6.2.7. Observation During Grading

All temporary slope excavations, including front, side and backcuts, and all cut slopes should be mapped to verify the geologic conditions that were modeled prior to grading.

6.3. Survey Control During Grading

Removal bottoms fill keys, stabilization fill keys, and backdrains should be surveyed prior to final observation and approval by the geotechnical engineer/engineering geologist in order to verify locations and gradients.

6.4. <u>Subsurface Drainage</u>

Canyon subdrains should be constructed within the major drainages which will ultimately be filled as part of the mass grading of the site. Canyon subdrains will range in diameter from 6 to 8 inches in diameter and should be constructed in accordance with Grading Detail 1 and 2, Appendix E. Final determination as to the location and the size of these subdrain systems will be dependent upon the final finished design grades. Accordingly, once more detailed plans become available site specific recommendations will be prepared regarding the size, location and extant of the subdrain system for the project.

Due to the lack of a significant backcuts and the anticipated depth of fill in the toe areas after remedial grading, the need for backdrain systems are not anticipated at the toes of constructed fill slopes or fill over cut slopes. This should be further evaluated during future grading plan reviews and during grading. Backdrains, where required, should be constructed in accordance with Grading Detail 2.

Drains should be installed behind all retaining walls.

6.5. <u>Seepage</u>

Seepage, when encountered during grading, should be evaluated by the Geotechnical Consultant. In general, seepage is not anticipated to adversely affect grading. If seepage is excessive, remedial measures such as horizontal drains or under drains may need to be installed.

Earthwork Considerations

6.6.1. Compaction Standards

All fills should be compacted at least 90 percent of the maximum dry density as determined by ASTM D1557-09. All loose and or deleterious soils should be removed to expose firm native soils or bedrock. Prior to the placement of fill, the upper 6 to 8 inches should be ripped, moisture conditioned to optimum moisture or slightly above optimum, and compacted to a minimum of 90 percent of the maximum dry density (ASTM D1557-09). Fill should be placed in thin (6 to 8-inch) lifts, moisture conditioned to optimum moisture or slightly above, and compacted to 90 percent of the maximum dry density (ASTM D1557-09) until the desired grade is achieved.

December 1, 2014

Mr. Jon Rilling Accretive Investments, Inc. 12275 El Camino Real, Suite 110 San Diego, CA 92130

RE: NGBS Section 403.3, Item 2

Dear Jon:

In response to NGBS Section 403.3, Item 2: Where practical, the proposed roads within the Lilac Hills Ranch development were designed with immense effort to keep with the existing, natural terrain as closely as possible. We would estimate that over 75% of the proposed roads are aligned with the natural topography and reduce the cut and fill by at least 20% over alternative methods providing a similar number of lots. Following the natural terrain allows for minimal cut and fill, minimal overall disturbance, minimal impacts to adjacent wetlands, and maximizes existing view corridors. Long term erosion effects are reduced by the use of terracing, retaining walls, landscaping, and restabilization techniques. Several design iterations were analyzed and the least impactful alternative yielding a comparable number of lots was selected. The project would therefore meet NGBS Criteria 403.3 (2-c).

If you have any particular questions or require additional information, please do not hesitate to call.

Sincerely,

LANDMARK CONSULTING

Mark A. Brencick, P.E., P.L.S.

President

Major Stormwater Management Plan (Major SWMP) For LILAC HILLS RANCH-IMPLEMENTING TM TM – 5572 RPL-3 Valley Center, San Diego County, California

Preparation/Revision Date: 5-3-13

Prepared for:

Accretive Investments, Inc. 12275 El Camino Real, Suite 110 San Diego, Ca 92130

Prepared by:

Landmark Consulting 9555 Genesee Ave. Ste. 200 San Diego, Ca 92121 858-587-8070

The selection, sizing, and preliminary design of stormwater treatment and other control measures in this plan have been prepared under the direction of the following Registered Civil Engineer and meet the requirements of Regional Water Quality Control Board Order R9-2007-0001 and subsequent amendments.

David Yeh, RCE 62717, Exp 6-30- 14	5-3-13
	Date

STEP 5

LID AND SITE DESIGN STRATEGIES

Each numbered item below is a Low Impact Development (LID) requirement of the WPO. Please check the box(s) under each number that best describes the LID BMP(s) and Site Design Strategies selected for this project.

TABLE 8: LID AND SITE DESIGN

1. Conserve natural Areas, Soils, and Vegetation
☑ Preserve well draining soils (Type A or B)
Preserve Significant Trees
☐ Preserve critical (or problematic) areas such as floodplains, steep slopes, wetlands, and areas with erosive or unstable soil conditions
☐ Other. Description:
2. Minimize Disturbance to Natural Drainages
☑ Set-back development envelope from drainages
☐ Restrict heavy construction equipment access to planned green/open space areas
☐ Other. Description:
3. Minimize and Disconnect Impervious Surfaces (see 5)
☑ Clustered Lot Design
☐ Items checked in 5?
☐ Other. Description:
4. Minimize Soil Compaction
☑ Restrict heavy construction equipment access to planned green/open
space areas
☑ Re-till soils compacted by construction vehicles/equipment
☐ Collect & re-use upper soil layers of development site containing organic Materials
☐ Other. Description:
5. Drain Runoff from Impervious Surfaces to Pervious Areas
LID Street & Road Design
☐ Curb-cuts to landscaping
☐ Rural Swales
☐ Concave Median
☐ Cul-de-sac Landscaping Design
Other. Description: all runoff from streets and roadways are conveyed to proposed detention basins for settling and filtration prior to discharge off-site.
LID Parking Lot Design
☐ Permeable Pavements

X	Curb-cuts to landscaping
	Other. Description:
LI	D Driveway, Sidewalk, Bike-path Design
	Permeable Pavements
X	Pitch pavements toward landscaping
	Other. Description:
LI	D Building Design
	Cisterns & Rain Barrels
	Downspout to swale
	Vegetated Roofs
	Other. Description:
LI	D Landscaping Design
X	Soil Amendments
X	Reuse of Native Soils
X	Smart Irrigation Systems
X	Street Trees
	Other. Description:
6. Mini	mize erosion from slopes
X	Disturb existing slopes only when necessary
(X)	Minimize cut and fill areas to reduce slope lengths
×	Incorporate retaining walls to reduce steepness of slopes or to shorten slopes
(X)	Provide benches or terraces on high cut and fill slopes to reduce concentration
of	flows
(X)	Rounding and shaping slopes to reduce concentrated flow
X	Collect concentrated flows in stabilized drains and channels
	Other. Description:

CREDIT 403.3 (3)

VI. General Maintenance Requirements:

BMP CATEGORY (FIRST)	MAINTENANCE ACTIVITIES	ANNUAL COST
BIO-FILTERATION AREAS	 CUT VEGETATION IN CHANNEL TO 8" or 6" HEIGHT RESEED/VEGETATE BARE SPOTS AS NECESSARY REMOVE SEDIMENT FROM CHANNEL AS NECESSARY BACKFILL BURROW HOLES AS NECESSARY 	\$38,500
	TOTAL	\$ 38,500
MAINTENANCE RESPONSIBILITY	The County should have only minimal concern for ongoing maintenance. The property owners and HOA can naturally be expected to do so as a requirement of taking care of their property.	
BMP CATEGORY (THIRD)	MAINTENANCE ACTIVITIES	ANNUAL COST
DETENTION BASIN (1 total)	 CUT VEGETATION IN BASIN TO 8" HEIGHT RESEED/VEGETATE BARE SPOTS AS NECESSARY REMOVE SEDIMENT FROM BASIN AS NECESSARY INSPECT STRUCTURAL INTEGRITY BACKFILL BURROW HOLES AS NECESSARY 	
MAINTENANCE RESPONSIBILITY	The County needs to assure ongoing maintenance is heightened, to the point that the County is willing to take on this responsibility. The master HOA will be primarily responsible for maintenance. A permanent funding mechanism needs to be established. A special assessment district will be established for this project, the assessment will be collected with property tax.	
	TOTAL	\$10,000
BMP CATEGORY (SECOND)	MAINTENANCE ACTIVITIES	ANNUAL COST
FOSSIL FILTER INSERTS	 INSPECT UNIT INTEGRITY REMOVED ACCUMULATED SEDIMENT AND DIPOSE OF PROPERLY REPLACE HYDROCARBON BOOM AS NECESSARY 	
MAINTENANCE RESPONSIBILITY	The Developer would provide the County with security to substantiate the maintenance agreement; security would remain in place for an interim period of 5 years. The amount of the security would equal the estimated cost of 2 years of maintenance activities. The security can be a Cash Deposit, Letter of Credit or other acceptable to the County. If at any time, owners fail to maintain BMPs and the County must perform any of the maintenance activities, then owners shall pay all of County's costs incurred in performing the maintenance as defined in the maintenance agreement.	
	TOTAL	\$12,000
	GRAND TOTAL	\$60,500

NGBS Credit

403.4 Soil disturbance and erosion. A site Stormwater Pollution Prevention Plan (SWPPP) is developed in accordance with applicable stormwater Construction General Permits. The plan includes one or more of the following:

(1) Construction activities are scheduled to minimize length of time that soils are exposed.

APPLICANT RESPONSE

See attached County of San Diego Stormwater Construction Requirements, which states:

"Grading and clearing should be phased to reduce the amount and the duration of sediment exposure. If possible schedule grading during the dry season (Mid-April through October), particularly avoiding December through February." Page 3.

(3) Limits of clearing and grading are demarcated in the plan.

APPLICANT RESPONSE

The following site specific development plans show the limits of clearing and grading:

Master Preliminary Grading Plan (Sheets 2 and 3)

Specific Plan (Figure 65)

Further, in the County of San Diego, for any project that requires grading associated with a discretionary permit, as a condition of approval, all environmentally sensitive areas must be identified and protected with a physical barrier prior to construction. On this project, the environmentally sensitive areas define the limits of clearing/grading. Therefore, the limits of clearing will be staked prior to construction so the physical barrier around the environmentally sensitive areas can be installed.

Stormwater Management Requirements For Construction & Grading

County of San Diego

November 2002

Stormwater Pollution

When rain flows over streets and other surfaces, it picks up pollutants and carries them into the stormwater conveyance ("storm drain") system. The storm drain system is designed to prevent flooding by transporting water away from urban areas. Unfortunately, this water and all the contaminants it contains eventually flow to our streams, lakes, and the ocean where we swim and fish. Once there, polluted runoff can harm wildlife and their habitats. In some cases, it can even cause beach closures or make our fish and shellfish unsafe to eat.

Your Responsibilities

The County of San Diego Watershed Protection Ordinance prohibits the discharge of pollutants to the storm drain system. Simply stated, only rain may legally enter the storm drain. As a construction site owner or operator, you are legally responsible for ensuring that sediment and other construction-related pollutants are properly managed. This means that pollutants from your site may not enter the storm drain system or any receiving water (such as creeks, streams, etc.) either directly or indirectly. You can also be held responsible for discharges or environmental damage caused by your employees or subcontractors.

