EGL (ft)

Channel Report

Known Q (cfs)


Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

= 2.95

Tuesday, Apr 14 2020

<Summit Estates Pipe at POC 4>

Circular		Highlighted	
Diameter (ft)	= 1.50	Depth (ft)	= 0.59
		Q (cfs)	= 2.950
		Arèa (sqft)	= 0.65
Invert Elev (ft)	= 783.70	Velocity (ft/s)	= 4.54
Slope (%)	= 1.00	Wetted Perim (ft)	= 2.04
N-Value	= 0.015	Crit Depth, Yc (ft)	= 0.66
		Top Width (ft)	= 1.47
Calculations		EĠL (ft)	= 0.91
Compute by:	Known Q	,	