Contents:

Best Management Practices	2
Planning	3
Erosion Control	3
Flow Control	6
Sediment Control	9
Site Management	13
Materials and Waste Management	14
Example Stormwater Management Plan	15

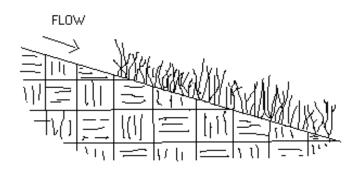
Construction Project Requirements

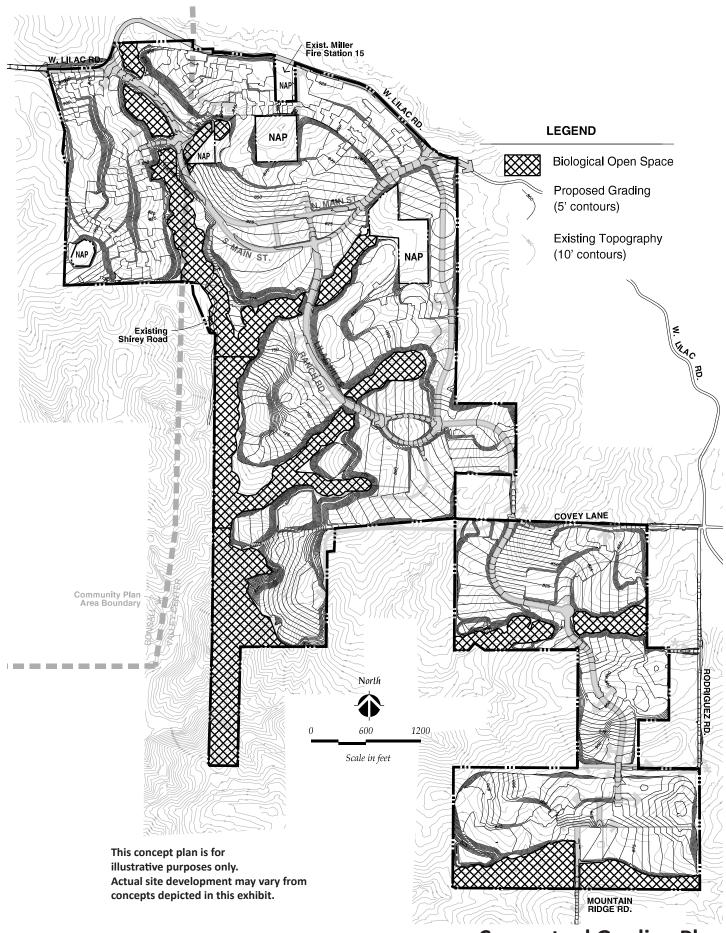
The County of San Diego has initiated a construction conditioning process to prevent discharges of pollutants from construction sites. Construction activities, such as mass grading, clearing and grubbing, remove vegetation and disrupt the structure of the soil surface. This disruption leaves the soil susceptible to erosion from rainfall, wind or excessive or improper water use. Sediment, from land disturbing activities, is a common component of stormwater. Sediment is a pollutant, and can be detrimental to aquatic life by interfering with photosynthesis, respiration, growth and reproduction. Grading and clearing activities cause rain to runoff a project site at higher velocities than a site with natural vegetation.

STEP 1. PLANNING AND SCHEDULING

Planning and scheduling should always be a part of your stormwater management plan strategy. Effective planning can greatly reduce the need for other costly and time-consuming solutions. It can also save you considerable time and money. Whenever possible, plan your project to utilize existing topography, drainage patterns, and vegetation. This will significantly reduce the potential for erosion both during and after construction.

Grading and clearing should be phased to reduce the amount and the duration of sediment exposure. If possible schedule grading during the dry season (Mid-April through October), particularly avoiding December through February. Always be aware of forecasted weather conditions prior to any scheduled grading or clearing activities.


For weather forecasts, contact the National Weather Service at (619) 289-1212 or visit their web page http://www.wrh.noaa.gov/sandiego/index2.html


STEP 2. EROSION CONTROL

The County Grading Ordinance requires that slopes be stabilized as soon as they are created to increase their resistance to erosion. When permanent stabilization of slopes or other exposed surfaces is not yet feasible, temporary measures should always be used. A number of practical BMPs are below.

<u>Preservation of Existing Vegetation.</u> Leaving existing vegetation (trees, vines, shrubs, grasses, etc.) in place can minimize the potential for erosion. On a construction site, where extensive land disturbance is necessary, a reasonable BMP would be to not disturb land in sensitive areas that need not be altered for the project to be viable. Designing the site to incorporate particularly unique or desirable existing vegetation into the site-landscaping plan, will not only prevent erosion, it will be aesthetically pleasing.

Seeding and Planting. Seeding of grasses, sodding, planting trees, shrubs, vines and ground cover can provide long-term stabilization of slopes and soils. Permanent seeding and planting contributes to long-term site aesthetics and helps reduce erosion by reducing the velocity of runoff, allowing infiltration, filtering sediments, and by holding soil particles in place.

Conceptual Grading Plan

LILAC HILLS RANCH SPECIFIC PLAN

DRAFT FIGURE 65

A CEQA LEVEL OF PRELIMINARY DRAINAGE REPORT FOR:

LILAC HILLS RANCH MASTER TM TM 5571 RPL-3

San Diego County, California

PREPARED FOR:

Accretive Investments, Inc 12275 El Camino Real, Suite 110 San Diego, Ca 92130

PREPARED BY:

Landmark Consulting 9555 Genesee Ave. Ste. 200 San Diego, Ca 92121 858-587-8070

Rev. Date: 5-3-13

PEAK DISCHARGE RATE (unmitigated)

DIS- CHARGE		PRE-DE	VELOP	MENT CO	NDITIC	NS	DIS-CHARGE POINT	PC	OST-DE	VELOP	MENT CO	NDITIC	NS	PROPOSED MITIGATION
POINT	С	Тс	I	A	V	Q		С	Тс	I	A	V	Q	(for velocity only)
Node 150	0.36	34.18	2.67	617.5	2.93	530.84	Node 1131	0.36	21.48	3.6	598	2.4	933.0	Discharge into existing natural channel, no increase in velocity, no mitigation required
Node 2 23	0.30	25.47	3.23	520.30	15.2	526.19	Node 248	0.35	16.58	4.2	509.3	9.1	789.4	Discharge into existing natural channel, no increase in velocity, no mitigation required
Node 313	0.30	35.07	2.74	238.30	5.15	193.65	Node 327	0.30*	37.1	2.5	242.3	29.9	242.1	Riprap will be placed at discharge point

[•] From immediate upstream tributary area.

RUNOFF VOLUME

	BASIN 100	BASIN 200	BASIN 300
PRE-DEV (Ac-Ft)	320.2	267.3	123
POST-DEV(Ac-Ft)	345.3	249.4	132.9
REQUIRED DETENTION			
VOL(Ac-Ft)	25.1	-17.9	9.9

Riprap will be placed at all internal discharge points, downstream from proposed pipes and ditches, etc. the sizing of riprap will be determined during final engineering.

The proposed detention pond for each sub-basin is adequately size to store all the excessive runoff volume. Their outlet structures will restrict the peak runoff rate exiting these ponds at or below that of under the pre-development conditions. Based on the proposed mitigation facilities – detention ponds in the volume of 26.0Ac-ft, 2.77 Ac-ft (for hydromodification mitigation only), and 10.0Ac-ft for Sub-basins 100, 200 and 300, respectively. The proposed development will not adversely affect the downstream drainage facilities.

A CEQA LEVEL OF PRELIMINARY DRAINAGE REPORT FOR:

LILAC HILLS RANCH IMPLEMENTING TM TM 5572 RPL-3

San Diego County, California

PREPARED FOR:

Accretive Capital Partners, LLC 3655 Nobel Drive, Suite 650 San Diego, Ca 92122

PREPARED BY:

Landmark Consulting 9555 Genesee Ave. Ste. 200 San Diego, Ca 92121 858-587-8070 Rev. date: 5-3-13

PEAK DISCHARGE RATE

DIS- CHARGE		PRE-DE	VELOP	MENT CO	NDITIC	NS	DIS-CHARGE POINT	P	OST-DE	VELOP	MENT CO	ONDITIO	ONS	PROPOSED MITIGATION
POINT	С	Tc	I	A	V	Q	1	С	Tc	I	A	V	Q	MITIGATION
		(Min)	(in)	(Ac)	(fps)	(cfs)			(Min)	(in)	(Ac)	(fps)	(cfs)	
Node 118	0.30	27.8	3.04	395.5	7.3	384.7	Node 1132	0.30	19.5	4.5	391	7.5*	482.9*	Runoff is
														directed into a proposed detention with a restricted outlet structure such that the discharge from the detention basin is at or less than that of the predevelopment conditions.

^{*}unmitigated velocity and runoff rate

RUNOFF VOLUME

	BASIN 100
PRE-DEV (Ac-Ft)	141.1
POST-DEV(Ac-Ft)	150.5
DETENTION VOL(Ac-Ft)	9.4
DESIGN VOL (Ac-Ft)	12.5

The proposed detention pond for each sub-basin is adequately size to store all the excessive runoff volume. Their outlet structures will restrict the peak runoff rate exiting these ponds at or below that of under the pre-development conditions. Based on the minimum volume requirement —a detention pond in the volume of 12.5 Ac-Ft is proposed for the development. The proposed detention basin has adequate storage volume to hold the entire excess runoff from the proposed development, the outlet structure will be designed to release no more than 78 cfs to from the detention basin such that the total peak discharge from the entire project site at the final discharge point is less than that of the predevelopment conditions. The proposed development will not adversely affect the downstream drainage facilities.

Major Stormwater Management Plan (Major SWMP) For LILAC HILLS RANCH-MASTER TM TM – 5571 RPL-3 Valley Center, San Diego County, California

Preparation/Revision Date: 5-3-13

Prepared for:

Accretive Investments, Inc. 12275 El Camino Real, Suite 110 San Diego, Ca 92130

Prepared by:

Landmark Consulting 9555 Genesee Ave. Ste. 200 San Diego, Ca 92121 858-587-8070

The selection, sizing, and preliminary design of stormwater treatment and other control measures in this plan have been prepared under the direction of the following Registered Civil Engineer and meet the requirements of Regional Water Quality Control Board Order R9-2007-0001 and subsequent amendments.

David Yeh, RCE 62717, Exp 6-30- 14	5-3-13	
	Date	

STEP 7

LID AND TREATMENT CONTROL SELECTION

A treatment control BMP and/or LID facility must be selected to treat the project pollutants of concern identified in Table 7 "Project Pollutants of Concern". A treatment control facility with a high or medium pollutant removal efficiency for the project's most significant pollutant of concern shall be selected. It is recommended to use the design procedure in Chapter 4 of the SUSMP to meet NPDES permit LID requirements, treatment requirements, and flow control requirements. If your project does not utilize this approach, the project will need to demonstrate compliance with LID, treatment and flow control requirements. Review Chapter 2 "Selection of Stormwater Treatment Facilities" in the SUSMP to assist in determining the appropriate treatment facility for your project.

Will this project be utilizing the unified LID design procedure as described in Chapter 4 of the Local SUSMP? (If yes, please document in Attachment D following the steps in Chapter 4 of the County SUSMP)						
Yes						
If this project is not utilizing the unified LID design procedure, please describe how the						
alternative treatment facilities will comply with	applicable LID criteria, stormwater treatment					
criteria, and hydromodification management c	riteria.					

Indicate the project pollutants of concern (POCs) from Table 7 in Column 2 below.

TABLE 10: GROUPING OF POTENTIAL POLLUTANTS of Concern (POCs) by fate during stormwater treatment

Pollutant	Check	Coarse Sediment and Trash	Pollutants that tend	Pollutants that tend
	Project		to associate with	to be dissolved
	Specific		fine particles during	following treatment
	POCs		treatment	
Sediment	X	X	X	
Nutrients	X		X	X
Heavy Metals	X		X	
Organic Compounds	X		X	
Trash & Debris	X	X		
Oxygen Demanding	X		X	
Bacteria			X	
Oil & Grease	X		X	
Pesticides	X		X	

> Indicate the treatment facility(s) chosen for this project in the following table.

TABLE 11: GROUPS OF POLLUTANTS and relative effectiveness of treatment facilities

Pollutants of	Bioretention	Settling	Wet Ponds	Infiltration	Media	Higher-	Higher-	Trash Racks	Vegetated
Concern	Facilities	Basins	and	Facilities	Filters	rate	rate media	& Hydro	Swales
	(LID)	(Dry	Constructed	or		biofilters*	filters*	-dynamic	
		Ponds)	Wetlands	Practices				Devices	
				(LID)					
Coarse	High	High	High	High	High	High	High	High	High
Sediment			O	mana Cam			, ,	0	0
and Trash									
Pollutants	High	High	High	High	High	Medium	Medium	Low	Medium
that tend to	1 mgm	1 mgm	riigii	ingii	Tingii	iviculum	iviculum	Low	Medium
COUNTY OF THE PROPERTY OF THE									
associate	1								
with fine							8		
particles			4.						
during									
treatment									
Pollutants	Medium	Low	Medium	High	Low	Low	Low	Low	Low
that tend to								10 -51 35	
be dissolved									
following									
treatment									

➤ Please check the box(s) that best describes the Treatment BMP(s) and/or LID BMP selected for this project.

TABLE 12: PROJECT LID AND TC-BMPS

LID and TC-BMP Type	Water Quality Treatment Only	Hydromodification Flow Control
Bioretention Facilites (LID)		
☑ Bioretention area	X	
☐ Flow-through Planter		
☐ Cistern with Bioretention		
Settling Basins (Dry Ponds)		
☑ Extended/dry detention basin with	X	X
grass/vegetated lining		
■ Extended/dry detention basin with impervious	X	
lining		
Infiltration Devices (LID)		SX.
☐ Infiltration basin		
☐ Infiltration trench		
☐ Other		
Wet Ponds and Constructed Wetlands		
☐ Wet pond/basin (permanent pool)		
☐ Constructed wetland		
Vegetated Swales (LID ⁽¹⁾)		
☐ Vegetated Swale		

Media Filters		
☐ Austin Sand Filter		
☐ Delaware Sand Filter		
☐ Multi-Chambered Treatment Train (MCTT)		
Higher-rate Biofilters		
☐ Tree-pit-style unit		
☐ Other		
Higher-rate Media Filters		
☐ Vault-based filtration unit with replaceable		
cartridges		
☐ Other	-	
Hydrodynamic Separator Systems		
☐ Swirl Concentrator		
□ Cyclone Separator		
Trash Racks		
🗆 Catch Basin Insert		
□ Catch Basin Insert w/ Hydrocarbon boom		
Other_	-	

⁽¹⁾ Must be designed per SUSMP "Vegetated Swales" design criteria for water quality treatment credit (p. 65)

For design guidelines and calculations refer to Chapter 4 "Low Impact Development Design Guide" in the SUSMP. Please show all calculations and design sheets for all treatment facilities proposed in Attachment D.

Create a Construction Plan SWMP Checklist for your project.

Instructions on how to fill out table

- 1. Number and list each measure or BMP you have specified in your SWMP in Columns 1 and Maintenance Category in Column 3 of the table. Leave Column 2 blank.
- 2. When you submit construction plans, duplicate the table (by photocopy or electronically). Now fill in Column 2, identifying the plan sheets where the BMPs are shown. List all plan sheets on which the BMP appears. This table must be shown on the front sheet of the grading and improvement plans.

	Stormwat	er Treatment Control and LID BM	P's
Description / Type	Sheet	Maintenance Category	Revisions
Bioretention Area		1	
Settling Basin - Detention			
Basins w/vegetated lining			
Settling Basin – Dry			
Detention Basin with			
Impervious lining (Sediment			
Traps)	A TIME TO SERVE THE TOTAL PROPERTY.	3	

The selected vegetated swales have high efficiency treating sediments (pollutant of concern per www.projectcteanwater.org) and trash& debris, median efficiency treating all other types of pollutants, including nutrients and bacteria & viruses (pollutants of concern per www.projectcleanwater.org). The proposed vegetated swales along with landscaped areas will also provide water quality runoff retention storage space within the porous spaces in the underlying soft soil, and over time, allowing the water quality runoff volume to slowing infiltrating into the compacted soil. The bioretention and infiltration capabilities of the proposed vegetated swale and landscaped areas have high efficiencies in removed all anticipated and potential pollutants associated with the proposed grading construction.

STEP 8

OPERATION AND MAINTENANCE

> Please check the box that best describes the maintenance mechanism(s) for this project.

TABLE 13: PROJECT BMP CATEGORY

CATEGORY	SELECTED		BMP Description
CATEGORI	YES	NO	
First	X		Irrigation and Bioretention, Detention
Second ¹	X		Basins, sediment traps
Third ²	X		
Fourth			

Note:

- 1. A recorded maintenance agreement will be required.
- 2. Project will be required to establish or be included in a Stormwater Maintenance Assessment District for the long-term maintenance of treatment BMPs.
- ➤ Please list all individual LID and Treatment Control BMPs (TC-BMPs) incorporated into project. Please ensure the "BMP Identifier" is consistent with the legend in Attachment C "LID and/or TC-BMP Exhibit". Please attach the record plan sheets upon completion of project and amend the Major SWMP where appropriate. For each type of LID or TC-BMP provide an inspection sheet in Attachment F "Maintenance Plan".

TABLE 14: PROJECT SPECIFIC LID AND TC-BMPS

BMP	LID or TC-BMP	BMP Pollutant	Final	Final Construction
Identifier*	Type	of Concern	Construction Date	Inspector Name
		Efficiency	(to be completed by	(to be completed by County
		(H,M,L)	County inspector)	inspector)
		Table 11		
Irrigation	Irrigation and	Sediment (H)		
and	Bioretention	Nutrients (H)		
Bioretention		Bacteria &		
in		Viruses (H)		
landscaped				
areas				
Detention	Settling and	Sediment (H)		
basins	filtration	Nutrients (H)		
		Bacteria &		
		Viruses (H)		
Sediment	Settling	Sediment (H)		
Traps		Nutrients (H)		
		Bacteria &		
		Viruses (H)		

Responsible Party for Long-term Maintenance:

Identify the parties responsible for long-term maintenance of the BMPs identified above and Source Controls specified in Attachment B. Include the appropriate written agreement with the entities responsible for O&M in Attachment F. Please see Chapter 5 "Private Ownership and Maintenance" on page 94 of the County SUSMP for appropriate maintenance mechanisms.

Name:	Randy Goodson	
Company Name:	Accretive Capital Partners, LLC	
Phone Number:	858-546-0700	
Street Address:	3655 Nobel Drive, Suite 650	
City/State/Zip:	San Diego, Ca 92122	
Email Address:		

Funding Source:

Provide the funding source or sources for long-term operation and maintenance of each BMP identified above. By certifying the Major SWMP the applicant is certifying that the funding responsibilities have been addressed and will be transferred to future owners.

The primary funding mechanism will be a special assessment under the authority of the Flood Control District. The assessment will be collected with property tax. Because this primary funding mechanism will require substantial amount of time to establish and collect assessments, a developer fee is required to cover the initial maintenance period of 24 months

ATTACHMENTS

Please include the following attachments.

	ATTACHMENT	COMPLETED	N/A
A	Project Location Map	X	
В	Source Control Exhibit	X	
С	LID and/or TC-BMP Exhibit	X	
D	Drainage Management Area (DMA) Maps,	X	
	Sizing Design Calculations and BMP/IMP		
ļ	Design Details		
E	Geotechnical Certification Sheet		X
F	Maintenance Plan	X	
G	Tracking Report	X	
H	Addendum		

Note: Attachments B and C may be combined.

Retention/Irrigation

TC-12

Description

Retention/irrigation refers to the capture of stormwater runoff in a holding pond and subsequent use of the captured volume for irrigation of landscape of natural pervious areas. This technology is very effective as a stormwater quality practice in that, for the captured water quality volume, it provides virtually no discharge to receiving waters and high stormwater constituent removal efficiencies. This technology mimics natural undeveloped watershed conditions wherein the vast majority of the rainfall volume during smaller rainfall events is infiltrated through the soil profile. Their main advantage over other infiltration technologies is the use of an irrigation system to spread the runoff over a larger area for infiltration. This allows them to be used in areas with low permeability soils.

Capture of stormwater can be accomplished in almost any kind of runoff storage facility, ranging from dry, concrete-lined ponds to those with vegetated basins and permanent pools. The pump and wet well should be automated with a rainfall sensor to provide irrigation only during periods when required infiltration rates can be realized. Generally, a spray irrigation system is required to provide an adequate flow rate for distributing the water quality volume (LCRA, 1998). Collection of roof runoff for subsequent use (rainwater harvesting) also qualifies as a retention/irrigation practice.

This technology is still in its infancy and there are no published reports on its effectiveness, cost, or operational requirements. The guidelines presented below should be considered tentative until additional data are available.

California Experience

This BMP has never been implemented in California, only in the Austin, Texas area. The use there is limited to watersheds where no increase in pollutant load is allowed because of the sensitive nature of the watersheds.

Advantages

 Pollutant removal effectiveness is high, accomplished primarily by: (1) sedimentation in the primary storage facility; (2) physical filtration of particulates through the soil profile; (3) dissolved constituents uptake in the vegetative root zone by the soil-resident microbial community.

Design Considerations

- Soil for Infiltration
- Area Required
- Slope
- Environmental Side-effects

Ta	rgeted Const	ituents
$ \sqrt{} $	Sediment	
\checkmark	Nutrients	-
\checkmark	Trash	
$ \mathbf{V} $	Metals	
\checkmark	Bacteria	=
\checkmark	Oil and Grease	
\checkmark	Organics	
Leg	end (Removal Effect	iveness)
•	Low	High
\blacktriangle	Medium	

TC-12

Retention/Irrigation

The hydrologic characteristics of this technique are effective for simulating pre-developed watershed conditions through: (1) containment of higher frequency flood volumes (less than about a 2-year event); and (2) reduction of flow rates and velocities for erosive flow events.

- Pollutant removal rates are estimated to be nearly 100% for all pollutants in the captured
 and irrigated stormwater volume. However, relatively frequent inspection and maintenance
 is necessary to assure proper operation of these facilities.
- This technology is particularly appropriate for areas with infrequent rainfall because the system is not required to operate often and the ability to provide stormwater for irrigation can reduce demand on surface and groundwater supplies.

Limitations

- Retention-irrigation is a relatively expensive technology due primarily to mechanical systems, power requirements, and high maintenance needs.
- Due to the relative complexity of irrigation systems, they must be inspected and maintained at regular intervals to ensure reliable system function.
- Retention-irrigation systems use pumps requiring electrical energy inputs (which cost
 money, create pollution, and can be interrupted). Mechanical systems are also more
 complex, requiring skilled maintenance, and they are more vulnerable to vandalism than
 simpler, passive systems.
- Retention-irrigation systems require open space for irrigation and thus may be difficult to retrofit in urban areas.
- Effective use of retention irrigation requires some form of pre-treatment of runoff flows (i.e., sediment forebay or vegetated filter) to remove coarse sediment and to protect the long-term operating capacity of the irrigation equipment.
- Retention/irrigation BMPs capture and store water that, depending on design may be accessible to mosquitoes and other vectors for breeding.

Design and Sizing Guidelines

- Runoff Storage Facility Configuration and Sizing Design of the runoff storage facility is flexible as long as the water quality volume and an appropriate pump and wet well system can be accommodated.
- Pump and Wet Well System A reliable pump, wet well, and rainfall or soil moisture sensor system should be used to distribute the water quality volume. These systems should be similar to those used for wastewater effluent irrigation, which are commonly used in areas where "no discharge" wastewater treatment plant permits are issued.
- Detention Time The irrigation schedule should allow for complete drawdown of the water quality volume within 72 hours. Irrigation should not begin within 12 hours of the end of rainfall so that direct storm runoff has ceased and soils are not saturated. Consequently, the length of the active irrigation period is 60 hours. The irrigation should include a cycling factor of 42, so that each portion of the area will be irrigated for only 30 hours during the

total of 60 hours allowed for disposal of the water quality volume. Irrigation also should not occur during subsequent rainfall events.

- Irrigation System Generally a spray irrigation system is required to provide an adequate flow rate for timely distribution of the water quality volume.
- Designs that utilize covered water storage should be accessible to vector control personnel
 via access doors to facilitate vector surveillance and control if needed.
- Irrigation Site Criteria The area selected for irrigation must be pervious, on slopes of less than 10%. A geological assessment is required for proposed irrigation areas to assure that there is a minimum of 12 inches of soil cover. Rocky soils are acceptable for irrigation; however, the coarse material (diameter greater than 0.5 inches) should not account for more than 30% of the soil volume. Optimum sites for irrigation include recreational and greenbelt areas as well as landscaping in commercial developments. The stormwater irrigation area should be distinct and different from any areas used for wastewater effluent irrigation. Finally, the area designated for irrigation should have at least a 100-foot buffer from wells, septic systems, and natural wetlands.
- Irrigation Area The irrigation rate must be low enough so that the irrigation does not produce any surface runoff; consequently, the irrigation rate may not exceed the permeability of the soil. The minimum required irrigation area should be calculated using the following formula:

$$A = \frac{12 \times V}{T \times r}$$

where:

A = area required for irrigation (ft2)

V = water quality volume (ft3)

T = period of active irrigation (30 hr)

r = Permeability (in/hr)

- The permeability of the soils in the area proposed for irrigation should be determined using a double ring infiltrometer (ASTM D 3385-94) or from county soil surveys prepared by the Natural Resource Conservation Service. If a range of permeabilities is reported, the average value should be used in the calculation. If no permeability data is available, a value of 0.1 inches/hour should be assumed.
- It should be noted that the minimum area requires intermittent irrigation over a period of 60 hours at low rates to use the entire water quality volume. This intensive irrigation may be harmful to vegetation that is not adapted to long periods of wet conditions. In practice, a much larger irrigation area will provide better use of the retained water and promote a healthy landscape.

Retention/Irrigation

Performance

This technology is still in its infancy and there are no published reports on its effectiveness, cost, or operational requirements.

Siting Criteria

Capture of stormwater can be accomplished in almost any kind of runoff storage facility, ranging from dry, concrete-lined ponds to those with vegetated basins and permanent pools. Siting is contingent upon the type of facility used.

Additional Design Guidelines

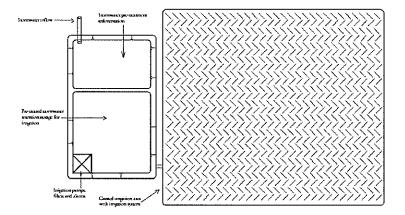
This technology is still in its infancy and there are no published reports on its effectiveness, cost, or operational requirements.

Maintenance

Relatively frequent inspection and maintenance is necessary to verify proper operation of these facilities. Some maintenance concerns are specific to the type or irrigation system practice used.

BMPs that store water can become a nuisance due to mosquito and other vector breeding. Preventing mosquito access to standing water sources in BMPs (particularly below-ground) is the best prevention plan, but can prove challenging due to multiple entrances and the need to maintain the hydraulic integrity of the system. Reliance on electrical pumps is prone to failure and in some designs (e.g., sumps, vaults) may not provide complete dewatering, both which increase the chances of water standing for over 72 hours and becoming a breeding place for vectors. BMPs that hold water for over 72 hours and/or rely on electrical or mechanical devices to dewater may require routine inspections and treatments by local mosquito and vector control agencies to suppress mosquito production. Open storage designs such as ponds and basins (see appropriate fact sheets) will require routine preventative maintenance plans and may also require routine inspections and treatments by local mosquito and vector control agencies.

Cost


This technology is still in its infancy and there are no published reports on its effectiveness, cost, or operational requirements. However, O&M costs for retention-irrigation systems are high compared to virtually all other stormwater quality control practices because of the need for: (1) frequent inspections; (2) the reliance on mechanical equipment; and (3) power costs.

References and Sources of Additional Information

Barrett, M., 1999, Complying with the Edwards Aquifer Rules: Technical Guidance on Best Management Practices, Texas Natural Resource Conservation Commission Report RG-348. http://www.tnrcc.state.tx.us/admin/topdoc/rg/348/index.html

Lower-Colorado River Authority (LCRA), 1998, Nonpoint Source Pollution Control Technical Manual, Austin, TX.

Metzger, M. E., D. F. Messer, C. L. Beitia, C. M. Myers, and V. L. Kramer. 2002. The dark side of stormwater runoff management: disease vectors associated with structural BMPs. Stormwater 3(2): 24-39.

Infiltration Trench

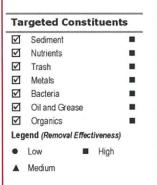
TC-10

Design Considerations

- Accumulation of Metals
- Clogged Soil Outlet Structures
- Vegetation/Landscape Maintenance

Description

An infiltration trench is a long, narrow, rock-filled trench with no outlet that receives stormwater runoff. Runoff is stored in the void space between the stones and infiltrates through the bottom and into the soil matrix. Infiltration trenches perform well for removal of fine sediment and associated pollutants. Pretreatment using buffer strips, swales, or detention basins is


Pretreatment using buffer strips, swales, or detention basins is important for limiting amounts of coarse sediment entering the trench which can clog and render the trench ineffective.

California Experience

Caltrans constructed two infiltration trenches at highway maintenance stations in Southern California. Of these, one failed to operate to the design standard because of average soil infiltration rates lower than that measured in the single infiltration test. This highlights the critical need for appropriate evaluation of the site. Once in operation, little maintenance was required at either site.

Advantages

- Provides 100% reduction in the load discharged to surface waters.
- An important benefit of infiltration trenches is the approximation of pre-development hydrology during which a significant portion of the average annual rainfall runoff is infiltrated rather than flushed directly to creeks.
- If the water quality volume is adequately sized, infiltration trenches can be useful for providing control of channel forming (erosion) and high frequency (generally less than the 2-year) flood events.

January 2003

California Stormwater BMP Handbook New Development and Redevelopment www.cabmphandbooks.com

1 of 7

Infiltration Trench

As an underground BMP, trenches are unobtrusive and have little impact of site aesthetics.

Limitations

- Have a high failure rate if soil and subsurface conditions are not suitable.
- May not be appropriate for industrial sites or locations where spills may occur.
- The maximum contributing area to an individual infiltration practice should generally be less than 5 acres.
- Infiltration basins require a minimum soil infiltration rate of 0.5 inches/hour, not appropriate at sites with Hydrologic Soil Types C and D.
- If infiltration rates exceed 2.4 inches/hour, then the runoff should be fully treated prior to infiltration to protect groundwater quality.
- Not suitable on fill sites or steep slopes.
- Risk of groundwater contamination in very coarse soils.
- Upstream drainage area must be completely stabilized before construction.
- Difficult to restore functioning of infiltration trenches once clogged.

Design and Sizing Guidelines

- Provide pretreatment for infiltration trenches in order to reduce the sediment load. Pretreatment refers to design features that provide settling of large particles before runoff reaches a management practice, easing the long-term maintenance burden. Pretreatment is important for all structural stormwater management practices, but it is particularly important for infiltration practices. To ensure that pretreatment mechanisms are effective, designers should incorporate practices such as grassed swales, vegetated filter strips, detention, or a plunge pool in series.
- Specify locally available trench rock that is 1.5 to 2.5 inches in diameter.
- Determine the trench volume by assuming the WQV will fill the void space based on the computed porosity of the rock matrix (normally about 35%).
- Determine the bottom surface area needed to drain the trench within 72 hr by dividing the WQV by the infiltration rate.

$$d = \frac{WQV + RFV}{SA}$$

Calculate trench depth using the following equation:

where:

D = Trench depth

Infiltration Trench

TC-10

WQV = Water quality volume

RFV = Rock fill volume

SA = Surface area of the trench bottom

- The use of vertical piping, either for distribution or infiltration enhancement shall not be allowed to avoid device classification as a Class V injection well per 40 CFR146.5(e)(4).
- Provide observation well to allow observation of drain time.
- May include a horizontal layer of filter fabric just below the surface of the trench to retain sediment and reduce the potential for clogging.

Construction/Inspection Considerations

Stabilize the entire area draining to the facility before construction begins. If impossible, place a diversion berm around the perimeter of the infiltration site to prevent sediment entrance during construction. Stabilize the entire contributing drainage area before allowing any runoff to enter once construction is complete.

Performance

Infiltration trenches eliminate the discharge of the water quality volume to surface receiving waters and consequently can be considered to have 100% removal of all pollutants within this volume. Transport of some of these constituents to groundwater is likely, although the attenuation in the soil and subsurface layers will be substantial for many constituents.

Infiltration trenches can be expected to remove up to 90 percent of sediments, metals, coliform bacteria and organic matter, and up to 60 percent of phosphorus and nitrogen in the infiltrated runoff (Schueler, 1992). Biochemical oxygen demand (BOD) removal is estimated to be between 70 to 80 percent. Lower removal rates for nitrate, chlorides and soluble metals should be expected, especially in sandy soils (Schueler, 1992). Pollutant removal efficiencies may be improved by using washed aggregate and adding organic matter and loam to the subsoil. The stone aggregate should be washed to remove dirt and fines before placement in the trench. The addition of organic material and loam to the trench subsoil may enhance metals removal through adsorption.

Siting Criteria

The use of infiltration trenches may be limited by a number of factors, including type of native soils, climate, and location of groundwater table. Site characteristics, such as excessive slope of the drainage area, fine-grained soil types, and proximate location of the water table and bedrock, may preclude the use of infiltration trenches. Generally, infiltration trenches are not suitable for areas with relatively impermeable soils containing clay and silt or in areas with fill.

As with any infiltration BMP, the potential for groundwater contamination must be carefully considered, especially if the groundwater is used for human consumption or agricultural purposes. The infiltration trench is not suitable for sites that use or store chemicals or hazardous materials unless hazardous and toxic materials are prevented from entering the trench. In these areas, other BMPs that do not allow interaction with the groundwater should be considered.

January 2003

California Stormwater BMP Handbook New Development and Redevelopment www.cabmphandbooks.com 3 of 7

TC-10

The potential for spills can be minimized by aggressive pollution prevention measures. Many municipalities and industries have developed comprehensive spill prevention control and countermeasure (SPCC) plans. These plans should be modified to include the infiltration trench and the contributing drainage area. For example, diversion structures can be used to prevent spills from entering the infiltration trench. Because of the potential to contaminate groundwater, extensive site investigation must be undertaken early in the site planning process to establish site suitability for the installation of an infiltration trench.

Longevity can be increased by careful geotechnical evaluation prior to construction and by designing and implementing an inspection and maintenance plan. Soil infiltration rates and the water table depth should be evaluated to ensure that conditions are satisfactory for proper operation of an infiltration trench. Pretreatment structures, such as a vegetated buffer strip or water quality inlet, can increase longevity by removing sediments, hydrocarbons, and other materials that may clog the trench. Regular maintenance, including the replacement of clogged aggregate, will also increase the effectiveness and life of the trench.

Evaluation of the viability of a particular site is the same as for infiltration basins and includes:

- Determine soil type (consider RCS soil type 'A, B or C' only) from mapping and consult USDA soil survey tables to review other parameters such as the amount of silt and clay, presence of a restrictive layer or seasonal high water table, and estimated permeability. The soil should not have more than 30 percent clay or more than 40 percent of clay and silt combined. Eliminate sites that are clearly unsuitable for infiltration.
- Groundwater separation should be at least 3 m from the basin invert to the measured
 ground water elevation. There is concern at the state and regional levels of the impact on
 groundwater quality from infiltrated runoff, especially when the separation between
 groundwater and the surface is small.
- Location away from buildings, slopes and highway pavement (greater than 6 m) and wells
 and bridge structures (greater than 30 m). Sites constructed of fill, having a base flow or
 with a slope greater than 15 percent should not be considered.
- Ensure that adequate head is available to operate flow splitter structures (to allow the basin to be offline) without ponding in the splitter structure or creating backwater upstream of the splitter.
- Base flow should not be present in the tributary watershed.

Secondary Screening Based on Site Geotechnical Investigation

- At least three in-hole conductivity tests shall be performed using USBR 7300-89 or Bouwer-Rice procedures (the latter if groundwater is encountered within the boring), two tests at different locations within the proposed basin and the third down gradient by no more than approximately 10 m. The tests shall measure permeability in the side slopes and the bed within a depth of 3 m of the invert.
- The minimum acceptable hydraulic conductivity as measured in any of the three required test holes is 13 mm/hr. If any test hole shows less than the minimum value, the site should be disqualified from further consideration.

4 of 7

January 2003

- Exclude from consideration sites constructed in fill or partially in fill unless no silts or clays
 are present in the soil boring. Fill tends to be compacted, with clays in a dispersed rather
 than flocculated state, greatly reducing permeability.
- The geotechnical investigation should be such that a good understanding is gained as to how
 the stormwater runoff will move in the soil (horizontally or vertically) and if there are any
 geological conditions that could inhibit the movement of water.

Maintenance

Infiltration trenches required the least maintenance of any of the BMPs evaluated in the Caltrans study, with approximately 17 field hours spent on the operation and maintenance of each site. Inspection of the infiltration trench was the largest field activity, requiring approximately 8 hr/yr.

In addition to reduced water quality performance, clogged infiltration trenches with surface standing water can become a nuisance due to mosquito breeding. If the trench takes more than 72 hours to drain, then the rock fill should be removed and all dimensions of the trench should be increased by 2 inches to provide a fresh surface for infiltration.

Cost

Construction Cost

Infiltration trenches are somewhat expensive, when compared to other stormwater practices, in terms of cost per area treated. Typical construction costs, including contingency and design costs, are about \$5 per ft³ of stormwater treated (SWRPC, 1991; Brown and Schueler, 1997). Actual construction costs may be much higher. The average construction cost of two infiltration trenches installed by Caltrans in southern California was about \$50/ft³; however, these were constructed as retrofit installations.

Infiltration trenches typically consume about 2 to 3 percent of the site draining to them, which is relatively small. In addition, infiltration trenches can fit into thin, linear areas. Thus, they can generally fit into relatively unusable portions of a site.

Maintenance Cost

One cost concern associated with infiltration practices is the maintenance burden and longevity. If improperly sited or maintained, infiltration trenches have a high failure rate. In general, maintenance costs for infiltration trenches are estimated at between 5 percent and 20 percent of the construction cost. More realistic values are probably closer to the 20-percent range, to ensure long-term functionality of the practice.

References and Sources of Additional Information

Caltrans, 2002, BMP Retrofit Pilot Program Proposed Final Report, Rpt. CTSW-RT-01-050, California Dept. of Transportation, Sacramento, CA.

Brown, W., and T. Schueler. 1997. *The Economics of Stormwater BMPs in the Mid-Atlantic Region*. Prepared for the Chesapeake Research Consortium, Edgewater, MD, by the Center for Watershed Protection, Ellicott City, MD.

Galli, J. 1992. Analysis of Urban BMP Performance and Longevity in Prince George's County, Maryland. Metropolitan Washington Council of Governments, Washington, DC.

January 2003 California Stormwater BMP Handbook

New Development and Redevelopment www.cabmphandbooks.com 5 of 7

TC-10

Infiltration Trench

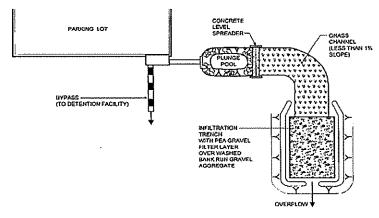
Maryland Department of the Environment (MDE). 2000. Maryland Stormwater Design Manual. http://www.mde.state.md.us/environment/wma/stormwatermanual. Accessed May 22, 2001.

Metzger, M. E., D. F. Messer, C. L. Beitia, C. M. Myers, and V. L. Kramer. 2002. The Dark Side Of Stormwater Runoff Management: Disease Vectors Associated With Structural BMPs. Stormwater 3(2): 24-39.

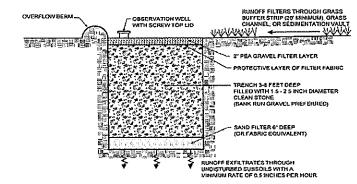
Schneler, T. 1987. Controlling Urban Runoff: A Practical Manual for Planning and Designing Urban BMPs. Metropolitan Washington Council of Governments, Washington, DC.

Southeastern Wisconsin Regional Planning Commission (SWRPC). 1991. Costs of Urban Nonpoint Source Water Pollution Control Measures. Southeastern Wisconsin Regional Planning Commission, Waukesha, WI.

Watershed Management Institute (WMI). 1997. Operation, Maintenance, and Management of Stormwater Management Systems. Prepared for U.S. Environmental Protection Agency, Office of Water, Washington, DC.

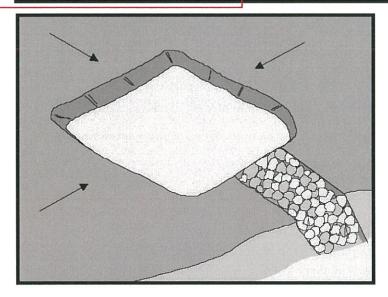

Information Resources

Center for Watershed Protection (CWP). 1997. Stormwater BMP Design Supplement for Cold Climates. Prepared for the U.S. Environmental Protection Agency, Office of Wetlands, Oceans and Watersheds, Washington, DC, by the Center for Watershed Protection, Ellicott City, MD.


Ferguson, B.K. 1994. Stormwater Infiltration. CRC Press, Ann Arbor, MI.

Minnesota Pollution Control Agency. 1989. Protecting Water Quality in Urban Areas: Best Management Practices. Minnesota Pollution Control Agency, Minneapolis, MN.

USEPA. 1993. Guidance to Specify Management Measures for Sources of Nonpoint Pollution in Coastal Waters. EPA-840-B-92-002. U.S. Environmental Protection Agency, Office of Water, Washington, DC.


PLAN VIEW

SECTION

V

V

Description and Purpose

A sediment trap is a containment area where sediment-laden runoff is temporarily detained under quiescent conditions, allowing sediment to settle out or before the runoff is discharged. Sediment traps are formed by excavating or constructing an earthen embankment across a waterway or low drainage area.

Suitable Applications

Sediment traps should be considered for use:

- At the perimeter of the site at locations where sedimentladen runoff is discharged offsite.
- At multiple locations within the project site where sediment control is needed.
- Around or upslope from storm drain inlet protection measures.
- Sediment traps may be used on construction projects where the drainage area is less than 5 acres. Traps would be placed where sediment-laden stormwater may enter a storm drain or watercourse. SE-2, Sediment Basins, must be used for drainage areas greater than 5 acres.
- As a supplemental control, sediment traps provide additional protection for a water body or for reducing sediment before it enters a drainage system.

EC Erosion Control SE Sediment Control TR Tracking Control WE Wind Erosion Control Non-Stormwater Management Control WM Waste Management and Materials Pollution Control Legend: Primary Objective

Targeted Constituents

Secondary Objective

Sediment Nutrients Trash Metals

Objectives

Metals
Bacteria
Oil and Grease
Organics

Potential Alternatives

SE-2 Sediment Basin (for larger areas)

Limitations

- Requires large surface areas to permit infiltration and settling of sediment.
- Not appropriate for drainage areas greater than 5 acres.
- Only removes large and medium sized particles and requires upstream erosion control.
- Attractive and dangerous to children, requiring protective fencing.
- Conducive to vector production.
- Should not be located in live streams.

Implementation

Design

A sediment trap is a small temporary ponding area, usually with a gravel outlet, formed by excavation or by construction of an earthen embankment. Its purpose is to collect and store sediment from sites cleared or graded during construction. It is intended for use on small drainage areas with no unusual drainage features and projected for a quick build-out time. It should help in removing coarse sediment from runoff. The trap is a temporary measure with a design life of approximately six months to one year and is to be maintained until the site area is permanently protected against erosion by vegetation and/or structures.

Sediment traps should be used only for small drainage areas. If the contributing drainage area is greater than 5 acres, refer to SE-2, Sediment Basins, or subdivide the catchment area into smaller drainage basins.

Sediment usually must be removed from the trap after each rainfall event. The SWPPP should detail how this sediment is to be disposed of, such as in fill areas onsite, or removal to an approved offsite dump. Sediment traps used as perimeter controls should be installed before any land disturbance takes place in the drainage area.

Sediment traps are usually small enough that a failure of the structure would not result in a loss of life, damage to home or buildings, or interruption in the use of public roads or utilities. However, sediment traps are attractive to children and can be dangerous. The following recommendations should be implemented to reduce risks:

- Install continuous fencing around the sediment trap or pond. Consult local ordinances regarding requirements for maintaining health and safety.
- Restrict basin side slopes to 3:1 or flatter.

Sediment trap size depends on the type of soil, size of the drainage area, and desired sediment removal efficiency (see SE-2, Sediment Basin). As a rule of thumb, the larger the basin volume the greater the sediment removal efficiency. Sizing criteria are typically established under the local grading ordinance or equivalent. The runoff volume from a 2-year storm is a common design criteria for a sediment trap. The sizing criteria below assume that this runoff volume is 0.042 acre-ft/acre (0.5 in. of runoff). While the climatic, topographic, and soil type extremes make it difficult to establish a statewide standard, the following criteria should trap moderate to high amounts of sediment in most areas of California:

- Locate sediment traps as near as practical to areas producing the sediment.
- Trap should be situated according to the following criteria: (1) by excavating a suitable area or where a low embankment can be constructed across a swale, (2) where failure would not cause loss of life or property damage, and (3) to provide access for maintenance, including sediment removal and sediment stockpiling in a protected area.
- Trap should be sized to accommodate a settling zone and sediment storage zone with recommended minimum volumes of 67 yd³/acre and 33 yd³/acre of contributing drainage area, respectively, based on 0.5 in. of runoff volume over a 24-hour period. In many cases, the size of an individual trap is limited by available space. Multiple traps or additional volume may be required to accommodate specific rainfall, soil, and site conditions.
- Traps with an impounding levee greater than 4.5 ft tall, measured from the lowest point to the impounding area to the highest point of the levee, and traps capable of impounding more than 35,000 ft³, should be designed by a Registered Civil Engineer. The design should include maintenance requirements, including sediment and vegetation removal, to ensure continuous function of the trap outlet and bypass structures.
- The outlet pipe or open spillway must be designed to convey anticipated peak flows.
- Use rock or vegetation to protect the trap outlets against erosion.
- Fencing should be provided to prevent unauthorized entry.

Installation

Sediment traps can be constructed by excavating a depression in the ground or creating an impoundment with a small embankment. Sediment traps should be installed outside the area being graded and should be built prior to the start of the grading activities or removal of vegetation. To minimize the area disturbed by them, sediment traps should be installed in natural depressions or in small swales or drainage ways. The following steps must be followed during installation:

- The area under the embankment must be cleared, grubbed, and stripped of any vegetation and root mat. The pool area should be cleared.
- The fill material for the embankment must be free of roots or other woody vegetation as well as oversized stones, rocks, organic material, or other objectionable material. The embankment may be compacted by traversing with equipment while it is being constructed.
- All cut-and-fill slopes should be 3:1 or flatter.
- When a riser is used, all pipe joints must be watertight.
- When a riser is used, at least the top two-thirds of the riser should be perforated with 0.5 in. diameter holes spaced 8 in. vertically and 10 to 12 in. horizontally. See SE-2, Sediment Basin.
- When an earth or stone outlet is used, the outlet crest elevation should be at least 1 ft below the top of the embankment.

Sediment Trap

When crushed stone outlet is used, the crushed stone used in the outlet should meet AASHTO M43, size No. 2 or 24, or its equivalent such as MSHA No. 2. Gravel meeting the above gradation may be used if crushed stone is not available.

Costs

Average annual cost per installation and maintenance (18 month useful life) is \$0.73 per ft³ (\$1,300 per drainage acre). Maintenance costs are approximately 20% of installation costs.

Inspection and Maintenance

- Inspect BMPs prior to forecast rain, daily during extended rain events, after rain events, weekly during the rainy season, and at two-week intervals during the non-rainy season.
- Inspect outlet area for erosion and stabilize if required.
- Inspect trap banks for seepage and structural soundness, repair as needed.
- Inspect outlet structure and spillway for any damage or obstructions. Repair damage and remove obstructions as needed.
- Inspect fencing for damage and repair as needed.
- Inspect the sediment trap for area of standing water during every visit. Corrective measures should be taken if the BMP does not dewater completely in 72 hours or less to prevent vector production.
- Sediment that accumulates in the BMP must be periodically removed in order to maintain BMP effectiveness. Sediment should be removed when the sediment accumulation reaches one-third of the trap capacity. Sediment removed during maintenance may be incorporated into earthwork on the site or disposed of at an appropriate location.
- Remove vegetation from the sediment trap when first detected to prevent pools of standing water and subsequent vector production.
- BMPs that require dewatering shall be continuously attended while dewatering takes place. Dewatering BMPs shall be implemented at all times during dewatering activities.

References

Brown, W., and T. Schueler. The Economics of Stormwater BMPs in the Mid-Atlantic Region. Prepared for Chesapeake Research Consortium, Edgewater, MD, by the Center for Watershed Protection, Ellicott City, MD, 1997.

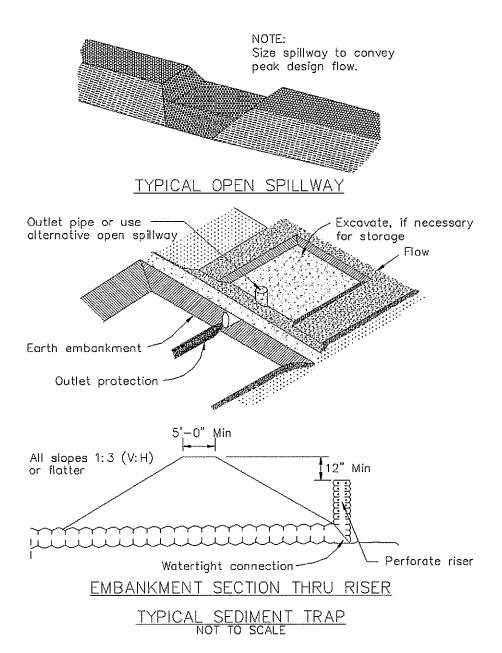
Draft – Sedimentation and Erosion Control, an Inventory of Current Practices, USEPA, April 1990.

Manual of Standards of Erosion and Sediment Control Measures, Association of Bay Area Governments, May 1995.

Metzger, M.E., D.F. Messer, C.L. Beitia, C.M. Myers, and V.L. Kramer, The Dark Side of Stormwater Runoff Management: Disease Vectors Associated with Structural BMPs, 2002.

www.cabmphandbooks.com

National Management Measures to Control Nonpoint Source Pollution from Urban Areas, United States Environmental Protection Agency, 2002.


Proposed Guidance Specifying Management Measures for Sources of Nonpoint Pollution in Coastal Waters, Work Group-Working Paper, USEPA, April 1992.

Stormwater Quality Handbooks - Construction Site Best Management Practices (BMPs) Manual, State of California Department of Transportation (Caltrans), November 2000.

Stormwater Management Manual for The Puget Sound Basin, Washington State Department of Ecology, Public Review Draft, 1991.

U.S. Environmental Protection Agency (USEPA). Guidance Specifying Management Measures for Nonpoint Pollution in Coastal Waters. EPA 840-B-9-002. U.S. Environmental Protection Agency, Office of Water, Washington, DC, 1993.

Water Quality Management Plan for the Lake Tahoe Region, Volume II, Handbook of Management Practices, Tahoe Regional Planning Agency, November 1988.

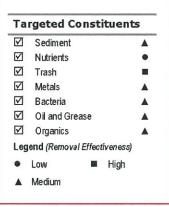
Extended Detention Basin

TC-22

Design Considerations

- Tributary Area
- Area Required
- Hydraulic Head

Description


Dry extended detention ponds (a.k.a. dry ponds, extended detention basins, detention ponds, extended detention ponds) are basins whose outlets have been designed to detain the stormwater runoff from a water quality design storm for some minimum time (e.g., 48 hours) to allow particles and associated pollutants to settle. Unlike wet ponds, these facilities do not have a large permanent pool. They can also be used to provide flood control by including additional flood detention storage.

California Experience

Caltrans constructed and monitored 5 extended detention basins in southern California with design drain times of 72 hours. Four of the basins were earthen, less costly and had substantially better load reduction because of infiltration that occurred, than the concrete basin. The Caltrans study reaffirmed the flexibility and performance of this conventional technology. The small headloss and few siting constraints suggest that these devices are one of the most applicable technologies for stormwater treatment.

Advantages

- Due to the simplicity of design, extended detention basins are relatively easy and inexpensive to construct and operate.
- Extended detention basins can provide substantial capture of sediment and the toxics fraction associated with particulates.
- Widespread application with sufficient capture volume can provide significant control of channel erosion and enlargement caused by changes to flow frequency

January 2003 Errata 5-06 California Stormwater BMP Handbook New Development and Redevelopment www.cabmphandbook.com 1 of 10

relationships resulting from the increase of impervious cover in a watershed.

Limitations

- Limitation of the diameter of the orifice may not allow use of extended detention in watersheds of less than 5 acres (would require an orifice with a diameter of less than 0.5 inches that would be prone to clogging).
- Dry extended detention ponds have only moderate pollutant removal when compared to some other structural stormwater practices, and they are relatively ineffective at removing soluble pollutants.
- Although wet ponds can increase property values, dry ponds can actually detract from the
 value of a home due to the adverse aesthetics of dry, bare areas and inlet and outlet
 structures.

Design and Sizing Guidelines

- Capture volume determined by local requirements or sized to treat 85% of the annual runoff volume.
- Outlet designed to discharge the capture volume over a period of hours.
- Length to width ratio of at least 1.5:1 where feasible.
- Basin depths optimally range from 2 to 5 feet.
- Include energy dissipation in the inlet design to reduce resuspension of accumulated sediment.
- A maintenance ramp and perimeter access should be included in the design to facilitate
 access to the basin for maintenance activities and for vector surveillance and control.
- Use a draw down time of 48 hours in most areas of California. Draw down times in excess of 48 hours may result in vector breeding, and should be used only after coordination with local vector control authorities. Draw down times of less than 48 hours should be limited to BMP drainage areas with coarse soils that readily settle and to watersheds where warming may be determined to downstream fisheries.

Construction/Inspection Considerations

- Inspect facility after first large to storm to determine whether the desired residence time has been achieved.
- When constructed with small tributary area, orifice sizing is critical and inspection should verify that flow through additional openings such as bolt holes does not occur.

Performance

One objective of stormwater management practices can be to reduce the flood hazard associated with large storm events by reducing the peak flow associated with these storms. Dry extended detention basins can easily be designed for flood control, and this is actually the primary purpose of most detention ponds.

Dry extended detention basins provide moderate pollutant removal, provided that the recommended design features are incorporated. Although they can be effective at removing some pollutants through settling, they are less effective at removing soluble pollutants because of the absence of a permanent pool. Several studies are available on the effectiveness of dry extended detention ponds including one recently concluded by Caltrans (2002).

The load reduction is greater than the concentration reduction because of the substantial infiltration that occurs. Although the infiltration of stormwater is clearly beneficial to surface receiving waters, there is the potential for groundwater contamination. Previous research on the effects of incidental infiltration on groundwater quality indicated that the risk of contamination is minimal.

There were substantial differences in the amount of infiltration that were observed in the earthen basins during the Caltrans study. On average, approximately 40 percent of the runoff entering the unlined basins infiltrated and was not discharged. The percentage ranged from a high of about 60 percent to a low of only about 8 percent for the different facilities. Climatic conditions and local water table elevation are likely the principal causes of this difference. The least infiltration occurred at a site located on the coast where humidity is higher and the basin invert is within a few meters of sea level. Conversely, the most infiltration occurred at a facility located well inland in Los Angeles County where the climate is much warmer and the humidity is less, resulting in lower soil moisture content in the basin floor at the beginning of storms.

Vegetated detention basins appear to have greater pollutant removal than concrete basins. In the Caltrans study, the concrete basin exported sediment and associated pollutants during a number of storms. Export was not as common in the earthen basins, where the vegetation appeared to help stabilize the retained sediment.

Siting Criteria

Dry extended detention ponds are among the most widely applicable stormwater management practices and are especially useful in retrofit situations where their low hydraulic head requirements allow them to be sited within the constraints of the existing storm drain system. In addition, many communities have detention basins designed for flood control. It is possible to modify these facilities to incorporate features that provide water quality treatment and/or channel protection. Although dry extended detention ponds can be applied rather broadly, designers need to ensure that they are feasible at the site in question. This section provides basic guidelines for siting dry extended detention ponds.

In general, dry extended detention ponds should be used on sites with a minimum area of 5 acres. With this size catchment area, the orifice size can be on the order of 0.5 inches. On smaller sites, it can be challenging to provide channel or water quality control because the orifice diameter at the outlet needed to control relatively small storms becomes very small and thus prone to clogging. In addition, it is generally more cost-effective to control larger drainage areas due to the economies of scale.

Extended detention basins can be used with almost all soils and geology, with minor design adjustments for regions of rapidly percolating soils such as sand. In these areas, extended detention ponds may need an impermeable liner to prevent ground water contamination.

January 2003 Errata 5-06 California Stormwater BMP Handbook New Development and Redevelopment www.cabmphandbook.com 3 of 10

The base of the extended detention facility should not intersect the water table. A permanently wet bottom may become a mosquito breeding ground. Research in Southwest Florida (Santana et al., 1994) demonstrated that intermittently flooded systems, such as dry extended detention ponds, produce more mosquitoes than other pond systems, particularly when the facilities remained wet for more than 3 days following heavy rainfall.

A study in Prince George's County, Maryland, found that stormwater management practices can increase stream temperatures (Galli, 1990). Overall, dry extended detention ponds increased temperature by about 5°F. In cold water streams, dry ponds should be designed to detain stormwater for a relatively short time (i.e., 24 hours) to minimize the amount of warming that occurs in the basin.

Additional Design Guidelines

In order to enhance the effectiveness of extended detention basins, the dimensions of the basin must be sized appropriately. Merely providing the required storage volume will not ensure maximum constituent removal. By effectively configuring the basin, the designer will create a long flow path, promote the establishment of low velocities, and avoid having stagnant areas of the basin. To promote settling and to attain an appealing environment, the design of the basin should consider the length to width ratio, cross-sectional areas, basin slopes and pond configuration, and aesthetics (Young et al., 1996).

Energy dissipation structures should be included for the basin inlet to prevent resuspension of accumulated sediment. The use of stilling basins for this purpose should be avoided because the standing water provides a breeding area for mosquitoes.

Extended detention facilities should be sized to completely capture the water quality volume. A micropool is often recommended for inclusion in the design and one is shown in the schematic diagram. These small permanent pools greatly increase the potential for mosquito breeding and complicate maintenance activities; consequently, they are not recommended for use in California.

A large aspect ratio may improve the performance of detention basins; consequently, the outlets should be placed to maximize the flowpath through the facility. The ratio of flowpath length to

width from the inlet to the outlet should be at least 1.5:1 (L:W) where feasible. Basin depths optimally range from 2 to 5 feet.

The facility's drawdown time should be regulated by an orifice or weir. In general, the outflow structure should have a trash rack or other acceptable means of preventing clogging at the entrance to the outflow pipes. The outlet design implemented by Caltrans in the facilities constructed in San Diego County used an outlet riser with orifices

Figure 1
Example of Extended Detention Outlet Structure

4 of 10

California Stormwater BMP Handbook New Development and Redevelopment www.cabmphandbooks.com

January 2003 Errata 5-06 sized to discharge the water quality volume, and the riser overflow height was set to the design storm elevation. A stainless steel screen was placed around the outlet riser to ensure that the orifices would not become clogged with debris. Sites either used a separate riser or broad crested weir for overflow of runoff for the 25 and greater year storms. A picture of a typical outlet is presented in Figure 1.

The outflow structure should be sized to allow for complete drawdown of the water quality volume in 72 hours. No more than 50% of the water quality volume should drain from the facility within the first 24 hours. The outflow structure can be fitted with a valve so that discharge from the basin can be halted in case of an accidental spill in the watershed.

Summary of Design Recommendations

(1) Facility Sizing - The required water quality volume is determined by local regulations or the basin should be sized to capture and treat 85% of the annual runoff volume. See Section 5.5.1 of the handbook for a discussion of volume-based design.

Basin Configuration — A high aspect ratio may improve the performance of detention basins; consequently, the outlets should be placed to maximize the flowpath through the facility. The ratio of flowpath length to width from the inlet to the outlet should be at least 1.5:1 (L:W). The flowpath length is defined as the distance from the inlet to the outlet as measured at the surface. The width is defined as the mean width of the basin. Basin depths optimally range from 2 to 5 feet. The basin may include a sediment forebay to provide the opportunity for larger particles to settle out.

A micropool should not be incorporated in the design because of vector concerns. For online facilities, the principal and emergency spillways must be sized to provide 1.0 foot of freeboard during the 25-year event and to safely pass the flow from 100-year storm.

- (2) Pond Side Slopes Side slopes of the pond should be 3:1 (H:V) or flatter for grass stabilized slopes. Slopes steeper than 3:1 (H:V) must be stabilized with an appropriate slope stabilization practice.
- (3) Basin Lining Basins must be constructed to prevent possible contamination of groundwater below the facility.
- (4) Basin Inlet Energy dissipation is required at the basin inlet to reduce resuspension of accumulated sediment and to reduce the tendency for short-circuiting.
- (5) Outflow Structure The facility's drawdown time should be regulated by a gate valve or orifice plate. In general, the outflow structure should have a trash rack or other acceptable means of preventing clogging at the entrance to the outflow pipes.

The outflow structure should be sized to allow for complete drawdown of the water quality volume in 72 hours. No more than 50% of the water quality volume should drain from the facility within the first 24 hours. The outflow structure should be fitted with a valve so that discharge from the basin can be halted in case of an accidental spill in the watershed. This same valve also can be used to regulate the rate of discharge from the basin.

The discharge through a control orifice is calculated from:

 $Q = CA(2g(H-H_0))^{0.5}$

where: $Q = discharge (ft^3/s)$

C = orifice coefficient
A = area of the orifice (ft²)
g = gravitational constant (32.2)
H = water surface elevation (ft)

Ho= orifice elevation (ft)

Recommended values for C are 0.66 for thin materials and 0.80 when the material is thicker than the orifice diameter. This equation can be implemented in spreadsheet form with the pond stage/volume relationship to calculate drain time. To do this, use the initial height of the water above the orifice for the water quality volume. Calculate the discharge and assume that it remains constant for approximately 10 minutes. Based on that discharge, estimate the total discharge during that interval and the new elevation based on the stage volume relationship. Continue to iterate until H is approximately equal to $H_{\rm a}$. When using multiple orifices the discharge from each is summed.

- (6) Splitter Box When the pond is designed as an offline facility, a splitter structure is used to isolate the water quality volume. The splitter box, or other flow diverting approach, should be designed to convey the 25-year storm event while providing at least 1.0 foot of freeboard along pond side slopes.
- (7) Erosion Protection at the Outfall For online facilities, special consideration should be given to the facility's outfall location. Flared pipe end sections that discharge at or near the stream invert are preferred. The channel immediately below the pond outfall should be modified to conform to natural dimensions, and lined with large stone riprap placed over filter cloth. Energy dissipation may be required to reduce flow velocities from the primary spillway to non-erosive velocities.
- (8) Safety Considerations Safety is provided either by fencing of the facility or by managing the contours of the pond to eliminate dropoffs and other hazards. Earthen side slopes should not exceed 3:1 (H:V) and should terminate on a flat safety bench area. Landscaping can be used to impede access to the facility. The primary spillway opening must not permit access by small children. Outfall pipes above 48 inches in diameter should be fenced.

Maintenance

Routine maintenance activity is often thought to consist mostly of sediment and trash and debris removal; however, these activities often constitute only a small fraction of the maintenance hours. During a recent study by Caltrans, 72 hours of maintenance was performed annually, but only a little over 7 hours was spent on sediment and trash removal. The largest recurring activity was vegetation management, routine mowing. The largest absolute number of hours was associated with vector control because of mosquito breeding that occurred in the stilling basins (example of standing water to be avoided) installed as energy dissipaters. In most cases, basic housekeeping practices such as removal of debris accumulations and vegetation

management to ensure that the basin dewaters completely in 48-72 hours is sufficient to prevent creating mosquito and other vector habitats.

Consequently, maintenance costs should be estimated based primarily on the mowing frequency and the time required. Moving should be done at least annually to avoid establishment of woody vegetation, but may need to be performed much more frequently if aesthetics are an important consideration.

Typical activities and frequencies include:

- Schedule semiannual inspection for the beginning and end of the wet season for standing water, slope stability, sediment accumulation, trash and debris, and presence of burrows.
- Remove accumulated trash and debris in the basin and around the riser pipe during the semiannual inspections. The frequency of this activity may be altered to meet specific site conditions.
- Trim vegetation at the beginning and end of the wet season and inspect monthly to prevent establishment of woody vegetation and for aesthetic and vector reasons.
- Remove accumulated sediment and re-grade about every 10 years or when the accumulated sediment volume exceeds 10 percent of the basin volume. Inspect the basin each year for accumulated sediment volume.

Cost

Construction Cost

The construction costs associated with extended detention basins vary considerably. One recent study evaluated the cost of all pond systems (Brown and Schueler, 1997). Adjusting for inflation, the cost of dry extended detention ponds can be estimated with the equation:

$$C = 12.4 V^{0.760}$$

C = Construction, design, and permitting cost, and where:

V = Volume (ft³).

Using this equation, typical construction costs are:

\$41,600 for a 1 acre-foot pond

\$ 239,000 for a 10 acre-foot pond

\$ 1,380,000 for a 100 acre-foot pond

Interestingly, these costs are generally slightly higher than the predicted cost of wet ponds (according to Brown and Schueler, 1997) on a cost per total volume basis, which highlights the difficulty of developing reasonably accurate construction estimates. In addition, a typical facility constructed by Caltrans cost about \$160,000 with a capture volume of only 0.3 ac-ft.

An economic concern associated with dry ponds is that they might detract slightly from the value of adjacent properties. One study found that dry ponds can actually detract from the

perceived value of homes adjacent to a dry pond by between 3 and 10 percent (Emmerling-Dinovo, 1995).

Maintenance Cost

For ponds, the annual cost of routine maintenance is typically estimated at about 3 to 5 percent of the construction cost (EPA website). Alternatively, a community can estimate the cost of the maintenance activities outlined in the maintenance section. Table 1 presents the maintenance costs estimated by Caltrans based on their experience with five basins located in southern California. Again, it should be emphasized that the vast majority of hours are related to vegetation management (mowing).

Table 1	Estimated Average Annual Maintenance Effort		
Activity	Labor Hours	Equipment & Material (\$)	Cost
Inspections	4	7	183
Maintenance	49	126	2282
Vector Control	o	0	o
Administration	3	o	132
Materials	-	535	535
Total	56	\$668	\$3,132

References and Sources of Additional Information

Brown, W., and T. Schueler. 1997. *The Economics of Stormwater BMPs in the Mid-Atlantic Region*. Prepared for Chesapeake Research Consortium. Edgewater, MD. Center for Watershed Protection. Ellicott City, MD.

Denver Urban Drainage and Flood Control District. 1992. Urban Storm Drainage Criteria Manual—Volume 3: Best Management Practices. Denver, CO.

Emmerling-Dinovo, C. 1995. Stormwater Detention Basins and Residential Locational Decisions. Water Resources Bulletin 31(3): 515–521

Galli, J. 1990. Thermal Impacts Associated with Urbanization and Stormwater Management Best Management Practices. Metropolitan Washington Council of Governments. Prepared for Maryland Department of the Environment, Baltimore, MD.

GKY, 1989, Outlet Hydraulics of Extended Detention Facilities for the Northern Virginia Planning District Commission.

MacRae, C. 1996. Experience from Morphological Research on Canadian Streams: Is Control of the Two-Year Frequency Runoff Event the Best Basis for Stream Channel Protection? In *Effects of Watershed Development and Management on Aquatic Ecosystems*. American Society of Civil Engineers. Edited by L. Roesner, Snowbird, UT. pp. 144–162.

Maryland Dept of the Environment, 2000, Maryland Stormwater Design Manual: Volumes 1 & 2, prepared by MDE and Center for Watershed Protection. http://www.mde.state.md.us/environment/wma/stormwatermanual/index.html

Metzger, M. E., D. F. Messer, C. L. Beitia, C. M. Myers, and V. L. Kramer. 2002. The Dark Side Of Stormwater Runoff Management: Disease Vectors Associated With Structural BMPs. Stormwater 3(2): 24-39.

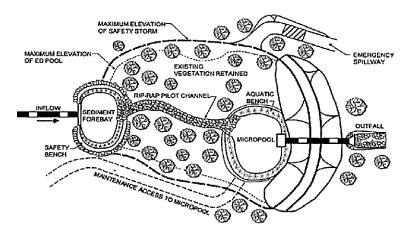
Santana, F., J. Wood, R. Parsons, and S. Chamberlain. 1994. Control of Mosquito Breeding in Permitted Stormwater Systems. Prepared for Southwest Florida Water Management District, Brooksville, FL.

Schueler, T. 1997. Influence of Ground Water on Performance of Stormwater Ponds in Florida. Watershed Protection Techniques 2(4):525-528.

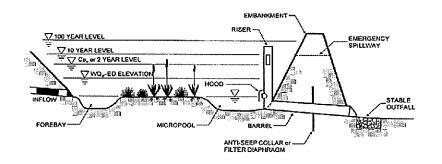
Watershed Management Institute (WMI). 1997. Operation, Maintenance, and Management of Stormwater Management Systems. Prepared for U.S. Environmental Protection Agency, Office of Water. Washington, DC.

Young, G.K., et al., 1996, Evaluation and Management of Highway Runoff Water Quality, Publication No. FHWA-PD-96-032, U.S. Department of Transportation, Federal Highway Administration, Office of Environment and Planning.

Information Resources


Center for Watershed Protection (CWP), Environmental Quality Resources, and Loiederman Associates. 1997. *Maryland Stormwater Design Manual*. Draft. Prepared for Maryland Department of the Environment, Baltimore, MD.

Center for Watershed Protection (CWP). 1997. Stormwater BMP Design Supplement for Cold Climates. Prepared for U.S. Environmental Protection Agency, Office of Wetlands, Oceans and Watersheds. Washington, DC.


U.S. Environmental Protection Agency (USEPA). 1993. Guidance Specifying Management Measures for Sources of Nonpoint Pollution in Coastal Waters. EPA-840-B-92-002. U.S. Environmental Protection Agency, Office of Water, Washington, DC.

TC-22

Extended Detention Basin

PLAN VIEW

PROFILE

Schematic of an Extended Detention Basin (MDE, 2000)

ADVANCED GEOTECHNICAL SOLUTIONS, INC. 25109 Jefferson Avenue, Suite 220 Murrieta, California 92562 Telephone: (619) 708-1649 Fax: (714) 409-3287

The Accretive Group 12275 El Camino Real, Suite 220 San Diego, CA 92130

March 22, 2012 P/W 1102-01 Report No. 1102-01-B-11

Attention:

Mr. Jon Rilling

Subject:

Preliminary Infiltration Rates, Lilac Hills Ranch, Valley Center

Community Planning Area, County of San Diego, California

Reference:

Feasibility Level Geotechnical Report, Las Lilas Project, Valley Center Area, San Diego, California, prepared by Pacific Soils Engineering, Inc.

dated May 23, 2007 (PSE W.O. 401120)

Gentlemen:

Pursuant to a request from representatives of Landmark Consulting, transmitted herein is Advanced Geotechnical Solutions, Inc.'s (AGS) estimated infiltration rates for use in the preliminary design of infiltration basins for the Lilac Hills Ranch project, Valley Center Community Planning Area, County of San Diego, California. Site specific testing has not been conducted onsite for the determination of infiltration rates. The rates presented herein are based upon USDA Natural Resource Conservation Service (NCRS) mapping, information provided by the County of San Diego, Department of Public Works, and the characteristics of the onsite soils and bedrock.

We have provided you preliminary mapping of the site showing the approximate location of the various geologic units onsite. Based upon the geologic units the following estimated infiltration rates are presented:

- > Artificial Fill, Compacted (no map symbol)- Soil Group D (rates 0 to 0.05 inches per hour)
- > Artificial Fill, Undocumented (map symbol afu)- Soil Group D (rates 0 to 0.05 inches per hour)
- > Alluvium (map symbol Qal)- Soil Group C (rates 0.05 to 0.15 inches per hour)
- Older Alluvium (map symbol Qoal)- Soil Group C (rates 0.05 to 0.15 inches per hour)
- Granitic Rock (map symbol Kgr)- Soil Group D (rates 0 to 0.05 inches per hour)

The aforementioned rates are highly dependent upon the depth to the underlying relatively impermeable granitic rock and whether the area has been subjected to loading from grading or farming equipment as this will tend to densify the soils and reduce the infiltration rates. Infiltration basins should be located such that the infiltration water is located down gradient from all structural building pads.

Should you desire more accurate design rates than these general rates presented herein, additional testing can be conducted. This testing should be conducted utilizing a Double Ring Infiltrometer apparatus.

Rates determined with the Double Ring Infiltrometer are considered to be more accurate by the local Water Quality Control Board than other methods.

The opportunity to be of service is sincerely appreciated. If you should have any questions, please do not hesitate to contact the undersigned.

Respectfully Submitted, Advanced Geotechnical Solutions, Inc.

SEFFREY A. CHANEY_Vice President RCE 46544/ GE 2314

Distribution:

(4) Addressee (1) Landmark Consulting, Attn: Mark Breneick

106

Major Stormwater Management Plan (Major SWMP)

For

LILAC HILLS RANCH-IMPLEMENTING TM TM – 5572 RPL-3 Valley Center, San Diego County, California

Preparation/Revision Date: 5-3-13

Prepared for:

Accretive Investments, Inc. 12275 El Camino Real, Suite 110 San Diego, Ca 92130

Prepared by:

Landmark Consulting 9555 Genesee Ave. Ste. 200 San Diego, Ca 92121 858-587-8070

The selection, sizing, and preliminary design of stormwater treatment and other control measures in this plan have been prepared under the direction of the following Registered Civil Engineer and meet the requirements of Regional Water Quality Control Board Order R9-2007-0001 and subsequent amendments.

Date